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CPSS 
A COMMON PROGRAMMING SUPPORT SYSTEM 

Dushan Boreta 
System Development Corporation, Falls Church, Virginia 

INTRODUCTION 

Over the years many computer software sys­
tems have been developed to serve the program 
production process. These systems, variously 
known as "production" systems, "utility" sys­
tems, or "support" systems, are designed and 
produced for the same purpose: to provide pro­
grammers the tools required to produce com­
puter programs. Beyond this common purpose 
these systems have little in common and, in 
fact, are unique systems individually tailored 
to a particular application. In each system 
much of the tailoring occurs because of the par­
ticular computer configuraton, operational sys­
tem support requirements, computer manufac­
turer's software characteristics, experience of 
the designers, schedule pressures, and style 
preferences of the programmers producing the 
system. The tailoring is reflected in the design 
of each program production system and is evi­
dent. in many features, for example, the pro­
gramming languages used, the computer oper­
ating procedures, the programmer's inputs, the 
outputs provided to the programmer, and the 
program organization in the system. 

In examining program production systems, 
most are found to have functional capabilities 
for generating code, code-checking the object 
programs, and maintaining magnetic tapes con­
taining programs. 

In some instances these capabilities are of the 
most rudimentary sort. In other instances, very 
sophisticated and complete capabilities exist. 

1 

What this paper describes is a program pro­
duction system, CPSS, that should assist pro­
grammers and managers in the performance of 
their tasks. The principle characteristics of 
CPSS provide for programmers an efficient and 
effective means for producing their programs. 
For managers, CPSS provides for the minimi­
zation of costs for producing programs, and a 
relatively inexpensive means for achieving an 
effective and efficient program production capa­
bility. 

The CPSS characteristics that make' these 
claims a reality are: first, it provides to pro­
grammers the attributes of higher order lan­
guages in each program production task; sec­
ond, that both the functions of CPSS and its 
computer programs largely are transferable; 
and third, the totality of functions of a com­
prehensive program production system is pro­
vided in CPSS. Further, the design features 
embodied in CPSS should afford the minimiza­
tion of its maintenance costs, reduction in the 
possibility of programmer errors, and simplifi­
cation of the programming task itself. 

Additionally, the design of CPSS provides 
for its "common" applicability. It may be used 
in "open-" or "closed-shop" operations in sup­
porting the development and production of sys­
tem, non-system, and "one-shot" programs. 

Effectively, its design characteristics, lan­
guage power, scope of applicability, and trans­
ferability make CPSS an off -the-shelf program 
production system. 
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CPSS is programmed in a subset of the JO­
VIAL language, and in design is compatible 
with the full JOVIAL language. Currently, 
CPSS is implemented on an IBM 7090 and is 
being used to support the development and pro­
duction of a computer program system. This 
installation and continued testing will be the 
source for refinements to CPSS's design as the 
system continue& under development. 

CPSS DESIGN CRITERIA 
AND REQUIREMENTS 

Providing "off-the-shelf" capability is a dif­
ferent type of programming problem than nor­
mally is encountered. The problems in providing 
CPSS with the "off-the-shelf" capability stem 
from the class of computers on which it may 
be installed; the nature of the transferability 
task; some aspects of the programmer training 
tasks; the CPSS maintenance task; the pro­
gramming language it provides; and the scope 
of its applicability to the operational system 
development process. 

Class of Computers 

CPSS is directly applicable to medium- and 
large-scale computers. The computer configu­
ration should have, but need not be restricted 
to, a word size of 30 bits, a 32K one-instruction­
per-word or a 16K two-instruction-per-word 
core memory, peripheral storage units consist­
ing of four tape drives (or three tape drives 
plus drum or disc units), an on-line printing 
device, an on-line input device, and some ex­
ternal switches or keys. 

The computer configuration need not be de­
fined explicitly in that there are many possible 
trade-offs between the computer's characteris­
tics, the programming conventions and tech­
niques used in CPSS, and the capacity of the 
system. For example, by altering the labeling 
convention used in the coding of CPSS~ the 
class of computers could be expanded to include 
machines with a word size of 24 bits. 

The Transferability Task 

The transferability of a program production 
system is important for many reasons. The cost 
of installing a program production system is 
minimized. For applications employing a va­
riety of computers, there is a standard system 

and methodology that contributes to program­
mer transferability. The difficulties and costs 
inherent in the transition from one computer 
to another are reduced. And, a bench mark is 
identifiable from which further technology de­
velopment may progress. 

The goal, transferability of programs, usually 
is interpreted as requiring a program coded 
and operating on one computer to be operable 
on a different computer and still retain the 
capability to perform its functions. The trans­
fer should be completed at least semi-automati­
cally, utilizing clerical or junior personnel and 
fixed procedures. The current state of the art 
does not afford 100 per cent transferability. 
Therefore, we have interpreted this goal to 
mean that CPSS is to be transferable with only 
a minimum of known code change. In order 
that CPSS be transferable, the functions and 
services provided by CPSS also must be trans­
ferable. Additionally, the CPSS documentation, 
program and system tests, operating proce­
dures, transferability techniques, and transfer 
procedures are designed to be transferable. 

It must be emphasized that the transferabil­
ity task being discussed is that of getting CPSS 
to run on another computer, different from its 
current application (the IBM 7090). CPSS is 
designed to be transferred as a system. Al­
though it is modular, the transferability of any 
module is a distinctly different task from that 
of transferring the whole of CPSS. 

One natural design feature of a transferable 
system is its independence from machine char­
acteristics. It must be noted that machine in­
dependence is a two-way street. Not only is the 
code of CPSS to be machine-independent, but 
the functions performed by the code also must 
be machine-independent. For example, pro­
grams making transfers to and from storage 
should not assume some given unit availability, 
transfer rate, segmentation of the transferred 
data, unit positioning, or even that it is the only 
user of a unit. In CPSS, this example of ma­
chine-independence (transferability) is pro­
vided by a central I/O program in the CPSS 
Computer Operations Subsystem (the design of 
which is discussed later in this 'paper). 

It will be difficult to measure how trans­
ferable CPSS is until it has been transferred 
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across several computers. The system's trans­
ferability could be measurable in several di­
mensions, for example, in time elapsed from 
start to installation, in dollar costs for each 
economic factor involved in the transfer, in 
amounts and types of computer time required, 
in the amount of code to be altered per program 
and per function, and in the number of errors 
discovered in each phase, including installation 
and post-installation. Detailed records should 
be maintained that identify the transfer costs 
and the factors that influenced the cost. Some 
of these factors are: the differences in the ma­
chine instruction word format and addressing, 
the types and quality of programs available on 
the "new" machine, the frequency of occurrence 
and amount of down-time per occurrence of 
machine failure, and the location and availabil­
ity of the staging and target computers. 

'/ 

Some of the principal technical problems that 
will arise in transferring CPSS to other com­
puters lie in the sophistication of the design 
embodied in the system, the power of the lan­
guage provided by the system, the systerriiza­
tion of the CPSS design, and the broad class 
of computers to which CPSS may be applied. 
For example, consider the problem of designing 
CPSS so that it will operate on a four-tape 
drive computer configuration. The task of com­
piling a JOVIAL program can use (1) an input 
device for the source program, (2) an input 
device for the library tape, (3) an input device 
for the system Compool, (4) a temporary stor­
age device for the intermediate language, (5) 
a permanent storage device for the object pro­
gram, (6) an output device for the listings, and 
(7) an output device to communicate with the 
computer operator (as will be noted later, a 
compilation may require other additional "stor­
age devices"). Further complicate the task and 
allow the programmer to generate a test case 
and operate his program on the test case, and 
allow all this to occur in an uninterrupted sin­
gle job. This problem is resolved in the design 
of the CPSS executive and I/O functions (dis­
cussed later in the paper). In essence, the I/O 
problem was resolved by constructing a central 
I/O program that provided machine-independ­
ent I/O functions for the remainder of CPSS. 
The control problem was resolved by allowing 
p:ogrammers the freedom of directing CPSS 

via control card inputs (functionally oriented 
to the program production tasks). 

All the tasks related to transferability are 
not involved in subsequent transfers of CPSS. 
Consider the input card; once we have coded 
routines to accept floating-field cards and have 
levied no special format requirements on the 
card, the card input processing functions are 
totally independent of the machine. The in­
formation processed from card inputs in one 
application need not appear on cards in another 
application but could be processed from other 
input media in a different input form, e.g. 
punched paper tape or teletypewriter. 

The methods employed in achieving trans­
ferability, or machine-independence, vary de­
pending on the function being performed in the 
program. Some of the more commonly applied 
techniques were: the parameterization of cer­
tain machine characteristics (word length, 
number of characters per print line, number of 
print lines per page, etc.) ; the establishment 
of programming conventions regarding the use 
of constants and tags; the use of floating-field 
card formats; and the use of "all-core" indexing 
to relocate data and to compute addresses. In 
many instances, special methods were required 
to achieve transferability. Some of these are 
discussed later in the paper during the discus­
sions of the various CPSS subsystems. 

Programmer Training 

One of the principal benefits achieved by em­
ploying a higher order language and requiring 
transferability in CPSS is in the potential re­
duction of programmer training costs. 

When a programmer is transferred from one 
application to another, a training or learning 
period is required to familiarize him with the 
particular computer and the program produc­
tion system he will use. This retraining period 
varies from a week to a month-and-a-half or 
more. During this period a programmer's ef­
fectiveness is almost nil; and thereafter, it is 
less than it should be until the programmer be­
comes expert in the use of the "new" computer 
and system. 

CPSS should afford a reduction of training 
and retraining costs by permitting program­
mers to code and test their programs in a higher 
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order language. If CPSS achieves a broad 
patronage, these costs are further reducible 
since CPSS is designed to reflect a stable form 
regarding its interfaces with the programmer. 
In effect, CPSS could become a means for 
achieving some level of programmer transfera­
bility. 

CPSS Maintenance 
In producing CPSS, a primary concern has 

been maintenance costs. These costs are related 
to error correction, program improvement, aug­
mentation of the system's capability, program 
and system documentation, and product release. 
The design of CPSS provides for the minimi~a­
tion of such costs by isolating, identifying and 
documenting the program- and system-type 
functions that comprise CPSS. 

The system and program documentation are 
designed to facilitate the maintenance task. A 
CPSS program's documentation consists of a 
heavily commented program manuscript, a de­
tailed flow chart, a functionally organized flow 
chart, a program description document contain­
ing descriptions of data referenced, each rou­
tine coded, each procedure used, the input data 
formats and structures, the output tables, items 
and messages, and the function served by the 
program. Another document describes each 
machine dependency contained in the program. 
Also, a system design document describes each 
program function and the interfaces between 
programs. 

CPSS is designed and documented to facili­
tate the maintenance task. Also, the system is 
capable of maintaining itself or of producing 
itself. 

The Programming Language 

Perhaps the most significant decision made 
in the CPSS project was the selection of a lan­
guage for the programming of CPSS. The de­
sign of each function contained in a program 
production system is influenced by the language 
provided by the system. Therefore, certain de­
sign features are required to assure that the 
program production system is capable of re­
sponding to the operational system's program­
ming needs. In a sense, a transferable program 
production system must be "overdesigned". The 
design must reflect the current capability of the 

language being provided, and also needs to pro­
vide for logical extensions of the language. Con­
sider the situation that exists with CPSS. 

There are three levels of JOVIAL represented 
in CPSS which form a hierarchy of language 
that is upward compatible in language power 
and in the language processing algorithms. The 
formal JOVIAL, J-3, is subset into two levels: 
J-S, being a subset of J-3; and J-X, being a 
subset of J-S. The program generation subsys­
tem is coded in J-X and processes programs 
that are written in J-S. All other subsystems 
are coded in J-S and perform their functions 
compatibly with J-3. 

The decision range as to which level of lan­
guage capability is to be provided in the pro­
gram production system is bounded on the 
upper end by the formal definition of the pro­
gramming language, and on the lower end by 
the language capability provided by the pro­
gram generation subsystem. 

In the program generation subsystem, the 
language capability to be provided is influenced 
by such factors as the subsequent use of the 
language, the design of the compiler, the level 
of transferability desired, and the expected 
characteristics of existing languages and com­
pilers having the same generic name. 

Other factors influencing the decision in 
CPSS were the transferring procedures and 
techniques, the testing techniques established to 
test the system, and the availability of com­
puters with JOVIAL compilers. 

CPSS-Scope of Applicability 

CPSS serves programmers and managers in 
their performance of several tasks related to 
the system development process. Figure 1. 
shows a simplified representation of the system 
development process that has beeen employed 
for several systems, both large and small. The 
scope of CPSS is indicated by its applicability 
to the program production process, which en­
compasses parts of the program design, pro­
gram genera~ion, program test, and assembly 
test stages. 

Figure 2. is a simplified representation of 
the program production process as served by 
program production systems. The programs of 
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Figure 1. Program Production Process in the System Development ProGess 

the production system are designed to assist 
programmers and managers in their perform­
ance of these four tasks: program generation, 
program test, system· generation, and assembly 
test. 

The principal product derived from the pro­
gram production process is the operational pro­
gram system master tape. Other products are 
a system data dictionary (referred to as a 
Compool) with its documentation and listings, 
the program system documents, listings, test 
plans, and test results, and the programs that 
comprise the program system with their docu­
ments, listings, test plans, and test results. 

A maj or task, related to the system genera­
tion task, is the acquisition and management of 
a data base. This paper will not delve into the 
data base tasks except where such tasks di­
rectly interface with the program production 
system. 

Figure 3. depicts the information and data 
flow provided for in CPSS. The flow of data 

between the various functions is automatic. The 
execution of the functions is controlled by the 
programmer. The four program production 
tasks, program generation, program test, sys­
tem generation, and assembly test are served by 
this data and information flow. 

The preceding figures, ,Figure 1., Figure 2., 
and Figure 3., depict the scope of applicability 
for CPSS in the system development process. 

Program Generation. The programmer, em­
ploying the JOVIAL language, encodes a pro­
gram to satisfy the program design specifica­
tions. The code, the symbolic programming 
language statements (the source program), is 
input to the compiler which translates the code 
into machine instructions. During the compila­
tion, the source program is appropriately aug­
mented by routines from the procedure library 
tape and by system data descriptions from the 
Compool. 

The principal output from the compiler is a 
binary program (object program). The re~ 

Figure 2. Program Production Process 
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Figure 3. Program Production Process, Information and Data Flow 

mainder of the outputs provide information to 
the programmer (and to other parts of CPSS) 
that facilitate the testing and correction of the 
program. The process of compilation in the 
early phases of program coding sometimes is 
referred to as "grammar-checking"-where the 
result of the grammar-checking is a "good" pro­
gram; that is, one that is syntactically correct. 

Program Test. In order to test a program­
that is, validate that the program performs its 
functions correctly-the programmer must de­
fine a test case. A test case is comprised of a 
simulated data environment for the program, 
recording controls to retrive .data from the pro­
gram's environment, and any program modifi­
cations required to correct the program as 
shown by previous tests. 

The test Gase is input to CPSS which trans­
lates the programmer's inputs into a test en­
vironment. When requested, CPSS loads the 
test environment and the object program into 
the computer for operation. During the opera­
tion of the test, data is recorded as requested 
by the programmer in the test case. After the 
operation of the test, the recorded data is proc­
essed to provide, as outputs, the hard copy test 
results. 

CPSS appropriately interprets data descrip­
tions from the program Compool or the system 

Compool to translate the test case inputs and 
process the recorded data. Essentially, the sys­
tem Compool and the program Compool are the 
significant means through which CPSS affords 
the programmer the ability to test a program 
at a language level comparable to a higher order 
programming language. 

This loop, the program test phase, is repeated 
for as many test cases as are required to satisfy 
that the program performs its functions cor­
rectly. 

The two tasks discussed so far, program gen­
eration and program test, are common to all 
program production processes-whether the 
programs are system programs or independent 
programs. In this light, the applicability of 
CPSS is extended to include both system and 
non-system programming tasks. 

System Generation. One of the principal 
tasks in building a system is to define the system 
data dictionary, more commonly known as a 
Compool. Essentially, the Compool is the means 
for defining the data that comprises a system's 
data base. A Compool can be thought of as be­
ing a central repository of data descriptions 
used both by programmers and programs. 
Usually, a Compool exists in two forms. The 
first is a document containing descriptions of 
the system's data environent, data structures, 
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data organizations, some commentary related to 
the reasons why the data exists in the system, 
and a description of the usage of the data. The 
second form is a binary tape containing infor­
mation describing data structures, and data or­
ganizations. The binary Compool, in some cases 
(including CPSS) , contains information that is 
usable in the constructing of the Compool docu­
ment. The program production system itself is 
a principal user of the binary Compool in that 
it retrieves data descriptions from the Compool 
during the various phases of the program pro­
duction process. 

The Compool, being a central collecting point 
for system data descriptions, serves as an in­
tegrating device in the program production 
process. In this manner the Compool provides 
to program system managers a means for con­
trolling a system's data environment. 

CPSS provides both for the building of the 
binary Compool and for the Compool documen­
tation. A programmer employing the appro­
priate data descriptors, encodes data descrip­
tion statements that des c rib e the data 
comprising the data base. These statements 
are interpreted by the Compool generator which 
produces a binary Compool. Other outputs pro­
vided by CPSS are quality analysis aids, and 
data description listings. 

The tape file maintenance function provides 
the means for building tapes containing pro­
grams. Further, the function provides for modi­
fying, correcting, cataloguing, and in general 
maintaining computer tapes. 

Assembly Test. The assembly test task, func­
tionally, is similar to the program test task. 
The purpose of the assembly test task is to pro­
vide a means for testing a complex of programs 
that form a system or a logical subset of a sys­
tem. In other words, the purpose served in as­
sembly testing is to validate that a complex of 
programs acting in concert perform a system 
function correctly. Assembly testing can be 
thought of as a hierarchy of testing-ranging 
from simple program interface tests to complex 
full system tests. 

Figure 3. depicts an assembly test as being 
performed in a controlled environment. The 
system control parameters, initializing data, 
simulated inputs, and recording controls are 

prepared as a test case via an assembly test sys­
tem. The test case is run against the appropri­
ate complex of programs during which record 
ing is performed. A'fter operation on the test 
case, the recorded data is processed via a data 
reduction and test analysis subsystem which 
provides the hard copy test results. This loop, 
assembly testing, is performed for as many test 
cases and test levels as are required to validate 
that the program system performs its functions 
correctly. 

Although CPSS is not designed explicitly to 
serve the assembly test task, it does contain 
programs that are usable in an assembly test 
system; for example, the data recording, data 
reduction, and data generation programs. With 
very minor modifications to the test environ­
ment load and data reduction programs, CPSS 
further could be used to provide a very sophisti­
cated string test (program interface test) capa­
bility. 

The reason for not explicitly providing an 
assembly test capability in CPSS is that the 
higher' levels of assembly testing usually re­
quire programs that reflect the design of the 
operational program.system-(such as height 
reply message simulators, and radar correla­
tion analysis programs) . 

CPSS PROGRAM DESIGN 

One of the principal design characteristics 
of CPSS is the functional modularity embodied 
both in CPSS and its programs. CPSS has been 
separated logically into subsystems, in general, 
corresponding to the common program produc­
tion functions: program generation, data en­
vironment simulation, data recording, data 
reduction, test environment load, computer op­
eration, Compool generation, and tape file main­
tenance. These subsystems are comprised of 
programs which further are partitioned into 
functional subroutines. An attempt was made 
to isolate each system function and each pro­
gram function into an identifiable subpart of 
CPSS. Some of the common program-type 
functions have been programmed as JOVIAL 
procedures and loaded onto the CPSS procedure 
library tape. Additionally, the CPSS programs, 
tables, items and the Compool itself are defined 
in the Compool. Thus, CPSS is an integrated 
system constructed of modules, each of which 
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are program-type or system-type functions, 
which are organized as 22 major programs, 35 
library procedures, 10 common executive en­
tries, 25 system tables with 330 items, and 53 
parameter items. The size of CPSS is approxi­
mately 20,000 JOVIAL statements that result 
in approximately 65,000 IBM 7090 machine in­
structions. 

Program Generation Subsystem 

The program generation function is provided 
in CPSS by the JOVIAL language and a JOV­
IAL compiler. With the development of CPSS, 
a powerful and comprehensive subset of the 
JOVIAL language was developed that should 
be sufficient to produce most computer software 
systems. This subset, the JOVIAL core-subset 
language, J-S, is the language employed in the 
programming of CPSS. The power of J -S is 
demonstrated by the fact that the programming 
of CPSS did not require the totality of J -So 

The principle reasons for developing J-S, and 
the goals achieved by this development were: 

(1) The definition of a "comprehensive mini­
mum" JOVIAL language that is suffici­
ent for producing most computer pro­
gram systems. 

(2) The definition of a JOVIAL subset lan­
guage that affords the production of 
transferable programs. 

(3) The design, development, and production 
of a JOVIAL compiler that can be pro­
duced on shorter schedules than more 
comprehensive J-3 compilers. 

( 4) The improvement of the language proc­
essing speed of a JOVIAL compiler. 

(5) The retention of the significant language 
and compiler features normally expected 
of JOVIAL, for example: Compool sen­
sitivity, procedure library capability, 
partitioning of programs into procedures 
and closed routines, memory allocation, 
packing of items into tables, processing 
of packed data, grammar checking, sub­
scripting and indexing, bit and byte 
addressing, machine assembly language 
coding, logical and arithmetic opera­
tions, and program "debug" listings and 
aids. 

In general, the differences between the J-S 
and J-3 languages should be more than offset 
by the improvements in the compiler design 
and its compatibility to CPSS. It should be 
noted that J-S is a proper subset of JOVIAL, 
i.e., that the programs coded in J-S are legal 
and valid inputs to J-3. 

Some of the significant design features of the 
J-S compiler are: 

(a) The J-S compiler is a "two-pass" com­
piler. That is, a program is processed 
twice to produce a binary output. First, 
in the JOVIAL language form; and sec­
ond, in an intermediate language form. 
The principal result of having only two 
passes is that compiling speed has been 
significantly increased. 

(b) The J-S compiler provides an "alter­
mode" of recompilation. That is, the 
programmer can add modifications to 
the source program during compilation 
without altering the original source pro­
gram. The compiler will produce an up­
dated version of the source program as 
one of its selectable options. 

(c) The J-S compiler produces a program 
Compool. That is, the J-S compiler pro­
duces a Compool containing complete 
data descriptions of all data and labels 
referenced or declared by the program. 
The program Compool is usable inter­
changeably with the system Compool 
throughout CPSS and is compatible in 
form and structure with the system 
Compool. 

(d) The J-S compiler is capable of being 
expanded to incorporate additional lan­
guage capability. The practical limita­
tion on this expandability is the size of 
core memory. 

Additionally, the programmer can select the 
outputs he wants, override the Compool, specify 
the Compool he wants used, and in general, ex­
ercise those options that specifically control the 
inputs to and the outputs from the compiler. 

In general, the CPSS program generation 
subsystem provides the language power, com­
piler speed, and flexibility of use that affords a 
programmer the ability to generate almost any 
program conceivable. 
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Data Environment Simulation Subsystem 

The data environment simulation function is 
provided in CPSS by a computer program that 
processes data assignment statements. The 
program produces data records containing the 
programmer specified data, and control infor­
mation that is used by the test environment 
load subsystem. 

The programmer specifies his data environ­
ment requirements in a POL-type language. The 
program employs either a program Compool or 
a system Compool as selected by the program­
mer. The programmer also may identify the 
data being produced, thereby affording future 
selective use of the data. The program is com­
patible with the JOVIAL J-3 data forms and 
data structures. 

The data itself can be coded as floating-point, 
fixed-point, integer, Hollerith, Standard Trans­
mission Code, and status-variable, where such 
data is organized and structured as tables, 
items, strings, or arrays. Subscripting and in­
dexing also is allowed. 

The program allows the programmer to set 
values into any variable defined or referenced 
by his program if the program Compool is used. 
If a system Compool is used, the programmer 
may set values into any variable defined in the 
system Com pool. The program imposes no 
limits on the volume of data it processes. It 
does perform legality checks on the program­
mer's inputs to determine the compatibility of 
the inputs with the defined data environment. 

Data Recording Subsystem 

The data recording function in CPSS is sep­
arated into two parts, where the actual data 
recording is provided under the CPSS computer 
operation subsystem. The CPSS data recording 
preparation function is performed by a com­
puter program that processes recording request 
statements. The program produces a data rec­
ord containing control information for use by 
the computer operation subsystem, the test en­
vironment load subsystem, and the data reduc­
tion subsystem. 

The programmer describes his recording re­
quests in a fully symbolic language. The CPSS 
program employs either a program Compool or 
a system Compool as selected by the program-

mer. The programmer also may identify the 
recording that would be performed per his re­
quests, thereby affording future selective use of 
the recording controls produced by the CPSS 
program. 

The programmer may select the data to be 
recorded under any name defined in the pro­
gram Compool or system Compool and/or any 
block of memory. The location in his program 
at which recording is to take place can be speci­
fied symbolically (if a program Compool is se­
lected) . 

The programmer may request a memory 
register change survey, or dumps before, dur­
ing, and/or after his program's operation. The 
dumps may be formatted as octal, machine lan­
guage instructions, floating-point, and/or al­
phameric. 

Data Reduction Subsystem 

The data reduction function is provided in 
CPSS by a SUbsystem of computer programs 
that process either CPSS recorded data or mis­
cellaneous data formats. There are four general 
classes of printouts produced by CPSS: Com­
pool-defined data, memory dumps, survey 
dumps, and tape dumps. 

Compool-defined data is processed and ap­
propriately formatted entirely dependent upon 
the Compool definition. CPSS interrogates 
either the system Compool or program Compool 
to determine the appropriate formatting. The 
information in a printout reflects the page num­
ber, table name, recording identity, recording 
location, table size, entry number, data name, 
data type, the converted data, and a security 
classification. 

Memory dump processing is performed in any 
of four formats: octal, machine language in­
structions, floating-point, and/or alphameric. A 
printout contains the page number, security 
classification, recording location, recording 
identity, the beginning and ending locations of 
the dump, the contents of the addressable ma­
chine registers, and the contents of the com­
puter words dumped. The page formatting is 
determined by the program and is printed as 
four or eight words per print line. 

The survey dump processing is similar to the 
memory dump processing. The significant dif-
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ference is that those memory locations which 
contain changed values are printed. The dumps 
to be compared are made by the CPSS record­
ing program before and after the operation of 
a program in a test. A printout contains the 
page number, security classification, the record­
ing identity, the beginning and ending locations 
of the survey area, the contents of the addressa­
ble machine registers in the "before" and 
"after" states, and a print-line for each changed 
computer word containing the address and both 
values. 

In the tape dump function CPSS provides the 
means to print out any tape. The format of the 
printout is similar to the memory dump format, 
except that the addressable machine register 
print lines are not output. 

The programmer can request that his data 
reduction be performed in either of three 
modes: recording, general, or binary. 

The recording mode is used to process data 
recorded by CPSS. The programmer can select 
a subset of the data to be processed, or he can 
allow CPSS to process the data automatically 
per his recording requests. Processing selection 
is performed in exactly the same manner as 
specifying recording requests. 

The binary mode is used to process tape 
dumps. The programmer can specify the "limits 
of processing" and the print formats (octal, 
floating-point, etc.). The limits of processing 
bounds the range of tape that is to be processed. 

The general mode is used as a mixture of the 
recording and binary modes. All the controls 
available to the programmer under these two 
modes are available under the general mode. 
Further, if a tape containing records similar 
to CPSS-type records is to be processed, the 
general mode may be used to reduce the data 
per Compool definitions even though the tape 
was not built by the CPSS recording program. 

Test Environment Load Subsystem 

The test environment load function is pro­
vided in CPSS by a computer program that 
loads a test case into the computer for opera­
tion. 

The CPSS test environment load subsystem 
provides for loading recording patches to a pro-

gram; loading a data environment; loading 
octal correctors to a program; and loading the 
program that is to be tested (currently, on the 
IBM 7090, CPSS is capable of loading and op­
erating a 25,000 register test case). 

Computer Operation Subsystem 

The computer operation function is per­
formed in CPSS by a subsystem of programs 
that provide for the uninterrupted operation of 
the computer. 

The functions performed by the computer op­
eration subsystem can be grouped into four 
classes: system control, operator communica­
tion, test control, and I/O monitor. 

System Control. The system control function 
provides for the continuous operation of CPSS. 
It interrogates programmer supplied control 
"cards" to determine which function (or sub­
system) is required. The system operates on 
stacks of jobs (usually prestored on tape in the 
sequence desired) where each job may be com­
prised of many dissimilar requests. For ex­
ample, a job may be to compile a program, 
specify several sets of recording controls, 
specify several data environments, to load and 
execute the compiled program in various test 
environments, and to process the data recorded 
in the several program runs. The sequence of 
CPSS's operation is specified by the ordering 
of the programmer supplied control cards. In 
addition to the sequence control function, sys­
tem control provides the normal control-type 
functions such as position tapes, clear core, job 
error recovery, loading of octals to cycling sys­
tem programs, etc. Essentially, the system pro­
vides uninterrupted operation as long as there 
are jobs to be processed, and a test program 
does not loop or write into "permanent" core. 
Controls are provided through which the com­
puter operator (or the programmer in one spe­
cial case) may interrupt the computer's opera­
tion. 

Operator Communication. The operator's 
communication function provides three methods 
for interrupting the system's operation, (1) at 
each I/O operation, (2) between control cards, 
and (3) recovery from test program loops, 
halts or other errors. When the operator has 
completed his tasks, he may recover the sys-
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tem's operation, as appropriate, in any of five 
ways, (1) skip forward in the job to the next 
control "card", (2) skip forward to the next 
job, (3) skip forward to a specified job, (4) 
reinitialize the system, or (5) continue from 
the point of interruption. Recovery may be per­
formed automatically by CPSS as a result of 
the operator's request, or the operator manually 
may enter the system as he desires. While the 
system is interrupted, the operator. may reas­
sign I/O units, list the I/O unit/file allocation, 
take dumps, position to a particular job, or per­
form other similar tasks. The operator may 
perform his tasks in response to programmer­
supplied instructions (as printed by CPSS or 
otherwise), messages printed by CPSS relating 
to the system's needs, or recognizable error 
conditions requiring his actions. 

CPSS provides a method .for programmers to 
'/ 

"simulate" certain computer operator actions. 
They may specify I/O allocations, list the I/O 
unit/file allocations, or perform other operator 
type tasks. By the judicious use of control cards 
the programmer may "directly" communicate 
with the computer operator to effect the job 
desired. 

Program Test Control. The program test con­
trol provides for the operation of a test case 
loaded by the test environment load subsystem. 
Also, the program test control function exe­
cutes the recording program for dumps and sur­
veys, and loads system recovery type p~ogram 
modifications to the object program. The inter­
facing between the test environment load sub­
system and other computer operation functions 
provides to programmers almost complete flexi­
bility in the running of tests. CPSS allows any 
one of its functions to be run independently or 
in any sequence. Some of the types of computer 
runs a programmer might make are: 

(1) Compile only 
(2) Load and execute his program 
(3) Compile, load, and execute his program 
(4) Generate test data 
( 5) Specify recording requirements 
(6) Load his program, recording controls, 

test data and execute his program 
(7) Reload data and re-execute his program 
(8) Load a different program, its recording 

controls, and execute the "new" program 
on the "old" data environment 

(9) Re-execute his program 

Effectively, CPSS imposes no operating re­
strictions on the programmer in the generation 
or testing of a program. In this manner the 
programmer is able to selectively test subparts 
of his program, his whole program, or strings 
of programs all as one job or independent jobs. 

I/O Monitor. The principle function per­
formed by the CPSS central I/O program is to 
provide machine-independent I/O operations 
for other programs. The I/O program performs 
all the I/O operations required by the programs 
comprising CPSS. The program provides a 
comprehensive set of I/O operators: Read, 
Read-search, Write, Position, Position-search, 
Close, Wait (for a specific file), Wait (on all 
files), Repeat (the preceding request), Rewind 
(initialize the file), and File-status (feed back 
the current status of the file). Additionally, the 
program provides some elementary data con­
version and manipulation functions in conjunc­
tion with requested I/O transfers, i.e., transfer 
to or from packed or unpacked BCD data im­
ages, convert data to or from "standard trans­
mission code", convert data to or from BCD, 
and/ or combinations thereof. Also, the pro­
gram will transfer data to or from specific lo­
cations or standard locations. The program will 
either wait for a transfer to be completed or 
return immediately as requested. 

A program requests I/O operations by set­
ting items in a CPSS communication table and 
transferring control to the I/O program. These 
items specify the name of the file on which the 
operation is requested, the operation to be per­
formed, a wait or no wait condition, and other 
information related to the operation such as 
data conversion and manipulation, location of 
the data to be transfered, amount of data to be 
transferred, etc. 

Upon completing the operation, the I/O pro­
gram automatically enters information into the 
communication table relating to the requested 
operation and returns control to the requesting 
program. This information is usable to deter­
mine the status of the file, file addressing, status 
of the requested operation, amount of data 
transferred, etc. 

In essence the I/O program determines the 
appropriate device, record fragmentation (or 
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accumulation), labeling, unit positioning, and 
other functions to effect a transfer of data to 
or from memory via an I/O device. The pro­
gram monitors each transfer to determine the 
validity of the transfer and takes whatever 
corrective action is appropriate. The manner 
in which these functions are performed pro­
vides CPSS programs their independence from 
a machine's .I/O and yet allows the referencing 
programs to perform "efficient" I/O. 

C ompool Generation Subsystem 

The Compool generation function is provided 
in CPSS by a subsystem of computer programs 
that build and interpret a Compool. The CPSS 
Compool subsystem provides for a comprehen­
sive definition of data. The inputs to the Com­
pool assembler contain the normal type of data 
definitions, and a variety of supplementary data 
descriptive information (see Appendix B). 
Further the Compool assembler provides for 
assigning data addresses symbolically, and 
allocates core memory for data or program stor­
age. Effectively, the Compool assembler pro­
gram provides the ability to define data for sys­
tem applications, normal utility type needs, and 
for the programmer's information needs. It 
facilitates the data description task by accept­
ing a fully symbolic input. In that the contents 
of a Compool usually are operational system­
dependent, the Compool assembler program 
provides for the definition of the Compool's con­
tent. The program interrogates a series of 
legality matrices to determine the acceptability 
of data, the validity of the input, and the com­
pleteness of the data definition. In this manner 
the Compool constructed by CPSS can be tail­
ored to the operational system's needs. 

Also, the Compool subsystem contains a pro­
gram whose function is to retrieve the informa­
tion contained in the Compool. This retrieval 
program provides two levels of information: 
first, that information which is required for the 
normal utility type functions, and second, all 
the information contained in the Compool. In 
the first case the data is printed in alphabetical 
order, and in the second case is alphabetized by 
data class. The third function provided by the 
CPSS Compool subsystem is a quality analysis 
of the information contained in the Compool. 

The program performs a tag analysis func­
tion that checks for duplicated tags and ambigu­
ous cross-reference tags. The program also 
determines the validity of the memory alloca­
tion by checking for violations of reserved 
areas, and overlapped allocations of data. In 
addition the program performs a capacity anal­
ysis by checking for unallocated addresses, and 
by tallying each data occurrence by data type 
and amount of memory required. Essentially, 
CPSS provides a Com pool that is tailored to a 
system by its content and the tools needed to 
build, interrogate and provide quality control 
on a Compool. 

Tape File Maintenance SUbsystem 

The tape file maintenance function is pro­
vided in CPSS by a computer program that 
performs those functions necessary to maintain 
tapes produced by or for CPSS. Further, the 
CPSS program is capable of performing the 
same set of functions on almost any tape re­
gardless of format or structure. 

Some of the more significant characteristics 
of the CPSS program are: it can duplicate, re­
format, position, read, write, close, skip, back­
space, rewind, compare, list the contents of, and 
load octals to tapes containing programs, Com­
pools, files, records or any combinations thereof. 

The CPSS program interrogates control 
cards containing information that describes the 
operation to be performed, the units on which 
the CPSS program will operate, and the struc­
ture of the data stored on the unit. The CPSS 
program provides for labeling of each transfer, 
and thereby can handle overlaid and inter­
spersed files of varying structures. 

The CPSS program is designed in modules 
such that each operator, and each modifier to 
the operator are procedures or closed routines. 
With this design the CPSS program easily can 
be modified to delete, add or modify the tape 
file maintenance functions as the particular ap­
plication requires. 

The tape file maintenance program estab­
lishes information in "dummy entries" for use 
by the CPSS central I/O program. In this man­
ner the only machine-specifics in this program 
lie in its processing of binary cards . 
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APPENDIX A 

CPSS Control 
The sequence of the tasks performed by CPSS 

is dictated by the ordering in the programmer's 
job deck. A job deck is comprised of system 
control cards, and data and/or function con­
trol cards. Data and function control cards im-

'ASSIGN, INPUT, unit $ 
'CLEAR, area to be cleared $ 
'COMMENT $ commentary 
'COMPILE $ 
'COMPOOL, ANALYSIS, control informa-

tion $ 
'COMPOOL, ASSEMBLE $ 
'COMPOOL, AUDIT $ 
'COMPOOL, DISASSEMBLE, control infor­

mation $ 
'COMPOOL, LIST, control information $ 

'ENDJOB $ 
'GO, address $ 
'JOB $ 
'LOAD, control information $ 
'OCTAL $ 
'OPSIM $ 
'POSN, file name, control information $ 
'PROCESS, control information $ 
'RECORD, control information $ 
'RETURN, address $ 

'TABSIM, control information $ 
'UTILITY $ 
'WAIT $ 

APPENDIX B 

CPSS Compool 

The CPSS Compool assembler builds a Com­
pool from information coded on data declara­
tion "cards". The program processes nine data 
declarator types which are used to define a sys­
tem's data base, i.e., Program, Table, Item, 
String, Array, Free Item, Constant, File, and 
Task declarations. Also, the program processes 
four declarator types that are used in the build­
ing of a Compool, i.e., Ident, Locate, Reserve, 
and End declarations. 

1. I dent. The Ident declaration is used to iden­
tify the Compool itself. 

mediately follow their related system control 
card in the job deck. The first card in a job 
deck is the 'JOB card and the last card is an 
'ENDJOB card. 

The system control cards acceptable to CPSS 
are listed below and summarize some of the 
system's capabilities. 

Pairs the CPSS INPUT file to the given unit. 
Clears the given area of core to plus zero. 
The comment is printed. 
Initialize the program generation subsystem. 
Analyze a Compool as requested. 

Assemble a Compool from the data cards. 
Legality check the Compool data cards. 
Format and print the binary Compool specified. 

Format, order, and print the Compool specified 
with commentary added. 

The end bracket for a job deck. 
Transfer control to the given address. 
The begin bracket for a job deck. 
Load the environment specified. 
Load and save octals for CPSS programs. 
Initialize the operator "simulation" function. 
Position the given file as directed. 
Format and print the data as directed. 
Prepare recording parameters as directed. 
Load a transfer to the CPSS executive at the 

given address. 
~repare a data environment as directed. 
Initialize the tape file maintenance subsystem. 
Stop the system's operation. 

2. Locate. The Locate declaration is used to 
pair address labels to core memory ad­
dresses. These labels are usable in lieu of 
actual memory addresses. In this manner, 
the programmer is able to allocate memory 
and define data addresses in a completely 
symbolic method. 

3. Reserve. The Reserve declaration is used to 
prevent the allocation of data to certain core 
memory areas. 

4. End. The End declaration terminates the 
program's processing of declarations. 

The type of information the programmer 
may use to describe data is quite comprehen-
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sive. For example, a program description may 
contain the program name, mod, length, mem­
ory location status (absolute, relocatable, or 
dynamically relocatable) , memory location, pro­
gram type (closed or open, system program, 
parameterless subroutine, or parameterized 
subroutine), storage location (unit, label, unit 
addressing) , subsystem name, title, related 
commentary, and input and output parameters. 
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ERROR CORRECTION IN CORC, 

THE CORNELL COMP.UTING LANGUAGE 
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Endicott, New York . 

I. INTRODUCTION 

CORC, the Cornell Computing Language, is 
an experimental compiler fanguage developed at 
Cornell University. Although derived from 
FORTRAN and ALGOL, CORC has a radically 
simpler syntax than either of these, since it was 
designed to serve university students and 
faculty. Indeed, most of the users of CORC are 
"laymen programmers," who intermittently 
write small programs to solve scientific prob­
lems. Their programs contain many errors, as 
often chargeable to fundamental misunder­
standings of the syntax as to "mechanical 
errors." A major objective of CORC is to re­
duce the volu~e of these errors. This objective 
has been achieved to the following extent: the 
average rate of re-runs for 4500 programs sub­
mitted during the fall semester of 1962 was 
less than 1.1 re-runs/program. 

Three features of CORC have enabled it to 
achieve this low re-run rate: 

(1) Inherent simplicity of the syntax; 
(2) Closed-shop operation of the Cornell 

Computing Center on CORC programs, 
including keypunching, machine opera­
tion, and submission/return of card 
decks; 

(3) A novel and extensive set of error­
correction procedures in the CORC 
compiler /monitors. 

The CORe language is briefly described be­
low; it is more fully documented elsewhere.1 
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The current paper describes the error-correc­
tion procedures in greater detail. 

II. THE CORC LANGUAGE 

CORC was designed by a group of faculty 
and students in the Department of Industrial 
Engineering and Operations Research at Cor­
nell. This group has coded and tested two 
similar compiler /monitor systems, one for a 
medium scale decimal computer an9 the other 
for a large binary computer. 

During the definition of the language, the de­
sign group surrendered potency to simplicity 
whenever the choice arose. Certain redun­
dancies have been incl~ded in CORC, serving 
two functions: to facilitate error-correction dur­
ing source-deck scanning, and to aid novice 
programmers' grasp of compiler-language syn­
tax. Excepting these redundancies, CORC is 
quite frugal with conventions. For example, all 
variables and arithmetic expressions are carried 
in floating-point form, avoiding the confusing 
notion of "mode." At the same time, program­
mers are spared all knowledge of floating-point 
arithmetic. 

Each CORC card deck is divided into three 
required sub-decks plus an optional sub-deck of 
data cards: 

(a) The preliminary-description cards sup­
ply heading data for each page of the 
output listing. 
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(b) The dictionary cards declare all varia­
bles used in the program, simple as well 
as subscripted. 

(c) Each statement card may have an in­
definite number of continuation cards. 
Statements may bear labels having the 
same formation rules as variables. Con­
tinuation cards may not be labelled. 

Variables, ,labels, numbers, reserved words, 
and special characters comprise the symbols of 
CORC. Each symbol is a certain string of at 
most eight, non-blank characters. Numbers may 
have up to twelve digits; decimal points may 
be leading, trailing, or imbedded in the num­
bers. There are forty-three reserved words in 
CORC, e.g., LET, and ten special characters: 
+ - * / $ = ( ) ., The character string defin­
ing each label, variable, or reserved word is 
terminated by the first blank space or special 
character. The character string defining each 
number is terminated by the first character 
that is neither a digit nor a decimal point. Each 
special character is a distinct symbol. There 
are forty-six legal characters in CORC: letters, 
digits, and special characters. 

A subset of the reserved words is the set of 
fifteen first-words: LET, INCREASE, INC, 
DECREASE, DEC, GO, STOP, IF, REPEAT, 
READ, WRITE, TITLE, NOTE, BEGIN, and 
END. The first symbol in each statement 
should, if correct, be one of these first-words. 

There are eight executable-statement types, 
plus a NOTE statement for editorial comments 
on the source-program listing. (NOTE state­
ments may be labelled; in this case, they are 
compiled like FORTRAN "CONTINUE" state­
ments.) To simplify the description of the state­
ment types, single letters denote entities of the 
CORC language: 

V ...... a variable, simple or subscripted 

E ...... an arithmetic expression, as de-
fined in FORTRAN 

L ...... a statement label 

B ...... a repeatable-block label (see below) 

R ...... one of the six relational operators: 
EQL, NEQ, LSS, LEQ, GTR, and 
GEQ. A relational expression is a 
predicate comprising two arith-

metic expressions separated by a 
relational operator, e.g., 2*X NEQ 
0.9. 

The statement types are as follows: 

(1) LET V = E, and two variants IN­
CREASE V BY E and DECREASE V 
BY E. (INCREASE may be abbrevi­
ated to INC, DECREASE to DEC.) 

(2) IF El R E;! 

THEN GO TO Ll 
ELSE GO TO L:!, and two variants 

IF Ell Rl El:! 
AND E21 R2 E22 

AND E~l R~ Ex:! 
THEN GO TO Ll 
ELSE GO TO L2 

(3) GO TO L. 

IF Ell Rl E12 
OR E:!l R2 E22 

OR E~l R~ EX2 
THEN GO TO Ll 
ELSE GO TO L2. 

(4) STOP, terminating execution of a pro­
gram. 

(5) READ Vl' V2 , ••• , bringing in data cards 
during the execution phase. Each data 
card bears a single new value for the 
corresponding variable. 

(6) WRITE VI' V2 , ••• , printing out the 
variable names, the numerical values of 
their subscripts for each execution of 
the WRITE statement, and the numeri­
cal values of these variables. 

(7) TITLE (message), printing out the re­
mainder of the card and the entire state­
ment fields of any continuation cards. 

(8) REPEAT B ... , comprising four vari­
ants 
(8a) REPEAT BETIMES, 
(8b) REPEAT B UNTIL Ell Rl E12 

AND E2l R2 E22 

AND E~l Rx E x2, 
(8c.) REPEAT B UNTIL Ell Rl E12 

OR E2l R2 E22 



(8d) REPEAT B FOR V = E 1 , E 2 , ••• , 

Eb E j , E k ), ••• , where (E i , Ej, E k ) 

is an iteration triple as in ALGOL. 

Closed subroutines-called repeatable blocks 
in CORC-are defined by two pseudo-statements 
as follows: 

B BEGIN 

BEND, 

where the "B" labels appear in the normal label 
field. A repeatable block can be insert~d any­
where in the sub-deck of statement cards; its 
physical location has no influence on its usage. 
It can only be entered under control of a RE­
PEAT statement (with a few erroneous-usage 
exceptions) . 

Repeatable blocks may be nested to any rea­
sonable depth. Any number of REPEAT state­
ments can call the same block, although the 
blocks have no dummy-variable calling se­
quences. All CORC variables are "free vari­
ables" in the logical sense, which avoids 
confusing the novice programmer no less than 
it hampers the expert programmer. 

III. ERROR ANALYSIS IN CORC 

In the CORC compiler/monitor, the author 
and his colleagues have attempted to raise the 
number of intelligible error messages and 
error-repair procedures to a level far above 
the current state-of-art for similar systems. 
The success of these messages and procedures 
is measured by three economies: 

(a) reduced re-run loads, 

(b) reduced costs of card preparation, and 

(c) less faculty/student time devoted to tedi-
ous analyses of errors. 

The detection of each error invokes a mes­
sage describing the relevant variables, labels, 
numbers, etc.; why they are erroneous; and 
what remedial actions are taken by CORC. Ex­
hibiting errors in detail has improved student 
comprehension of the CORC syntax. Of course, 
certain errors defy detection, e.g., incorrect 
numerical constants. 
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A principal tenet of the CORC philosophy is 
to detect errors as early as possible in: 

(1) c"haracters within symbols, 

(2) symbols within expressions, 

(3) expressions within statements, e.g., the 
left and right sides of an assignment 
statement, and 

(4) statements within the sequencing of 
each program. 

An explicit message for each error is printed 
on the output listing. This listing is the only 
output document from a CORC program; all 
programs are compiled and executed, and ma­
chine code is never saved on tape or punched 
cards. 

After detecting a statement-card error, 
CORC always "repairs" the error by one of the 
two following actions: 

(a) CORC refuses to compile a "badly 
garbled" statement. Instead, CORC re­
places it with a source-program "mes­
sage statement" reminding the pro­
grammer oJ the omitted statement. 

(b) CORC edits the contents of a "less 
badly garbled" statement into intelligi­
ble source language. The edited state­
ment is subsequently compiled into 
machine code. 

Errors in cards other than statement cards are 
repaired by similar techniques. 

Thus, the machine code produced by CORe 
is always executable, and compilation-phase and 
execution-phase error messages are provided 
for every program. By continuing compilation 
in the presence "of errors, CORC provides diag­
nostic data simultaneously on structural levels 
(1)-(4) cited above. By also executing these 
programs, CORC detects additional errors in 
program flow, subscript usage, improper func­
tion arguments, etc. 

The correction of a programming error is de­
fined to be the alteration of relevant source­
language symbols to what the programmer 
truly intended. Under this operational defini­
tion, many errors are incapable of "correction," 
e.g., the programmer may have intended a 
statement or expression not even offered in 
CORC. Other errors are capable of "correc-
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tion" by the programmer himself but by no 
critic unfamiliar with the complete problem­
definition; an incorrect numerical constant is 
again an example. 

A third class of errors can be corrected by 
an intelligent critic after scanning the source­
deck listing, without recourse to the problem 
definition. Some errors in this class require a 
profound use of context to elicit the program­
mer's true intention. Other errors in this class 
can be detected and corrected with little use 
of context, e.g., the omission of a terminal right 
parenthesis. 

The author defines a corrigible error to be 
one whose correction is automatically attempted 
by the CORC compiler/monitor. Thus, this 
definition is by cases, for a specific version of 
CORC. CORC may correct one error and fail 
to correct a second, nearly-identical error. 
Error correction is a fundamentally probabilis­
tic phenomenon; the CORC error-correction 
procedures attempt to maximize the "expected 
useful yield" of each program by strategies 
based on a priori probabilities associated with 
the different errors. ~* 

The majority of corrigible errors are detected 
during the scanning of source decks by the 
CORC compiler. A few corrigible errors are 
detected during the execution of object pro­
grams. For each error, one or more correction 
procedures have been added to CORC, repre­
senting certain investments in core memory 
and operating speed. 

The following paragraph discusses the selec­
tion of corrigible errors, and section IV cata­
logues these errors. The catalogue will be 
somewhat peculiar to the structure of CORC, 
a population of novice programmers, and the 
operation of a university computing center. 
However, the discussion of control-statement 
errors, arithmetic-expression errors, and mis­
spellings is relevant to most compiler languages. 

The author has roughly ranked various error 
conditions by two criteria: a priori probabili­
tiest of their occurrence, and a priori probabili­
ties of their correction (if correction is at-

* References 2 and 5 also propose probabilistic cor­
rection of misspellings. 

t Probabilities in the sequel are estimates based on 
human scrutiny of several hundred student programs. 

tempted). Correction procedures were designed 
for some errors, while other chronic errors had 
such low a priori probabilities of correction 
that only explicit error-detection messages were 
printed out. For example, omission of a sub­
script is a common error which is difficult to 
correct, although easy to detect and "repair." 
CORC "repairs" a subscript-omission error by 
supplying a value of 1. 

On the other hand, misspellings are com­
mon errors whose a priori probabilities of cor­
rection are high if sophisticated procedures are 
used. The author hopes to achieve at least 75 
percent correction of misspellings with the cur­
rent procedures; many have not yet been tested 
in high-volume operation.3! 

IV. ERROR CORRECTION DURING 
SCANNING 

First, the general procedures for card scan­
ning will be described. The second, third, and 
fourth subsections deal with dictionary cards, 
data cards, and statement cards, respectively. 
The last subsection describes the error-correc­
tion phase which follows scanning, i.e., after the 
last statement card has been read but before 
machine code is generated by the compiler. 

A. CARD SCANNING 

Each CORC source deck should have all cards 
of one type in a single sub-deck: 

(1) Type 1, preliminary description cards 

(2) Type 5, dictionary cards 

(3) Type 0, statement cards 

(4) Type 4, data cards (if used). 

The type of each card is defined by the punch 
in column 1 (although CORC may attempt to 
correct the type of a stray source card). 

At the beginning of each new source pro­
gram, CORC scans the card images (usually 
on magnetic tape) for the next type 1 card, 
normally a tab card bearing any non-standard 
time limit and page limit for this program. 
(The tab cards are used to divide the decks, 
facilitating batch processing and other han­
dling.) This scanning procedure skips any 
extraneous data cards from the previous pro-

:j: Damereau has achieved over 95 % cOl'l'ection of mis­
spellings in an information-retrieval application. 



gram deck. If the preceding deck was badly 
shuffled, misplaced dictionary cards and state­
ment cards will also be skipped. 

An indefinite number of type 1 cards may be 
supplied: CORC inserts data from the first two 
cards into the page headings of the output list­
ing. This serves to label all output with the 
processing date and programmer name, avoid­
ing losses in subsequent handling. 

The problem identification should be dupli­
cated into each deck; any deviations from this 
identification generate warning messages. The 
serialization of cards is checked, although no 
corrective action is taken if the cards are out of 
sequence. If the serialization is entirely 
omitted, CORC inserts serial numbers into the 
print-line image of each card, so that subse­
quent error messages can reference these print 
lines without exception. 

The. general procedure on extraneous or 
illegal punches is as follows: illegal punches 
are uniformly converted to the non-standard 
character "*"; extraneous punches are ignored 
except in non-compact variable/label fields and 
in the statement field of type 0 cards, where all 
single punches are potentially meaningful. 
Rather than discard illegal punches, CORC re­
serves the possibility of treating them as mis­
spellings. Likewise, any non-alphabetic first 
character of a variable/label field must be 
erroneous and is' changed to "*," furnishing a 
later opportunity to treat this as a misspelling. 
All hyphen punches are converted to minus 
signs during card reading; the keyboard confu­
sion of these two characters is so chronic-and 
harmless-that CORC even refrains from a 
warning message. 

B. DICTIONARY CARDS 

Although the dictionary and data cards are 
processed in entirely different phases of a 
CORC program, their formats are identical­
with the exception of column I-and common 
procedures are used to scan them.· As men­
tioned in the preceding subsection, non­
alphabetic first characters are changed to "*." 
Embedded special characters are similarly 
changed with the following exception: char­
acter strings of the form "(I)" or "(I ,J)" are 
omitted. Fixed-column subscript fields have al-
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ready been provided and students consistently 
and correctly use them. However, a common 
student error is to supply redundant paren­
thesized subscripts in the label field; these are 
ignored by CORC, although a \-varning message 
is supplied. 

N on-numeric characters in the subscript 
fields and the exponent field are changed to 
"I"s. Vector subscripts can appear in either 
the first-subscript field or the second-subscript 
field. These subscripts need not be right-justi­
fied in their respective fields. After an array 
has been defined, subsequent subscripts of ex­
cessive magnitude are not used; the correspond­
ing data entries are put into the highest legal 
cell of the array. 

C. DATA CARDS 

All of the foregoing procedures apply with 
these exceptions: if a data card has its vari­
able field blank or, in the case of subscripted 
variables, its subscript fields blank, the data 
can still be entered with a high probability of 
correcting the omission. Information in the 
READ statement overrides incorrect or miss­
ing entries on the corresponding data cards. 
CORC insists on exact agreement of the varia­
bles and subscripts if warning messages are to 
be avoided. Symbolic subscripts may be used 
in READ statements, but their execution-phase 
values must agree with the numeric subscripts 
on the type 4 cards. 

D. STATEMENT CARDS 

Correction of erroneous statement cards is 
a complex technique-and the most fruitful of 
those currently implemented in CORC. State­
ment cards comprise over 80 % of student 
source decks, on the average. Students commit 
the overwhelming majority of their errors in 
communicating imperative statements to a 
compiler, rather than header statements, de­
clarative statements, or data cards. Statement­
card errors fall into two major categories: 
those detectable at compilation time and those 
detectable only at execution time. The second 
category is discussed in section V. Some of 
the most useful correction techniques for the 
first ca.tegory-tested and modified during the 
past two years of CORC usage--are described 
in the following eight sub-sections. 
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( 1) Misspellings4 ,5 

At the end of Section III, misspellings were 
cited as a class of errors that both occur fre­
quently and have attractively high a priori 
probabilities for correction. Accordingly, CORC 
now contains a subroutine that compares any 
test word to any list of words (each entry be­
ing denoted a list word), determining a "figure 
of merit" for the match of each list word to the 
test word. Each figure of merit can be con­
sidered as the a posteriori probability that the 
test word is a misspelling of this particular list 
word. The list word with the highest figure of 
merit is selected as the spelling of the test word 
"most likely" to be correct. 

Various categories of misspelling are defined 
in CORC; to each category is assigned an a 
priori probability of occurrence. When the test 
word and a list word maUrh within the scope 
of a category, i.e., the test word is some par­
ticular misspelling of the list word, the a priori 
probability for this category is added to the fig­
ure of merit for this list word. Actually, the 
figures of merit are integers rather than prob­
abilities; they can be converted to probabilities 
by the usual normalization, but this is unneces­
sary-they are used merely to rank the possible 
miss pellings. 

All increments used in misspelling analyses 
reflect the number N of non-blank characters 
in the test word, as follows: a certain base­
value increment is specified for each misspell­
ing; if a match is found, this base value is 
multiplied by the ratio N/8, then added to the 
corresponding figure of merit. 

(a) A concatenation misspelling occurs when 
a delimiting blank is omitted between 
two symbols, e.g., "LET X ... " is a con­
catenation misspelling of "LET X ... " 
When such a misspelling is detected, 
any relevant list of words is compared 
against the concatenated symbol. The 
increment to the figure of merit for each 
list word is computed as follows: 

( i) If the list word and the test word 
do not have at least their initial 
two characters in common, the in­
crement is o. 

(ii) For every consecutive character in 
common with the list word (after 

the first character), an increment 
of 2 is added to the figure of merit. 

Example: Assume that the test 
word is ENTRYA and that two of 
the list words are ENT and EN­
TRY. The corresponding figures 
of merit are 6 and 10, respectively. 
The higher figure reflects the more 
exact agreement of ENTRY to 
ENTRYA. 

(b) Single-character misspellings provide 
four different increments to the figure of 
merit, corresponding to mutually exclu­
sive possibilities: 

(i) A keypunch-shift misspelling oc­
curs when the IBM 026 keypunch 
is improperly shifted for the 
proper keystroke, e.g., a "1"-"U" 
error. There are fourteen possible 
misspellings of this type, corre­
sponding to the seven letter-num­
ber pairs on the keyboard. The 
special character row, including 
"0," does not seem susceptible to 
misspelling analysis, since special 
characters are always segregated, 
never imbedded in symbols. 

For each list word which agrees 
within a single keypunch-shift 
misspelling with the test word, an 
increment of (20N/8) is added to 
the corresponding figure of merit, 
where N is the number of non­
blank characters in the test word. 

(ii) An illegal-character misspelling 
occurs either (a) when a variable/ 
label has previously required a 
"single-letter perturbation" using 
the character "-=1=" or (b) when an 
illegal punch in the card is changed 
to "-=1=." Single-letter perturba­
tions are used when the same sym­
bol occurs at both a variable and 
a label, or when a reserved word 
is used as a variable or label. In 
either case, conflicting usage can­
not be tolerated, and CORC ap­
pends "-=1=" to the symbol for the 
current usage. In subsequent 
searches of the symbol dictionary, 
one may wish to recognize the orig-



inal spelling. Thus, for each list 
word which agrees within a single 
illegal-character misspelling with 
the test word, an increment of 
(20N/8) is added to the cor-
responding figure of merit, where 
N is as above. This increment is 
higher than that for a random 
misspelling, reflecting the peculiar 
origins of the character "=1=." 

(iii) A rresemblance misspelling occurs 
whenever any of the following 
character pairs is confused: "1"­
"1," "0" (the letter) -"0" (the 
number) and "Z"-"2." For each 
list word which agrees within 
a single resemblance misspelling 
with the test word, an increment of 
(40N /8) is added to the corre­
sponding figure of merit, where N 
is as above. 

(iv) A rrandom misspelling occurs when 
any other single character is mis­
punched in a symbol. For each list 
word which agrees within a single 
random misspelling with the test 
word, an increment of (10N/8) is 
added to the corresponding figure 
of merit, where N is as above. 

( c) A permutation misspelling provides a 
single increment to a figure of merit 
whenever the test word matches the cor­
responding list word within a pair of 
adjacent characters, this pair being the 
same but permuted in the two words, 
e.g., LTE is a permutation misspelling 
of LET. For each list word which 
agrees within a single permutation mis­
spelling with the test word, an incre­
ment of (20N/8) is added to the corre­
sponding figure of merit, where N is as 
above. Other permutations may deserve 
consideration at some future date, but 
adjacent-pair permutations seem to have 
the highest a priori occurrence prob­
abilities. 

(d) Simple misspellings of the foregoing 
types have high probabilities of success­
ful correction insofar as the following 
conditions are met: 

(i) The list of words does not contain 
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man y near ly -identical entries. 
Otherwise, there will be many 
reasonable misspelling possibilities 
from which the program may se­
lect only one. 

(ii) Neither test words nor list words 
are single-character symbols. The 
program excludes such list words 
from consideration during a mis­
spelling analysis; experience has 
shown that only a small propor­
tion-perhaps 10 percent-of sin­
gle-character symbols are success­
fully corrected. 

(iii) Context can be extraordinarily 
helpful. Associated with each list 
word is a set of attributes such as 
the count of its usage in the cur­
rent program, its function (vari­
able, label, constant, reserved 
word, etc.) , and any peculiar 
usages already detected (such as 
being an undeclared variable) . 
Certain misspelling possibilities 
can be immediately discarded if 
the context associated with the 
corresponding list words does not 
match the context of the test word. 
For example, if an arithmetic 
statement is being analyzed, any 
test for misspelled· variables can 
immediately discard all misspelled 
label possibilities. 

The first two ·of these three conditions 
are controlled by the vocabulary of the 
source-deck programmer; CORC gives 
far better assistance to programs using 
only a few variables and labels of highly 
distinctive spelling with at least three 
characters apiece. 

(e) The increments corresponding to dif­
ferent misspellings were arbitrarily 
selected; they can be readily raised or 
lowered as experience indicates. The 
current values reflect the following 
observations: 

(i) The weakest communication link 
is between the handwritten coding 
sheets and their interpretation by 
the keypunch operator. Hence, the 
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largest increment is assigned to 
resemblance misspellings. 

(ii) In lieu of exact information, per­
mutation misspellings and key­
punch-shift misspellings have been 
judged equally probable. 

(iii) Illegal punches in a card image 
arise from three sources: illegal 
hole patterns, improper use of a 
character (e.g., non-alphabetic 
character beginning a first word, 
or the duplicate use of a symbol as 
two entities), and card-reading 
failures. Lacking other evidence, 
the author considered the incre­
ment to be approximately the same 
as in (ii). 

(iv) Other single-character misspell­
ings seem only half as likely to 
occur. 

Examples of the current CORC misspelling 
analyses may be found at the end of subsection 
E on Post-Scanning Spelling Corrections. 

(2) Subscripts 

Correction attempts for subscript errors 
have low success probabilities, on the whole. 
Isolated omission of one or both subscripts 
seems almost hopeless. CORC edits such an 
omission by appending" (1)" to a vector vari­
able and "( 1, 1)" to a matrix variable. Like­
wise, if a matrix variable has other than two 
subscripts, CORC uses primitive editing tech­
niques to produce executable machine code. Ex­
cessive commas are changed to "+" signs, and 
"(E)" is changed to "(E, 1) ," where "E" is 
the arithmetic expression for the first subscript 
of a matrix variable. 

Missing right parentheses are supplied and 
extra right parentheses are deleted as neces­
sary, although not always correctly. 

Definition of new array variables after the 
dictionary is complete (Le., after all type 5 
cards have been processed) is an attractive­
if difficult-error-correction procedure. Most 
algebraic compilers scan source decks several 
times; they have a leisurely opportunity to ac­
cumulate evidence for undeclared array vari­
ables. If such evidence is overwhelming, i.e., if 
every usage of a certain variable is immediately 

followed by a parenthesized expression, these 
compilers could change the status of this vari­
able before the final code-generation scan. 

To reduce compilation time, the current ver­
sion of CORC scans each source statement once 
and must make an immediate decision when it 
finds a left parenthesis juxtaposed to a sup­
posedly simple variable: should "V ( ... )" be 
changed to "V* (. .. ) ," i.e., implied multiplica­
tion, or should it be treated as a subscript (and 
re-designate "V" as an array variable)? The 
present error-correction procedure is to encode 
"V ( ... )" into the intermediate language with­
out change; special counters for usage as a vec­
tor /matrix variable are incremented, depend­
ing on one/two parenthesized arguments. At 
the conclusion of scanning, these usage coun­
ters are tested for all "simple" variables. Any 
variable used preponderantly as a vector vari­
able causes CORC to test for the misspelling 
of some declared vector variable. Failing this, 
CORC changes the status of the variable to a 
vector of 100 cells. Any variable used prepon­
derantly as a matrix variable causes CORe 
to test for the :rpisspelling of some declared 
matrix variable. Failing this, CORC changes 
the status of the variable to a matrix of 2500 
cells, comprising a 50 X 50 array. 

If a variable is infrequently juxtaposed to 
parenthesized expressions, CORC treats these 
juxtapositions as implied multiplications. De­
ferral of this decision necessitates a procedure 
for inserting the mUltiplication operator during 
the conversion of intermediate language to 
machine code, together with the appropriate 
message. This error-correction procedure is 
one of the few in the code-generation phase. 
The message appears at the end of the source­
deck listing rather than adjacent to the offend­
ing card image; the gain in error-correcting 
power seems to justify deferring the message. 

The a priori probabilities of omitted array­
variable declarations and implied multiplica­
tions are both high. Since the two possibilities 
are mutually exclusive, CORC bases its choice 
on the percentage occurrence of the ambiguous 
usage. If the usage is chronic, i.e., comprising 
more than 50 percent of the total usage of some 
variable, an undeclared array variable seems 
more probable. If the ambiguous usage is a 



small percentage of the total usage, implied 
multiplication seems more probable. 

(3) Arithmetic and relational expressions 

The rules for analyzing and correcting arith­
metic expressions are as follows: 

(a) Extraneous preceding plus signs are de­
leted, and preceding minus signs are 
prefixed by zero, i.e., H - E" becomes 
"0-E." 

(b) Thereafter, u+," "-," "*," and "/" 
are all binary operators. If an operand 
is missing before or after a binary oper­
ator, the value "1" is inserted. This 
merely preserves the coherence of the 
syntax; to correct this error seems hope­
less. 

( c ) If an expression using two binary opera­
tors might be ambiguous (irrespective 
of the formal syntax), CORC prints out 
its resolution of the ambiguity, e.g., 
"A/B*C IS INTERPRETED AS 
(A/B) *C." 

(4) LET, INCREASE-BY, and DECREASE­
BY 

Four components are essential to each cor­
rect statement in this category: the first-word, 
the assigned variable, the middle symbol, and 
the right-hand-side (RHS) arithmetic expres­
sion. 

(a) The first-word of the statement has been 
identified by a generalized pre-scan of 
the statement. If "LET" has been 
omitted but "=" has been found, CORC 
furnishes the former symbol. 

(b) The assigned variable may be sub­
scripted; if so, CORC supplies any miss­
ing arguments, commas, and right pa­
rentheses when" =" or "BY" terminates 
the left-hand-side (LHS) of the state­
ment. If other symbols follow the as­
signed variable but precede "=" or 
"BY," they are ignored. 

(c) "EQU," "EQL," and "EQ" are errone­
ous but recognizable substitutes for 
,,- " 

(d) Any arithmetic expression is legal for 
the RHS. 
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(5) GO TO, STOP, and IF 
(a) With one exception-(b) just below­

all unconditional branches begin with 
"GO," followed by an optional "TO." 

(b) STOP is a complete one-word statement. 
Also, it may be used in the conditional­
branch statement, e.g., "IF ... THEN 
STOP ELSE GO TO .... " 

(c) A conditional branch always follows one 
or more relational expressions in an IF 
or REPEAT statement. For IF state­
ments, the first incidence of "THEN," 
"ELSE," "GO," "TO," or "STOP" ter­
minates the last relational expression; 
missing operands, commas, and right 
parentheses are then inserted as needed. 
Thereafter, the two labels are retrieved 
from any "reasonable" arrangement 
with two or more of the above five 
words. 

Missing labels are replaced by dummy 
Hnext statement" labels, which later in­
hibit the compilation of machine-code 
branches. Thus, if an IF statement 
lacks its second label, the falsity of its 
predicate during execution will cause no 
branch. At the end of scanning, certain 
labels may remain undefined; here also, 
CORC inhibits the compilation of ma­
chine-code branches. 

(6) REPEAT 
(a) If the repeated label is omitted,e.g., in 

the statement REPEAT FOR ARG = 2, 
CORC scans the label field of the follow­
ing source card. Programmers often 
place repeatable blocks directly after 
REPEAT statements using these blocks: 
Hence, any label on this following card 
is likely to be the missing repeated 
label: it is inserted into the-REPEAT 
statement. If no such label is found, 
CORC creates a dummy label for the 
repeatable block. During the execution 
of the program, usage of this erroneous 
REPEAT statement can be monitored 
by this dummy label. 

(b) If the REPEAT-FOR variant is used, 
CORC tests for three components in 
addition to the repeated label: 

(i) The bound variable, i.e. ARG in 
the example in 6 (a) . 



24 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

(ii) The character "=" or its errone­
ous variants "EQU," "EQL," and 
"EQ." 

(iii) Any collection of iteration triples 
and single arithmetic expressions, 
separated by commas. In any iter­
ation triple, CORC will supply a 
single missing argument with 
value "1." 

(c) As in IF statements, an iIi definite num­
ber of relational expressions can be used 
in REPEAT-UNTIL statements. 

(7) BEGIN and END 

REPEA T statements and repeatable blocks 
require consistent spelling of labels and match­
ing BEGIN/END pseudo-statements. Through 
misunderstanding or carelessness, novice pro­
grammers commit grie.yous errors in using 
REPEAT statements and their blocks. CORC 
attempts to correct a certain subset of errors 
whose correction probabilities are attractively 
high: 

(a) If the label of a BEGIN pseudo-state­
ment is missing, the preceding and fol­
lowing cards are tested for clues: 

(i) if the preceding card was a RE­
PEAT statement using a yet­
undefined label, this label is 
supplied to the BEGIN pseudo­
statement. 

(ii) If (i) fails to hold and if the fol­
lowing card is labelled, this label 
is shifted to the BEGIN pseudo­
statement. 

(iii) Otherwise, a dummy label is sup­
plied, awaiting further clues to the 
identity of the repeatable block. If 
such clues never appear, the block 
is closed by a CORC-supplied END 
pseudo-statement after the last 
statement card of the deck. 

Should an unpaired END 
pseudo-statement be subsequently 
found, the dummy label (on the 
BEG I N pseudo-statement) is 
changed to match this unpaired 
END label. 

(b) If the label for an END pseudo-state­
ment is missing, CORC tests for the 

existence of a "nest" of unclosed blocks. 
If so, the label of the innermost unclosed 
block is used in the current END pseudo­
statement. Otherwise, the card is 
ignored. 

( c) If the label in an END pseudo-statement 
does not match the label of the inner­
most unclosed block, the current label is 
tested against the labels of the entire 
nest of blocks. If a "crisscross" has 
occurred, i.e., 

A • BEGIN 

B • BEGIN 

A END, 

CORC inserts the END pseudo-state­
ment for block B before the current 
END pseudo-statement for block A. 

(d) If the preceding test fails, CORC again 
tests the current label against the nest, 
looking for a misspelling. If the current 
label is misspelled, procedure ( c) is 
used. If the misspelling tests fail, CORC 
ignores the END pseudo-statement. 

(e) If the student has programmed an ap­
parent recursion, CORC prints a warn­
ing message but takes no further action. 
Although unlikely, there may be a legiti­
mate use for the construction: 

A BEGIN 

REPEAT A ... 

A END. 

In this situation, CORC makes no at­
tempt to preserve the address linkages 
as a truly recursive routine would re­
quire. Thus, the program is likely to 
terminate in an endless loop. 

(8) READ and WRITE 

Only simple or subscripted variables can ap­
pear in READ statements. The subscripts can 



be any arithmetic expressions. If a label ap­
pears in the argument list of a WRITE state­
ment, the current count of the label usage will 
be printed. Constants, reserved words, and spe­
cial characters are deleted from the argument 
lists of READ jWRITE statements. 

E. POST-SCANNING SPELLING 
CORRECTIONS 

The misspelling of labels and variables is 
corrected-insofar as CORC is capable-after 
scanning an entire deck, with the exceptions 
mentioned in section D. After scanning, much 
usage and context data have been accumulated. 
CORC attempts to resolve suspicious usages by 
equating two or more symbols to the same en­
tity. 

When the implementation of CORC was 
originally under study, heavy weight was given 
to the potential benefits from correcting mis­
spellings. Efficient correction of misspellings 
seemed to require one of the following similar 
strategies: 

(a) Two or more complete scans of the 
source deck, the first serving primarily 
for the collection of data on suspicious 
usages such as possible misspellings. 

(b) Encoding' of the source deck into an in­
termediate language which is tightly 
packed and substantially irredundant 
but which also permits re-designation of 
labels and variables after misspelling 
analyses. 

A third alternative to these strategies was to 
compile the source deck directly into machine 
code, then attempt to repair this code after de­
termining the set of corrigible misspellings. 
However, this procedure seemed less flexible to 
use and more difficult to program than the first 
two strategies; it was rejected from considera­
tion. 

The second alternative was selected and ap­
pears in both current implementations of 
CORC. Details of the strategy are as follows: 

(a) Each new simple variable entered into 
the dictionary is paralleled by a pointer­
cell containing the address of a second 
cell. This address is ordinarily used 
during machine code-generation to rep-
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resent the variable in question. Since 
any misspelled variable is equated to a 
properly-spelled variable after scanning 
but before code generation, CORC cor­
rects the misspelling merely by giving 
the variables identical pointer-cell con­
tents. 

(b) Each new array variable is paralleled by 
a pointer-cell containing the base address 
of the array. As for simple variables, 
only one pointer cell is changed if this 
variable is equated to another array 
variable. 

( c) To each label corresponds a pointer-cell 
containing a branch instruction to the 
appropriate machine location (when the 
latter becomes defined during the gen­
eration of machine code). For an unde­
fined label equated to some other label, 
its cell is filled with a branch instruc­
tion to the pointer-cell for the other 
label. Thus, execution of GO TO 
LABELA, where LABELA is a defined 
label, requires two machine-language 
branch instructions; if LABELA is an 
undefined label equated to LABELB, 
three machine-language branch instruc­
tions are required. 

The penalty in cor.npilation speed for using 
the intermediate language is modest: the aver­
age time to complete compilation for CORC 
programs-after the last statement card has 
been read-is less than one second; few decks 
require more than two seconds. 

( 1) Correction of misspelled labels 

If a label has been referenced but never de­
fined in a label field, it is tested for being a 
possible misspelling of some defined label. The 
defined label with the highest figure of merit is 
selected and the following message is printed: 

LABELA IS CHANGED TO LABELB, 

where LABELA and LABELB are the unde­
fined and defined labels, respectively. If no de­
fined label has a non-zero figure of merit with 
respect to the undefined label, the following 
message is printed: 

LABELA IS UNDEFINED 

Subsequently, all references to this label dur­
ing the generation of machine language are 
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treated as "next-statement" branches. At exe­
cution time, any GO TO or REPEA T state­
ments referencing this label cause the follow­
ing messages, respectively: 

IN STATEMENT , 
GO-TO NOT EXECUTED. 

IN STATEMENT , 
REPEAT NOT EXECUTED. 

(2) Correction of misspelled simple variables 

(a) If an undeclared variable is never used 
in suspicious juxtaposition to parenthe­
sized expressions (cf. subsection D (2) 
above), CORC attempts to find a de­
clared simple variable meeting the fol­
lowing criteria: 

(i) The undeclared variable is a poten­
tial misspelling of the declared 
variable. 

(ii) The LHS-RHS usage of the de­
clared variable is complementary 
to that of the undeclared variable. 
By LHS-RHS usage is meant the 
following two frequencies: 
(aa) Usage on the LHS of an as­

signment statement, in a 
READ statement, or in the 
initial dictionary. This us­
age corresponds to assigning 
the variable a new value. 

(bb) Usage on the RHS of an as­
signment statement, in a re­
lational expression, or in a 
WRITE statement. This us­
age corresponds to using the 
current value of the variable. 

The motivation for LHS-RHS analysis 
is the following: if two variables are 
spelled almost identically, if one has a 
null RHS usage and the other a null 
LHS usage, then the a priori probability 
that the programmer intended a single 
entity is higher than the probabilities 
for most alternative misspellings. 

CORC does not use LHS-RHS analy­
sis alone to determine the best misspell­
ing possibility. Instead, an increment of 
5 is added to the figure of merit of each 
declared variable whose null usage com­
plements any null usage of the current 
test word, i.e., undeclared variable. Un-

declared variables can be equated only 
to declared variables, not to other un­
declared variables. 

(b) If a declared variable has a null RHS 
usage, it may be an erroneous dictionary 
spelling of some variable which is there­
after consistently spelled. However, 
CORC will announce that the dictionary 
spelling is "correct" in this case, after it 
detects the misspelling; all "misspelled" 
incidences of the variable are equated 
to the declared variable. 

(3) Examples 

Four groups of nearly-matching symbols are 
illustrated in Table 1. In. the first group, the 
label ABC requires testing for misspelling. The 
label ABCDE is a concatenation misspelling, 
figure of merit (FOM) = 6. The label ABD is 
a random misspelling, FOM = 3. The label BAC 
is a permutation misspelling, FOM = 7. The 
label AB+ is an illegal-character misspelling, 
FOM = 7. Thus, CORC would choose at ran­
dom between BAC and AB+ for the defined 
label to which ABC should be equated. 

In the second group, the defined label DEI 
has FOM = 15 with respect to the undefined 
label DEL 

In the third group, three simple variables 
have not been declared in the dictionary and 
require testing for misspelling. One should re­
member that only declared simple variables, 
i.e., XYZ and XYU, are eligible for identifica­
tion with the undeclared variables. With re­
spect to XYV, XYZ has misspelling FOM = 3; 
to this must be added the null-RHS increment 
of 5, making a total FOM = 8. Since XYU has 
only the misspelling FOM of 3 with respect to 
XYV, XYV is equated to XYZ. 

With respect to YXZ, XYZ has a misspelling 
FOM of 7, plus the null-RHS increment of 5, 
making a total FOM of 12: since XYU has a 
zero FOM for YXZ, CORC equates YXZ to 
XYZ. 

With respect to YXW, neither XYZ nor 
XYU has a positive FOM; thus, YXW is not 
equated to a declared variable. 

In the fourth group, GHI was invariably 
used as a vector variable. Since it is a res em-
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TABLE 1. SAMPLE PROBLEMS IN POST-SCANNING SPELLING CORRECTIONS 

Symbol Type 
Declared/ 
Defined? 

LHS 
Usage 

RHS 
Usage 

Usage as 
Vector 

Usage as 
Matrix 

Total 
Usage 

ABC 
ABCDE 
ABD 
BAC 
AB=i= 

DEl 
DEI 

XYZ 
XYU 
XYV 
YXZ 
YXW 

GHI 
GH1 
GHJ 
GHK 

label 
label 
label 
label 
label 

label 
label 

simple variable 
smp. var. 
smp. var. 
smp. var. 
smp. var. 

vector variable 
smp. var. 
smp. var. 
smp. var. 

no 
yes 
yes 
yes 
yes 

no 
yes 

yes 
yes 
no 
no 
no 

yes 
yes 
yes 
no 

blance misspelling of the declared vector vari­
able GHI, it is equated to this variable and its 
status changed to a vector. GHJ was used 67 
percent of the time as a vector variable; since 
it is a random misspelling of GHI, it is equated 
to the latter. GHK has a positive figure of 
merit with respect to each of the three preced­
ing entries. However, GHK was never used as 
a vector variable. Since the GHJ and GHI have 
been set to vector status, GHK can no longer 
be equated to either of them; it thus remains a 
distinct, undeclared variable. 

V. ERROR MONITORING DURING 
EXECUTION 

CORC prefaces each compiled statement by 
a sequence of machine language instructions to 
monitor object-program flow. Additional "over­
head" instructions for monitoring appear in 
four types of statements: labelled statements, 
statements containing subscripted variables, 
REPEAT statements, and READ statements. 
The monitoring effort has three objectives: 

(a) Prevent the object program from over­
writing the CORC compiler/monitor or 
itself; 

1 
2 
1 
o 
o 

2 
2 
1 
2 

o 
1 
1 
1 
2 

2 
2 
2 
2 

o 
o 
o 
o 
o 

4 
4 
2 
o 

o 
o 
o 
o 
o 

o 
o 
o 
o 

1 
3 
2 
1 
2 

4 
4 
3 
4 

(b) Continue the execution phase through 
untested code when the flow of the ob­
j ect program becomes confused (through 
misuse of REPEA T statements or in­
complete GO TO, IF, and REPEAT 
statements) ; 

( c) Provide explicit diagnostic messages for 
each error detected at execution time, 
followed by an unconditional post­
mortem dump of simple-variable values 
and other helpful data.6 § 

A. THE GENERAL MONITOR 

(1) CORC accumulates a count of all state­
ments executed, the statement count. 
This count is printed in the post-mortem 
dump, together with the number of er­
rors committed during the entire pro­
gram and the total elapsed time for the 
program. The statement count has two 
minor functions: to aid debugging of 

§ Many debugging languages such as BUGTRAN 
(cf. 6) furnish trace and snapshot information if re­
quested by the programmer. CORC furnishes such 
diagnostic information unconditionally; the overhead 
instructions cannot be suppressed after programs are 
debugged. 
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(2) 

short programs in conjunction with the 
"label tallies" (see (3) below) and­
looking towards future CORC re­
search-to exhibit the different speeds 
of execution for various programs, e.g., 
with/without heavy subscript usage. 
The per-statement overhead of the state­
ment count is 13.2 microseconds, com­
prising a single "tally" instruction. 

Before executing each statement, its 
source-card serial number (converted to 
a binary integer) is loaded into an index 
register. Execution-phase messages re­
sulting from this statement retrieve the 
serial number and print it as an intro­
ductory phrase to each message, e.g., 

IN STATEMENT 1234, THE PRO­
GRAM IS STOPPED. 

Each load-index instruction requires 3.3 
microseconds. The percentage of execu­
tion time devoted to items (1) and (2) 
is usually less than 3 percent; see (5) 
below. 

(3) The execution of each labelled statement 
is tallied, by label. These tallies are 
printed in the post-mortem dump; they 
show the progress of the program, 
which branches were never taken, end­
less loops, etc. Each tally instruction 
requires 13.2 microseconds. 

(4) At each labelled statement, a two-posi­
tion console switch is interrogated. In 
the normal position, the switch has no 
effect on program flow. If set, the 
switch causes the program to terminate 
at once, printing the message, 

IN STATEMENT , THE 
PROGRAM IS MANUALLY INTER­
RUPTED, 

followed by the usual post-mortem 
dump. 

Thus, any endless loop can be manu­
ally interrupted without stopping the 
computer, although this is rarely neces­
sary. (Cf. the subsequent section on 
Terminations.) The switch interroga­
tion is required only at labelled state­
ments, since endless loops must include 
at least one label. Each switch "interro-

gation requires 7.2 microseconds. The 
percentage of execution time devoted to 
items (3) and (4) is usually less than 
1 percent, as exhibited by the following 
analysis. 

(5) Assuming that 100,000 statements are 
executed per minute, an average state­
ment requires some 600 microseconds. 
Since items (1) and (2) aggregate 16.5 
microseconds per stateTI?-ent, the over­
head for these items is 2.75 percent. As­
suming that every fourth statement is 
labelled, items (3) and (4) are incurred 
once every 2400 microseconds on the 
average; since these times aggregate 
20.4 microseconds, their overhead is 
approximately 0.8 percent. 

(6) No tracing features are offered in 
CORC. If a student requires more diag­
nostic data than is already furnished, 
he is encouraged to use WRITE and 
TITLE statements generously. However, 
he is also warned to print such data 
compactly: 

(7) 

(a) If two consecutive pages print less 
than 30 percent of the 14,400 char~ 
acter spaces available (2 pages X 
60 lines/page X 120 characters/ 
line), CORC prints out the follow~ 
ing message: 

-TRY TO USE MORE EFFI­
CIENT WRITE AND TITLE 
STATEMENTS AND AVOID 
WASTING SO MUCH P APER-

(b) A page-count limit is set for all nor­
mal programs; when this limit is 
reached, the program is terminated 
at once. 

Each untranslatable source card has 
been replaced by a TITLE card during 
scanning, bearing the following mes­
sage: 

CARD NO. NOT EXE~ 
CUTED, SINCE UNTRANSLAT­
ABLE. 

These messages remind the programmer 
of omitted actions during the execution 
phase. 



B. MONITORING ARITHMETIC ERRORS 

CORC uses conventional procedures for 
arithmetic overflow junderflow errors, but 
somewhat novel procedures for special-function 
argument errors. The machine traps of the 
computer detect overflow junderflow conditions, 
which are then interpreted into CORC mes­
sages: 

(1) IN STATEMENT EX-
PONENT UNDERFLOW. (CORC zeros 
the accumulator and proceeds.) 

_____ , EX­(2) IN STATEMENT 
PONENT OVERFLOW. (CORC sets 
the accumulator to 1 rather than to some 
arbitrary, large number. This tends to 
avoid an immediate sequence of identi­
cal messages, allowing the execution 
phase to survive longer before termina­
tion from excessive 'errors.) 

(3) IN STATEMENT , DIVI-
SION BY ZERO. ASSUME QUOTIENT 
OF 1.0. 

For each special function error, CORC 
creates an acceptable argument and proceeds, 
instead of taking drastic action, e.g., immediate 
program termination, as many monitor systems 
do. 

(4) IN STATEMENT , {' E~P t 
SIN j 

ARGUMENT TOO LARGE. THE RE­
SULT IS SET TO 1. 

(5) IN STATEMENT , LN 0 
YIELDS (or . . . LOG 0 YIELDS) 1. 

(6) IN STATEMENT j LOG 
/ LN } 

, lSQRT 

OF NEGATIVE ARGUMENT. THE 
ABSOLUTE VALUE IS USED. 

(7) IN STATEMENT , ZERO TO 
NEGATIVE POWER-ASSUME 1. 

(8) IN STATE ME-NT . , $-NEG-
ATIVE ARGUMENT. THE RESULT 
IS SET TO 1. 

C. TERMINATIONS 

Two abnormal terminations were discussed 
in the General Monitor section. Altogether, 
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there are five terminations, caused by the fol­
lowing events: 

(1) Console switch set. 

(2) Page count limit exceeded. 

(3) Time limit exceeded. Overflow of the 
real-time clock produces a machine trap 
which is intercepted by CORC. For each 
program, a time limit ( ordinarily of 
sixty seconds) is set. (The tab cards 
separating the source decks can bear 
any non-standard page-count and time 
limits. I I ) When this time is exhausted, 
the program is terminated with the fol­
lowing message preceding the post­
mortem dump: 

IN STATEMENT ___ , THE 
TIME IS EXHAUSTED. 

Endless loops are terminated by this 
procedure, avoiding the necessity of 
operator intervention with the console 
switch. 

( 4) Error count too high. After each pro­
gram has been compiled, the total error 
count is interrogated. When it exceeds 
100, then or thereafter, the program is 
terminated with the appropriate mes­
sage. 

(5) Normal execution of STOP. The mes­
sage 

IN STATEMENT ___ , THE 
PROGRAM IS STOPPED 

identifies which STOP statement-pos­
sibly of several such statements-has 
been met. For all terminations, the post­
mortem dump includes the following: 
(a) The final values of all simple vari-

ables. Since arrays may comprise 
thousands of cells, CORC cannot af­
ford paper or machine time to dump 
them too. 

(b) The usage tallies for all labels. 
(c) The first fifteen (or fewer) data 

card images. 
(d) The error-count, statement-count, 

and elapsed-time figures. 

II Ordinarily the tab cards are blank. A special re­
run drawer is used for programs which require unusual 
output volume or running time; the computing center 
inserts special tab cards with non-standard page-count 
and time limits before these decks. 
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D. MONITORING SUBSCRIPTED 
VARIABLES 

One of CORC's most radical innovations is 
the universal monitoring of subscripts. CORC 
is attempting to trade execution efficiency for 
two other desiderata: 

(a) Protection of the in-core compiler/moni­
tor against accidental overwriting by 
student programs. 

(b) Provision of complete diagnostics on all 
illegal subscripts: in which statements, 
for which variables, and the actual er­
roneous values of the subscripts. 

CORC's excellent throughput speed has de­
pended on infrequent destruction of the in-core 
compiler /monitor; in the author's opinion, sub­
script monitoring is CORC's most important 
protective feature. 

Criterion (b) -full diagnostic information 
on subscript errors-is also of significance, 
since erroneous subscript usage comprises at 
least 30 percent of all execution-phase errors. 
Students quickly learn that these errors are 
among the easiest to commit-although they 
are spared the hardship of their detection and 
isolation. 

Subscript usage is monitored as follows: 

(1) Each reference to a subscripted variable 
incurs a load-index instruction corre­
sponding to the dictionary entry for this 
variable. If subsequent troubles arise 
in the subscripts, CORC can retrieve the 
name and other particulars of the vari­
able by using this index register. 

(2) The subscript is an arithmetic expres­
sion, whose floating point value is trans­
mitted in the machine accumulator to a 
closed subroutine for un floating num­
bers. 

(3) The latter subroutine checks for a posi­
tive, integral subscript. 
(a) 0 is changed to 1 with the following 

message: 

IN STATEMENT , SUB­
SCRIPT FOR VARIABLE __ 
IS O. IT IS SET TO 1. 

(b) Negative numbers are also changed 
to 1: 

IN STATEMENT , SUB­
SCRIPT FOR VARIABLE __ 
IS NEGATIVE. IT IS SET TO 1. 

(c) If non-integral, the subscript is 
rounded to an integer. If the round­
off error is less than 10-9 , no error 
message is incurred; earlier calcula­
tions may have introduced small 
round-off errors into a theoretically 
exact subscript. If the round-off 
error exceeds 10-9, the following 
message appears: 

IN STATEMENT , SUB­
SCRIPT FOR VARIABLE __ 
IS NON -INTEGRAL. IT IS 
ROUNDED TO AN INTEGER. 

(d) After verifying (or changing to) a 
positive, integral subscript, the 
closed subroutine for unfl.oating 
subscripts returns control to the 
size test peculiar to this variable. 

(4) The subscript is tested for exceeding the 
appropriate dimension of the array vari­
able. Thus, the first subscript of a 
matrix variable is tested against the 
declared maximum number of rows, and 
the second subscript is tested against the 
declared maximum number of columns; 
a vector subscript is tested against its 
declared maximum number of elements. 
An excessive value incurs one of the 
three following messages: 

IN STATEMENT _____ _ 

IS THE {S~~~JD} SUBSCRIPT FOR 
VECTOR 

THE VARIABLE . SINCE 
IT IS EXCESSIVE, IT IS REPLACED 
BY THE VALUE __ _ 

The second blank in the message is filled 
with the current execution-phase value 
of the subscript. The. third and fourth 
blanks are filled with the variable name 
and its maximum allowable SUbscript. 
This action serves to repair the errone­
ous subscript but hardly to correct it. 



The overhead for each error-free 
usage of a subscript is 85 microseconds. 
With obvious waste of effort, this over­
head is incurred six times for the state­
ment: 

LET A (I,J) = B (I,J) + C (I,J) . 

Future versions of CORC may treat 
such repeated usage of identical sub­
scripts with more sophistication. How­
ever, one must remember that "A," "B," 
and "C" could have different maximum 
dimensions, in this example. A row sub­
script legal for "A" might be excessive 
for "B," etc. Also, in statements such as 

LET A(I) = A(I + 1), 

one must corroborate the legal size of 
"(I + 1)" as well as that of "I." 

The per-program overhead of sub­
script monitoring varies between 0 per­
cent and 90 percent of the execution 
time, as one might guess. An average 
overhead of 15 percent has been meas­
ured for a representative batch of 
programs. 

E. MONITORING REPEATED BLOCKS 

(1) Each repeatable block is legally used 
only as a closed subroutine. Hence, the 
exit instruction from the block-machine 
code generated by its END pseudo­
statement-can be used to trap any 
illegal prior branch to an interior state­
ment of the block. (One cannot enter 
a block by advancing sequentially 
through its BEGIN pseudo-statement. 
However, one can illegally branch to an 
interior statement of a repeatable block 
from a statement physically outside the 
block.) When the block is properly 
entered by a REPEAT statement, the 
address of the exit instruction is prop­
erly set; after the repetitions have been 
completed, a trap address is set into this 
exit instruction before the program ad­
vances beyond the REPEAT statement. 

Thus, program flow can physically 
leave and re-enter a repeatable block in 
any complex pattern, as long as the block 
has been properly "opened" by a RE­
PEAT statement and has not yet been 
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"closed" by completion of the repeti­
tions. In this respect, CORC allows more 
complex branching than most compilers. 

When the exit instruction traps an 
illegal prior entry, CORC prints the fol­
lowing message: 

IN STATEMENT , AN IL-
LEGAL EXIT FROM BLOCK __ _ 
HAS JUST BEEN DETECTED. IN 
SOME PREVIOUS GO-TO STATE­
MENT, THE BLOCK WAS ILLE­
GALLY ENTERED. THE PROGRAM 
CONTINUES AFTER THE END 
STATEMENT OF THIS BLOCK. 

(2) To protect against various illegal usages 
of the bound variable in REPEAT-FOR 
statements, CORC pr"e-calculates the 
number of repetitions and conceals this 
count from the repeatable block; the 
count is fetched, decremented, and 
tested only by the REPEAT statement. 
This discussion is amplified in (d) below. 

Consider the statement: REPEAT B 
FOR V = (E1 , E;!, E3): 

(a) If E 1 ::;:;:: E 3, the block is executed 
once. 

(b) Otherwise, if E2 is zero, CORC 
prints the following message: IN 
STATEMENT , IN RE­
PEAT-FOR TRIPLE, SECOND 
ARGUMENT IS O. THE REPEAT 
IS EXECUTED ONCE. 

(c) Otherwise, if (E3 - E 1)/E2 is nega­
tive, CORC prints the following 
message: 

IN STATEMENT , IN 
REPEAT-FOR TRIPLE, SECOND 
ARGUMENT HAS WRONG SIGN. 
THE REPEAT IS EXECUTED 
ONCE. 

(d) Otherwise, CORC uses the count 

[ 
E3 - El ] . E2 to determIne the num-

ber of repetitions. This count is re­
duced by 1 for each iteration, irre­
spective of the subsequent values of 
"V," "E2'" or "E3." Novice pro­
grammers often manipUlate "V" in­
side repeatable blocks; CORC pre-
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vents many potentially endless loops 
by ignoring this manipulation. 

F. MONITORING DATA-CARD INPUT 

The reading and checking of data cards was 
introduced in Section IV. In brief, a READ 
statement causes the following steps to occur. 

(1) A new card is read in; if it is of type 1, 
CORC assumes it to be the first card of 
the next source deck. Thereupon, the 
following messages appear: 

THE INPUT DATA HAS BEEN 
EXHAUSTED. IN STATEMENT 
___ , CORC SUPPLIES A 
DATA CARD FOR THE VARIABLE 
___ WITH VALUE 1.0. 

Thus, CORC enters a value of 1 for the 
READ variable and proceeds with the 
program; subsequent READ statements 
incur only the second message above. 

(2) If the new card is neither type 1 nor 
type 4 (i.e., the correct type), CORC 
prints this message: 

IN STATEMENT , THE 
CARD IS ASSUMED TO BE A 
DATA CARD. 

(3) If the new card is type 4-possibly as 
the result of (2) above-CORC checks 
the variable field against the variable 
name in the READ statement. If they 
disagree, CORC considers the name in 
the READ statement to be correct; the 
following message is printed: 

IN STATEMENT , THE 
VARIABLE WAS READ 
FROM THE CARD. THE VARI­
ABLE IN THE READ STATEMENT 
WAS ___ _ 

(4) When the variable names have been 
reconciled CORC checks for none, one, 
or two subscripts on the card, as appro­
pria te to the READ variable. Missing 
or erroneous subscripts incur the follow­
ing message: 

IN STATEMENT THE 
SUBSCRIPT ( , ) WAS 
READ FROM THE CARD'. THE 

SUBSCRIPT IN THE READ STATE-
MENT WAS ( ), 

or 

IN STATEMENT , THE 
SUBSCRIPT ( ) WAS READ 
FROM THE CARD. THE SUB­
SCRIPT IN THE READ STATE-
MENT WAS ( ). 

In every case, CORC uses the value in 
the READ statement. 

VI. CONCLUSIONS 

A. EXPERIENCE IN PRACTICE 

Throughout the 1962-63 academic year, 
CORC was in "pilot project" status; in 1963-64 
CORC was established as the fundamental com­
puting tool for undergraduate engineering 
courses at Cornell. In the spring semester of 
1964, over 15,000 CORC programs were run, 
peaking at 2500 programs in one week. 

The performance of CORC programmers far 
surpassed the preceding years' performance by 
ALGOL programmers at Cornell in such re­
spects as speed of language acquisition, average 
number of re-runs per program, and average 
completion time for classroom assignments. 

Actual processing time can be evaluated from 
the following figures, which are rough esti­
mates based on last year's experience with 
CORC programs: 

(a) Average processing time (tape/tape con­
figuration)-500 programs per hour. 

(b) Average machine-code execution rate-
100,000 source-language statements per 
minute, for a random sample of twenty 
student programs. 

(c) Average compilation time for CORC pro­
grams-less than two seconds. 

(d) Turnaround time for programs-one 
day or less, with rare exceptions. 

The author has automated the operation of 
the compi,ler/monitor to the following degree: 
only a random machine malfunction can cause 
the computer to halt. Since programming errors 
cannot produce object code that erroneously 
diverts control outside the CORC system, the 



role of the machine operator is merely to mount 
input tape reels and remove output tapes: the 
computer console needs almost no attention. 

A few error-detection procedures were 
altered during 1962-64, primarily to make 
diagnostic messages increasingly explicit. A 
new CORC manual was prepared for instruc­
tional use in 1963-64; this manual omitted any 
catalogue of errors, since the author expected 
that the compiler/monitor systems could de­
scribe the errors-and the corresponding re­
medial actions-in satisfactory detail. 

CORC has imposed a modest load on the two 
computers at Cornell. The computing center 
is satisfied that neither FORTRAN nor ALGOL 
can lighten this load, which is rarely as much 
as two hours of CORC runs daily. (FORTRAN 
and ALGOL systems have greater capability 
but require more' facility in programming. The 
class of problems for which CORC has been 
developed would not warrant the expenditure 
of time required to program in the advanced 
languages.) In the author's opinion, this small 
commitment of resources is well-justified by 
the educational value of the CORC project. 

B. POTENTIAL UTILITY OF CORC 

The author feels that many universities and 
technical colleges can profitably utilize CORC 
for introductory instruction. The designers of 
CORC are convinced that a simple language is 
well suited for initial study; many Cornell stu­
dents have already easily advanced to FOR­
TRAN or ALGOL after mastering CORC. 

With respect to the error-detection and error­
correction features, CORC demonstrates the 
modest effort required to furnish intelligible 
messages and how little core memory and 
machine time are consumed. Many CORC error­
monitoring procedures deserve consideration in 
future implementations of compiler languages: 
unconditional counts of statement labels (or 
statement numbers), source-program citations 
in diagnostic messages, and brief dumps fol­
lowing all program terminations. The monitor­
ing of subscripts would not be burdensome if 
the latter were carried as integers-index 
registers are used in most current compiled 
codes. Ninety percent of the CORC subscript-
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usage execution time is devoted to unfloating 
numbers, and only ten percent is devoted to 
testing these numbers for size. 

C. POTENTIAL IMPROVEMENTS IN CORC 

Four areas for significant improvements in 
CORC are as follows: 

(1) Identification of integer-mode variables 
by their context. Index registers can 
then be used for arrays and loop count­
ing as in FORTRAN. 

(2) A problem-grading mechanism. Each in­
structor can assign a scale of penalties 
for various errors. CORC will process 
his batch of student programs and as­
sign the appropriate grades. 

(3) A permanent file for tabUlating errors. 
Each time that CORC programs are 
run, an auxiliary output device-paper 
tape or punched cards-will record the 
serial number of each error committed. 
Periodically, these tapes or cards will be 
summarized. This data will furnish sta­
tistical estimates for the a priori occur­
rence probabilities of the errors. 

(4) Remote consoles. These are much dis­
cussed in current computer literature, 
and they hold unusual promise for high­
volume university operation. Students 
would type in their programs from key­
boards distributed around a campus 
covering hundreds of acres. Either these 
programs would interrupt a large com­
puter programmed for real-time entry, 
or they would be stacked on tape/disk 
by a satellite computer. Perhaps results 
could be printed/typed at these remote 
stations by the satellite computer. 

The author and his colleagues are well aware 
of shortcomings in the language. However, they 
intend to resist changes which increase the 
power of the syntax at the expense of linguistic 
simplicity. Changes on behalf of additional 
simplicity or clarity are willingly accepted. 
Continuing efforts will be made to improve the 
clarity and explicitness of the djagnostic mes­
sages, so that classroom instruction can be 
further integrated with output from the 
computer. 
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Programmed instruction, via digital com­
puters, must be made as painless as possible, 
both in the writing and the changing of pro­
grams, for the author of the programmed text. 
Otherwise we will only slowly accumulate a 
body of expensive programs that we will never 
succeed in testing adequately. It is crucial, 
given that we are investigating programmed 
instruction at all, that it become easy to write 
and re\vrite the programs. 

A great deal of research is needed as to the 
effectiveness of different types and sequences 
of items; therefore, programs must be flexible 
and easily changed. A large number of differ­
ent programs will be needed, from many dif­
ferent content areas. These programs should 
be written by people whose competence is in 
these content areas. Such people cannot be ex­
pected to learn about computers, or about pro­
gramming. Ideally, the problems of writing a 
program for computer teaching of a course in, 
for example, logic, French, botany, or computer 
programming should be no greater than the 
problems in writing a good book. 

This paper describes a set of two programs 
that have been written to (1) allow someone 
to write a program in his content area without 
having to learn anything new other than what 

appears to be an acceptable minimum of con­
ventions, and then compile it (TMCOMPILE), 
and (2) interpret the compiled program, thus 
giving a running program that interacts with 
students (TEACH). 

In effect, then, this is a compiler-interpreter 
for programs that are written in relatively un­
constrained natural language (no matter 
which), so long as they are oriented toward 
the specific problem of programmed instruc­
tion, in that they conform to the format con­
straints described below. It is thus similar in 
spirit to problem-oriented compilers. Similar 
compilers have been coded at IBM (referred to 
in Maher3 ) and SDC (Estavan1

). Despite what 
appear to be a significantly simpler logic and 
fewer conventions that must be learned, the 
present compiler, by means of its branching 
features, appears to handle a larger set of pro­
grams than IBM's, uses a somewhat simpler 
set of formatting rules, and offers the ability 
to make loose, partially ordered andlor unor­
dered matches, to use synonyms, and to delete 
and insert questions conveniently. Estavan has 
written a program that assembles instructions 
telling a student where to look in a pre-assigned 
textbook. This program is restricted to multi­
ple-choice questions. 

* The author would like to thank Ralph Gerard for bringing the magnitude of the practical need for such a 
compiler to his attention, William Dttal for discussions of some of the features that such a compiler should have, 
and Peter Reich for suggestions as to format. 
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Description of the Program and the Inputs 
It will Accept 

If he wishes, the author of a programmed 
text might sit down at the keypunch or flexo­
writer and compose in ihteraction with the 
computer. Or he might retire to his study 
and write down the set of information, ques­
tions, alternate possibilities for answers, and 
branches that he wants, and ask a keypunch 
operator to put these onto cards for compiling. 
In either of these two modes he must follow a 
few conventions, as described below. Or, if he 
insists upon his freedom, he might simply be 
asked to write his text in any way he desired, 
subject only to the restriction that it follow the 
very general format of containing only: (1) 
statements giving information to the student, 
and (2) questions about this information, 
either (a) multiple-choice, (b) true-false, or 
(c) correctly answerable in a concise way, with 
the various acceptable crucial parts of answers 
listed by the author right after the question 
and acceptable synonyms listed in a synonym 
dictionary. In addition, for each alternative 
answer (or set of alternatives), the author 
should say what question or statement of fact 
the program should ask of the student next. 
(Or, alternatively, if the author does not bother 
to specify this, the program will simply go to 
the next item-the next statement or ques­
tion-according to the order that the author 
has given them.) A text written in such a way 
could easily be formatted by the keypunch op­
erator who punched it onto cards. 

In general, then, the type of text that the 
author must write must be a set of strings 
which are either statements (of information) 
or questions. The questions must be followed 
by the alternate possible answers, and each set 
of alternate possible answers must be followed 
by an explicit or implied branch to another 
string in the text. Figures lA and 2A give ex­
amples of such texts. 

If the author is willing to go to a little bit of 
trouble, he will produce the texts of Figures lA 
and 2A in a form that will be compiled di­
rectly. Figures IB and 2B show what these 
texts would look like then. 

If the author makes use of the computer as 
he writes, he can delete strings that he would 

like to change, by means of an instruction to 
"erase string i,-" and then, if he wishes, write 
in the new version of string i. He can also ask 
the program to begin teaching him (or others) , 
to collect data on successes and failures, and to 
give him a feeling of the program from the 
student's point of view. 

Rules for Format 

A. The peculiarities of this language that the 
user must learn are as follows: 

1. A new item must be identified by 
*NAME. 

2. Items are composed of elements, and all 
elements are bounded by slashes (I). 

3. The following things are elements: (a) 
the entire statement giving information 
or advice, (b) the entire question, (c) 
each alternative possible answer to a ques­
tion, (d) the branch to the next string to 
be presented to the subject. 

4. The branch element must start with an 
asterisk (*). 

B. If he so desires, the author can gain a 
good bit of additional flexibility by using 
the following additional features of the lan­
guage: 

5. The NAME is optional: if none is given, 
the program names this string with the 
integer one greater than the last integer 
name given. The name can either be an 
integer (in which case care must be taken 
that it is never automatically assigned by 
the program) or a string of alphanumeric 
character. 

6. An "otherwise" branch (**) for the en­
tire question is optional, and goes at the 
end of the answer portion of a question. 

7. Partial matches between a student's an­
swer and an acceptable answer will be 
accepted if they fulfill the following cri­
teria: (a) if a word in the answer is 
listed in a synonym dictionary that has 
been read into the program as equivalent 
to a word that the student uses, (b) if 
the correct answer is a connected sub­
string of the student's answer, (c) if a 
correct answer is specified as a list of sub­
strings separated by commas and pe-
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A. In Need of Pre-editing. 

TO TELL WHEl'HER AN OBrAINED DIFFERENCE IS SIGNIFICANT, YOU MUST KNOW 

WHEl'HER IT IS IARGER THAN MIGHT ARISE FROM SAMPLING VARIABILITY. SAMPLING 

VARIABILITY IS DUE TO ACCIDENTAL OR CHANCE FACTORS THAT AFFECT THE 

SELECTION OF OBSERVATIONS INCLUDED IN THE SAMPIE. THESE CHANCE FACTORS 

OBEY THE rAWS OF PROBABILITY; FROM THESE rAWS YOU CAN CALCUIATE HOW BIG 

A DIFFERENCE MIGIn' BE EXPECTED BETWEEN TWO SAMPIES DRAWN FROM THE SAME 

POPUIATION. THE rAWS OF PROBABILITY APPLY ONLY TO SAMPLrn THAT CAN BE 

SHOWN TO BE RANDOM SAMPIES. 

A RANDOM SAMPIE MUST BE SE~ IN A WAY THAT GIVES EVERY OBSERVATION IN 

THE - BEING SAMPIED AN EQUAL CHANCE OF BEING INCLUDED. 

ANSWER: POPUIATION. 

WHEN THE NAMES OF THE STUDENTS IN A COLLEGE ARE WRITTEN ON IDENTICAL 

SLIPS AND ARE DRAWN our OF A HAT BY A BLINDFOIDED PERSON, THE SAMPIE SO 

DRAWN IS A - SAMPLE BECAUSE EACH MEMBER OF THE POPUIATION WOUID HAVE 

AN - - OF BEING INCLUDED. ANSWER: RANDOM ••• ~UAL CHANCE. 

A SAMPIE THAT IS Nor RANDOM IS BIASED. IF SOME OF THE STUDENTS' 

NAMES WERE Nor IN THE HAT, THE SAMPLE DRAWN WOUID BE 

ANSWER: BIASED. 

B. Prepared for Automatic Compilation. 

*/TO TELL WHETHER AN OBI'AINED DIFFERENCE IS SIGNIFICANT, YOU MUST KNOW 

WHErHER IT IS IARGER THAN MIGHT ARISE FROM SAMPLING VARIABILITY. SAMPLING 

VARIABILITY IS DUE '{'O ACCIDENTAL OR CKA..NCE FACTORS THAT A.FFECT THE 

SELECTION OF OBSERVATIONS INCLUDED IN THE SAMPLE. THESE CHANCE FACTORS 

OBEY THE lAWS OF PROBABILITY; FROM THESE rAWS YOU CAN CALCUIATE HOW BIG 

A DIFFERENCE MIGHT BE EXPECTED BETWEEN TWO SAMPLES DRAWN FROM THE SAME 

POPUIATION. THE lAWS OF PROBABILITY APPLY ONLY TO SAMPLES THAT CAN BE 

SHOWN TO BE RANDOM SAMPIES/ 

*/A RANDOM SAMPLE MUST BE SELECTED IN A WAY THAT GIVES EVERY OBSERVATION 

IN THE - BEING SAMPLED AN ~UAL CHANCE OF BEING INCLUDED/POPUIATION/ 

* /WHEN THE NAMES OF THE STUDENTS IN A COLLEGE ARE WRITTEN ON IDENI'ICAL 

SLIPS AND ARE DRAWN our OF A HAT BY A BLINDFOIDED PERSON, THE SAMPIE SO 

DRAWN IS A - SAMPIE BECAUSE EACH MEMBER OF THE POPUIATION WOUID 

HAVE AN - - OF BErm INCLUDED/RANDOM. EQUAL CHANCE.=l/ 

*/A SAMPIE THAT IS Nor RANDOM IS BIASED. IF SOME OF THE STUDENTS' 

NAMES WERE Nor IN THE HAT, THE SAMPLE DRAWN WOUID BE - /BIASED/ 

Figure 1. A Sequence Typical of Those Found in Programmed Instruction 
Texts. 

Figure la. In Need of Pre-editing. 

Figure lb. Prepared for Automatic Compilatio~. 
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A. In Need of Pre-editing. 

JOHN LIKES MARY BROWN. 

WHO DOES JOHN LIKE? MARY BROWN. B • MARY. A. 

A. MARY WHO? BROWN. B; OTHERWISE TO 1ST 

B. Bur MARY LIKES PHIL AND PHIL LIKES BETTY. 

DOES MARY LIKE BETTY? YES OR NO.O. DON'T KNOW. D. 

C. YOU REALLY CAN'T KNOW FROM WHAT YOU'VE BEEN TOLD. IF ONE PERSON LIKES 

A SECOND PERSON WHO LIKES A THIRD, IT'S NOT CERTAIN THAT THE FIRST PERSON 

LIKES THE THIRD. 

D. JOHN LIKES BETTY TOO, ALONG WITH JANE, AND CAROL. 

WHO DOES JOHN LIKE? BErTY, MARY, JANE, OR CAROL.E. GIRLS, OR WOMEN.F. 

E. GENERALIZE. WHAT DO BETTY, MARY, JANE AND CAROL HAVE IN COMMON? 

JOHN LIKES - • G IRIS, OR WOMEN. F • WHO JOHN LIKES. G • 

F. RIGHT. BUl' NOT NECESSARILY ALL. DO YOU THINK JOHN LIKES MOST G IRIS? 

YES, OR MAYBE.H. NO, OR DON'T KNOW, OR NOT ENOUGH INFORMATION.I. 

G. IT DOESN'T ADD MUCH TO SAY "JOHN LIKES THAT WHICH JOHN LIKES. tI SUCH A 

STATEMENl' IS CALLED A TAUTOIOOY -- THERE'S NO POINT IN SAYING THE SECOND 

HAlF ONCE YOU'VE SAID THE FIRST HAIF. I. 

H. NO. THIS IS A VERY FALLIBLE AND UNLIKELY SORr OF INFERENCE TO DRAW. 

FOR INSTANCE, JOHN CERrAINLY DOESN'T EVEN KNOW MOEn' GIRLS. GENERALIZATIONS 

OF THIS SORT ARE RISKY AT BEST, Bur AT THE LEAS!' YOU MUS!' KNOW MUCH MORE 

AOOtJr THE TarAL GROUP -- GIRIS -- AND ITS REIATION TO JOHN AND HOW THE 

PARrICULAR EXAMPLES GIVEN WERE CHOSEN. 

I. IT SO HAPPENS THAT JOHN DOES LIKE MOST OF THE GIRLS THAT HE KNOWS. msr 

MEN AND OOYS DO. Bur THERE ARE AIHIAYS EXCEPl'IONS. FOR EXAMPLE, JOHN 

DOESN'T LIKE ALICE. ON THE OTHER HAND, HE USUALLY LIKES THE GIRLS THAT 

PHIL LIKES. 

IS I'i' LIKELY THAT JOHN LIKES BETTY? YES. J • orHERWISE. K. 

J. RIGHT. SINCE PHIL LIKES BErTY AND JOHN TENDS TO LIKE GIRLS AND TENDS 

TO LIKE GIRLS THAT PHIL LIKES. L. 

K. THERE IS SOME REASON TO THINK YES, SINCE PHIL LIKES BETTY. 

L. READ PAGES 7-13 OF THE TEXT. 

Figure 2. A Contrived Example Exhibiting Some Features of the Program. 
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* / JOHN LIKES MARY BROWN/ 

*/WHO DOES JOHN LIKE/MARY BROWN/*B/MARY/*A/**l/ 

*A/MARY WHO/BROWN/*B/**l/ 

*B/Bur MARY LIKES PHIL AND PHIL LIKES BNrTY/ 

*/DOES MARY LIKE BETTY/YES/NO/*C/N.T.KNOW.=2/*D/ 

*C/YOU REALLY CAN'T KNOW FROM WHAT YOU',VE BEEN TOrno IF ONE PER.,~N LIKES 

A SECOND PERSON WHO LIKES A THIRD, rr' S Nor CERTAIN THAT THE FIRsr PERSON 

LIKES THE THIRD/ 

*D/JOHN LIKES BRrI'Y TOO, ALONG WITH JANE, AND CAROL/ 

*/WHO DOES JOHN LlKE/BETTY,MARY,JANE,CAROL,=O/*E/GIRLS,WOMEN,=O/*F/ 

*E/GENERALlZE. WHAT DO BEl'rY, MARY, JANE, AND CAROL HAVE IN COlIJIIJW/ 

* / JOHN. LIKES-/G IRIB, WOMEN, =0/ *Ii' /WHO. JOHN .·LIKES. =2/ '*G / **11 
*Ii' fRIGHT. Bur Nor NECESSARILY ALL. DO YOU THINK JOHN LIKES MOOT GIRIB/ 

YES/MAYBE/*H/NO/DON'T KNOW/NOT ENOUGH INFORMATION/*I/ 

*G/I!!! DOESN'T ADD 'MUCH TO SAY ItJOHN LIKES THAT WHICH JOHN LIKES. Tf SUCH 

A STATEMENr IS CALLED A TAurOIOOY -- THERE1'S NO POINT IN SAYING THE SECOND 

HArF ONCE YOU'VE SAID THE FIRST HAIF/*I/ 

*H/NO. THIS IS A VERY FALLIBLE AND UNLIKELY SORr OF INFERENCE TO DRAW. 

FOR INSTANCE, JOHN CERTAINLY DOESN'T EVEN KNOW MOST GIRIB. GENERALIZATIONS 

OF THIS SORr ARE RISKY AT BEST, Bur AT THE !FAST YOU MUgI' KNOW ~H MORE ABOtJr 

THE TOTAL GROUP -- GIRIB -- AND ITS REIATION TO JOHN AND HOW THE PARTICUIAR 

EXAMPIES GIVEN WERE CHOSEN/ 

*I/rr SO HAPPENS THAT JOHN DOES LIKE MOST OF THE GIRIB THAT HE KNOWS. MOST 

MEN AND BOYS DO. Bur THERE ARE ALWAYS EXCEPI'IONS. FOR EXAMPIE, JOHN 

DOESN'T LIKE ALICE. ON THE OTHER HAND, HE USUALLY LIKES THE GmIB THAT 

PHIL LrKFf3/ 
(Cont inued ) 
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*/IS IT LIKELY THAT JOHN LIKES BFJJ!rY/YF13/*J/**K/ 

*J /RIGHT. SINCE PHIL LIKES BErrY AND JOHN TENDS TO .LIKE GIRIB AND TENOO 

. TO LIKE GIRLS THAT PHIL LIKES/ *L/ 

*K/THERE IS SOME REASON TO THINK YES, SINCE PHIL LIKES mm'Y/ 

*L/READ PAGES 7-13 OF THE TEY:r/ 

Figure 2b. Prepared for Automatic Compilation. 

riods, and ending with a number, e.g., 
/XX,XX,XX.XX.=N/, the program will 
look for an unordered match of the sub­
strings terminating in commas, and an 
ordered match (starting from the first 
ordered substring) of the substrings ter­
minating in periods. It will count the 
number of such matches it gets, and, if 
this is greater than N, it will accept the 
student's answer. 

To summarize briefly, a new item must start 
with an *. Its elements (statement of fact, 
question, alternate answer, branch) must be 
bounded by /. An item with more than one 
element is treated as a question. An item can 
have an optional numerical or symbolic name. 
A branch for any set of alternate answers can 
be specified by * , and an "otherwise" branch 
by **. 

The following is a short example: 

*l/JOHN LIKES JANE,SALLY,JO,AND 
BETTY./ 

*AIWHO DOES JOHN LIKE/JANE,SAL­
LY,BETTY,JO,=O/*B/GIRLS/*C/MA,SAN­
TA,MO,=O/* /**1/ 

* IDON'T BE IRRELEVANT/* AI 

*C/BE MORE SPECIFIC/* A/ 

*B/BILL L IKE S MARY,ANN,JANE, 
RUTH,SALLY,AND JO./ 

*/NAME TWO GIRLS BOTH J9HN AND 
BILL LIKE./JA,SA,JO,=l/* I**B/ 

DISCUSSION 

Optional Modes of Operation 

The program will automatically refrain from 
asking a question that has previously been an­
swered correctly with a frequency above a tol­
erance parameter, t, or if the student, at the 
time he answered the question correctly, also 
said "*EASY*." 

Several other features are optional, depend­
ent upon whether special flags have been raised 
for the particular run. Thus, when desired, the. 
program will print out any or all of the follow­
ing in response to a student's answer when a 
set of answers is required: "YOU ARE RIGHT 
TO SAY -" followed by the correct elements 
of the student's answer, "YOU ARE WRONG 
TO SA Y -" followed by the incorrect elements 
of the student's answer, and "YOU SHOULD 
HAVE SAID-" followed by those elements 
that the student left unsaid. 

The compiler and interpreter programs were 
coded in SNOBOL (Farber2

) for the IBM 7090. 
As presently coded, the interpreter program 
handles only one student, accumulating the fre­
quency of his success and failure on each ques­
tion. If many consoles were used, each console 
would have a name and the different students 
would time-share the program. It s~emed futile 
to add this to the present program (although it 
would be trivial to do so), since SNOBOL has 
no provision for reading in from on-line 
sources. 



THE COMPILATION OF NATURAL LANGUAGE TEXT 41 

Figure 3 gives examples of a compiled pro­
gram and its interactions with a student. 

Some Examples of Types of Material 
That Can Be Handled 

The person writing the text to be compiled 
has a great deal of latitude in formatting his 
material. The present set of programs will 
handle a wide variety of question and statement 
formats, including multiple-choice, true-false, 
fill-ins (either connected or disconnected, or­
dered or unordered), short answer questions, 
and essays. The limitations of the short an­
swer type of question lie in the ability of the 
people who specify the alternate acceptable an­
swers and the synonym dictionary. The key 
parts to the answer might be very loosely 
stated. A statement might impart information, 
or make a comment about the student's per­
formance, or it might command the student to 
read a certain section of a certain book or per­
form a certain series of exercises. A branch 
might be to a question that underlies, forms a 
part of, or supplements the question missed (or 
got). Separate branches can be established for 
different answers with different implications 
and for different partial answers. 

With such programs the distinction between 
teaching, testing and controlling the student be­
comes an arbitrary one. Thus a compiled pro­
gram might be used to train the student in 
some content area, to simultaneously train and 
test, to give a final examination, or to run an 
experiment that explored the student's abilities 
under some specified conditions and treatments. 

Possible Extensions to the Present Program 

The program that has been coded is a simple 
first attempt toward what might be done, such 
as the following. 

A. Rather than branch to a single string, the 
strings could belong to one or more classes, and 
the branch could then be to a class that con­
tained several strings. For each particular ex­
ecution of the branch, a random choice could 
be made; or, better, this choice could be a func­
tion of the difficulty of the different members of 
the class. 

B. Frequencies of successes and failures 
could be collected for (1) each student, (2) all 

students, (3) given types of students (e.g., high 
IQ, impulsive). Then the choice of the particu­
lar branch could be a function of the appro­
priate individual and/or group information as 
to what is likely to benefit this student. 

C. The decision as to what group to put a 
student into could be made by the program, if 
it compared the patterns of successes and fail­
ures across students, and put students with 
similar patterns into the same group (e.g., by 
Kendall's tau). 

D. The decision as to what string to branch 
to after each string could be made by the pro­
gram, by some rule such as the following: (1) 
branch to a string who.se success-failure fre­
quencies are similar to this string's, (2) branch 
to a string whose answer is a substring of the 
answer to this failed string, (3) branch to a 
string whose answer contains this correctly an­
swered string. 

E. Weights of specific strings can be not 
merely functions of success-failure of them­
selves, but also functions of success-failure of 
other strings that are related to them by, for 
example, (1) equivalence-relatedness as speci­
fied by the author in a simple equivalence dic­
tionary, (2) connectedness in the sense of the 
graph formed by the branches cycling through 
the strings. 

F. At least simple methods could be pro­
grammed for taking an ordinary book, break­
ing it up into a set of statements, interspersing 
questions composed by the program) and then, 
by pretesting with human experimental stu­
dents, winnowing the questions down to a good 
set (e.g., (1) non-redundant, (2) suitably dif­
ficult, (3) reliable, (4) valid). 

G. Answers could be recognized by addi­
tional partial and loose matches that would 
allow for a wider variety of alternate forms, 
for example, misspelled words, than can be rec­
ognized at present. 

H. The program could systematically collect 
alternate answers (e.g., from students that it 
judges to be pretty good) and occasionally ask 
its teacher whether these would in fact be ac­
ceptable alternates. It would then add these to 
its memory. It could similarly augment its 
synonym dictionary. 
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*/SUPPOSE WE HAVE TWO SENTENCES, 'A' AND 'e'. THEN THE SENTENCE 
'(A)V(B)' IS CALLED THE DISJUNCTION (OR ALTERNATION, OR LOGICAL 
SUM) OF THE SENTENCES 'A' AND 'B'.I 
*1 A SENTENCE SUCH A.S t (C)V(D)' IS CALLED THE LOGICAL SUM, OR 
ALTERNATION, OR ------ ./DISJUNCTION/*I**11 
~(-AI WE AGREE THAT THE DISJUNCTION' (A)V(B)' IS TRUE IF AND ONLY 
IF AT LEAST ONE OF THE TWO SENTENCES 'A' AND 'B' IS TRUE, I.E., 
I F E I THE R tAt I S TR U E, 0 R t B' 1ST RUE, 0 R BOT H 0 F THE 1','1 ARE T RUE • I 
*81 IF IT IS NOT KNOWN WHETHER 'A' IS TRUE, CAN' (A)V(B)' BE 
TRUE/Y.E.S.=l/*I**AI 
*C/IF 'A' IS FALSE, CAN' (A)V(Sl' BE TRUE/YESI1(-/*-*,AI 
*DI IF 'A' AND 'B' ARE FALSE, CAN '(A)V(R1V(C)' BE 
TRUE/(CA1N.T.SA(Yl.=2/*F/**GI 
*EI YES, IN FACT IT CAN. BUT THIS DOES NOT YET FOLLOW FRO~ WHAT 
YOU HAVE BEEN TOLD.I 
*FI YOU ARE RIGHT IN SAYING THAT YOU DONT KNOW IF YOU MEAN 
THAT THIS IS NOT YET DECIDED.I 
*GI IN FACT IT CAN. BUT THIS HAS NOT YET BEeN STATED EXPLICITLY IN 
THE SYSTEM BEING ~EVELOPED FOR YOU.I 
*rll THE SIGN 'V' dF DISJUNCTION CORRESPONDS WITH FAIR EXACTNESS 
TO THE ENGLISH WORD 'ORt IN THOSE CASES WHERE 'OR' STANDS BETWEEN 
TWO SENT[NCES AND IS USFD (AS IT MOST FREQUENTLY IS) IN THE 
NON-EXCLUSIVE SENSE.I 
*11 WITH WHAT COMMON ENGLISH WORD DOES THE SIGN 'V' CORRESPOND 
HOST CLOSEL Y ICR/1~/*i~HI 
~-J/GOOD. 'OR' IS CORRECT. CONGRATULl~,TIONS ON FINISHING 
THIS LESSON.I 

Figure 3. A Short Example of a Computer Run That Demonstrates Some Simple Uses of the Partial Match Features. 

Figure 3a. Listing of the Program to be Compiled. 
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INTERACTlONS WITH STUDENTS FOLLOW. 

IIIIFORMA1:LON- SUPPOSE wE HAVE TWO SE;IlTEIIICES, '0.' AIIID 'B'. 'tA)V(rl)' IS CALL~D THE DiSJUNCTIO\l IL1R ALTER\jATION, OR llJGICAL SU,") UF TH 
E SENTENCES 'A' AND 'B'.! 

QlJESTION- A SENTENCE SUCH liS 'IC)V(O)' IS CALLED THE LOGICAL SUr-,· 0". AU[;{;Ilf,T10., U~ ------ • 

SrlJDENT ANSWERED- 'SUM' 
NI1I, WRONG. 

IIIIFORMATI.ON- SUPPOSE WE HAVE TWO SENTE\lCF.S, '/I' AIIID 'B'. '(A)VI!;)' IS CALLED THE OISJU,'KTION IUR ALTER'~ATION, OR LOGICAL SUM) OF TH 
E 9EIHENCES 'A' AND '8'.! 

QUESTlON- A SENTENCE SUCH AS 'IC1V(D)' IS CALLED THl: LOGICAL SUM. OR ALTERNATlO,\j, OR ------ • 
STlJDfNT AN5WERED- 'DISJUNCTION' 

RPGHl'. A GOOD ANSWER IS-- DISJUNCTION 

INFORMATION- WE AGREE THAT THE DISJUNCTION 'IAIVISI' IS TRUE IF A;IlD ONLY IF AI' LEflST ONE UF TH~ r..O SE,\jTENCES 'A' A:\jfl 'tl' IS TRUL, 
I.E •• IF EITHER 'A' IS TRUE, OR 'B' IS TRUE, OR BOTH OF THEM ARE TRUE.! 

QIJESTHIN- IF IT IS NOT KNOWN WHE1HER 'A' IS TRUE, CAN 'IAIVIB)' BE TRUE 
STlJDfNT ANSWERED- 'NO' 

NID, WRONG. 

INFORMAtI.ON- WE AGREE THAT THE DISJUNCTION' (A)VIB)' IS TRUE IF AND ONLY IF AT LEAST ONE OF THE TWO SENTE'JC~S 'A' A.-J'1 'tl' IS TRUE, 
I.E •• IF EITHER 'A' IS TRUE, OR 'B' IS TRUE, OR BOTH· OF THEM ARE TRUE.! 

QllESTION- IF IT IS NOT KNOWN WHETHER 'A' IS TRUE,. CAN 'lAIV(BI' BE TRUE 
S TIJDENT ANSWERED- 'Y AS' 
R~GH1'. A GOOD ANSWER IS-- YES 

QUESTION- IF 'A' IS FALSF, CAN '(AlVIS)' BE TRUE 
SWDENT ANSWERED- 'WHY SHOULDN'T I SAY IT IN FRENCH- MAIS OUI, CERTAINEMENT' 

R)GHT. A GOOD ANSWER 15-- YES OUI 

QUESTlON- IF 'Ar AND 'B' ARE FALSE, CAN' IAIVIBIV(C)' BE TRUE 
STIJDENT ANSWERED- 'THAT CAN'T REALLY BE SAID' 
R)GHT~ A GOOD ANSWER IS-- CAN T SAY 

INFORMATI.ON- YOU ARE RIGHT IN SAYING THAT YOU DONT KNOW IF YOU MEAN THAT THIS IS NOT YET DECI01OO./ 

ItIIFORMATI.ON- IN FACT IT' CAN. BUT THIS HAS NOT YET BEEN STATE!) EXPLICITLY IN THE SYSTEM BEING D~VELUPED FUR YOU.! 

IIIIFORMATION- THE SIGN 'V' OF DISJUNCTION CORRESPONDS WITH FAIR EXACTNESS TO THE ENGLISH WORD 'a'" I~ THOSE CASES WHERE 'OR' STAN[JS 
BETWEEN TWO SENTENCES AND IS USED lAS IT MOST FREQUENTLY IS) IN THE NON-EXCLUSIVE SENSE.! 

Q~E5T'rCN--" ~r,TH WHAT COMMON ENGLISH WORD DOES THE S!GN 'V' CORRESPOND MOST CLOSELY 
STUDENT ANSWERED- 'AND' 

NlI, WRONG. 

JIIIFORMATLON- THE SIGN 'V' OF DISJUNCTIO'l/ CORR[SPO'lflS WITH FAIR EXACTNESS TO THE EIIIGLISH ."UK!) 'OR' IN THOSE C,\SES WHERE 'OR' STANDS 
BlETW8EN TWO SENTENCES AND IS USED (AS IT MOST FREQUENTLY IS) IN 1'I-IE NON-EXCLUSIVE S~NSE.! 

QUESTlON- WITH WHAT COMMON ENGLISH WORD nOES THE SIGN 'V' CORRESPOND MOST CLOSELY 
S TIJDENiT ANSWERED- 'NON-EXCLlJS I VE 'OR" 

R)GHT. A GOOD ANSWER IS-- OR 

INFfj)RMATLON- GOOD. 'OR' IS CORRECT. CONGRATULATIONS 0\1 FINISHING THIS LESSO, •• ! 

Figure 3b. Printout of Interactions with a Simulated Student. 

1. It could further try to boil down sets of 
equivalent alternate answers, by finding things 
in common among them, composing a summa­
rIZIng statement, and asking its teacher 
whether this new statement is equivalent to all 
the specific alternates it is presently storing. It 
could then substitute this new statement for 
the alternates that in fact were equivalent, and 
now look only for this common element in stu­
dents' future answers. 

J. It could have various methods for com­
puting branches when appropriate to the prob­
lem domain; for example, (1) using a trans­
form dictionary to analyze mistakes in logic or 

arithmetic, (2) using similarity between sub­
strings to analyze types of mistakes in spelling. 

K. The program could itself compute the cor­
rect answer, rather than having this answer 
stored in memory. It might then also do such 
things as check the sequence of a student's an­
swer (which it would get simply by command­
ing the student "GIVE YOUR ANSWER 
STEP BY STEP") and try to analyze at what 
point the student went astray. It could then 
generate a new question either on the basis of 
such an analysis or as a function of the stu­
dent's present level of competence. 
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L. Some simplifications in the basic format­
ting rules could be implemented with relatively 
little trouble. For example, the program might 
accept several alternative identifications for 
questions; e.g., "*,, could be replaced by "*Q" 
or "*QUESTION" or ""QUESTION""; "." 
could be replaced by ""THEN""; "," could 
be replaced by " "AND" "; "/" in the answer 
section could be replaced by " "OR" "; the "*" 
that marks the branch by " "GO TO" "; the "-" 
that designates erase by ""ERASE"". Ex­
periments might be run to see which form is 
preferable. If, as seems likely, the presently 
implemented form is somewhat harder to learn 
at first, but slightly faster to use once learned 
(if only because fewer symbols need be typed), 
novices could be trained on the form that looks 

more English-like and then given the option of 
using the shorter, more cryptic symbols. 

REFERENCES 

1. ESTAVAN, D. P. "Coding for the class les­
son assembler." FN-5633. Santa Monica, 
Calif.: System Development Corp., 1961. 

2. FARBER, D. J., GRISWOLD, R. E., and POLON­
SKY, 1. P. "SNOBOL, a string manipula­
tion language." J. Assoc. Compo Machinery, 
Vol. 11, No.1, Jan. 1964, 21-30. 

3. MAHER, A. "Computer-based instruction: 
Introduction to the IBM research project." 
RC-1114. Yorktown Heights, N.Y.: IBM, 
1964. 



METHOD OF CONTROL FOR RE-ENTRANT PROGRAMS 
Gerald P. Bergin 

Programming Systems 
International Business Machines Corporation 

New York, New York 

INTRODUCTION 

The use of multiprogramming and multi­
processing raises a question as to the number 
of copies of a routine, needed in memory for 
multiple concurrent use. In the case where two 
or more scientific programs are in core at the 
same time, each needing the use of a SINE 
routine, a private copy can be provided for 
each program's own use, or one copy can be 
loaded for all to use. A message processing 
program that services multiple terminals can 
run into a situation where message A inter-
rupts the processing of message B and because 
of priority consideration~, .. message A must be 
processed immediately by~he program. Again, 
the question of how many copies of the pro­
gram are required in core occurs. Finally, a 
multiprocessing configuration with two or more 
computers sharing a common core memory may 
each be using the FORTRAN compiler. Each 
computer could have its own copy of the com­
piler or a single copy of the compiler could be 
executed by all computers concurrently. Intui­
tively, the provision of one copy of the routine 
or program appears more elegant. 

Assuming the use of only one copy of each 
routine, the possibility that a cQPlmonly used 
routine may not run to completion pefore being 
entered again must now be considered. A rou­
tine which permits unlimited multiple entrances 
and. executions before prior executions are com­
plete is called a re-entrant routine. This paper 
describes a method of controlling these routines 
and sets forth conventions that must be fol-
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lowed to produce a routine that satisfies the 
requirements of re-entrability. 

The terms used in this paper are defined to 
eliminate possible misinterpretation. 

routine-an ordered set of computer instruc­
tions which is entered by an explicit call 

program-a set of routines and associated 
data areas 

context-the information which a routine 
needs to perform its functions 

instance-the execution of a routine with a 
particular context 

read-only routine-a sequence of machine in­
structions which is not self modifiable or 
modifiable by others 

re-entrant routine - a read-only routine 
which accepts and uses the context asso­
ciated with an instance of a routine, such 
that multiple entrances and executions can 
occur before prior executions are com­
pleted 

subexecution-an instance of a re-entral)t 
routine 

task-a set of one or more routines which 
define a unit of work, and which can com­
pete independently for computer time 

job-a collection of tasks organized and sub­
mitted by a user under a single accounting 
number 

LIFO-Abbreviation for Last In, First Out. 
This pertains to the retrieving of data in 
the reverse order in which it was stored. 
Also called a push-down, pop-up list 
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SCL-Abbreviation for Single Cell available 
space List 

A TQ-Abbreviation for Active Task Queue 
TCL-Abbreviation for Task Control List 
SCB-Abbreviation for Subexecution Control 

Block 
BAL-Abbreviation for Block Available space 

List 

RE-ENTRANT PROBLEMS 

The biggest problem a re-entrant routine 
poses is that of referencing proper context. The 
routine can be made to conform to a well­
defined set of conventions for its references to 
input, output, and working storage-this solves 
only part of the problem. The remainder must 
be resolved through the use of a monitor capa­
ble of associating context with each instance 
of the re-entrant routine, ancl, of accepting re­
sponsibility for providing context reference 
during re-entrant executions. 

The amount of control information which a 
lTIonitor must create and maintain is a func­
tion of: 

1. The number of unfinished instances of 
each re-entrant program 

2. The number of unfinished sub-executions 
(or current levels down) for each pro­
gram instance 

3. The number of context pointers to data 
for each unfinished subexecution. 

In addition, each routine requires working 
storage and data areas associated with a 
given instance. To pre-allocate all the space 
required for some maximum activity seems 
unreasonable in a dynamic environment. 
When activity is minimal, a large number of 
cells would be unusable for other purposes, 
and any change in the size of data blocks 
would require re-assembly of the system. 

Dynamic space allocation will circumvent 
some of these problems; space can be allocated 
as needed. When the space for a sub execution 
is no longer required, it is returned to available 
space and can be used by other subexecutions. 

To provide dynamic space allocation, both a 
single cell and block allocation scheme were 
considered essential. A small block of space 
is pre-linked and constitutes the Single Cell 

available space List (SCL). This space is 
available for use by the monitor only. The 
Block Available space List (BAL) permits 
blocks of space of variable size to be allocated 
for both program and monitor storage needs. 
A description of the Space Allocation scheme 
is contained in Appendix A. 

RE-ENTRANT CONTROL 

Functions 

The monitor functions discussed are not in­
tended to be all inclusive even for re-entrant 
routines. Functions such as I/O and interrupt 
control are virtually ignored since they are of 
little concern in this paper. 

The monitor functions which are of impor­
tance for re-entrant control include: 

1. Obtaining and returning single cells and 
blocks of cells needed for control 
information 

2. Determining priority of tasks and task 
queuing 

3. Creating and terminating tasks 
4. Maintaining context for each unfinished 

instance 

5. Maintaining the data structures which 
reflect the activity of the re-entrant 
routines 

6. Handling all inter-routine and intra­
routine communication 

Structure 

To perform these functions, the monitor must 
have control information organized in some 
manner. The following data structures are, 
therefore, the basis of achieving the required 
monitor control. 

Job Description Block (JDB) 
Pertinent information about each job is con­

tained in a set of contiguous locations called a 
Job Description Block. One JDB is created for 
each job. These blocks are the source of all 
activity to be done in regard to job processing, 
especially the sequence of tasks to be accom­
plished within each job. The set of all JDBs 
need not reside permanently in core although 
information pertaining to some tasks may be 
used frequently enough to dictate its presence. 
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The major concern this paper has with JDBs 
is that they exist. 

Active TCLsk Queue (ATQ) 
The Active Task Queue is a list of the tasks 

which are in some phase of execution in the 
computer. There is a scheduling procedure ap­
plied to this list to determine the next task to 
be activated or reactivated when interrupts 
occur or when a subexecution relinquishes 
control. 

The A TQ is a simple list structure composed 
of cells obtained from the SCL. The monitor 
adds or inserts an entry to the list when a new 
task is to become a candidate for processing in 
the multi program environment. An entry is 
deleted from the queue when a task is ter­
minated, and the cell is returned to the SCL. 

Each entry in the ATQ contains status in­
formation, task identification, priority number, 
pointer to the associated task control list, and 
a link to the next entry in the A TQ. 

TCLsk Control List (TCL) 
Associated with each ATQ entry is a Task 

Control List. This list is used to establish and 
associate context for each level of subexecution 
within a task. When a task is added to the 
ATQ, a TeL is created for it. The first entry 
contains the name of the associated JDB and 
the second entry points to a Subexecution Con­
trol Block (SCB) . This SCB contains the 
pointers to the context needed for the execu­
tion of the main control routine of the task. 
When the execution of the control routine is 
initiated, each level of descent into nested sub­
executions causes an entry to be added to the 
TCL which points to the associated SCB. When 
a sub execution terminates, returning to the 
prior level of execution, its entry is removed 
from the TCL. It should be noted that all trans­
fer of control to and from subexecution is 
through the monitor. 

The TCL is a push-down, pop-up (LIFO) list 
with entry to the list through a header cell­
the cell containing the name of the JDB. The 
header cell and push down cells are obtained 
from (and later returned to) the SCL. New 
entries to the LIFO list are added to the top 
of the list with prior entries pushed down. Ter­
mination of a subexecution results in the LIFO 

list being popped up and the cell returned to 
the SCL (also returning the SCB space). When 
the control section terminates, its entry in the 
TCL, the TCL header, and the entry in the 
ATQ are deleted thereby terminating the 
task. The job description may get updated at 
this point. 

The first entry of the TCL contains a pointer 
to and the name of the JDB, and a link to the 
top of the LIFO list. Each entry on the LIFO 
list points to a SCB, links to the previous entry 
on the list, and contains the name of the 
subexecution. 

Subexecution Control Block (SCB) 

Each Subexecution Control Block contains 
the context or references to context associated 
with its related unfinished subexecution. The 
monitor creates an SCB when a subexecution is 
called. The pointer to the SCB is pushed down 
on the TCL as explained earlier. As a sub­
execution requests more space or asks for data 
pointers, the monitor uses the proper SCB to 
store or fetch the necessary information. When 
space is returned, the monitor updates the 
proper SCB appropriately. Termination of a 
subexecution results in its SCB being returned 
to available space along with the space no 
longer needed by the calling subexecution. 

An SeB is a block of contiguous cells ob= 
tained from the block-space pool. The number 
of cells per block may vary depending on the 
anticipated requirements of the subexecution. 
A minimum number of cells will always be 
allocated to contain immediate data and point~ 
ers to normal data requirements. 

There are two types of entries in an SCB: 
immediate data entries and data pointers. Im­
mediate data consists of "save console" infor~ 
mati on when a subexecution is entered, and 
"save console" and other program status infor­
mation when an interrupt occurs that does not 
return to the interrupted code after its servic~ 
ing. Data pointers are used to define the loca~ 
tion of input, output, working storage blocks, 
extension of the SCB, etc. Each data pointer 
contains the name of the data block, the loca~ 
tion of a cell which points to the cell containing 
the upper and lower boundaries of the block, 
the register to be loaded witI). a boundary, and 
information concerning the return of the space 
which is being pointed to. 
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RE-ENTRANT CONTROL EXAMPLE 

Table I shows five jobs which are known to 
the system. Each job has a Job Description 
Block (JDB) which was created when the job 
entered the system. Within each JDB is the 
list of Tasks to be done. 

The monitor has scheduled three Tasks, 
which in this case are from different jobs. The 
ATQ shown in Table II indicates that Task 
"MSG Processor T" is waiting for I/O to com­
plete, Task "MSG Proc.essor T" (a different 
instance of the previous Task) is in execution, 
and Task "GO" is pending and will be executed 
when both instances of "MSG Processor T" 
Terminate or cannot proceed. 

Each entry in the ATQ points to a TCL, 
shown in Table III. Task "MSG Processor T" 
points to the Header cell K which contains the 
name of its JDB (Terminal A) and points to 
the top of its LIFO list, k2i. The "T control" 
routine has "called" the routine "Update 3" 
which will resume when its wait condition 
Terminates. 

Task "MSG Processor T" (2nd instance) 
points to its TCL entry S. The Header cell 
names the JDB (Terminal N) and points to the 
Top of the LIFO list S4. The main routine "T 
control" is three levels down in routines "Inter­
pret," SCAN, and SCAN (SCAN has re-entered 
itself once). The Tasks at locations E1 and E2 
of the A TQ are both using program "MSG 
Processor T" with the first using the context at 
WI and W 2, the second using the context at Xl 
through X-/. Task "GO" is associated with 
TCL U. Its Header cell names the JDB (Job­
B) and points to the top of its LIFO list Ua. A 
program "Integrate" has been loaded and is 
now ready for execution with context at Y 1. 

Each entry on a LIFO list points to an SCB 
which associates context with the instance of a 
routine. A minimum of m cells has been allo­
cated for each SCB. Table IV shows the content 
of the SCB for one instance of a routine. 

If another task can be accommodated by the 
computer, a task will be chosen from the Job 
Description area. The following example shows 
what occurs to this new contender for computer 
time. The scheduler selects Task "Load" of 
J ob-C whose priority has changed to 4. 

The monitor gets a cell from the SCL (cell 
E4). This cell is inserted in the ATQ by chang­
ing the link of cell El to El and putting E:! in 
the link of cell E-/. The console information 
associated with task "MSG Processor T" (of 
Terminal N instance) is saved in its SCB (X4 ), 

and its status in the ATQ is set to P. The 
name of the Task (Load), its priority (4), and 
the status (E) are inserted in cell E-/. Two 
more cells V and VI are obtained from the SCL 
to establish the TCL at V. A block of space is 
obtained for the SCB of the main routine of 
"Load." The initial context for the task is then 
entered in the SCB beginning at Zl and Load 
is then executed. Table V is a graphic repre­
sentation of the structure created in the preced­
ing example. 

RE-ENTRANT ROUTINE CONVENTIONS 

By definition, a re-entrant routine is read­
only in nature. Address calculations, internal 
indicators, subroutine parameters, and similar 
information must be stored and used external 
to the routine. The association of context to an 
instance of the routine is a function of the 
monitor and has already been treated. The 
following conventions are those considered im-, 

TABLE I. JDB'S (AUXILIARY OR MAIN STORAGE) 

Job-B Terminal N Job-C Terminal Q 
Terminal A Load Compile MSG Proc- MSG Proc-

Load MSG Proc- essor T 
Go essor H 

Go essor T I MSG Proc-
Compile MSG Proc-

Print essor R 
Go essor R 

I Print 
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TABLE II. ACTIVE TASK QUEUE (ATQ) 

Location Link Status 

E1~E2 W 

E2~Ea E 

Ea ° P 

W = waiting status due to I/O, etc. 

P = pending 

E = in execution 

portant at present to get, use, and store the 
external data (context) required in any routine. 

1. All routines must be called through the 
monitor. 

2. Parameters requir~d for inter-routine 
communication are contained in the call­
ing routine's context. Return of control 
to the higher level routine is through the 
monitor also, so that return can be con­
sidered an implied call. To call a routine, 
the monitor is entered indicating: 
a. The name of the routine being called 

(or returned to) 
b. The name of the register which con­

tains the pointer to the required con­
text (if necessary). 

TABLE III. TASK CONTROL LIST (TCL) 

Routine Pointer 
Location Link Name toSCB 

Ky(k' Terminal A loco of JDB 

k1 ° T control W1 

k2 k1 Update W2 

S S4 Terminal N loco of JDB 

>0 T control Xl 

S2 Sl Interpret X2 

S3 S2 Scan X3 

S4 Sa Scan X4 

u/u1 Job-B loco of JDB 

U1 10- Integrate Y1 

Pointer 
Priority to TCL Name 

3 K MSG Processor T 

6 S MSG Processor T 

7 U Go-Integrate 

3. To· get a new block of cells for use, the 
monitor must be entered indicating: 
a. N arne to be assigned to the block 

allocated 
b. N umber of contiguous cells needed 
c. N arne of the register to be used (if 

any) 
d. Value to be put in the register (either 

upper or lower boundary) 
e. Return location or action if space is 

not available. 
4. To re-establish a pointer in a register 

whose contents have been changed, the 
monitor must be entered indicating: 
a. N arne of the block 
b. Value to be used (either upper or 

lower boundary) 
c. N arne of the register to be used if 

other than the previously associated 
register (if named, the previous asso­
ciation is lost). 

5. To drop a register from use as a context 
pointer so that it can be used for other 
purposes, the monitor must be entered in­
dicating the name of the pointer. 

6. To return block space to the available 
space pool the monitor must be entered 
indicating the name of the block to be 
returned or the name of a list containing 
the blocks to be returned. 

7. The responsibility of returning space 
rests with the routine which obtained the 
space. The termination of a subexecu­
tion will, however, result in all space 
requested for private use being returned 
to the block allocation pool. 
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TABLE IV. SUB-EXECUTION CONTROL BLOCK (SCB) FOR THE TASK "INTEGRATE" 

I 

Pointer to loc. pointing to Data ! I Location Control Name Register 

IN 1 
I 

Y1-0 1 a f3 
I 

-1 IN 2 

-2 2 OU 1 c 3 

-3 OU 2 

-4 1 WS 1 d 

-5 WS 2 

-6 SCB 

-7 CONS 

(immediate data 

Y l -7 + i CONI 

(immediate data 

-m 

Control 1 
2 
3 

can be returned 
Returned 
common data base 
INPUT 
OUTPUT 
Working storage 

IN 
OU 
WS 
SCB 
CONS 
CONI 

Additional SCB for additional space if required 
Console save data 
Console save data plus program status information at an interrupt 

SUMMARY 
Association of context for an instance of a 

routine has been achieved through the use of 
control information created by the monitor or 
furnished to the monitor via program con­
ventions. The organization of the control in­
formation is in the form of a list structure 
for ease of inserting and deleting new data. 

The Active Task Queue is a list, ordered on 

priority, used primarily for task sequencing. 
The Task Control Ljsts are LIFO lists which 
relate context in the Subexecution Control 
Blocks to routines which are associated with 
Tasks in the Active Task Queue. 

This method of control, in conjunction with 
the conventions that a routine must follow, 
allows multiple entrances and executions of a 
routine before prior executions are completed. 



TABLE V. GRAPHIC REPRESENTATION OF THE MONITOR DATA STRUCTURE 

ATQ TCL SCB 
----

Pointer 
Location Link Status Priority to TCL Name Location Link Name Pointer to SCB I Location 

El E4 W 3 K MSG Processor T K j,kz Terminal A Location of JDB 

.------~ ~Wl-O~ 
0 T Control W,-- : (CB Data 

Wl-m 

kl Update 3 
~W2-0t 

W,- : (CBData 
W2-m 

P 6 S MSG Processor T S 84 Terminal N Location of JDB 

---------~ / ~XcOt ~ 

0 T Control 
M 

X, : (CB Data f-3 
P=1 

Xl-m 0 
tj 

_X2-0) 0 

Interpret 
~ 

X, : \ 8CB Data 0 
0 

Xz-m Z 
f-3 

_X3-0 t ~ 
0 

S2 Scan 
X, x;-m j 8CB Data 

~ 

~ 
0 
~ 

_____ X.-O} ~ 
M 

S4 . S3 Scan X4 --- : SCB Data 
I 

M 

~ X4-m 
~ 

P 7 U~U/U, Job-B Location of JDB > 
~Yl-O~ 

Z 
f-3 

U l 0 Integrate Y, : j8CB Data ~ 
0 
q 

Yl-m f-3 
1-1 

E4 Ez E 4 V Load V/V, Job-C Location of JDB Z 
M 

~Zl-O{ W. 

Vl 0 Load Z,- : 18CB Data 
Zl-m I 10"1 

~ 
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APPENDIX A 
SPACE ALLOCATION 

The structure of the control data needed for 
re-entrant and recursive routines is based on 
list-structure concepts. The use of a list struc­
ture approach requires being able to obtain and 
return space dynamically. Part of the space 
needed must be prestructured or linked in the 
IPL-V (Newell, Simon and Shaw) * manner. 
Availability of space in blocks of contiguous 
cells is also required to gain a compromise for 
efficient use of core storage. 

The following is a description of a s~ngle cell 
and block allocation scheme that was developed 
and implemented on the IBM 7094 by Mr. M. R. 
Needleman of WDPC-VCLA.t 

SINGLE CELL ALLOCATION 

A relatively small number of contiguous 
cells are linked together to fornl the Single Cell 
available space List (SCL). A fixed cell is 
maintained which always points to the next 
available cell on the list. Table A-I shows this 
construction. 

The allocation routine allocates a cell by giv­
ing the requestor the name of a cell (the ad­
dress a) and updates the link of A to point to 
the next available cell on the list which is f3. 
Table A-II shows the result of allocating 1 cell. 

When a cell T is returned to the available 
space list, it is inserted at the top of the SCL 
as follows: 

1. Cell A, which contains the pointer to the 
next available cell on the SCL, is modified 
to point to T. 

2. The former pointer f3 is put into the link 
portion of the cell T. 

Table A-III shows the results of this process. 

* The Rand Corp., Santa Monica, Calif., Newell A. 
Editor, "Information Processing Language-V Man­
ual," Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 
1961. 

t Western Data Processing Center, University of 
California, Los Angeles 24, California. The scheme was 
developed by WDPC under contract with the Advanced 
Research Projects Agency (Contract No. SD 184), Office 
of Director of Defense, Research and Engineering, 
Pentagon, Washington, D. C. 

TABLE A-I. SINGLE CELL AVAILABLE 
SPACE LIST (SCL) 

Location Link Information 

A (fixed loc.) 

f3 y 

o 

BLOCK ALLOCATION 

The second type of space allocation is called 
block allocation. A block of contiguous cells is 
reserved for this type of allocation. Two lists 
are used to identify the space available and 
space allocated. Cells for both lists are ob­
tained from the Single Cell available space List. 

Each entry in the block allocation list con­
tains: a flag indicating whether or not the 
block is currently available; a pointer to the 
cell containing the addresses of the first and 
last locations of the block; and a link to the 
next cell on the Block Allocation List. The first 
cell on the list (header cell) always links to the 
last cell put on the list. Table A-IV shows the 
block allocation list after three requests for 
space. 

Each cell on the block-limits list contains the 
address of the first and of the last cell allocated 
as a block by the block allocation routine and 
is in one-to-one correspondence to the Block 

TABLE A-II. SINGLE CELL AVAILABLE 
SPACE LIST (SCL) AFTER ALLOCATING 

ONE CELL 

Location 

A (fixed loc.) 

f3 
y 

Link Information 

f3 

o 
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TABLE A-III. SINGLE CELL AVAILABLE 
SPACE LIST (SCL) AFTER RETURN 

OF ONE CELL 

Location Link Information 

A (fixed loc.) 

f3 
T 

y 

T 

o 
f3 

TABLE A-IV. BLOCK ALLOCATION LIST 
(BAL) 

Location Link Flag Pointer 

a ~ 0 f3 
y 0 1 D-

B y 1 e 

~ B 1 'l} 

Flag = 0, block is available 
Flag = 1, block is being used 

BLOCK LIMITS LISTS (BLL) 

Location 

f3 
D-

e 

'l} 

First Last 
Location Location 

10K 20K 
40K + 1 45K 
30K + 1 40K 
20K + 1 30K 

SPACE POOL MAP 

10K 
15K 
20K 
25K 
30K 
35K 
40K 
45K 

Available 

Z 3 

Z 2 

Z 1 

(Allocated 
to) 

(available) 
(Zl) 
(Z2) 
(Z3) 

Allocation List. An example of this list used 
in conjunction with the Block Allocation List 
(BAL) . and a core map of the block allocation 
space pool is shown in Table A-IV. 

The method of block space allocation is best 
illustrated by some examples. The first is a 
request for a block which is immediately avail­
able, the second is the return of a block, and 
finally a request for space which exceeds the 
length of anyone available block. These ex­
amples will assume the previous state of the 
lists and blocks allocated and indicate only the 
allocation routine action. The monitor is the 
implied user. The first example starts with 
Table A-IV state. 

In general, the user requests a block of N 
cells. The allocator assigns space and returns 
to the user via the monitor. The monitor sets 
the address of the cell containing the address 
of the first and of the last cell assigned in the 
SCB and places the base value in the register 
specified. To return space, the user indicates 
the name of the block, via the monitor, to be 
returned to the block space pool by the space 
allocation routine. 

Example 1 

A user (Z 4) requests 3000 cells of block 
storage. The block allocation routine goes 
through the following sequence. 

1. From cell a (in the BAL), get the limits 
cell f3 and the subsequent limits. In the 
rare case where the block is in use (Flag 
= 1) the coalescing of blocks, as outlined 
in Example 3 is done first. 

20 Determine the number of cells available 
and determine if the request can be filled. 
(In this case assume the affirmative.) 

3. Decrease the upper limit in cell f3 by the 
number of cells needed. 

4. Get two cells «(), L) from the Single Cell 
available space List (SCL). 

5. Insert cell () in the BAL with a link of 
~ (obtained from cell a) and pointer to L. 

The address of () is put in the link field 
of a and the flag of () set to 1. 

6. Set the block limits in cell L equal to 
17,001 and 20,000 respectively. 

7. Return to the user with the address of 
cell L. 
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Table A-V shows the result of requesting a 
block of cells. 

Example 2 

User (Z 2) returns the block of space whose 
limits are found in cell e. The address of this 
cell is used to search the BAL for the pointer 
to this cell. As can be seen in Table A-VI, only 
the flag of the cell (8) which contains the 
pointer to the block limits returned is changed 
(from 1 to 0). The block limits list is not 
altered. 

Example 3 

User (Z 5) requests 15,000 cells of block 
storage. The block allocation routine does the 
following. 

1. Using cell a (in the BAL) the contents 
of cell f3 are obtained. The number of 

'/ 

TABLE A-V. BLOCK ALLOCATION LIST 
(BAL) 

Location Link Flag Pointer 
---

a e 0 f3 

y 0 1 ~ 

8 y 1 e 

~ 8 1 1] 

e ~ 1 

BLOCK LIMITS LIST (ELL) 

First Last (Allocated 
Location Location Location to) 

f3 10K 17K (available) 
Do 40K + 1 45K (Z 1) 
e 30K + 1 40K (Z 2) 

1] 20K + 1 30K (Z 3) 

17K + 1 20K (Z 4) 

SP ACE POOL MAP 

10K Available 
15K 
20K Z 4 
25K 

Z 3 
30K 
35K Z 2 
40K 
45K Z 1 

TABLE A-VI. BLOCK ALLOCATION 
LIST (BAL) 

Location Link Flag Pointer 
--

a e 0 f3 

y 0 1 ~ 

8 y 0 e 

~ 8 1 1] 

e ~ 1 

BLOCK LIMITS LIST (BLL) 

First Last (Allocated 
Location Location Location to) 

f3 

~ 

e 

1] 

10K 17K ( available) 
40K + 1 45K (Z 1) 
30K + 1 40K ( available) 
20K + 1 30K (Z 3) 
17K + 1 20K (Z 4) 

SP ACE POOL MAP 

10K Available 
15K 
20K Z 4 
25K 

Z 3 
30K 
35K Available 
40K 
45K Z 1 

cells available is determined to be less 
than the number requested. 

2. Link through BAL putting the limits 
pointer of each "in use" entry (Flag = 1) 
on a push down list. Each entry with a 
Flag = 0 (space returned) is returned 
to the single cell available space list along 
with its associated limits cell. The BAL 
cell returned is also deleted from the 
BAL list. The push down list cells are 
obtained from the Single Cell available 
space List. The entries in the list are 
now ordered such that the name of the 
cell containing the highest block limits is 
last on the list (therefore 1st off) and the 
name of the cell containing the lowest 
block limits is first on the list (therefore 
last off). 
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3. The method to coalesce available blocks 
is as follows. Move each used block up 
in core so as to pack them to the upper 
boundary of the space pool. This will 
push any scattered available space 
further and further down in core until it 
is engulfed by the limits of {3; i.e., all un­
used space is in one block at the lower 
boundary of the space pool. To imple­
ment the coalescing, the pointers to the 
used space limits are popped-up and lim­
its are changed to reflect data movement 

which is done when each new block of 
unused space is encountered. Table 
A-VII shows the results of coalescing 
space. Since the user points to a pointer 
to the block, the block can be moved and 
the pointer to it changed without concern 
by the user. 

4. If the request for space can now be filled 
from the space available limits at {3, the 
method of allocating the block is the same 
outlined in Example 1. 

TABLE A-VIII. BLOCK ALLOCATION 
LIST (BAL) 

Location Link Flag Pointer 

a () 0 {3 

y 0 1 Ll 

~ y 1 YJ 

() ~ 1 

BLOCK LIMITS LIST (BLL) 

First Last (Allocated 
Location Location Location to) 

{3 10K 27K (available) 
Ll 40K + 1 45K (Z 1) 

YJ 30K + 1 40K (Z 3) 
27K + 1 30K (Z 4) 

SP ACE POOL MAP 

10K 
15K Available 
20K 
25K 
30K Z 4 

35K 
Z 3 

40K 
45K Z 1 





XPOP: A MET A- LANGUAGE WITHOUT METAPHYSICS 
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INTRODUCTION 

The XPO P programming system is a 
straightforward and practical means of imple­
menting on a computer a great variety of lan­
guages-in other words, of writing a variety 
of compilers. The class of languages it can 
handle is not easy to characterize by syntactic 
form, since the system permits syntax specifi­
cation to be varied freely from statement to 
statement. in a program being scanned; the 
permitted class includes the best-known pro­
gramming languages, as well as something 
closely approaching natural language. We be­
lieve that this distinguishes the XPOP proc­
essor from the syntax-directed compilers,1,2,3 
although it shares with them the fundamental 
idea that the process of programming-language 
translation can be usefully generalized by a 
compiler to which source-language syntax is 
specified as a parameter. 

This paper describes only the more novel 
features of XPOP; a fuller treatment is avail­
able elsewhere.4 

DISCUSSION 

XPOP consists of two major parts: (1) a 
generalized skeleton-compiler that performs 
those functions common to all compilers, and 
(2) a battery of pseudo-operations for speci­
fying the notation, operation repertoire, and 
compiling peculiarities of a desired program­
ming language. The programmer creates the 
compiler for such a language not by program­
ming it from scratch but by using the XPOP 
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pseudo-operations to modify and extend XPOP 
itself, which then becomes the desired compiler. 

The use of these facilities involves the crea­
tion by the programmer of functional units 
that superficially resemble the programmer­
defined macro-instructions of, for example, 
IBMAP (and in fact include such macros as a 
subset), but whose effects may be radically dif­
ferent from those obtained by use of conven­
tional macros. * An XPO P macro does not 
necessarily generate coding; its possible effects 
are so varied that it can best be defined simply 
as an element of the source program that, when 
identified, causes the processor to take some 
specified action. That action may be any of the 
following: 

(1) The parameterization of XPOP's scan­
ning routine to make it recognize, either 
for the remainder of the source program 
or within some more limited domain, a 
new notation 

(2) The compilation of coding for immedi­
ate or remote insertion into the object 
program 

(3) The immediate assembly and execution 
of any of the instructions compiled from 
a source-language statement. 

* By "conventional macros" we mean the user-defined 
operators that some programming systems allow. The 
definition of a macro consists essentially of the assign­
ment· of a name to a block of coding, after which every 
appearance of that name as an operator causes the 
system to insert a copy of that coding into the object 
program. 
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(4) The preservation on cards and/or tape 
of the language description currently in 
use, in a condensed format that can be 
redigested by XPOP at tape speed when 
read back in; also the reading-in of such 
a language from a tape file created 
earlier in the same machine run or dur­
ing an earlier run 

(5) The production by XPOP of a bug-find­
ing tool called an XRAY -a highly spe­
cialized core-and-tape dump giving the 
programmer the tables and strings pro­
duced by the system in structured, in­
terpreted, and captioned form 

In the illustrations of these features, some 
conventions that require explanation will be 
used. All programming examples offered are 
exact transcripts of the symbolic parts of 
actual XPOP listings. Lines prefixed by a dol­
lar sign are records output by the processor 
as comments; these originate either as source­
program statements printed out as comments 
for documentary purposes or as processor­
generated messages notifying the programmer 
of errors or other conditions he should be 
aware of. No attempt is made to illustrate 
XPOP facilities by coding examples of any 
intrinsic value. The examples used are merely 
vehicles for the exhibition of those facilities 
and are therefore generally trivial in size and 
effect. The discussion that follows takes up the 
chief features of the system in the order of the 
five-point outline given earlier. 

Notation-Defining Pseudo-Operations 

Consider a macro, LOGSUM, created to store 
the logical sum of two boolean variables, A and 
B, in location C. 

$LOGSUM MACRO A,B, C 

$ CAL A 

$ ORA B 

$ SLW C 

$ END 

Having been defined, this macro may at once 
be called upon in XPOP's standard form, 
which requires that the macro's name be im-

mediately followed by the required parameters 
with commas separating these elements and 
the first blank terminating the statement. A 
standard-form call on LOGSUl\1: would have 
this appearance and effect: 

$ LOGSUM,ALPHA,BETA,GAMMA 
CAL ALPHA 
ORA BETA 
SLW GAMMA 

Suppose we find standard-form notation unsat­
isfactory and want to call upon the function 
LOGSUM in the following form: 

STORE INTO CELL 'C' THE LOGICAL 
SUM FORMED BY 'OR'ING THE BOOL­
EAN VARIABLES 'A' AND 'B'. 

There are, from the XPOP programmer's 
viewpoint, four differences between the stand­
ard and the desired form: 

( 1) The name of the function is no longer 
LOGSUM, but STORE. 

(2) The order in which parameters are ex­
pected by STORE differs from that of 
LOGSUM. 

(3) The punctuation required by the two 
forms differs; in standard form, the 
comma is the sole separator, blank the 
sole terminator. In the desired form, 
three kinds of separator are used: 
(a) The one-character string 'blank' 
(b) The two-character string 'blank-

apostrophe' 
(c) The two-character string 'apostro­

phe-blank' 
and one terminator 
(a) The two-character string 'apostro­

phe-period' 

( 4) The desired form contains several 
"noise words" -that is, character strings 
present for human convenience but 
which XPOP is to ignore. 

In the following illustration, we use its 
pseudo-ops to teach XPOP the new statement 
form, then demonstrate that the lesson has 
been learned by offering it the new form as in­
put and verifying that it produces the correct 
coding. An explanation of each pseudo-op used 
follows the illustration. 



XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 59 

$STORE MACRO A,B,C 

$ LOGSUM B,C,A 

$ END 

$ 

$ CHPUNC 

$NEW PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT 

$ 

$ 
$ CHPUNC 3S1 2 '2' 1 T2'. 

$NEW PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT 

$ 
$ CHPUNC 1S2.. 1 Tl. 

$NEW PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT 

$ 

$ 
$ 

NOISE 4INTO 4CELL 3THE 6LOGICA 6FORMED 2BY 60R'ING 6BOOLEA 

$ 
$ 

NOISE 6V ARIAB 3AND 3SUM 

$ 
$ 

STORE INTO CELL 'GAMMA' THE LOGICAL SUM FORMED BY 'OR'ING THE ... 
BOOLEAN VARIABLES 'ALPHA' AND 'BETA'. 

CAL ALPHA 

ORA BETA 

SLW GAMMA 

The definition of STORE with which the 
above illustration begins deals with the first 
two of the four differences noted betw.een the 
desired and the standard statements. It causes 
XPOP to recognize STORE as an operator 
identical in effect to LOGSUM, and specifies 
that the parameter expected as the third by 
LOGSUM will be expected as the first by 
STORE. The pseudo-op CHPUNC (CHange 
PUNCtuation) deals with the third difference. 
Its first use, with blank variable field, erases all 
punctuation conventions from the system; the 
comma is no longer a separa tor nor is the 
blank a terminator. Having thus wiped the 
slate clean, CHPUNC is used again to specify 
the required punctuation. The variable field 
that follows this second CHPUNC may be 
read: "Three separators-the one-character 
string blank, the two-character string blank­
apostrophe, and the two-character string apos­
trovhe-blank; also one terminator-the two-

character string apostrophe-per'iod." (The ad­
ditional punctuation specified by the third 
CHPUNC was introduced because the signal to 
XPOP that a statement is continued on the 
next card is the occurrence, at the end of each 
card's worth, of a separator immediately fol­
lowed by a terminator; here the programmer 
wanted to use the string , ... ' for this purpose. 
A separate CHPUNC was necessary simply 
because the additional punctuation came as an 
afterthought.) The fourth and last difference 
is dealt with by means of the pseudo-op 
NOISE, which permits the programmer to 
specify character strings to be ignored by the 
processor. Since strings longer than six char­
acters are taken as noise words if their first 
six characters are identical to any noise word, 
such strings as VARIABLE, VARIABLES, 
and VARIABILITY are effectively made noise 
words by the definition of 6V ARIAB as an 
explicit noise word. 
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With these pseudo-ops given, XPOP has 
been taught the desired statement form, as 
proof of which it generates correctly parame­
terized coding when used as input. That state­
ment was created, of course, only for illustra­
tive purposes; few programmers would care to 
use so many words to generate three lines of 
machine-language coding. For an application 
in which documentation was an unusually im­
portant requirement, however, so elaborate a 
statement might serve a useful purpose-and 
real macros would average closer to 100 in­
structions than to 3. 

The most important property of this tech­
nique for describing a notation to a processor, 
though, is the flexibility with which a notation 
so specified may be used. All that the XPOP 
programmer has explicitly defined is a number 
of individual words and punctuation marks, 
with no constraints on their combination; they 
may be used to form any statement that makes 
sense and conveys the necessary information 
to the processor. The programmer will often 
have a particular model statement in mind 
when specifying the vocabulary he wishes to 
use in calling for some function, but he will 
find that in implementing the model he has in­
cidentally implemented an enormous number 
and variety of alternative forms. 

If we add to our list of noise words the two 
strings OF and AS, we can use any of the 
following to generate the required coding: 

(a) STORE INTO GAMMA THE SUM OF 
ALPHA AND BETA. 

(b) STORE AS GAMMA THE LOGICAL 
SUM OF A.LPHA AND BETA. 

(c) STORE AS LOGICAL GAMMA THE 
SUM OF THE VARIABLES ALPHA 
AND BETA. 

(d) STORE LOGICALLY INTO GAMMA 
'ALPHA' AND 'BETA.' 

(e) STORE GAMMA ALPHA BETA. 

(f) LOGICALLY STORE INTO 'GAMMA' 
THE VARIABLES 'ALPHA' AND 
'BETA.' 

(g) INTO GAMMA STORE THE SUM OF 
ALPHA AND BETA. 

As (f) and (g) indicate, both noise words 
and operands may precede the operator, pro­
vided only that they are not themselves mis­
takable for operators. If, for example, INTO 
were an operator as well as a noise word (such 
multiple roles are possible arid sometimes use­
ful) , statement (g) would be misunderstood 
as a call on INTO. Excepting such uncommon 
cases, the operator and operands in a state­
ment may float freely with respect to noise 
words, and the operator may float freely with 
respect to its operands; the sole constraint is 
that the operands must be given in the order 
specified when the operator was defined. Even 
this last constraint will be relaxed when the 
QWORD feature is fully implemented. A 
QWORD is a noise word that, like an English 
preposition, identifies the syntactic role of the 
word it precedes; its use enables the program­
mer to offer operands in an order independent 
of that specified when the operator is defined. 
Applied to the statement type dealt with so 
far, the QWORD feature might be used thus: 

STORE MACRO $INTO$C,A,B 
CAL A 

ORA B 

SLW C 
END 

The string $INTO$C informs the system that 
if the QWORD "INTO" appears in a call on 
STORE, the first operand following it is to be 
taken as corresponding to the dummy variable 
C. The use of the QWORD would override the 
normal C,A,B order and enable the user of 
STORE to write, as another alternative: 

(h) LOGICALLY STORE THE SUM OF 
ALPHA AND BETA INTO GAMMA. 

Practically all notation-defining pseudo-ops 
may be used within macros as well as outside 
them, and the difference in location determines 
whether the conventions thereby established 
are 'local' or 'global.' If such pseudo-ops are 
given at the beginning of a macro definition 
that includes some non-pseudG-op lines as well, 
they are taken as local in effect. They will 
temporarily augment or supersede any nota­
tional conventions already established, and be 



XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 61 

nullified when the macro within which they 
were found has been fully expanded. 'Local' 
notation-defining pseudo-ops will be put into 
effect in time to govern the scan of the very 
statement that calls on their containing macro. 
Such internally defined statements need respect 
the earlier conventions only to the e~tent nec­
essary to permit their operators to be isolated. 
When pseudo-ops constitute the sole contents 
of a macro, they are taken as applying to the 
rest of the program in which they appear; the 
effect of calling on such a macro-ful of pseudo­
ops is as if each pseudo-op were giyen as a 
separate input statement. Insofar as the nota­
tion a programmer requires is regular and self­
consistent, then, it may be described in a single 
macro whose name might well be that of the 
language itself, and which would be called on 
at the beginning of any program written in 
that language. Statement forms that have spe­
cial notational requirements in conflict with 
any global conventions would include the nec­
essary local conventions within the bodies of 
their macro definitions. The local-notation 
feature will be illustrated in the next section. 

As should be evident at this point, it is 
possible to teach XPOP to recognize an enor­
ll10US nurnber of logically identical but nota­
tionally different statements by means of a 
few uses of just those pseudo-ops introduced 
so far. It should be possible, in fact, to define 
a programming language empirically-that is, 
to treat a language as a cumulative, open-ended 
corpus of those statement forms that experi­
ence shows to be desirable. The full set of 
notation-defining pseudo-ops, of which about 
one-third is exhibited here, permits the de­
scription of the notations of FORTRAN, 
COBOL, and most other existing compiler 
languages. 

Compilation-Control Pseudo-Operations 

The compiler designer also needs, of course, 
various kinds of control over the compilation 
process. One requirement is for the ability to 
call for remote compilation. To meet this need 
XPOP provides the pseudo-ops WAIT and 
W AITIN. Both signify that the part of any 
macro lying within their range is to be ex-

panded as usual-that is, parameters substi­
tuted for dummy variables, system-generated 
symbols inserted where called for, and so on­
but that the resulting coding is not to be in­
serted into the object program yet. Instead, 
these instructions are put aside, to be inserted 
into the object program only when a source­
program statement is found bearing the state­
ment label specified by the WAIT or W AI TIN. 
(The label to wait for is specified in the pseudo­
op's variable field, where it may be given as a 
literal constant or-more likely-represented 
by a dummy to be replaced by a parameter.) 
In any case, all instructions waiting for such 
a label will appear just after those resulting 
from the translation of the statement so 
labeled. 

The instructions waiting for a label may have 
come originally from several various macros, 
or several uses of the same macro; if so, the 
one difference between WAIT and W AITIN 
will make itself felt. If, for example, a group 
of instructions lay within range of WAIT 
ALPHA, they would be appended to the 
threaded list of those already waiting for 
ALPHA; if the pseudo-op were WAITIN, they 
would be prefixed to it. Those groups of in­
structions made to wait by W AITIN's will, 
therefore, appear in the object program in the 
inverse of the order in which they occurred 
in the source program-hence "W AITIN" 
(WAIT INverse). If the label for which a 
batch of instructions is waiting never appears, 
the instructions do not appear in the object 
program. If no label is specified, they appear 
at the very end of the object program. 

The following example shows the use of 
W AITIN in a simplified version of FORTRAN's 
"DO" ~ne that permits only the special case 
of subscripting that is formally. identical to 
indexing. First, the source program that de­
fines "DO" to XPOP, and then uses it in a two­
level-deep DO nest: * 

* Note that XPOP can process algebraic expressions. 
These may be used as source~language statements or 
within macros; when used within macros, they may 
contain dummy variables to be replaced by parameters 
when the macros are used, and those parameters may be 
arbitrarily long subexpressions. SUbscripts, not now 
allowed, are being provided for. 
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J 
K 

EQU 2 
EQU 4 

DO 
)A 

15 

CHPUNC 4S1=11,2, 1T2 
MACRO A,B,C,D,Ol 

{ definition 
AXT C,B 
WAITIN A 
TXI *+l,B,Ol ~ 

of "DO" 

TXL )A+1,B,D 
END 

DO 15 J=1,3 ) 
DO 15 K=2,20,2 ~ 
PHI,J=RHO,J +BETA,J ( "DO" nest 
TAU,K=PHI,J +4 ) 
END 

And below, the object program produced by the above: 

J 
K 
$ 
$ 
$NEW 
$ 
$DO 
$)A 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
)0001 
$ 
$ 
)0002 
$ 

$15 
15 

EQU 2 
EQU 4 

CHPUNC 481 1 = 1,2, 1 T2 
PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT 

MACRO 
AXT 
WAITIN 
TXI 
TXL 
END 

DO 15 J=1,3 

A,B,C,D,Ol 
C,B 
A 
*+l,B,Ol 
)A+1,B,D 

AXT 1,J 

DO 15 K=2,20,2 
AXT 2,K 
PHI,J=RHO,J +BETA,J 
CLA BETA,J 
FAD RHO,J 

STO PHI,J 
TAU,K=PHI,J+4 
CLA =4 
FAD PHI,J 
STO TAU,K 
TXI *+1,K,2 
TXL ) 0002 + 1,K,20 
TXI * +l,J,Ol 
TXL ) 0001 + 1,J,3 
END 
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Another obvious use for WAIT or W AITIN 
is the handling of closed subroutines. The 
programmer will frequently want a macro to 
generate only a calling sequence to a closed 
subroutine, with the subroutine itself appearing 
only once in the object program, at the end. 
To secure this effect, the programmer would 
define the macro in question as starting with 
the calling sequence; then he would incorporate 
a WAIT with blank variable field, a ONCE 
pseudo-op, and then the subroutine. If the 
macro were not used in a given source pro­
gram, the subroutine would not be made part 

$DO 
$ 
$)A 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

MACRO 
CHPUNC 
AXT 
WAITIN 
TXI 
TXL 
END 

DO 15 J=1,3 

A,B,C,D,01 
4S1 1=1,2, 
C,B 
A 
*+1,B,01 
)A~i,B,D 

1T2 

CHPUNC 4S1 1 = 1,2, 1 T2 

of the obj ect program. If used, the first such 
use would output the calling sequence normally, 
and the subroutine as waiting instructions to 
be put into the object program at its end. 
Subsequent uses of the macro in that program 
would cause the compilation of the calling 
sequence only, the ONCE pseudo-op reminding 
XPOP that it had already compiled the sub­
routine. The following examples will illustrate 
uses of W AI TIN, ONCE and local notation-de­
fin,ing pseudo-ops. The first is the pseudo-DO 
with its punctuation defined within its own 
body: 

$ 
$NEW 
)0001 

PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT 

$ 
$ 
)0002 
$ 

$15 
15 

AXT 1,J 

DO 15 K=4,48,TWO 
AXT 4,K 
PHI,J=RHO,J +BETA,J 
CLA BETA,J 
FAD RHO,J 
STO PHI,J 
TAU,K=PHI,J +4. 
CLA =4. 
FAD PHI,J 
STO TAU,K 
TXI *+l,K,TWO 
TXL ) 0002 + 1,K,48 
TXI *+1,J,01 
TXL )0001+1,J,3 
END 

A use of ONCE is shown next. ONCE may 
be used in either of two ways, depending upon 
whether its variable field is blank or not. 
When the macro in which it occurs is being 
expanded and a ONCE with blank variable 
field is encountered, the name of the macro is 
searched for in a table. If it is found, the rest 
of that macro is skipped; if not, it is entered 

in the table to be found on later searches and 
expansion continues. The procedure followed 
if a symbol is found in the variable field differs 
only in that the symbol found is used rather 
than the name of the macro being expanded. 
This type of use permits copies of a subroutine, 
a set of constants, or a storage reservation to 
be incorporated into the definitions of many 
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different macros, with assurance that they will 
appear in the object program if and only if 
one of the macros is used, and not more than 
once no matter how many of them are used. 
It is this second type of use that is now shown: 

$FIRST 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$SECOND 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

$ 
$ 

$ 

MACRO A,B,C 
CLA A 
ADD B 
ONCE M 
STO C 
END 

MACRO X,Y,C 
LDQ X 
MPY Y 
ONCE M 
STO C 
END 

FIRST,ALPHA,BETA,GAMMA 
CLA ALPHA 
ADD BETA 
STO GAMMA 

SECOND,PHI,RHO,GAMMA 
LDQ PHI 
MPY RHO 

END 

Last among the compilation-control pseudo­
ops that will be discussed here is XPIFF, 
which permits the programmer to specify con­
ditions whose satisfaction is a prerequisite to 
the compilation of the next line of coding. (It 
is, of course, a direct development of the IFF 
familiar to users of the FAP-IBMAP family 
of assemblers.) The IFF is almost entirely re­
stricted to testing conditions involving source­
program symbols; the direction in which 
XPIFF is being developed is that of greater 
range of reference. The conditions upon which 
XPOP compilation may be made contingent 
will include many referring not to source­
program symbols but to the system itself. 
When fully developed, this facility should bring 
within the compiler-writer's reach the means 

of specifying as much object-program optimiz­
ation as he wishes, short of that which, like 
FORTRAN's, depends on a flow-analysis of the 
entire compiled program. 

The kind of optimization available through 
XPIFF in its present state is indicated by the 
following illustration, where it is used to avoid 
compiling loop-initializing and -testing instruc­
tions where they are unnecessary. 

$MOVE MACRO A,B,O 
$ XPIFF O,X,X 
$ MOVMOR A,B,O 
$ XPIFF O,X,Y 
$ MOVEL A,B 
$ END 
$ 
$ 
$MOVMOR MACRO Q,E,D 
$ 
$)A 
$ 
$ 
$ 
$ 
$ 
$MOVEL 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

$ 
$ 
$ 

)0002 

$ 

AXT D,4 
CLA Q+1,4 
STO E+1,4 
TIX )A,4,1 
END 

MACRO L,M 
CLA L 
STO M 
END 

MOVE,ALPHA,BETA 
XPIFF O,X,X 
XPIFF O,X,Y 
CLA ALPHA 
STO BETA 

MOVE,ALPHA,BETA,5 
XPIFF 5,X,X 
AXT 5,4 
CLA ALPHA + 1,4 
STO BETA+1,4 
TIX ) 0002,4,1 
XPIFF 5,X,Y 
END 

XECUTE Mode-A Compile-Time Execution 
Facility 

The XPOP processor may at any point in a 
source program be switched into XECUTE 
mode, in which succeeding source-language 
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statements are not only compiled but assem­
bled and executed. The programmer switches 
into this mode by using the pseudo-op 
XECUTE, and reverts to normal processing 
by using the pseudo-op COMPYL; the' coding 
between each such pair is assembled as a batch, 
then executed. XECUTE mode may be used 
with great freedom. The programmer may 
enter and depart it within a macro; while in 
the mode he may use macros (with full nota­
tional flexibility), algebraic expressions, and 
everything else that XPOP normally processes 
except certain pseudo-ops that would be mean­
ingless at compile time. XECUTE mode was 
originally implemented by those' working on 
the XPOP processor for their own use in main­
taining and developing that program, and has 
proved itself better for such tasks than any 
other method we know. It enables us to patch 
XPOP in a symbolic language practically iden­
tical to the F AP language in which the proc­
essor itself is written, and to cause these 
patches to become effective at such points dur­
ing a compilation as we choose-not neces­
sarily at load time. The effectiveness of any 
such patch can be made contingent on results 
of program execution thus far, so that tests 
otherwise requiring several machine runs can 
be accomplished in one. A F AP-like assembly 
listing is produced by XPOP \vhile in XECUTE 
mode, and the symbolic language employed is 
so nearly identical to F AP that the very 
cards used for XECUTE-mode patches can 
later be used for F AP assembly-updating. * 

But this facility is by no means usable only 
by those working on the processor itself. It 
has the further role of giving the compiler­
designer working with XPOP the ability to 
specify pseudo-ops for his compiler, and make 
it perform any compile-time functions it re­
quires that are not built into XPOP-building 
special tables, setting flags, and so on. It en­
ables the designer to make his system, to any 
extent he wishes, an interpreter rather than 
a .compiler, or a monitor /operating system 
rather than a language processor. 

Compile-time execution makes a great va­
riety of special effects readily available to the 

* We have produced a subroutine, entirely independ­
ent of XPOP, equivalent to XECUTE mode, and hope 
soon to announce its general availability. 

programmer. For example, it allows any macro 
to be used recursively: just before calling on 
itself, such a macro switches into XECUTE 
mode, makes whatever test is required to de­
termine whether further recursion is indicated, 
then switches back to compile normally either 
at or just after the internal call, depending on 
the outcome of that test. Another useful facil­
ity it affords is that of trapping any source­
language statement type for such purposes as 
counting the number of uses made of it, taking 
snapshots of its variables before their values 
are changed, or debugging by testing the values 
of a procedure's variables just before exiting 
from it. Such trapping could be done even at 
the machine-language level. If the programmer 
wanted to trap all TRA instructions, for ex­
ample, he would define TRA to be a macro, 
enter XECUTE mode within that macro to 
take the desired compile-time action, then re­
turn to normal processing. (The psuedo-op 
ULTLEV-ULTimate LEVel of expansion­
would be used within such an op-code/macro 
to prevent the taking of a TRA instruction 
within the TRA macro as a recursive call, 
with resulting infinite regress.) 

One purpose of replacing op codes by macros 
of the same name might be to cause each such 
extended operator to step a programmed clock 
at execution time (as well as executing the 
original op code, of course), so that the pro­
grammer can learn exactly how long his rou­
tines take to run-a critically important mat­
ter in real-time applications, which require that 
programmed procedures fit into time slots of 
fixed size. This capability, together with its 
notational-flexibility and immediate-execution 
features, makes XPOP particularly suitable 
for command and control programming. 6 

Language-Preserving Pseudo-Operations 

XPOP provides the programmer with a 
group of three pseudo-ops that enable him to 
order, at any points in his program, that all 
macros so far defined be punched onto binary 
cards, written onto tape, or both. The use of 
any of these- pseudo-ops preserves all macros 
then in the system in a highly compact form 
(binary-card representation takes about one­
sixth the number of cards that symbolic takes) 
and, more important, a form that can be read 
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into the system at tape speed on any later 
XPOP run, without the time-consuming proc­
ess of scanning and compressing the symbolic­
language definitions. Notation-defining macros 
may, of course, be preserved on cards and/or 
tape along with code-generating macros. The 
tape and/or card deck produced may thus con­
tain a complete programming language of the 
programmer's own design in both vocabulary 
and notation. This language may then be 
changed in any respect during the course of 
any ordinary production or debugging run. 
Functions may be added or deleted, notation 
elaborated or simplified. Because any of these 
pseudo-ops can be used as often as desired in 
a single program, it is possible to preserve suc­
cessively larger sets of macros, each set con­
taining its predecessors as subsets, as well as 
any macros defined since. Each time macros 
are punched or written out by means of any 
of these pseudo-ops, a report is generated, giv­
ing a-n alphabetized list of the macros pre­
served and the percentage of the system's 
macro capacity they occupy. 

Another two pseudo-ops are available for 
ordering, either during a later XPOP run, or 
later in the same run, that predefined macros 
be read in either from the input tape (if they 
had been preserved on cards) or a reserved 
tape (if they had been preserved on tape). 
Sets of preserved macros may be read into the 

$ WMDT TEST,~6 

system at any point in any program, making 
it possible to switch languages in mid program. 
This greatly facilitates the consolidation into 
one program of sections written by several pro­
grammers using different XPOP-based lan­
guages-each section simply begins by reading 
into the system the language in which it was 
written. 

The five pseudo-ops, and their exact effects, 
are given in Table 1. 

As is shown in the following example, the 
programmer may override XPOP's built-in as­
sumptions about the tapes that WMDT, 
W APMD, and RMDT refer to. He does so 
simply by specifying, either by logical or by 
FORTRAN tape designation, the unit he 
wishes to address. He may also assign a name 
to each file when he creates it, and later re­
trieve it by name; this permits many languages 
to be stacked on a tape while sparing the pro­
grammer any concern over the position of the 
one of interest to him. In the example below, 
the programmer has used WMDT to write his 
language onto logical tape A6 under the name 
'TEST'. His language consists of three macros, 
whose names are then listed by XPOP. (Since 
the amount of available core storage used by 
these three was less than one-half percent, it 
is given as zero percent.) He then read this 
language back in again, this time addressing 
the tape by its FORTRAN designation, 11. 

$THE FOLLOWING MACROS HAVE BEEN OUTPUT ON TAPE 
$ TEST2 
$ TESTER 
$ TESTXC 
$ 00 PER CENT OF AVAILABLE SPACE HAS BEEN USED 
$ RMDT TEST,ll 
$ALL PREVIOUS MACROS HAVE BEEN DESTROYED BY THE USE OF RMDT 

Debugging Tools-The XRA Y 

XPOP provides one unconventional tool for 
finding bugs that our experience has shown 
to be highly useful, and which might readily be 
incorporated into other systems. This is the 
XRA Y -a structured, interpreted, and cap­
tioned dump of core memory and the output 
tape. It prints out the chief buffers, tables, 
and character-strings in the system in mean­
ingful format and (where one exists) external 
representation, as well as all the program com-

piled so far (whether still in core or already 
on tape), and a standard octal dump of as 
much of core memory as the programmer may 
require. In case of system trouble or source­
program trouble not covered by one of XPOP's 
50-odd error messages, the first thing the 
XPOP programmer will want to check is that 
the macro definitions were properly accepted 
and packed away, and these definitions are 
accordingly converted back to original input 
form and exhibited first. Because these defini-
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TABLE 1 THE LANGUAGE-PRESERVING PSEUDO-OPERATIONS 

Pseudo-op 

WMDT 

PMDC 

WAPMD 

RMDT 

RMDC 

Meaning 

Write Macro-Definition tape 

Punch Macro-Definition Cards 

Write and Punch Macro Defini­
tions 

Read Macro-Definition Tape 

Read Macro-Definition Cards 

tions, as seen in an XRAY, have undergone 
both compression into internal form and ex­
pansion back into input form, the programmer 
who can recognize his macros there can feel 
some assurance that they were properly digest­
ed by XPOP. He will next want to see how the 
system has scanned the last statement it saw; 
for this purpose he is given a print-out of the 
table that shows what symbols XPOP ex­
tracted from that statement as the parameters, 
and how it paired them off with dummy vari­
ables. Following this he is shown that part 
of the compiled program still in the system's 
output buffer, then that part already written 
out onto tape. Finally, the XRAY will present 
as much of core memory in standard octal 
dump format as the programmer may have 
specified in the variable field of the XRAY 
pseudo-op that triggers this output. 

XRA Y s can be obtained in two ways. One 
is to use the pseudo-op explicitly at whatever 
points trouble has shown up in a previous run, 
or is to be feared; the other is to order compila­
tion in XPER (eXPERimental) mode, which 
may be started at any point in the program by 
use of the pseudo-op XPER. In this mode, 
the detection by XPOP of any error in the 
source program or the system itself causes the 
generation of an XRAY-and one will be gen­
erated at the end of the program in any case. 
The two methods may be combined, the pro­
grammer calling explicitly for XRAY s at some 
points as well as compiling all or parts of his 

Action Caused 

Writes definitions and associated informa­
tion in binary on logical tape A5 

Writes definitions and associated informa­
tion in card-image format on system 
punch tape 

Causes both tape files described above to 
be written 

Reads in from logical tape B5 a binary 
file created by a 'WMDT' or 'WAPMD' 

Reads in from the input tape binary rec­
ords representing a deck produced by a 
'PMDC' or a 'w APMD' 

program in XPER mode. The information 
presented by an XRA Y as presently consti­
tuted is not fully adequate (hence the selective 
octal dump as a backup), and additions to it 
are being made, but experience indicates that 
the gain in intelligibility of information pre­
sented in XRAY form over that given in octal 
dumps is great enough to mark a step forward 
in bug-finding methods, as we think that 
XECUTE mode does in bug-correction. The 
joint power of the two source language facili­
ties suggests the possibility of some experi­
ments in on-line debugging; we hope to report 
on these later. 
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The author is grateful to C. J. Shaw of Sys­
tem Development Corporation for an acute 
critique of XPOP that has helped to improve 
the presentation and to pinpoint the areas in 
which further development is most needed.10 

Thanks are also due to P. Z. Ingerman of 
Westinghouse Electric Corporation for useful 
discussions on the relationship between XPOP 
and syntax-driven compilers, and for the op­
portunity to read part of his forthcoming book 
on such compilers.3 
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INTRODUCTION 

Most of the approaches to fast read access 
memories in the past have been centered about 
the achievement of either faster conventional 
destructive switching, or the use of various 
non-destructive readout techniques and storage 
devices. Many of these techniques have in­
herent drawbacks for very fast read operation, 
such as the necessity for rewriting, in the case 
of conventional switching approaches, or the 
lack of truly non-destructive properties. The 
memory system described in this paper solves 
these problems by utilizing the BIAX memory 
element, with its inherently non-destructive 
readout properties, in a system organized to 
minimize circuit delays and utilize transmis­
sion line properties for the various signal 
paths. In this manner it is possible to achieve 
random read access times of 85 nanoseconds 
maximum since most inductive components are 
incorporated into the various transmission 
lines with the lines being terminated in their 
characteristic impedance. Not only is the 
memory designed for very high readout rates 
in the non-destructive mode, but it is electri­
cally alterable with conventional linear select 
methods in five microseconds or less. 

The sections which follow will describe the 
system design concepts, operation of the BIAX 
memory system, and the circuit and packaging 
designs which were used to achieve the system 
performance. 

69 

SYSTEM DESCRIPTION 

System Design Goals 
The basic goals of the memory program 

were to design and construct an operating 
model of a 1024 word, 48 bit per word memory 
capable of 10 Mc. random access non-destruc­
tive readout (NDRO) while being electrically 
alterable with a write cycle time of five micro­
seconds. Although the performance require­
ments were of prime concern it was neverthe­
less necessary to utilize state-of-the-art 
components to insure that a practical system 
would ultimately result. Table I outlines the 
system characteristics which resulted. 

System Organization 
The organization of any memory system is, 

in general, related to the desired speed of 
operation. If the primary design goal is the 
achievement of very short read access time it 
is usually mandatory that parallel operation of 

• CAPAOTY: 1024 WORDS, 48 BITS PER WORD 

• REPETITIVE READ CYCLE TIME: 100 NANOSECONDS 

• READ ACCESS TIME: 85 NANOSECONDS (MAXIMUM) 
(RANDOM ACCESS) 

• REPETITIVE WRITE CYCLE TIME: 5 MICROSECONDS 

• REPETITIVE WRITE/READ CYCLE TIME: 10 MICROSECONDS 

Table 1. Memory System Characteristics. 
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many parts of the memory be employed. The 
block diagram of Figure 1 shows how this type 
of parallel organization is employed to achieve 
10 Mc. NDRO operation. In this diagram it 
is seen that the flow of information for a typi­
cal readout operation is through the input 
buffer, read decoder, interrogate drivers, BIAX 
array, sense amplifiers, and output register. 
To achieve the goal of 85 nanoseconds read 
access time, the propagation delays through 
the functional parts of the system as shown in 
Figure 2 1 were necessary. 

'The achievement of these propagation de­
lays necessitated the use of certain specific 
organizations of the circuitry within the mem­
ory read system. These organizational factors 
and how they were applied to the 10 Mc. 
NDRO memory are listed below. 

1) Every signal path involved in the read 
operation, including interconnections, 
must be considered in terms of its trans­
mission line characteristic impedance and 
propagation delay. This is especially 
true in the BIAX array where the in­
ductance of wires passing through many 
elements is substantial. 

2) When the array signal transmission 
paths are portions of transmission lines, 
the total array delay is approximately 
the sum of the interrogate line delay plus 
sense line delay. Therefore the minimum 
total array delay usually results when 
the number of array words is approxi­
mately equal to the number of bits per 
word. In this memory, the 256 word by 
192 bit per word array organization per­
mits achievement of near minimum delay 
within the array. 

Figure 1. 10 Me. NDRO BIAX Memory Organization. 

~---------------------------

NANOSECONDS 

Figure 2. 10 Me. BIAX NDRO Cycle. 

100 
CYQ.E 
TIME 

3) Read address decoding must be accomp­
lished at as low a signal level as prac­
tical, with high level gating kept to a 
mInImum. In order to effeetively ac­
complish this end it is necessary to use 
one interrogate driver per array word 
and a 1 of 256 decoder. Although 256 in­
terrogate driver circuits are used each 
circuit is simple since it drives a trans­
mission line terminated in its character­
istic impedance. 

4) The BIAX output signals produced by 
the interrogation of a word must be 
strobed at the earliest possible time fol­
lowing the interrogation. In this mem­
ory it is accomplished by strobing the 
sense amplifier with timing pulses de­
rived from the array itself. By using 
these array-derived strobing pulses each 
sense amplifier output is strobed at an 
optimum time and variation in signal de­
lays due to physical location of the word 
within the array or degradation of the 
interrogate pulse rise time is automati­
cally compensated for. 

5) All circuits associated with the NDRO 
portion of the memory must be located 
as close as possible to the array to mini­
mize interconnection delays. In the 
memory this is accomplished by arrang­
ing the read circuits on two sides of the 
array, and making interconnections via 
twisted pair lines. 

M emory System Design and Operation 
The memory described here has two basic 

modes of operation, non-destructive readout 
and, a writing mode, both of which utilize 
linear or word select techniques for address 
selections. 

NDRO Mode 
The basic concept employed to achieve non­

destructive readout in the BIAX element is 
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DIMENSIONS IN MlLLI.INCHES 

Figure 3. Nominal BIAX Physical Characteristics. 

one involving crossed or quadrature magnetic 
fields in a common volume of square loop 
magentic material. 2-5 The BIAX element used 
in the 10 Mc. memory is a pressed block of 
ferrite material having two non-intersecting 
orthogonal holes. The physical dimensions are 
approximately 50 x 50 x 85 milli-inches (mils) 
with two circular holes, one 30 mils in diam­
eter, the other 20 mils in diameter (Fig. 3). 
Information is stored by saturating the mag­
netic material around the 30 mil hole (the 
storage hole). 'The storage hole contains the 
windings necessary to write into the memory 
element and to sense signal output. The inter-

.... AX II.IIIIIIn FLUX PA TTIIN 

IIf PUll 

rogate hole contains a single conductor for 
interrogation of the memory element. 

Interrogation of the element is accomplished 
by applying a current producing flux in the 
same direction as flux already established 
around the interrogate hole. The current 
causes the domains in the common volume to 
be re-oriented toward the direction of the flux 
linking the interrogate hole. This reorientation 
decreases the flux linking the storage hole and 
thereby gives rise to a dcp/ dt voltage on the 
sense winding passing through the stor.age 
hole. The polarity of this voltage is dependent 
on the orientation of the flux linking the stor­
age hole, consequently, a selected polarity of 
element output voltage will be observed for a 
ONE and the opposite polarity for a ZERO 
(See Figure 4C). Upon termination of the 
interrogate pulse, the domains in the common 
volume revert back to their original permanent 
flux condition and a true non-destructive read­
out is achieved. Several advantages result 
from the use of this principle as employed in 
the BIAX memory element. First, the interro­
gate process introduces no measurable delay in 
the read operation and is therefore quite appli­
cable to very high speed reading. Secondly, 
since the interrogation process involves only 
shuttling of flux around the interrogate hole, 
the inductance of the wires passing through a 

Figure 4. The BIAX Principle. 
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number of elements is sufficiently linear to 
permit low loss wide bandwidth transmission 
lines to be constructed using the BIAX element 
inductance and the associated array capaci­
tance. By using the array construction tech­
niques described later in this paper, it was pos­
sible to achieve transmission line impedance 
as low as 200 ohms while propagating pulse 
rise times less than 5 nsec. 

NDRO operation of the memory is initiated 
upon receipt of a clocked read command after 
the address levels have stabilized. The ten 
address bits and their complements are con­
verted by the input buffer to levels required by 
the read address decoder. The decoder selects 
one unique path of the possible 256 and acti­
vates the interrogate driver connected to the 
decoder output. The actual decoding process 
starts with the occurrence of the clocked read 
command and proceeds through the various 
levels of the decoder at a rate limited only by 
the response of the circuits in the path corre­
sponding to that address. Figure 5 shows the 
functional breakdown of the input portion of 
the memory. To accomplish the required 1 of 
256 decoding, it is seen that two decoders, a 64 
place, and a 4 place, are used. The primary 
advantage of this method is that it minimizes 
the number of gating levels since the decoders 
operate in parallel. The 4 place decoder is a 
clocked unit, while the 64 place is unclocked 
and the outputs of the two decoders are com­
bined at the input of the interrogate driver 

circuits with another level of gating. Since 
the memory array is organized as 256 words 
of 192 bits, only eight of the ten address bits 
are required for decoding at the input to the 
memory, with the remaining two address bits 
being employed to select the desired 48 bits (of 
the 192 available) to be transferred to the 48 
hit memory output register. 

When a particular interrogate driver has 
been activated, it is necessary to extract the 
stored information from the array within 10 
nanoseconds if the total memory read access 
time of 85 nanoseconds is to be achieved. To 
understand the difficulty of achieving the 10 
nanosecond array delay with conventional con­
stant current techniques, consider the follow­
ing calculations: Assume that each interrogate 
line consists of approximately 200 elements, 
each exhibiting an inductance of 30 nanohen­
ries. By lumping all the inductances, a total 
inductance of 6 microhenries would result. 
U sing conventional constant current drive 
techniques, to achieve 80 rna. within 10 nano­
seconds would require the following voltage: 

'L~I 
E== ~T 

6-10-li (80-10-3 ) 

E 10-8 

E=48 V 

(1) 

(2) 

(3) 

It was felt that not only would a 48 volt cur­
rent source be impractical since 256 were re-
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Figure 5_ 10 Me. BIAX NDRO Memory Input Block Diagram. 
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Figure 6. Simple BIAX Interrogate Line Equivalent 
Circuit. 

quired, but it also would introduce reactive 
transients which would seriously limit the 
maximum interrogation rate. In order to bring 
the required interrogate drive voltage within 
practical limits, and to minimize transients, 
the terminated transmission line concept of 
operation was employed in the memory array. 
Figure 6 shows the schematic representation 
of a simple BIAX transmission line. In this 
figure, each lumped inductance is represented 
by one BIAX element through which an inter­
rogate wire passes, and the capacitance is that 
between the wire and the ground plane. 

If one calculates the properties of the trans­
mission line 6, assuming an element inductance 
of 30 nh per element, with elements spaced at 
approximately 0.125 inch intervals and located 
above the ground plane, the line will exhibit a 
characteristic impedance of approximately 500 
ohms. Were a line with such a high characteris­
tic impedance to be used for the memory inter­
rogate line, certain problems would be en­
countered. First the drive voltage required to 
achieve 80 mao interrogate current would be 
40V, and even with a constant voltage driver, 
it is excessive from a practical circuit stand­
point. Secondly, such a large excursion in 
voltage on the interrogate line introduces noise 
onto the sense line by capacitive coupling 
through the element, even though this capaci­
tance is only about 0.01 pf. per element.. Third, 
if this transmission line consisted of 200 sec­
tions, corresponding to the required word 
length in the array, the delay would be ap­
proximately 12 nsec. (Fig; 7). In order to 
alleviate these problems, several steps were 
taken to alter the electrical length, impedance 
and driving characteristics of the lines. These 
sfeps are described briefly below. 

To reduce the driving voltage requirements, 
the line impedance was. reduced by two means. 
First, the elements were offset as shown in 
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Figure 7. Interrogate Pulse Propagation Through 200 
Element Transmission Line. 

Fig. 8 and treated essentially as two trans­
mission lines in parallel, and further split into 
two additional parallel lines. Since each wire 
passes through only half as many elements 
(and inductance) per unit of capacitance as for 
the single line, the impedance is reduced to 0.7 
of the single line value. It should be noted that 
the delay per section of line is actually greater 
for the offset placement by a factor of ·1.4, but 
since only half as many sections are employed 
(by driving in parallel), the net propagation 
delay is reduced to 0.7 of the single line value. 
The second means employed to reduce the im­
pedance of the interrogate line is also shown 
in Fig. 8. This method consists of introducing 
a perforated metallic shielding mask around 
each element between the two holes. This in­
creases the capacitance per section by approxi­
mately another factor of three, and brings the 
characteristic impedance down to approxi­
mately 200 ohms. 

The methods described above, employed to 
reduce the transmission line characteritic im­
pedance, did reduce the drive voltage require­
ments to about 12 V and as a result, the capaci­
tive coupling to the sense line through the 
BIAX element was reduced accordingly. Even 
so, an objectionable amount of noise was still 
observed due to the coupling. Two measures 
were taken to eliminate this problem. The 
offsetting of the elements as shown in Fig. 8 
necessitated driving the two lines in parallel. 
Because of the inherent properties of the 
BIAX element, interrogation can be accomp­
lished with either polarity pulse, if it is in the 
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Figure.~. Dual BIAX Interrogate Line-Physical Configuration. 

same .direction as the previously established 
flux around the interrogate hole. This property 
of the BIAX element was used to reduce the 
capacitively coupled noise to the sense line by 
using pulses of equal amplitude and simultane­
ous rise times but of opposite polarity applied 
to the offset lines. Since a given sense line 
crosses both of these offset interrogate lines, 
the total capacitive coupling is reduced to a 
value proportional to the algebraic sum of the 
opposite polarity interrogate voltages during 
the rise time. Since this method did not. pro­
vide perfert cancellation of the capacitively 

BIAX OUTPUT WHEN IHTERROGA TED 

20 OHM STRIP TRANSMl6SlON LINES 

SENSE LINE LOCALLIZED GROUND PLANES 

coupled noise, an additional method was em­
ployed to provide partial cancellation of re­
maining noise on the sense line. In Fig. 9 it 
is seen that the sense line is divided into eight 
segments of 32 bits each. Within each seg­
ment, the electrical length of the line is short 
compared to the interrogate pulse rise time, 
and one end of each segment is returned to 
ground. When capacitive noise is introduced 
into the segment, it propagates to the grounded 
end and is reflected back to the source in­
verted, providing effective cancellation of the 
noise pulse. 

SENSE AMPLIFIER 

Figure 9. Sense Line Summing Equivalent Circuit. 
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When an output is produced from an ele­
ment by interrogation, the isolation resistors 
shown in Fig. 9 create, in effect, a constant 
current source. The sense amplifier is then 
designed with a very low input impedance to 
provide compatibility with the sense line sum­
ming method. In the present memory, the 
sense amplifier has an input impedance of ap­
proximately 15 ohms, and receives its input 
from the array not more than 10 nsec after the 
50 % point of the interrogate pulse. 

When the signals are observed at the output 
of the sense amplifier the time delay (relative 
to the interrogate pulse) depends ~oth upon 
the physical word location relative to the sense 
amplifier and the location of the bit in the 
word relative to the interrogate driver. In 
the present memory, this delay ranges from a 
minimum of essentially zero to a maximum of 
ten nanoseconds, not including the delay 
through the sense amplifier. This variation, 
added to the variation in decoding delay, ren­
ders it difficult, if not impossible to strobe all 
192 sense amplifiers reliably with a pulse fixed 
in time while still maintaining the required 
access time. To avoid this problem, the pulse 
used to strobe the sense amplifier is derived 
from the same region of the array as is the 
information. This can best be understood by 
considering Figure 10. Each group of 48 

256 WORDS 

sense amplifiers is accompanied by a 49th bit, 
identical to the other 48, which provides the 
input to a pulse generator ("T" pulse genera­
tor) the output of which is used to strobe the 
48 sense amplifiers in that group. In so doing 
the inherent time variations in signal output 
due to word and bit location within the array, 
degradation of the interrogate pulse rise time, 
and variations in decoding time are automati­
cally compensated for. Figure 10 also shows a 
function block called "8" clock generator. The 
pulse from this generator, which is also de­
rived from the array, is used to set those out­
put register flip flops which do not receive a 
reset input from the "T" gate. This technique 
permits the use of simple one input or "D" 
flip flops 7 in the output register. 

The final operation which occurs in NDRO 
is selection, by the two most significant address 
bits, of the proper group of 48 sense amplifiers 
whose strobed outputs are to establish the state 
of the memory output register. This selection 
is accomplished by permitting only one of the 
four "T" generators to be activated at any time 
thus producing an output on only one of the 
four "OR" inputs to each of the memory out­
put flip flops. 

Write Mode 
It will be recalled that the organization of 

the array for reading is as 256 words of 192 

BIAX ARRAY 

OUTPUT ReSISTER 
C4 FLlP.flOPS) 

C819 

Figure 10. 10 Mc. NDRO BIAX Memory Output Block Diagram. 
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Figure 11. BIAX Array Element Orientation and Write Current Program. 

bits per word. For writing however, the 
array is organized as 1024 words of 48 bits per 
word, and conventional linear select techniques 
a;e used. The elements are oriented and 
wired in the array such that current pulses 
pass in both the word and bit directions and 
selective writing is accomplished by the coin­
cidence of a word oriented word write pulse 
and bit oriented write pulse. The orientations 
of the BIAX elements within the array and the 

write current program are shown in Figure 
11. The word write pulse currents consists of a 
fixed sequence of two opposite polarity word 
write currents, and a time-overlapping bit 
current whose polarity depends upon the 
binary state of the information to be stored. 
In order to select the appropriate word of the 
1024 for writing, a matrix of 16 word drivers 
and 64 word switches, organized as shown in 
Figure 12, is used. 

TEWERATURE j {BIPOLAR BIT DRIVERS CONTROLLED 
VOLTAGE ~ TO: WORD .1 DRIVERS 
REGULATORS WORD.Q DRIVERS 

ADDRESS 
... ----1 

10 BITS 

WRITE CDlMAHD 

DATAIMPUT 

OBITS 

ADDRESS 
BUFFER 

4 BITS 

6 BITS 

ARRAY 
(ORGANIUnOM FOR WRlnMG) 

~-.... • 024 WORDS 
.. BITS PER WORD 

Figure 12. Memory Write System Block Diagram. 



A lOMe NDRO BIAX MEMORY OF 1024 WORDS 77 

Receipt of the write command activates the 
write cycle by starting the fixed sequence of 
word current pulses and permitting the 48 bi­
polar bit drivers to generate currents in a di­
rection dictated by the data inputs (Figure 
11). 'The portion of the write cycle during 
which element switching occurs, if it occurs at 
all, is determined by the information carried 
by the bit current and the previous history of 
the element. Both the bit and word currents 
are temperature compensated to permit opti­
mum switching of the elements with minimum 
disturb over a temperature range of ooe to 
50°C. Nominal write system operating param­
eters for the memory are given in Table II. 

MEMORY SYSTEM FABRICATION AND 
PERFORMANCE 

Fabrication and Packaging 

The complete 1024 x 48 memory described in 
the preceding portion of this paper was de­
signed, fabricated and tested. The completed 
memory is shown in Figure 13. In this photo­
graph are identified the following essential 
parts of the memory. 

1. Array and Read Circuits 

One of the four memory array planes is 
visible in Figure 13. Note that the decoder 
and interrogate driver circuits, located above 
the array, and the sense circuits and memory 
output circuits to the right of the array, both 
are mounted as physical extensions of the main 
array ground plane. This was done primarily 
to minimize propagation times and to avoid . 
ground noise problems. Each of the four array 
planes is divided into eight sections as shown 
in the photograph. This results from the re­
quired segmenting of the sense lines (refer to 
Fig. 9), and because word write lines must be 
terminated at 48 bi·t intervals. The allocation 

TOTAL WRITE CYCLE TIME 

WRITE. READ CYCLE TIME 

WORD CURRENT AMPLITUDE FIRST (lIln) 
(25°C) SECOND (lion) 

BIT CURRENT AMPLITUDE 
(25"C) 

5" SEC MAX 

10" SEC MAX 

+200 ala 

• 200 ala 

± 95 ala 

Table II. Write System Parameters. 

Figure 13. 10 Me. NDRO BIAX Memory. 

of spare word and bit lines is made so that 
each of the eight sections contains two word 
spares and two bit spares and a spare for the 
'''T'' line. Therefore each section contains 34 
x 52 or 1768 elements. Since each section is 
identical, each array plane contains 14,144 
BIAX elements and the entire memory array 
consists of 56,576 elements. Figure 14 shows 

Figure 14. Detailed View of 10 Me. NDRO Array. 
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a detailed view of one section of the array. 
From this photograph can be seen the dual 
interrogate lines, offset to permit straight wire 
looming. The element-to-element spacing in 
both the horizontal and vertical directions is 
0.125 inches. A shielding mask can be seen, 
positioned between the holes of the BIAX 
element forming the ground plane for the in­
terrogate transmission line. In the lower 
center of Figure 14 in the gap between the 
shielding masks 'are the sense lines with their 
isolation resistors, and the bit lines. Seen near 
the top of the picture are the twisted pairs 
which connect to the interrogate drivers, the 
word write lines and word select diodes. 

2. Write Circuits 
The write circuits used in the memory can 

be seen in Fig. 13 mounted in two card racks 
below the array. These circuits are of con­
ventional design and are the same type of cir­
cuits -used in other BIAX memory systems. 

3. Power Supplies and Cooling Fans 
Power supplies and blowers occupy the 

lower regions of the memory cabinet, and are 
of standard off-the-shelf variety. All power 
supplies have voltage regulation of 0.170 or 
better and are current limited to provide pro­
tection to the memory circuits. 

M emory System Performance 
The 10Mc. NDRO memory has been exten­

sively tested to determine its performance 
characteristics. Figures 15 and 16 show wave­
forms at various locations in the memory for 
NDRO operation. Figures 15A through F 
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Figure 15. 10 Mc. NDRO BIAX Memory Read Cycle 
Timing Waveforms. 

show the read operation from the beginning of 
decoding, through the decoder and interrogate 
driver selection, and through the sense ampli­
fier and time strobing, and to the memory out­
put register. Figure 16 shows detailed photo­
graphs of read circuit waveforms. In Figures 
16C and D are shown the access time measure­
ment from the 50 % point of the system clock 
(negative going) to the response of the 
memory output flip flop. This acces,s time rep­
resents the longest access time for any word 
or bit in the memory. 

The memory also underwent considerable 
testing to determine its operating reliability 
under various conditions of patterns and cycle 
rates for both the NDRO and write/read 
modes. To' facilitate th~ testing, a memory 
exerciser which was capable of generating an 
almost unlimited number of bit and word 
patterns and error checking each pattern in 
both NDRO and write/read, was employed. By 
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Figure 16. 10 Me. NDRO BIAX Memory Read Circuit Waveforms. 



A lOMe NDRO BIAX MEMORY OF 1024 WORDS 79 

utilizing this exerciser, errors from any origin 
caused the equipment to stop and indicate the 
word and bit location of the error. During the 
equipment checkout phase, tests representing 
voltage and write current variations, as well 
as worst-case patterns and cycle times, were 
run as a matter of course. To demonstrate 
that reliable system operation was being ob­
tained, each pattern was run for a ten minute 
period of time; resulting in a total of 3.1011 bits 
having been error checked. In this time, each 
bit in the memory was error checked 6.106 

times, and because of the memory organiza­
tion, had actually been interrogated 24.106 

times. As an acceptance test for the memory, 
fourteen patterns were each run for the re­
quired ten minute period, representing a total 
of approximately 42.1011 error checks of stored 
information. Each pattern was also run for 
the write-read-error check mode for a thirty 
minute period with a read-after-write error 
check at a write-read cycle time of 9 micro­
seconds. 'The entire acceptance test procedure 
involved approximately 40 hours of error free 
system operating time. 

FUTURE AREAS OF INVESTIGATION 

Although work has been completed on the 
memory system described in this paper, many 
extensions of the techniques are possible. Be­
low are described a few of the more promising 
approaches and areas in which further work 
is being done. 

Variations in Word Organization 

Although the memory. described in this 
paper is organized as 1024 words of 48 bits per 
word, since the array is organized for reading 
as 256 words of 192 bits per word, many varia­
tions in effective memory organization are pos­
sible. For example, a read organization of 256 
words of 192 bits per word could be readily 
achieved with minimum modifications. Simi­
larly, word lengths between 48 and 192 bits 
can be achieved. In summary, many combina­
tions of word lengths and bits per word can be 
realized for NDRO operation with the existing 
array design, as long as the total storage ca­
pacity is not exceeded, although with the pres­
ent array, writing must still be performed on 
a 48 bit per word basis. 

Access Time Reduction 
In Figure 2 at the beginning of this paper, 

it was noted that the BIAX array contributed 
only about 10 nanoseconds to the 80 nanosecond 
typical access time. In view of this it appears 
quite feasible to reduce the access time sub­
stantially by appropriate circuit design effort, 
as the NDRO operation of the BIAX element 
is not a limiting factor. 

Faster Read Cycle Times 
In the same way that the access time can be 

reduced, it is quite possible to increase the 
reading rate to 20 Mc. or more while still using 
the same array and system organization prin­
ciples. 

Increased Storage Capacity 
The present memory capacity of 1024 words 

in no way represents the practical limit for 
this fast NDRO technique. It seems quite 
likely that word capacities of two or four times 
the present memory could be achieved with 
perhaps a 120 nanosecond access time. 

Reduced System Volume 
No effort was made to minimize the physical 

size of the present memory, rather it was de­
signed specifically for physical access to the 
array. By appropriately folding the array and 
repackaging the circuits, the physical size of 
a system should be consistent with other· core 
memories of similar capacities. 

Airborne Applications 
The BIAX element and its low power non­

destructive readout properties are particularly 
well suited for airborne applications. For this 
reason, BIAX elements for use at temperatures 
from -55°C to+100°C have been developed 
by Aeronutronic and are being employed in 
various systems. 'The techniques used in the 
10 Mc. NDRO BIAX memory can be readily 
applied to this type of element to produce very 
fast NDRO operation over a wide range of 
temperature. 

MicroBIAX Applications 
The BIAX element used in the 10 Mc. NDRO 

memory employed elements developed before 
the start of the memory project. A major in­
house program is now underway to develop a 
MicroBIAX element having outside dimensions 
of 30 x 30 x 50 mils. These elements offer 
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greatly improved characteristics, particularly 
for write cycles of 1-2 JJ. sec. In addition, 
faster NDRO operation, better performance 
over wide temperature ranges, simpler array 
wiring configurations, as well as the obvious 
sIze advantages are offered by the MicroBIAX 
element. The potential applications for this 
class of new elements is almost unlimited, and 
it is expected that MicroBIAX elements will 
be employed in most of the new memory sys­
tems which are developed in the future. 
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1. INTRODUCTION 

The implementation of a new system utilizing 
state-of-the-art technologies requires a careful 
engineering evaluation of all parameters affect­
ing such a design. In particular, when new sys­
tem concepts are needed and the available de­
vices for mechanization have been designed for 
a different class of system, the problems become 
much more severe. Such is the case with As­
sociative Memory (AM) systems where an en­
tirely new system organizational concept places 
exacting requirements on the existing technol­
ogy of information storage, as is evidenced by 
the many techniques which have been proposed 
for implementation. 2- 8 

It has been determined through study and 
evaluation of storage media that the BIAX* 
element,l a rYlultiaperture ferrite core, possesses 
the most desirable characteristics for imple­
menting an associative memory today. The 
utilization of the BIAX element in the mechani­
zation of an AM is not limited to -one con­
figuration. The repertoire of possible methods 
consists of one-BIAX-per-bit and two-BIAX­
per-bit schemes, and, within each of these areas 
there exist different ways of utilization. Th~ 

* Registered Trademark, Philco Corp. 
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choice of the mechanization methods is depend­
ent on the application and would be a result of 
detailed system analysis and tradeoff studies. 
The first part of this paper details the mechani­
zation techniques of an associative memory with 
the BIAX element. In particular, a new mode 
of use of the BIAX element is presented which 
enables extremely fast search times to be real­
ized. The number of functions which an AM 
can perform are many and varied. These func­
tions may be broadly classified in the following 
way: 

1. Search Functions 
2. Write Functions 
3. Readout Functions 

The functions which are provided in a given 
system are, as mentioned, dependent on the ap­
plication. In addition, the methods of perform­
ing some of these functions, in particular the 
searching types, are dependent on the speed re­
quirements. These in turn will, to some extent, 
determine the mechanization method chosen. 
The second part of this paper details the vari­
ous functional characteristics an associative 
memory might have. A chart is presented 
which delineates the pertinent characteristics 
as a function of the mechanization technique. 
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The last part of the paper shows the results 
obtained from a demonstration model of an AM 
which utilizes the BIAX in the new mode of op­
eration mentioned above. 

2. BIAX IMPLEMENTATION OF ASSOCI­
ATIVE MEMORIES 

2.1.0 Normal BIAX Operation, Using Two­
BIAX-Per-Bit 

The BIAX is a rectangular block- of ferrite 
having two orthogonal holes: the storage (in­
formation) hole and interrogate hole are as 
shown in Figure 1. Also shown in the figure 
are the read and write wave shapes and the 
readout signal produced by the BIAX element 
when operating in the normal mode. Note that 
the sense signal is bipolar and occurs during 
both the rise and fall time of the interrogate 
current and that the phase of the signal is in­
formation dependent. THe sense signal is 
caused by a domain rotation phenomenon which 
results from the interaction of storage and in­
terrogate hole flux, in the material between the 
holes, during interrogation. An AM imple­
mented with the normal mode of the BIAX op­
eration requires a serial-by-bit interrogation to 
prevent possible cancellation of pulses on the 
word-oriented sense lines. 

WRITE 
+1/3 I r- ___ ~'1': ___ """ 

W, , 
~~~--~( )~------, , 

-1/3 IW ~ - - - ~'O" - - - --' 

+2/3 'w 
ww 

-2/3 'w 
READ 
INTERROGATE 

,~--------------~~~------
SENSE "1" "~---------~v----
SENSE "0" f""\ 

~ ~---

Figure 1. Conventional BIAX Operation. 

Figure 2 depicts the technique used in the 
two-BIAX-per-bit method. The normal and 
complement of each word are stored. In order 
to decrease the required search time, the inter­
rogate currents are staggered by an amount 
equal to or greater than the rise time of the cur­
rent and left on until the last bit has been 
searched. This prevents the output signals 
produced by the trailing edge of the interrogate 
current from interfering with sense signals pro­
duced by subsequent interrogate pulses. 

If the sense signal polarities are as shown in 
Figure 1, and if the normal bit is searched when 
looking for 0 at a bit position and the comple­
ment bit is searched when looking for a 1, then 
the input to the sense amplifier will consist of 
a series of negative pulses for a matching word. 
This is due to the fact that all elements inter­
rogated would be in the 0 state. Should a mis­
match occur at a bit position, a positive pulse 
will occur on the sense line. For example, in 
Figure 2, drivers C1, N2, N3, and C4 wouJd be 
turned on. In Word No.1, several elements in 
the 1 state are interrogated resulting in a mis­
match (positive) signal, while in Word No.2 
all elements interrogated contain 0 and only 
negative pulses occur on the sense line. 

2.2.0 Operation of the BIAX in the Hughes 
Unipolar Mode 

2.2.1 Description of Operation 
In the course of the mechanization studies, a 

technique for using the BIAX which greatly en­
h~nces the search speed has been invented. This 
new mode of operation results in a signal for a 

WORD NO.3 

WORD NO.2 

WORD NO.1 

INTERROGATE 
DRIVERS 

Figure 2. Typical Search Operation. 
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stored 1 and no signal for a stored 0, with a 
very high element signal-to-noise ratio. Thus, 
unipolar rather than the conventional bipolar 
operation is obtained. This technique allows 
parallel-by-bit interrogation. Thus, the search 
time is not directly proportional to the number 
of bits per word, as in the serial-by-bit ap­
proach, but is proportional to the number of 
bits, per word divided by the number of ele­
ments interrogated simultaneously. 

Using the same criteria for selecting the nor­
mal or complement driver as before, it can be 
seen that for the matching word, no signal will 
occur on the sense line since all O's are' being 
interrogated. Therefore, if the lements are in­
terrogated simultaneously, only 0 noise buildup 
will be seen. For a word which mismatches 
(interrogation of an element in the 1 state), a 
large output signal will result. 

The number of elements which may be inter­
rogated simultaneously is a function of the sig­
nal-to-noise ratio of the elements. On a labora-

INTERROGATE 
HOLE 

FLUX DUE 
TO INTERROGATE 
HOLE RESULTANT 

FLUX 
VECTOR 

FLUX DUE TO 
STORAGE HO LE 

MATERIAL 

INTERROGAT~TWEEN HOLES 
FIELD 

RESULTANT 

tory basis twenty-bit words have been interro­
gated with resultant word signal-to-noise ratios 
(twenty 0 signals versus one 1 signal) greater 
than 3: 1 (see Section 7). In a practical sys­
tem, the number interrogated simultaneously 
would be smaller due to environmental condi­
tions and circuit tolerances. However, since the 
decrease in search time is directly related to 
the number of elements interrogated simultane­
ously, dramatic improvements result. 

The method of obtaining this mode of opera­
tion is shown in Figure 3. The element is first 
written to the 1 state by a current pulse large 
enough to saturate the storage hole (Figure 
3B) . This pulse is then followed by a smaller 
pulse of the opposite polarity which is the Word 
Write 0 current. If a 0 is to be written then, in 
coincidence with the Word Write 0 current, a 
current pulse (Bit Write 0) is produced in the 
interrogate hole and the flux around the storage 
hole is reduced to a very small value. If a 1 is 
to be written, the Bit Write 0 pulse does not 

WORD WR�TE----' 

"1" "1" 
BIT WRITE-----C\jJ...---

INTERROGATE---lJ1j 

"1" 
A "0" 

ELEMENT OUT-- y-""';"--

~RESULTANT 

.Lp---~~ 
REDUCTION 
IN STORAGE 
FLUX 

.",," I 
."""" I 

,," I 
-------~-~ 

~INTERROGATE 
INTERROGATION OF 
STORED "ONE." 

Figure 3. BIAX Element Operation in the Unipolar Mode. 
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occur and the storage hole flux remains in a 
saturated condition. Part C of Figure 3 illus­
trates the technique by showing what occurs in 
the common volume of material between the 
two holes. 

This technique has one main disadvantage: 
Where writing into fields of words is desired, 
the disturb characteristics of the element in the 
o state result in a lowered signal-to-noise ratio. 
This is due to the fact that the flux around the 
storage hole of the unselected bits will "creep" 
to a higher value due to the word oriented dis­
turb currents and thus produce a larger output 
for the 0 state than is desired. However, the 
method has many advantages. One which has 
been mentioned is that of decreasing the search 
time. This reduction in the basic search time 
can be traded for hardware cost by permitting 
time-sharing of sense amplifiers and thus re­
ducing the number of circuits required. In ad­
dition, it can be seen from Figure 3A that all 
windings are orthogonal and thus the array 
noise problem is reduced and, since no woven 
windings are needed, the array fabrication is 
extremely simple. 

2.2.2 Ternary-State Reading 1'n the Hughes 
Unipolar Mode 

A significant aspect of the unipolar mode of 
operation is that by reversing the sense wind­
ing between the normal and complement words 
and using serial-by-bit interrogation, a ternary 
output results. That is, if a bit matches the 
search, then no output results; if a bit mis­
matches, then the output can be positive or 
negative dependent upon whether the normal or 
complemeht bit was interrogated. In this man­
ner it is possible to classify all words at one 
time as less than, greater than, or equal to the 
search word. 

This can be explained by Figure 2. Assume 
that an element in the 1 state (signal output 
during interrogation) in the normal word pro­
duces a positive output due to the reversed 
sense winding. If the same criteria are used 
as before for selecting interrogate drivers, 
Word No.2 will again produce no signal since 
it exactly matches the search word, and thus 
all elements interrogated are in the 0 state. 
However, vVord No.1 mismatches in the first 
bit position and, since the complement bit is in-

terrogated, will produce a negative output in­
dicating that Word No.1 is less than the search 
word. Word No. 3 agrees in the first bit posi­
tion with the search word and thus will pro­
duce no output for that interrogation. How­
ever, in the second bit position a mismatch oc­
curs and, since the normal bit is ~nterrogated, a 
positive pulse occurs indicating that Word No. 
3 is greater than the search word. Thus, (1) 
if a positive pulse appears on the sense line 
first, that word is greater than the input word; 
(2) if a negative pulse appears on the sense 
line first, that word is less than the word; and 
(3) no pulse on the sense line indicates an exact 
match. 

The technique described is quite significant in 
that the search time now is independent of the 
search type for these three searches and, with a 
tristable sense circuit, all words are classified 
simultaneously. With the conventional mode of 
operation described previously, only two sense 
signals may be derived: positive and negative. 
Therefore, in order to accomplish limit type 
searches, a stepping algorithm (see the section 
on Associative Memory Search Functions) 
which alters the search word between steps 
must be used or logic in the sense amplifier is 
necessary to determine if the first mismatch 
occurs when a 1 or a 0 is searched for (if the 
first mismatch occurs when a 1 is being 
searched for the search word is obviously 
larger than the stored word and vice versa). 

2.3.0 Operation Using One BIAX Per Bit 
Mechanizing an AM with one BIAX per bit 

requires a serial-by-bit interrogation. However, 
the method of accomplishing this interrogation 
can take several forms. 

One possible way to interrogate is to ripple 
through the bits serially and gate the sense sig­
nal logically at each amplifier against the in­
formation in the corresponding bit position of 
the input word. In this manner, mismatches 
can be detected and, if a tristable sense circuit 
is available, the limit searches (LESS THAN 
and GREATER THAN) can be directly im­
plemented without use of an algorithm. 

Another way to interrogate involves an inter­
rogate-priming cycle and does not require logic 
in the sense amplifier. Referring to Figure 1, 
it can be seen that the sense signals for a 1 and 
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o are out of phase for the same interrogation 
pulse. If the sense output were examined dur­
ing the rise time of the interrogate when 
searching for a 1 and during the fall time when 
searching for a 0, it can be seen that, if a match 
occurs, the pulses on the sense line would all be 
positive. If a mismatch occurs (for example, 
examining the output of an element in the 1 
state during the fall time of the interrogate 
pulse); then a negative sense signal occurs. 

The above process can be implemented in a 
straightforward manner by merely turning on 
(priming) all interrogate drivers which are 
to search for O's before rippling through the in­
terrogate cycle and turning them off at the 
proper time during the interrogate cycle. Fig­
ure 4 depicts the procedure for accomplishing 
the interrogation. 11 and Is are turned on dur­
ing the priming period since they are to search 
for 0 as indicated by the contents of the Data 
Register. In Word No.1, the corresponding 
bit positions contain a 0 and 1 respectively, and 
hence no output will appear on Sense Line 1 
during the priming period because of cancella­
tion. However, Word No. 2 contains 0 in both 
positions and therefore a double amplitude 
negative pulse will appear on Sense Line 2. Dur­
ing the interrogate period, a negative pulse ap­
pears on Sense Line 1 indicating that the word 
mismatches, while Sense Line 2 has all positive 
pulses which indicates a matching condition. 

INTERROGATE 
DRIVERS 

SENSE 
LINE -"'-----' 
NO.1 

SENSE 
LINE 
NO.2 

SENSE LINE 
NO.2 

SENSE liNE 
NO.1 

Figure 4. Interrogation Using One-BIAX-Per-Bit. 

The method of implementation described here 
is quite straightforward and is such that con­
ventional random access BIAX array windings 
with some modifications can be used. In addi­
tion, conyentional memory circuitry, with the 
exception of the word-oriented sense circuits, 
can be used, and data readout is provided with 
relative ease. This technique would, how-ever, 
be somewhat slower than the parallel-by-bit 
two-BIAX-per-bit scheme. Since the BIAX is 
operated in its normal mode, the disturb char­
acteristics and writing mode are such that al­
teration of arbitrary fields within a word can 
be provided. 

3. ASSOCIATIVE MEMORY SEARCH 
FUNCTIONS 

3.1.0 EXACT-MATCH Search 
There are a variety of search types which can 

be implemented in an associative memory.9,1'2 
These searches can be performed on an entire 
data word or on specified fields. The selection 
of fields is accomplished by having the ability to 
mask the data word. That is, any bit of the 
comparison word can be masked to a "don't 
care" state, and only those bits not masked will 
participate in the search. Thus, there is inher­
ently a ternary search characteristic (1,0, don't 
care) which may be taken advantage of in some 
cases to decrease the search time. A brief de­
scription of search types follows: 

The most commonly used search operation is 
the EXACT-MATCH search. This search, as 
the name implies, would locate all words in 
memory which have a one-to-one correspond­
ence with the bits of the search word. That 
is, any word in memory which mismatches the 
search word in one or more bit positions does 
not satisfy the search criterion. The search 
time is proportional to the number of bits in 
the word with the exception of the parallel-by­
bit techniques. 

3·2.0 Limit-Type Searches 
Under this category are included GREATER 

THAN, GREATER THAN OR EQUAL TO, 
LESS THAN, and LESS THAN OR EQUAL 
TO searches. The functions of these search 
types are fairly obvious. The time involved in 
performing these searches is dependent upon 
the method of mechanization. In the two-
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BIAX-per-bit scheme, with the ternary output 
described previously, the search time is the 
same as an EXACT-MATCH search and no 
logic gating is required in the sense circuitry. 
In order for the other techniques to have a com­
parable search time, logical gating is necessary 
in the sense circuitry at each bit interrogate 
time. 

Another technique for accomplishing the 
limit-type searches is to have an algorithm 
which alters the search word and then looks 
for exact matches at each step. In its simplest 
form this would consist of incrementing or dec­
rementing a counter for each step and per­
forming an EXACT MATCH search. However, 
by taking advantage of the ternary character­
istics of the interrogation (1, 0, don't care), it 
is possible to reduce the number of steps re­
quired. With this method the maximum num­
ber of steps required is eqiial to the length of 
the field participating in the search and, on the 
average, will be one-half the length of the field. 
For example, if a 12-bit field were being used in 
a LESS THAN OR EQUAL search the maxi­
mum number of steps required to perform the 
search is 12 (contrasted to a maximum of 4096 
in the simpler counter approach). Thus, if any 
word matches at one of the steps, it satisfies the 
search criterion. This method, while not re­
quiring logical gating of the sense circuits, re­
sults in a significant increase in component 
count if the field.s are not restricted. The proc­
ess of finding all words in memory which lie 
between some specified bounds can be accom­
plished by the successive application of the 
GREATER THAN OR EQUAL TO and LESS 
THAN OR EQUAL TO searches to the same 
field with a change of the search word. A LESS 
THAN OR EQUAL TO search is performed on 
the upper bound search word which therefore 
eliminates all words greater than the upper 
bound. The GREATER THAN OR EQUAL TO 
search on the lower bound search word then 
leaves those words lying within the bounds in­
dicating a matching condition. A somewhat 
more efficient algorithm can be implemented if 
the upper and lower bounds are available simul­
taneously. 

3.3.0 Pattern Recognition 
Another useful function which can be pro­

vided in an associative memory is a form of 

pattern recognition. As an example, consider 
the case where it is desired to compare incoming 
patterns with stored patterns in the associative 
memory. 

An incoming pattern is normalized, sampled, 
and quantized at set intervals. These quantized 
samples then become the keys with which the 
search is conducted. Since exact pattern 
matches are impractical, there are two words 
stored in memory (two-BIAX-per-bit mechani­
zation is used) for a single pattern. The word 
outputs, which indicate match or mismatch, are 
OR'd together and "don't care" bits are written 
into the words in memory. That is, if a bit 
position is in the "don't care" state, no response 
will be obtained from the bit during interroga­
tion for a 1 or a O. This has the effect of per­
forming a BETWEEN LIMITS search in mem­
ory and thus effectively establishes an envelope 
about the desired pattern. For example, if there 
are 32 quantization levels and one sample point 
has the value of 23, then the words stored in 
memory might by 101XX and 110XX (where X 
indicates a "don't care" bit) thus allowing a 
match indication for that point if the incoming 
waveform has a value between 20 and 27. Thus, 
the tolerance allowable is accounted for in the 
memory and is subject to control. This is il­
lustrated in Figure 5. 

3.4.0 Supplementary Search Operations 
Ordered Retrieval-In some problems it is 

desired to retrieve information in an ordered 
manner. In a conventional system this can be 

a 

:::; 
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Figure 5. Tolerance Envelope Used in Pattern 
Recognition. 
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a very time-consuming process. Using the ter­
nary characteristics of the associative memory, 
much more efficient ordering is possible. 10, 11, 13 

Minimum and Maximum Searches-In some 
applications it is desired to find the word in 
memory which has the minimum value, within 
the field, with respect to all other words in 
memory. The algorithm for accomplishing 
this is that which would be used for ordered re­
trieval. The algorithm would terminate when 
the first single response occurs. 

The maximum search would use the same al­
gorithm as for inverse ordered retriev~l. 

Nearest Neighbor-The capability of deter­
mining the nearest numerical neighbor above or 
below the value of the selected key can be im­
plemented by the use of an ordered retrieval 
algorithm. This is accomplished by using ei­
ther normal or inverse ordered retrieval start­
ing from the initial value of the key. A more 
complex algorithm can be implemented to ob­
tain the nearest neighbor on either side if it is 
desired. 

Composite Searches-In some instances it is 
desirable to perform searches on different keys 
and to specify a logical relationship between 
the separate key searches. Accordingly, only 
those ·words \vhich satisfy the logical relation­
ship and key searches are retained. For exam­
ple, if there are five keys, A, B, C, D, and E, it 
might be desired to perform an EXACT 
MATCH on key A, GREATER THAN OR 
EQUAL TO on key B, BETWEEN LIMITS on 
key C, and LESS THAN OR EQUAL TO on 
keys D and E. In addition, logical relationships 
such as ABCDE, ABC+DE, may be required. 
This type of search can be very useful in a vari­
ety of applications. The possibility of provid­
ing a match indication if a ·portion of the search 
keys match could also prove useful. 

4. AM WRITING FUNCTIONS 

As with the search functions there are a num­
ber of different writing functions which may 
be provided with an AM. As might be expected 
some of these functions are identical with the 
normal writing modes encountered in conven­
tional memories. However, there are also those 
modes which are peculiar to the AM organiza­
tion and which add to the power of the system 

and extend its range of usefulness. The writ­
ing functions which are provided in a system 
would be strongly application dependent. 

Sequential Load-In some applications, 
blocks of data may be transferred to the associ­
ative memory for use in subsequent searches. 
Sequential load starting from the first word lo­
cation is then useful as it allows the words to 
be loaded very rapidly by minimizing the con­
trols necessary while retaining a spatial rela­
tionship with respect to the source store. In a 
partial load, word locations not written into can 
be prohibited from responding to subsequent 
searches. 

Random Load-Another loading feature 
which is often useful is the random load. This 
is the same as for a conventional random access 
memory and requires that the physical location 
(address) to be written into be specified. 

Load First Empty Location-An associative 
memory can be implemented to keep track of 
its own empty locations, such that when a word 
is to be entered, it is automatically writtten into 
the first empty location. In a memory where 
the retrieval time is location dependent, this is 
very effective since all data is held at the 
"front" of the memory, thus minimizing access 
time. This data-packing feature can be very 
useful. 

W rite "Don't Care" Bit-Masking within the 
data word in the associative memory itself can 
be accomplished by writing a bit to the "don't 
care" state. With this technique bounds can 
be stored in the memory as described previ­
ously. This is one of the more interesting fea­
tures which should find great utility. The two­
BIAX-per-hit schemes are, at present, the only 
techniques which can be used to accomplish this. 

Field Alteration-The ability to alter a single 
bit or field of all words or selected words as a 
consequence of the result of a search is another 
writing characteristic which might be provided. 
This feature is particularly useful when using 
the memory as an aid to parallel computation. 
The element must be operated in the conven­
tional mode to implement thiB feature. This 
could also be termed "writing through a mask." 

Memory Partitioning-It is possible to parti­
tion an associative memory so that there effec-
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tively exists "micro-associative memories" with­
in the main associative memory. This feature 
is useful when several types of data are stored 
and the access time needs to be kept to a mini­
mum. Thus, only that portion of the memory 
containing the data to be interrogated is ac­
cessed and the non-pertinent data for that 
search is bypassed. This of course assumes that 
the memory contains multiple planes and the 
normal search process consists of a sequential 
search of the planes (all words in a plane are of 
course searched in parallel) . 

5. AM READOUT FUNCTIONS 

As with the other characteristics of an associ­
ative memory, there are a number of different 
types of readout possible. The type of readout 
necessary is, of course, dependent upon the ap­
plication. 

Address Readout-In an application where 
the key or keys are well defined, the use of an 
associative memory with a conventional random 
access memory may be advantageous. In this 
mode, a block of keys is transferred from the 
conventional memory to the associative memory 
in a specified seq~ence so that the physical loca­
tion of the keys in the associative memory 
is spatially linked with data stored in the con­
ventional memory. Upon searching the associ­
ative memory, the output indicates the ad­
dresses of the words in the random access mem­
ory which satisfy the applied search criteria. 
This mode may be particularly useful where the 
ratio of the search key to the remaining data 
word is small, since at present the associative 
memory is expensive relative to conventional 
random access memory. 

Data Readout-The ability to read out the 
contents of an associative memory is another 
feature which is useful. The flexibility that 
this allows in a system can be significant, since 
any portion of the data word may be searched 
on, and the data word itself, or perhaps the por­
tion of the data word not searched, can be read 
out. 

Multiple Match Resolution-In any search the 
possibility of more than one word matching the 
applied criteria has to be contended with. The 
ability to retrieve all matching words is, in most 
cases, a necessity. This is usually accomplished 

by retrieving them sequentially through a com­
mutating network. An efficient design of the 
commutating network is necessary since it can 
be an important factor in the retrieval time. 

Yes-N o-In some applications a decision is 
made regarding the next course of action after 
interrogation of the memory, bas"ed only on in­
formation as to whether or not the search has 
been matched. The Yes-No operation is a rela­
tively easy feature to provide. 

Count Matches-When the memory is 
searched there is a possibility, dependent on the 
application, that a significant portion of the 
memory could respond to the search. In such 
cases, an indication of the number of matches 
which exists may be wanted before output oc­
curs. If the dump is excessive, then the search 
may be refined to reduce the number of re­
sponse. 

6. CHARACTERISTICS OF AM SYSTEMS 

The foregoing has been a brief description of 
some of the more salient features of AM mech­
anization techniques and functions. Table I 
lists the techniques mentioned and shows the 
relative performance of the mechanization 
schemes. It can readily be seen from the dis­
cussion above and Table I that an absolute com­
parison of techniques is not practical. For an 
absolute comparison, detailed knowledge of the 
system application would be required, so that the 
various factors and tradeoffs could be intelli­
gently evaluated. 

N one of the schemes shown in Table I re­
quires logical gating of the sense circuits for 
performing limit-type searches. Thus, for 
Schemes 11, 3, and 4, a stepping algorithm 
(similar to that in Ref. 11) is used for these 
search types and therefore the limit search time 
is a function of the length of the field used in 
the search. However, by providing logic in the 
sense circuit, the limit search time for these 
three schemes becomes proportional to M, the 
number of bits per word. The merits of pro­
viding this mode would be ascertained from the 
total system analysis. 

In the equations for the relative limit search 
time, the first term represents the time re­
quired for storage of intermediate results (con­
sidering one unit of time as the time between 
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Table 1. Associative Memory System Characteristics. 

Relative 
Exact Data Reading Wrih' 
Match (Additional Restriction IIDon't Care" 
Search Relative Limit Data Array On Fields For Bit 

Scheme Mechanization Time Search Time Writing Reauirements) L:ilJ11.t Search* Available 

1 Two-BIAX-per-bit E+~ Whole word Additional Fixed fields Yes - (ave) 
M 2 2k only. array windings only. 

Signal-no signal it 
3F + ~ (max) 

required. 

Binary sense k 
output 

2 Two-BIAX-per-bit Whole word Additional No restrictions Yes 
only. array windings (any combination 

Signal-no signal M M required. of bits selected 
by mask permis-

Ternary sense sable) 
output 

3 Two-BIAX-per-bit E+~ Unrestricted No new windings Fixed fields only Yes - (ave) 2 2 as to required. 
Signal-signal M 

3F + ~ (max) 
location and 
number of bits 

Binary sense 
output 

4 One-BIAX-per-bit 3F + ~ (ave) Unrestricted No new windings Fixed fields only No 
2 as to required 

Signal-signal M 
6F + ~ (max) 

location and 
number of bits 

Binary sense 
output 

:r..mEND: M Number of bits per word ilSee text.. 
k 
F 

Number of bits per word interrogated simultaneously 
Field length used in limit search 

successive interrogations). Thus, since the aver­
age number of steps (field interrogations) in the 
incrementing algorithm is one-half the field 
length, the number of storage cycles required is 
F /2 and, in the type of system being considered, 
the storage cycle is about three times the "rip­
ple" time, hence the term 3F /2 in Scheme 1. 
The second term represents the total "ripple" 
interrogate time. Since again F /2 steps are re­
quired on the average, and there are F /k ripple 
times, the total is F2/2k. Of course if k = 1 

(serial-by-bit interrogation) there results the 
equations shown in Scheme 3. In Scheme 4 the 
first term is increased due to the priming cycle 
and the need for sense amplifier recovery due 
to the priming cycle. 

The table attempts to compare systems of ap­
proximately· equal logical complexity, hence the 
restriction on the fields in the limit searches. 
Obviously, it is logically possible to have com­
pletely variable fields for the limit searches in 

I 
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all Schemes at the expense of additional compo­
nents (which can be quite significant in num­
ber) . 

7. THE ASSOCIATIVE MEMORY MODEL 

Of the techniques for mechanization de­
scribed earlier, the only one which departs sig­
nificantly from the conventional use of the 
BIAX is that which produces signal-no signal 
operation. For this reason it was decided to 
verify the approach experimentally by the con­
struction of a model which utilized this new 
mode of operation. 

The block diagram of the model is shown in 
Figure 6. The array portion of the system con­
sists of 16 words of 10 bits each, and one word 
of 20 bits for purposes of signal-to-noise experi­
ments. Since both the normal and complement 

WORD WRITE 
DECODER 

CLOCK 
INPUT 

WRITE 

READ 

WORD WRITE 
DRIVERS 

WORD WRITE 
SWITCHES 

of information are stored, there are therefore 
340 bits in the array (the complement of the 
20-bit word is not needed for the experiments 
for which this word is intended). 

The block diagram of Figure 6 is not complete 
in every detail but shows the more pertinent 
features. The Data and Mask Registers con'­
sist of a bank of 10 manual switches each with 
the provision for patching the address counter 
into the Data Register to permit dynamic 
search and write operations. The model is also 
capable of performing "write" and "read" in a 
single step process by means of push button con­
trol. The search timing can be controlled to 
allow serial-by-bit operation or parallel-by-bit 
with k from two to ten. 

Figure 7 shows three photographs of the 
demonstration model. The top figure is inter-

SENSE 
AMPLIFIERS 

Figure 6. Simplified Block Diagram of Model of Associative Memory. 
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Figure 7. Photographs of Associative Memory Model. 

esting in that it shows that no woven windings 
are necessary in the array. This suggests an 
array structure with all elements in contact 
which provides highly compact and noise-free 
systems. The model proved that the technique 
is valid and could be applied to larger systems. 

Figure 8 shows waveform photographs ob­
tained from the 20-bit evaluation word. The 
write program is shown in part (a); part (b) 
shows the interrogate current waveform and 
the disturbed 1 output of a single element. 
Part (c) shows the 0 output of a single ele­
ment, which together with part (b) indicates 
SIN ~ 40. Part (d) shows the result of inter­
rogating a string of 20 elements, 19 of which 
have stored O's while the 20th has stored in it a 
1. Part (e) shows the result of interrogating 
the same string of 20 elements while all are in 
the 0 state. Comparison of parts (d) and (e) 
clearly indicates a sense winding output signal­
to-noise ratio of better than 3 :1, which permits 
relatively straightforward amplitude discrimi­
nation. 

The model has been operated at search clock 
rates of 2Mc (limited by external equipment) 
with simultaneous interrogation of all bits of 
the word (k = 10). 

8. CONCLUSIONS 

This paper has presented several techniques 
for the utilization of the BIAX in an associative 
memory system. The techniques presented have, 
in some cases, significantly different operating 
parameters. In addition, the influence of the 
various techniques on the search speeds has 
been pointed out. From this discussion it can 
be seen that the number of trade-off areas 
which exist, and the resulting influence on sys­
tem complexity and performance, make it neces­
sary to have an intimate knowledge of ultimate 
system utilization in order to effect a proper 
associative memory design. 
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A 16k-WORD, 2-Mc, MAGNETIC THIN-FILM MEMORY 
Eric E. Bittmann 
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Paoli, Pennsylvania 

INTRODUCTION 
Small magnetic thin-film temporary-data 

memories1
,2 have been in use in operational 

computers since mid-1962, when the prototype 
Burroughs D825 Modular Data-Processing Sys­
tem3

,4 was installed at the U. S. Naval Research 
Laboratory. To the present, some 43 additional 
D825 systems have been placed in use or or­
dered. The experience gained in the successful 
operation of these small thin-film stores has en­
couraged the more ambitious construction of a 
large, random-access memory for a modular 
processing system. 

Control of the memory module is effected by 
descriptor words containing 52 bits. The de­
scriptors originate at either a computer or I/O 
control module. A memory module can receive 
four descriptors during one request. 

Each memory module can perform a number 
of logic manipulations independently of other 
modules. A memory module can: execute the 
conventional read or write instructions on a 
single word, or on two, three, or four consecu­
tive words simultaneously; read n words, where 
n is a quantity contained in the descriptor; per­
form a block transfer operation from one area 
in memory to another, or to another memory 
module; or perform a search for a requested 
word or a requested digit, either in itself or in 
any other memory module, matching against a 
word or digit supplied. 

"Party lines" interconnect the memories 
with either computer or I/O. Each party line is 
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assigned a number. If two or more requests 
appear simultaneously on different party lines, 
the signal on the lowest-numbered line receives 
priority. A separate party line interconnects all 
memory modules, allowing communication from 
memory to memory. 

The memory module is physically divided into 
two cabinets, each storing 8,192 words of 52 
bits each, for a total capacity of 16,384 words. 
The 52-bit word contains 48 data bits, three 
control bits, and one parity bit. The control 
bits act as tags which tell the program whether 
or not the instruction has been executed. 

The read/write cycle of each memory is 0.5 
p,sec, and the access time is 0.3 p,sec. During 
the remaining 0.2 p,sec, the word is rewritten 
or replaced at the selected address. 

The two cabinets of a module can be tested 
independently of each other. Several test fea­
tures are built into each cabinet. A test word 
can be written into all addresses, or into alter­
nate addresses, or into a selected address. A 
continuous stop-on-error mode compares every 
readout with the test word. Operation halts on 
an error, and the faulty word and its address 
are displayed on the control panel. Single-cycle 
and single-pulse operation are also possible. 

MEMORY MODULE ORGANIZATION 

Figure 1 is a block diagram of one memory 
module; the interwiring in the memory stack 
is shown in Fig. 2. To keep the total sense 
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PARTY LINES 

104 

1\ SPUT BIT CONDUCTOR EASY (BIT.FIELD) AXIS 

STROBE REFERENCE 1. .. \ ~(LDNGITUDINAL DIRECTION) 

STROBE ~ ~~ RECTANGULAR B·H LOOP 
BUFFER _ HARD (WORD· FIELD) AXIS 

(TRANSVERSE DIRECTlONl 
SQUARE B·H LOOP 

FILM SPOT WORD CONDUCTOR 

SENSE CONDUCTOR 

Figure 1. Memory Module, Block Diagram. 

delay and sense signal attenuation reasonably 
low, we organized the stack into a configuration 
of 4096 words, of 104 bits each, rather than 
8192 words, 52 bits each. This kept the total 
sense delay below 100 nsec for the worst-case 
address location. 

Film elements are deposited 768 per sub­
strate, in a 32 X 24 array. Five substrates 
in a row provide storage for 32 words, 120 bits 
each. A single five-substrate film word, there­
fore, can easily store two 52-bit computer lan­
guage words. Four such rows (or 128 words 
on 20 substrates) comprise a plane. A plane 
with certain associated circuit caras, connec­
tors, and structures is assembled as an integral 
plug-in unit called a frame; 32 frames comprise 
a 4096-word stack. 

A pair of computer words requires 105 bits, 
including two parity, six control, and one ref­
erence hit. The unused bits, or spares, are dis­
tributed through the stack for possible replace­
ment use. A row of spare bits can be easily 
wired into position to replace another row, if 
necessary. This is normally performed during 
testing of memory planes, prior to module as­
sembly. 

A descriptor word arriving at the control 
unit receivers initiates a memory cycle. The 
address data is transferred to the address 
registers, and a memory cycle is initiated. 

The address (6 bits) is decoded at the input 
of every word driver and at the input of every 
word switch. Selection of a film word occurs 
in a diode-transformer matrix. The matrix 
contains 4096 transformers and the selection 
diodes. The memory is addressed by the word­
organized (linear-select) scheme; each film 
word line is driven from a single transformer. 
The current from a selected word driver flows 
through the matrix to the selected word switch. 
The transformers have linear (not square-loop) 
characteristics, and the selected film word line 
receives a word current pulse. This current 
interrogates all the film bits, inducing signals 
into the sense amplifiers. 

Planar films remagnetize under the influence 
of two orthogonally opposed fields. (See inset 
in Fig. 1.) A word field applied parallel to the 
film's hard direction rotates the magnetization 
vectors from their rest position (easy axis) 
into the hard direction. (Vectors of a bit stor­
ing a ONE and a bit storing a ZERO rotate 
from opposite directions, each passing essen­
tially through 90°, to an almost common hard­
direction alignment.) This rotational switch­
ing induces a readout signal into the associated 
sense line. A second field, the bipolar bit or in­
formation field, applied parallel to the easy di­
rection (by a bit conductor lying in the hard 
direction), while the film is still magnetized 
in the hard direction, determines the future 
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Figure 2. Memory Stack Interwiring. 

state of the cell after the word field has been 
removed. (Vectors fall back through 90° to­
ward either the ONE or ZERO orientation, 
along the easy axis.) 

Interrogation of a word occurs during the 
leading edge of the word current, and data is 
written into the films during the trailing edge 
of this current. Bit currents, present in all 
lines during word-current turn-off, ensure cor­
rect storage of data to be written. The polarity 
of each bit current determines the storage of a 
ONE or a ZERO. 

A reference bit in each film word (104 bits) 
was included for the following reason. The 
sense readout signal has a width of only 50 to 
60 nsec, and the delay in the stack can vary as 
much as 70 nsec for different address locations. 
To generate a variable time strobe pulse, a 
strobe reference bit, storing always a ONE, 
is included in the stack as the 105th bit. The 
strobe reference bit sense amplifier drives a 
clock buffer amplifier (strobe buffer) which 

supplies a 25-nsec-wide strobe pulse to the in­
formation register flip-flops. The strobe pulse 
sets each bit in the flip-flops to the data state 
represented by the sense signal passing at that 
moment through the corre'sponding sense am­
plifier. 

The bit current flows parallel to the sense 
conductor, and induces large inductive noises 
into the sense signal. Transposition of each 
sense line with the corresponding bit line by a 
crossover connection in the middle of the mem­
ory plane reduces this noise. This connection 
in every sense line is made after the glass has 
been sandwiched between the printed-circuit 
boards. Due to mechanical imbalance between 
each sense-line/bit-line pair, some noise (as 
much as 5 mV) remains. Further reduction 
of this noise is possible by manually adjusting 
the small sense end-around loop on the plane. 
Bit-noise cancellation prevents sense amplifier 
overloading, and ensures reliable operation at 
high speed. 
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As an additional means of keeping noise in 
the sense lines at a minimum, we included an­
other feature in the design; during a write 
cycle, the flow of bit current is restricted to a 
single memory 'plane, rather than being per­
mitted to flow through the entire stack. Each 
information switch circuit is associated with 
one plane (32 per stack). One of the switches 
is enabled by the decoding of five address bits. 
The information (bit) drivers connect to the 
appropriate bit lines on each frame through a 
diode-transformer assembly (Fig. 2). Employ­
ing four (rather than two) diodes per trans­
former has the advantage that the bit switch 
circuit can be designed for single-polarity cur­
rent pulses even though bipolar bit currents 
flow in the plane. Also, the same amount of 
current flows through the switch, regardless of 
the information being written into the films, 
and only two conductors per bit are needed to 
interconnect the corresponding bit lines be­
tween frames. Sneak ground currents are also 
eliminated with a four-diode scheme. The in­
formation drivers see high impedances in every 
plane but the selected one. This arrangement 
eliminates the time delay in the bit current, be­
cause the bit lines are effectively connected in 
parallel. 

Words are stored 128 to a memory plane, on 
32 planes, rather than in the more conventional 
fashion of a plane storing one bit position for 
all words. Because of this geometry, and the 
restriction of bit currents to a single memory 
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plane, each plane is effectively a 128-word mem­
ory stack in itself, functionally isolated from 
other planes, during write. The sense lines, on 
the other hand, are series-connected through all 
bits in the stack, one line per bit position. 

MEMORY TIMING 

The memory timing waveforms are shown in 
Fig. 3; waveforms of actual word current, bit 
current, sense readout, and strobe pulse are 
shown in Fig. 4. 

Memory read operation begins with an initi­
ate pulse received from the memory control 
unit. Storing the address information in the 
address register requires 20 nsec. Address de­
coding occurs in a single gate level, and re­
quires an additional 20 nsec. The decoding en­
ables the selected word switch circuit, and also 
one of the 32 information switches. A word 
gate pulse turns on the chosen word driver at 
100 nsec. With a circuit delay in the driver of 
50 nsec, current flows in the selected word line 
at 150 nsec. The sense signals are induced on 
the sense lines during the word current rise, 
but, depending upon the location of the word in 
the stack, may be retarded at the sense ampli­
fier input by as much as 70 nsec. The earliest 
time at which a signal can appear at this input 
is at 160 nsec, the latest at 320 nsec. An am­
plifier delay of 40 nsec allows signals to arrive 
at the information register at between 200 and 
270 nsec. The strobe pulse clocks the informa-
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Figure 3. Memory Module Timing Diagram. 
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Figure 4. Waveforms: Word and Bit Currents, Sense Readout, and Strobe Pulse. 

tion register, which has a delay of 20 nsec. At 
the latest possible time of 290 nsec, the infor­
mation register contains the read data. 

The write operation begins at 300 nsec. The 
write cycle either replaces the data read out 
during the previous read (and contained in the 
information register), or enters new data into 
the selected word location, via information 
drivers. The new data is taken from the buffer 
register, and is substituted for the signals from 
the information register. With a circuit delay 
of 40 to 50 nsec in the information driver, bit 

current flows at 350 nsec for a duration of 100 
nsec. While the bit current is at its crest, the 
word current (which has continued to flow 
since initiation of read) is terminated. Termi­
nation of the word current allows the mag­
netization vectors of the films to rotate in the 
directions established by the bit currents, and 
the word is written. To eliminate magnetizing 
energy which would otherwise remain stored 
in the pulse transformers employed in the bit 
circuits, a recover pulse is selectively applied to 
bit lines. The recover pulse, opposite in polar­
ity to the bit current, and of about the .same 
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duration, terminates at 550 nsec, to complete 
the write portion of the memory cycle. 

MECHANICAL CONSTRUCTION 

A single cabinet (Fig. 5) houses one stack 
and all associated circuitry; two such cabinets, 
one containing certain common circuitry (that 
shown in the middle of Fig. 1) make up 
a memory module. The front-opening door 
on each cabinet carries the control panel for 
that stack and permits full access to the in­
terior. The interior of the cabinet (Figs. 6 and 
7) contains two circuit-card racks which may 
be locked together, and can be swung either 
separately, or in unison, around a vertical 
hinge. The stack, mounted in the lower portion 

--.... _----
••• 

Figure 5. Memory Cabinet, Front Door and 
Control Panel. 

Figure 6. Memory Cabinet, Door Open and Racks 
Extended. 

of one of these racks, as shown in Fig. 6, has 
the following dimensions: height 30 in., width 
26 in., and depth 12 in. The stack housing is 
an integral part of the rear card rack, which 
can be swung completely out of the cabinet. 
The memory frames slide into the stack en-

. closure from the front, and engage with bit 
connectors located in the rear panel. The 32 
frames lie in the stack horizontally, with a 
frame-to-frame spacing of 0.7 in. The word 
driver and switch lines engage the frames 
through "side-entry" connectors located at the 
left side of the stack. Placing the word-driver 
cards and the word-switch cards to the left of 
the stack keeps the interconnecting wires quite 
short. (The address decoding matrix is con­
tained on the 32 memory frames.) 

The five rows of cards above the stack (Fig. 
7) contain, in bottom-to-top order, sense ampli­
fiers, information register, bit drivers, address 
register, and timing and control circuits. 

The separately hinged front rack (Fig. 6) 
includes space for five rows of logic cards for 
the party-line transmitters and receivers, input 



Figure 7. Memory Cabinet, Showing Rear Rack and 
Bit Switches. 

and output decoding, receiving and transmit­
ting registers, and parity-generating and check 
circuits. 

A magnetic shield surrounding the memory 
stack reduces the disturbing influence of the 
earth's magnetic field. 

A separate power supply is located in the 
rear of each cabinet, behind the card racks. 

The unit operates in a temperature range 
from 0° to 50° C. Fans, located in the top and 
bottom of the cabinet, provide air to cool the 
equipment. 

THE MEMORY PLANE 

The magnetic thin films employed in this 
system are produced by vacuum deposition of 
nickel-iron alloy onto glass substrates, while 
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under the influence of a magnetic field. The 
films are 1000A thick; the glass measures 70 
by 43 mm, and is 0.2 mm (8 mils) thick. An 
etching process, applied after deposition, re­
moves the unwanted material from the glass. 
The 768 rectangular cells contained on one sub­
strate measure 30 by 80 mils each, spaced on 
50-mil and 100-mil centers, respectively. The 
easy direction of film magnetization is along 
the length of the cell, hard direction along the 
width, to accommodate shape anisotropy-the 
demagnetizing effect of the air return path is 
less significant in this orientation. Two sman 
registration holes, drilled into the glass prior 
to deposition, help in the alignment of the glass 
with the conductors during test and assembly. 

Each substrate stores 32 words of 24 bits 
each. Twenty such glass substrates are assem­
bled into one memory plane, as shown in Fig. 8. 
Arrangement of the substrates into five rows 
of four each provides storage for 128 words of 
120 bits each. (Each word includes 15 spare 
bits, which are distributed evenly, for possible 
later replacement of weak or faulty bits.) 

The glass substrates of each memory plane 
are sandwiched between two printed-circuit­
board assemblies which measure 20 in. in length 
and 9 in. in width. Three conductors address 
every memory cell: a word conductor, a sense 
conductor, and a bit conductor. The word con­
ductor, 20 mils wide, is parallel to the film easy 
direction, and lies orthogonally to the sense and 
bit conductors. (The p.elds associated with the 
conductors are, of course, orthogonal to the con­
ductors.) A split bit conductor, each half 20 
mils wide, and separated from the other by 50 
mils, embraces the 10-mil-wide sense conductor. 

Five printed-circuit boards, each with 24 bit 
and 24 sense conductors, bond to a single flat 
backing board 0.1 in. thick (Fig. 8). The 128 
word lines, printed onto 1-mil-thick Mylar, 
bond to the rigid sense-bit assembly. All con­
ductors terminate into tab connections on 50-
mil centers, located at the edges of the printed­
circuit boards. 

A 9-mil-thick glass epoxy spacer separates 
the two printed-circuit assemblies, and prevents 
excessive forces from pressing onto the glass 
substrates. A small amount of epoxy glue holds 
each substrate in its proper location. 
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Figure 8. Elements of Memory Plane. 

MEMORY FRAME CIRCUIT BOARDS 

A frame (Figs. 9 and 10) surrounds each 
completed plane. Three types of circuit boards 
mounted on the edges of the frame--the word 
selection matrix, five sense boards, and five bit 
boards-=-connect to the plane. (There are five 
rows of substrates in the plane.) The attach­
ment of connectors to the frames helps greatly 
during debugging and testing, and during re­
placement of faulty semiconductor components 
on the plane. (The circuits employed on these 
boards-for word selection, sensing, and bit 
selection-are described in greater detail in the 
next section. ) 

Word Selection Matrix 
The word selection matrix, which is part of 

the frame, contains 128 selection elements. 
Each element consists of a pulse transformer 
and three diodes. The transformer is wound 
with three windings-two primary windings 

and one secondary winding-with a turns ratio 
of 1: 1:1. To maintain balanced drive condi­
tions between the word drivers and the word 
switches, we included two selection diodes, one 
in each primary winding of the transformer. 
The third diode in the secondary circuit speeds 
transformer recovery (Fig. 11). The trans­
former reduces the capacitive noise induced 
into the sense signal from the word current, as 
well as the noise generated during transition of 
the address selection. Each word line is elec­
trically isolated from all other word lines. Re­
verse biasing of all diodes in a selection matrix 
prevents undesired sneak currents. During a 

Figure 9. Complete Memory Frame, Front. 



Figure 10. Complete Memory Frame, Back. 

memory cycle, this bias is removed from the 
row of diodes connecting to the enabled switch. 
In a matrix without transformers, a large volt­
age swing would be coupled into the sense line, 
because of the capacity which exists between 
word line and sense line. The capacitive cur­
rents would induce a normal-mode signal which 
cannot be removed in a differential input cir­
cuit. 

The memory operates at 2 Mc; this selection 
scheme, however, operates6 at speeds up to 
6 Mc. 

The word-drive and word-switch connections 
are made through "side-entry" edge-board con-
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nectors. The 128 paired output terminals of the 
matrix, spaced on 50-mil centers, align with 
the film word lines, and connect to the word 
lines through welded-on jumper wires. Welded 
"end-around" connections jumper the far ends 
of the word lines on the plane, to complete the 
return path. The nominal word-current ampli­
tude is 400 rnA, with a tolerance of ±10 per­
cent. 

Sense Boards 
The five sense boards are located at one edge 

of the plane, and the five bit boards at the op­
posite edge. Therefore, all sense connections 
are made from the same edge. A small wire 
loop shorts the far ends of each sense line. The 
near end connects to the secondary winding of 
a transformer, as shown in Fig. 12. Each board 
contains 24 transformers. Each sense trans­
former contains three windings; one connects 
to the film sense line, and the other two connect 
to an edge-board connector. -Four output con­
nections. per sense line are required. The cO.n­
nector terminals are spaced on 50-mil centers. 

Bit Boards 
The bit-line selection spheme employed in this 

memory utilizes a transformer in every line 
(Fig. 13). The secondary winding connects to 
the corresponding bit_ line. A bit current of 
100 rnA is required to write a single bit. The 
printed-circuit end tabs on the bit boards mate 
with the edge-board connectors located in the 
backplane of the stack (Fig. 7). 
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Figure 11. Word Selection Matrix. 
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Figure 12. Sense Line'Interwiring. 

CIRCUIT DESCRIPTION 

Word-Current Drivers and Switches 
The word driver and word switch circuits 

which resemble those described by Bates and 
D' Ambra,6 can generate currents with 20-nsec 
rise and fall times when loaded by a small 
(128-word) memory, such as that employed in 
the computer module of the D825. The loading 
of the 4096-word selection matrix (Fig. 11) in­
creases the current rise time to 35 nsec, the fall 
time to 50 nsec. The driver supplies both a 
positive pulse and a negative pulse to the in­
terconnecting twisted pair of conductors. The 
balanced drive arrangement eliminates ground 
currents and radiating fields which can greatly 
add to the noise problem. The closeness of the 
driver and switches to the stack keeps the inter­
connecting wires short. The total delay (about 
10 nsec) from a driver to the word-line end­
around short is less than the current rise time, 
and does not deteriorate the current shape. The 
drivers and switches supply a current of 200 
mA to the selection matrix. The word trans­
formers in the matrix have a 1:1:1 turns ratio, 
and the output winding receives a current of 
400 mAo The drivers and switches connect to 
the stack through twisted-pair conductors, and 
both circuits have output impedances of 100 to 

150 ohms. Drivers contain a 7-input AND gate 
at the input, and the switches contain a 6-input 
AND gate. Delay in the circuits is 35 nsec. 

Sense Amplifiers 
The sense lines are effectively series-con­

nected through all of the bits in the stack. The 
sense transformer output windings of corre­
sponding bits connect together from plane to 
plane in series fashion. Every sense line con­
tains an end-around loop which shorts the far 
end of the line. This short reflects to the be­
ginning of the line connecting to the trans­
former. The sense signal which travels through 
a transformer on an unaddressed plane receives 
only a small attenuation after the short is re­
flected to the output winding. This reflection 
appears at the input after two line delays, and 
accounts for the signal delay in the stack. The 
pickoff is taken from the middle of each line, 
to halve the delay, as shown in Fig. 12. Signal 
attenuation for worst-case locations is 6 dB. 
Nominal sense output at the plane is 1.5 mY. 
The amplifier has a gain of close to 3000, and a 
delay of 40 nsec. The amplifier is tr~nsformer­
coupled into a differential input stage, which is 
succeeded by two amplifying stages. The am­
plifier digitalizes the signal, and sends both 
true signal and complement signal to the as­
sociated information register flip-flop. 

Information or Bit Drivers 
The bit drivers supply bipolar current pulses, 

100 nsec wide, to the stack. The bit-driver in­
put circuit contains the decision elements which 

Figure 13. Bit Selection Scheme. 



either copy the word stored in the information 
register or allow new data, obtained from the 
buffer register, to be written into the stack. In 
addition, the logic function which determines 
whether a ONE should be stored as a ONE or 
a ZERO is included. This is necessary because 
of the sense-line transposition in the center of 
every plane. The sense amplifier amplifies only 
single-polarity signals, and all ONEs stored in 
the stack must appear as negative signals at 
the input to the sense amplifier. Therefore, all 
ONEs are stored as ONEs in half of the stack , 
and as ZEROs in the other half. The reverse 
is true for the storage of ZEROs. 

The driver input contains two OR gates 
driven from four two-input AND gates. The 
bit driver delay is 35 nsec, and the output stage 
is transformer-coupled and has an output im­
pedance of 50 ohms. 

All lines connecting the stack to the back­
plane are impedance-matched. The bit drivers , 
located in the second and third rows, connect 
to the middle of the stack through five groups 
of coaxial lines, as shown in Fig. 7. On the 
frame bit connectors (hidden by wiring and 
c i r cui t s), corresponding bits interconnect 
through twisted pairs, with an impedance of 
150 ohms. A matching transformer connects 
the coaxial line to the twisted pair. 

The bit switches for the eight frames shown 
installed in Fig. 7 cover the coaxial bit lines. 
Each bit switch circuit is contained in a strip 
which aligns with the associated memory 
frame. One switch circuit handles the currents 
from one row of substrates. Five such circuits 
on a strip are driven from a common drive cir­
cuit (visible at the far right in the photo­
graph) . 

The bit line impedance on the frame is 10 
ohms. The nominal bit current is 100 mAo The 
bit transformer has a turns ratio of 2:2 :1, 
which requires 25 mA of current in the pri­
mary. The matching transformer which con­
nects the interconnecting twisted pair to the 
coaxial drive line has a 1:2 turns ratio. This 
transforms the impedance from 160 ohms to 40 
ohms, which is close enough to match the 50-
ohm coaxial cables. The current necessary 
from a bit driver, to produce 100 rnA of bit 
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current in a plane, is 50 rnA. 

The total of 105 times 25 rnA of current is 
received by the selected information switch. 
The switch is divided into five individual cir­
cuits, operating in parallel, each handling a 
total of 500 mA; each circuit handles the bit 
currents in one substrate row. 

SUBSTRATE TESTER 

A substrate tester (Fig. 14) submits every 
bit on a substrate to a pulse test which subjects 
the bit to disturbing fields resembling worst­
case examples of those encountered during ac­
tualoperation. 

The films exhibit pronounced magnetic an­
isotropy; the B-H hysteresis loop along the 
film easy axis is rectangular, while that along 
the hard axis is linear. The films also exhibit 
various disturbing thresholds for fields applied 
in different directions. Because of the film's 
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linear loop in the hard direction, a low disturb 
threshold exists for fields parallel to the trans­
verse (hard) direction. (See Fig. 2.) 

The test fixture (Fig. 15) is assembled from 
circuit boards similar to those surrounding the 
memory plane in the actual memory stack. S ub­
strates are inserted and removed through a nar­
row slit located at the word end-around connec­
tions. Two pins through holes in the glass, used 
to register substrates and circuit boards in the 
actual memory-plane sandwiches, furnish simi­
lar registration ill the substrate tester. 

A relay rack contains the circuitry necessary 
to test the substrates. Indicators for alI" flip-flop 
circuits, located on a control panel, allow ob­
servation of the test, and help during opera­
tional maintenance. 

The worst disturb condition exists when a 
stored ONE bit is surrounded by all ZEROs, 
or when a ZERO is surrounded by all ONEs. 
The test word 10001000100 ... , disturbed by 
all ZEROs in adjacent locations, is tested for 
ONEs; the test word 01110111011. ~ .. , dis­
turbed by all ONEs in adjacent locations, is 
tested for ZEROs. 

At the beginning of an operation, the test 
word (ONEs) is written into all 24 bits of the 
first address. N ext, all ZEROs are written into 
the adjacent word location; the latter is re­
peated as many as 32,000 times. The rewrite 

Figure 15. Substrate Tester Test Fixture. 

process subjects the test word to transverse 
and longitudinal disturbing fields applied simul­
taneously. The test word is read after the com­
pleted disturb cycle, and its content compared 
with a program register. A match continues 
the test, by shifting the test word to the next 
bit (0100010 ... ), and the disturbing continues. 
After three shifts, every bit in the first address 
has been tested for ONEs. The test word for 
ZEROs follows. This test continues until all 
bits are checked for ONEs and ZEROs. The 
disturb word can be written to the right or to 
the left of the test word, alternatively to the 
right and then to the left, or parallel to the 
right and left. The parallel writing of two 
words which embrace the test. word constitutes 
a more than worst-case· condition-a condition 
that never occurs during memory operation­
but allows grading of the substrates. 

Substrates which pass the 32k disturb test 
are assembled into memory frames. These sub­
strates tolerate about 4k to 8k disturb pulses, 
when tested in the more-than-worst-case par­
allel mode. The test is fully automatic, and the 
output signal of the sense lines is not moni­
tored. The tester operates at a frequency of 1 
Mc; one disturb test requires 8 seconds if no 
error occurs. Evaluation of a good substrate 
requires about 30 to 60 seconds, because the 
substrate is also retested in the parallel mode. 
Operation stops on a bad bit, and panel indi­
cator lights display the location of the bad bit, 
and whether the failure represents a bad ONE 
or a bad ZERO. 

Film disturbance shows dependence upon 
current rise times. Slower current pulses tend 
to disturb less. Current rise and fall times of 
20 nsec are available in the tester, as compared 
with 35 nsec in the stack. The size and the 
larger number of selection elements reduce the 
current rise and fall times in the stack. 

Substrates which pass the- 32k disturb-pulse 
test also pass consistently a test of 4 million 
word and 250 million bit disturb pulses in the 
frame tester. 

FRAME TESTER 

Evaluation of fully assembled memory planes 
(frames) takes place in a frame tester (Fig. 
16). A relay rack houses the circuitry and 



power supplies. A specially designed fixture 
allows the frame to slide into the word connec­
tor in an upright position. This provides the 
connection necessary to address all 128 word 
lines. A movable rack, containing sense ampli­
fiers and bit drivers for the examination of 24 
bits, can slide vertically to the desired group 
of lines. Printed-circuit edge-board connectors 
mate with the appropriate conductors. With 
this mechanical arrangement, an equal con­
ductor length is consistently maintained during 
the examination of the five groups of sub­
strates, to correspond to the actual stack con­
struction. 

The evaluation consists of two phases: first, 
the bit-write noise is reduced by manual ad­
justment of the "end-around loops." Secondly, 
a disturb test, similar to that performed on 
the substrates, is run. The frame tester oper­
ates as a memory exerciser, with the capability 
of inserting worst-case patterns into the plane. 
The automatic program rewrites the disturb 
word up to 32,000 times; manual operation al­
lows any desired number of disturb operations. 

The tester operates at one of three different 
frequencies: 2 Me, 4 Mc, or 250 kc. Single-pulse 
operation is also available. Although substrates 
cannot easily be removed frOlTI an assembled 
plane, up to three bad bits can be tolerated in 
each of the five sense-bit groups. The spare 
lines can replace lines containing faulty or 
marginal bits, but a small wiring change is 
necessary. 

CONCLUSIONS 

The operation of this half-microsecond-cycle 
memory module represents a significant 
achievement in a program of magnetic thin­
film development for computer storage which 
was begun at these laboratories in 1955. Large 
numbers of substrates were processed and 
tested, and memory plane assembly ~nd test are 
now routine operations. 

Memory frames which contain 20 substrates 
(15,360 bits) can be assembled without great 
difficulty. The limitations were imposed by the 
printed-circuit boards, and were due to dimen­
sional tolerances. 
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Figure 16. Frame Tester. 

Cost-per-bit reduction can be achieved by in­
creasing the number of bits contained in a sin­
gle pluggable unit, because the interconnections 
in the stack contribute significantly to the total 
memory cost. 

A shorter memory cycle can be made possible 
by reducing the total sense delay, and by the 
elimination of the bit recover pulse. The pulse 
transformers 'will be replaced by active solid­
state devices. A reduction of 150 nsec-50 nsec 
from a shorter sense delay and 100 nsec from 
elimination of the bit recover pulse-make a 
cycle time of 350 nsec, or 3-Mc operation, pos­
sible. 
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The capacity and speed attained with this 
memory are clear indication that magnetic thin 
films have become the optimum storage ele­
ments for reliable, nonvolatile, fast-access 
memory. 
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A SEMIPERMANENT MEMORY UTILIZING 

CORRELATION ADDRESSING 
George G. Pick 

Applied Research Laboratory, Sylvania Electronic Systems 
A Division of Sylvania Electric Products., Inc. 

W alth.am, Massachusetts 

SummcLry: A mechanically changeable, semi­
permanent, random access memory with a 
16,384 twenty bit word capacity is described. 
This solenoid array memory is useful for stored 
programs and tables in computers, character 
generation and as a combined input and stor­
age device for special purpose computers. It 
utilizes an associative technique to allow ad­
dressing of any of its 1024 sixteen word data­
containing sheets, which completely avoids any 
need for electrical connections to the data-con­
taining sheets or for any ordering of the sheets 
wi thin the memory. Each sheet is a very thin 
printed circuit onto which data is entered by 
etching or punch-card controlled cutting. The 
data is inductively interrogated by means of 
solenoids which pass loosely through the sheets. 
The sheets are contained in loose-leaf notebook­
like magazines which fit into a file drawer. 

The present memory's access time is 0.7 
microsecond and its cycle is below two micro­
seconds. 

INTRODUCTION 

In recent years there has been an increasing 
interest in read-only random access memories. 
This class of memory has developed along two 
paths, those electrically alterable and those 
mechanically alterable. This device falls into 
the latter class. The solenoid array memory 
described here is a development which followed 
the solenoid array correlator and memories de-
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scribed in an earlier paper.l In previously 
reported work~' :>.1 inductive coupling was also 
used, but electrical connection had to be made 
to the stored data, or else the capacity was 
very limited. Some work:;' (i allowed use of 
connection less data containing media, but in 
each case, precise data alignment and interleav­
ing structures were needed. The described 
memory uses thin copper clad "Mylar" printed 
circuit sheets which are placed adjacent to each 
other with no interleaving of any sort. All cou­
pling, into and out of the data planes, is by 
inductive coupling from and to two respective 
solenoid arrays which pass loosely through 
holes in the data planes. 

The addressing solenoid array is driven by 
an input address which has been transformed 
into an error-correction type code. The address 
is simultaneously correlated or matched to the 
stored addresses on each data plane with the 
result that the autocorrelation on one plane is 
a voltage positive enough to exceed its diode 
conduction voltage, and on all unselected planes 
the cross-correlations result in voltages which 
are well below, or negative, to that voltage. 
In consequence, a current is allowed to flow in 
only the selected plane's data path, allowing 
only that plane's data to be sensed by the 
pick-up solenoids. 

This association between a coded address and 
its plane's data allows the mechanical flexi­
bility mentioned earlier. The data plane may 
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be positioned anywhere along five inches of the 
solenoids' lengths, and as long as there is only 
one data plane in the stack with that address, 
it is uniquely accessible. 

Each sheet contains sixteen words or 320 
bits. To avoid the need for 320 amplifiers, the 
four lower order address bits are used to select 
the appropriate group of solenoids and connect 
them to the sense amplifiers. This technique 
allows the packing of many words on a single 
data plane, thereby efficiently multiplying the 
capacity of the memory and radically increasing 
its effective bit packing density on normal 
length words. Single data sheets of practical 
size can contain upwards of a thousand bits. 

The ease of data change and the low cost of 
the storing medium allow this memory to be 
considered for tasks where it acts not only as 
a memory, but as an input device as well. Maga­
zines, containing tens or even hundreds of 
thousands of bits, can be stored on a shelf and 
inserted into the memory when required with 
an ease comparable to changing a modern mag­
netic tape cartridge. Thus for some computing 
systems, mechanical input reading devices lnay 
be replaced by a rugged, mechanically static, 
semi-permanent memory of this type. 

Overall Description 

The solenoid array device described utilizes 
long, thin solenoids to provide a simple, non­
critical magnetic coupling between the data 
containing planes and the array memory struc­
ture. The memory is organized so that the 
data-containing planes need have no connec­
tions other than magnetic, and this realization 
required hyo basic functions-unique data plane 
drive and appropriate sensing of the driven 
plane for the selected stored data. These two 
functions are almost independent and are 
realized by a driver solenoid array and a sense 
solenoid array. The driver solenoid array is in 
essence a substitute for a 1024 line linear ad­
dressing matrix and the resultant connection 
pair that would be needed to each of the 1024 
data planes. 

The sense or pick-up array detects if the vari­
ous bit positions on each driven plane contain 
a one or zero. The sense solenoid outputs are 
connected so that appropriate gating can con-

nect the output of only one group of solenoids, 
a word group, to the sense amplifiers. The 
arrays are shown in Figure 1. 

The principle of operation of the solenoid 
array is based on the transformer. On any 
transformer, if a wire passes around its flux 
path, there is coupling, and if it bypasses its 
flux path, there is only stray or minimal cou­
pling. With solenoids, the same rules apply 
with little modification. 

In the memory, the drive array and the sense 
array are separate components which are only 
connected through the stored data planes. In 
series with this connection on each plane is a 
diode which acts as a switch that allows one 
and only one plane to be connected at one time 
during the interrogation. See Figure 2. 

The address is stored on each plane on that 
portion which slips over the addressing array. 
This matrix of mutual inductances which couple 
a digital input address word simultaneously to 
all the data planes perform a correlation or dot 
product operation. The operation thus per­
formed is given by 

15 

T j = ~WjkUk 
. k = 1 

j = 1, 2, ... 1024; where Uk and \V jk are the 
klh components or cells of the input address 
word U and the stored address word Wj, re­
spectively, and Tj are the simultaneous indi­
vidual output voltages generated on each plane. 

The correlation is formed by simultaneously 
energizing 15 solenoid pairs, in either the "zero" 

Figure 1. Solenoid Array Without Planes. 
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Figure 2. Data Plane. 

or "one" positions-depending on the input 
address. The individual multiplications that re­
sult are shown in Figure 2A and these positive 
and negative voltages on each plane are 
summed together because all of the paths are 
in a series circuit. 

The right portion of the photograph in 
Figure 2 shows the addressing paths, plus bias 
positions to be described later. It may be noted 
that the loops on vertically adjacent aperture 
pairs always encircle one and bypass the other. 

At the bottom of the photograph is a small 
component, a diode, which "detects," and al­
lows current to flow only in that plane where 
the addressing correlation resulted in a posi~ 
tive voltage sum with respect to the diode con­
duction polarity. 

The described addressing operation is, as was 
explained earlier, a substitute for a connection 
pair to the left portion of the data plane, which 
stores the actual data. 

The data portion of the plane on the left side 
of Figure 2 is organized into 16 rows, each 
representing a 20 bit word. Two rows are 
paired into one major loop and there are eight 
loops on the plane, one above the other. The 
sense solenoids are not paired like the drive 
solenoids, hence the data for each bit is stored 
by cutting the path so that each solenoid, or 
bit, is either inside· or outside the enclosed area 
or loop. The distance between the two sides of 
each major loop is of little consequence, hence 

two rows or words can be placed on one loop. 
(The coupling loops are the paths starting on 
the right of the data portion, going to the left, 
up a short distance and returning to the right. 
All these loops are in series with all the others, 
the diode and the addressing array loops on 
the right.) 

Figure 2B shows the operation of the sense 
solenoids and the manner in which they pick 
up the stored data. In a later section the orga­
nization for solenoid selection switching will 
be described more fully, however, it should be 
clear that the interrogation of a data plane 
results in parallel output of all data bits on the 
plane. The selection switching circuit is used 
only to reduce the number of sense amplifiers 
and subsequent gating circuits. If each plane 
contained only one word, selection would be 
eliminated. 
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Figure 2A. Data Plane Driving Solenoid. 
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2B. Addressing Solenoids Driving Stored Address. 

The error-correcting code's first function is to 
allow unique selection of Qne plane, thereby 
addressing many planes with a modest number 
of drivers and solenoids. The long "distance"* 
of the code brings with it the advantage of 
redundancy which results in high reliability and 
driver load sharing. (In practice, it has been 
found that degraded or missing drive pulses on 
a few drivers have little effect on memory 
operation.) 

The operation of the memory can be de­
scribed by Figure 3. The address is stored in 
the address register. The addresses' lower order 
bits are decoded into sixteen sub-addresses for 
selecting the appropriate sensing solenoid 
group. The higher order address bits are oper­
ated on by the coder to form a Hamming code 
which operates the addressing solenoids. When 
the addressing array is driven, current rises on 
the selected plane and the pick-up or sense sole­
noid array emits the selected word to a bank 
of sense amplifiers. 

Addressing by Correlation 
A solenoid array memory has previously been 

built in which the data planes were conduc­
tively connected and were addressed by a rela­
tively straightforward coincident voltage tech­
nique in rectangular matrix with a diode con­
nected in series with each plane's path at each 
crosspoint. Another memory was built in which 
a single solenoid was used to drive each single 

* In !1 coding sense. 

Figure 3. Block Diagram. 

data plane with a unique and orthogonal ad­
dress. The first memory required connections 
to the data planes, which was acceptable only if 
data was to be changed infrequently, and the 
latter memory was limited to a modest number 
of planes equal to a practical number of drive 
solenoids, namely, about fifty planes. 

Addressing by correlation provided an exit 
from these limitations. Well developed correla­
tion techniques were available 1 from which a 
correlator could be designed that would accu­
rately correlate a binary address and thereby 
achieve a form of connectionless associative 
addressing. However, the original solenoid ar­
ray correIa tor used air cored solenoids whose 
output voltages were too low to generate 
enough voltage to drive a data pla:Qe. Ferrite 
cored solenoids were designed which improved 
the coupling, allowing much higher drive volt­
ages to be delivered to the data planes. How­
ever, in spite of compensation, the cored sole­
noid's coupling to the data planes was much 
less uniform than that of the air cored units 
(e.g., 15 per cent versus 1 per cent), and, even 
wIth the high outputs available, single output 
voltages were too low for reliable operation. 
Hence, the need for load sharing and the re­
quirement for less critical drive voltage ampli­
tudes combined to recommend an error-correc­
tion type code. 

Use of a non-orthogonal code causes the re­
quirement for a nonlinear component which 
would detect the positive selection voltage and 
allow the drive current to flow in the plane-a 
diode. Since the diode could be a permanently 
prefabricated part of each plane, and a me­
chanical arrangement was found that did not 
increase the total thickness of a stack of planes, 
the diode was not considered objectionable. 

Applicable Error-Correcting Codes 
Mathematics recognizes many types of codes 

that could be applied to the present device. 
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The memory field has seen the use of the usual 
binary codes and classes of orthogonal load 
sharing codes i for addressing or driving core 
memory selector matrices. In the case of the 
described memory, binary codes would be un­
satisfactory because the difference between a 
matched or selected correlation and the closest 
un selected one is too small, namely, one bit. The 
aforementioned orthogonal codes excel in that 
the selected address correlation would receive 
the sum of all or most of the driving bits, and 
all the unselected addresses would have no 
drive at all, by mathematical definition of or­
thogonality, but unfortunately, orthogonal 
codes always require at least as many bits as 
there are addresses. They would fulfill the de­
scribed memory's load sharing requirement, 
but would sharply limit the possible number of 
data planes. 

The error-correcting alphabets were designed 
to encode relatively long blocks of bits, hence 
the number of possible a~dresses is relatively 
large. The use of a diode detector removes the 
need for code orthogonality, and error-correct­
ing codes are inherently efficient in their use 
of redundant bits to achieve long coding dis­
tances or weights. 

Two codes were found that were easily 
applied to the addressing problem. The first is 
the well known Hamming code, in particular a 
code with 10 information bits, 5 redundant bits 
and a "distance" of 4 bits. A second code, even 
more attractive, is the Golay code, which for 
this application would represent 10 information 
bits, with 12 redundant bits and a distance of 
8 bits. Both codes can be conveniently gener­
ated by either shift register encoders or paral­
lel modulo-2-sum networks. Many variants of 
these codes are available for both larger or 
smaller addressing capacity requirements. 

For magnetic reasons to be discussed subse­
quently, correlating by means of single sole­
noids, where zero or one is represented by 
absence or presence of an input drive, is un­
desirable. A more practical arrangement is to 
drive pairs of solenoids in parallel, and to drive 
them with one polarity for a "zero," and the 
other for a "one." 

The effect of this arrangement is that the 
range of correlation outputs is extended from 

o to + N (N = number of bits) to a range of 
- N to + N, thereby doubling the distance or 
weight of the code. As a result, using the 
Hamming code, an autocorrelation is + 15 units 
of voltage, and the nearest cross-correlation is 
+7. In the Golay code, the respective figures 
are + 22 and + 6. This distribution of Ham­
ming code outputs, with no bias, is shown in 
Figure 4. 

The correlation outputs, as they stand, pos­
sess the necessary "distance" properties, but 
their absolute levels are not optimum for prac­
tical operation. The distribution of the unse­
lected outputs must be shifted so that a diode 
(or diode-Zener diode) detector on the plane 
can efficiently prevent current flow. (The rea­
sons for choosing either type of detector are 
discussed subsequently.) The output distribu­
tion shift is readily achieved by adding fixed 
bias in the form of additional solenoid drivers 
which always operate in the same polarity. 

Application of the Data Plane Addressing 
Techniques 

This section describes the technique of gen­
erating the codes, the circuitry of the solenoid 
drivers, the structure and design criteria of the 
drive solenoid themselves and the data plane 
detector considerations. 

Input Register and Coder 
The binary address of the desired data plane 

is entered into a buffer register. This address 
contains the data plane address along with the 
additional address bits "for the subselection of 
data within the plane. The data plane address 
bits, in ordinary binary code, are themselves 

I 
-15 I..y-I 

0.5 VOLT 
INTERVALS 

DISTRIBUTION FREQUENCY 
OF DRIVE OUTPU IS 
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Figure 4. Output Distribution on "Paired" Hamming 
Code. 
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4 SHIFT PULSES AFTER OAT A ENTRY 

Figure 5. Shift Register Coder. 

used to each control a solenoid drive polarity; 
and redundant bits must be generated from the 
original bits by one of several common tech­
niques. 

The best technique for generating the codes 
is the shift register encoder as shown in Figure 
5. In this device, the original address is en­
tered as shown in shift register positions 2-11 
and the modulo-2 adder operates to set position 
1 accordingly. The register is shifted, a new 
bit generated and the operation is repeated 
until the data has been shifted to the left-most 
position. For a Hamming code with 5 redun­
dant bits, 4 shifts are necessary. This tech­
nique is simple to instrument, uses a small 
number of circuits and is most attractive with 
the following exception. The coding must be 
done before interrogation, hence the speed of 
this operation directly affects the access time. 
Thus for a given logic speed, the minimum 
access time is clearly limited by the time con­
sumed by the required shifting operations. 

The alternative is to generate all the redun­
dant bits in parallel. It can be shown~ that 
all redundant bits can be determined as mod­
ulo-2 sums of the original information or in­
put bits. Hence by instrumenting parallel mod­
ulo-2 adder logic (exclusive-or), all redundant 
hits were generated at once. This is shown in 
Figure 6. Unfortunately, efficient codes have 
little logical overlap between their redundant 
bits, hence the amount of circuitry is not in­
considerable. (Typically, a Hamming coder 
requires about 50 NAND circuits and a Golay 
coder about 110.) Alternative simplified cir­
cuits and magnetic configurations are available, 
but some degree of complexity remains. 

For the Hamming codes used in the de­
scribed memory, the code generation was paral­
lel. A second unit now under construction, 
uses a Golay code and its redundant bits are 
generated serially, with higher speed logic to 
partially compensate for the multiple logic 
cycles. In that unit, with modest access time, 
it was found more economical to supply a sepa-

MODULO - 2 - SUM 

rate, faster clock and control counter, all in­
strumented in higher speed logic, than to gen­
erate the Golay code in a parallel. 

Drive Solenoids 
The drive solenoids are operated in pairs, 

with their respective windings connected in 
parallel so that for one given drive polarity 
the solenoid flux polarities are opposite as 
shown in Figure 7. This balanged configuration 
achieves an approximation of a closed magnetic 
circuit without the need for an actual closure. 
Although, because of the air gaps, the mutual 
inductance between the two solenoids of a pair 
is not large, the superposition of the individual 
solenoid fields radically reduces the stray flux. 
Further, although the correlation used for ad­
dressing is very non-critical, the drive pattern 
sensitivity of individually driven solenoids 
would be unacceptable. Thus, to minimize the 
need for magnetic shielding between the drive 
and pick-up arrays, to minimize drive pattern 
sensitivity and to somewhat improve mutual 
coupling to the data planes, paired solenoids 
can be fully justified. 

As a bonus, as was mentioned earlier the . , 
availability of two bit positions on the plane 
allows the storage of positive and negative cor-

REDUNDANT 
BIT II 

DATA PLANE ADDRESS 

MOD 
2 

SUM 
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Figure 6. Parallel Coder. 
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relation weights, thereby automatically dou­
bling the correlation distance, when the sole­
noids are reversibly driven for one and zero 
inputs. 

Magnetic Structure 
A solenoid using no ferromagnetic core has 

a very uniform coupling to a surrounding loop 
over almost its whole length as is shown in 
Figure 8. However, for a given number of 
turns, an air core solenoid has a relatively low 
self-inductance, therefore presenting a low 
impedance to its driver. Hence many turns 
must be used for practical air core solenoids 
with the consequence that the transformer step­
down turns ratio is large. To allow a smaller 
number of turns, larger diameter air cores or 
ferrite cores must be utilized to maintain a 
practical level of self-inductance. The resulting 
coupling to a loop unfortunately becomes very 

nonuniform as shown in Figure 9 by the dashed 
line, an undesirable situation since the drive 
voltages induced in the planes would vary de­
pending on the position of the plane along the 
solenoid. 

To compensate for the nonuniform coupling, 
two techniques were evolved. The simplest was 
to vary the turns density along the winding so 
that regions near the end were more densely 
wound than near the middle. For good results, 
this technique will require careful control of 
winding density, which will be easy to achieve 
on production machinery but is difficult to do 
in the laboratory. The alternative technique 
was to use a linear winding and to vary the 
ferrite permeability by using short ferrite rods 
butted against each other. Since the reluctance 
of the solenoid return path is relatively large, 
small air gaps between the rods were found 

SOLENOID DRIVERS 
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Figure 8. Air Cored Solenoid and its Relative Coupling 

to a Loop. 

quite unobjectionable. Figure 9 shows a sole­
noid constructed in this way with a middle rod 
of low permeability and the two end rods with 
higher permeability. It may be interesting to 
note that this technique bears a similarity to 
a triple-tuned bandpass filter with a broadly 
tuned middle section and more sharply tuned 
end sections. This techniqueiwas applied in the 
memory described. 

The question may reasonably be asked why 
it is necessary to use all these techniques and 
to pay the price of higher drive currents in­
stead of using a closed toroidal-like structure. 
The reasons are as follows: 

1. A very elongated thin-legged closed struc­
ture is likely to have high leakage flux 
between its long members when the leak­
age reluctance becomes comparable to the 
path reluctance. 

2. The need for an easy data exchange 
would require split cores whose alignment 
would need to be carefully maintained. 
Since this memory is intended to appli­
cations where data is frequently changed, 
precisely mated surfaces would require 
critical protection and very precise align­
ment mechanisms. 

Further, since the operating pulse widths are 
short because of access and cycle time require­
ments, the maximum drive currents remain at 
acceptable levels. 

To give the structure mechanical strength, 
the ferrites are inserted into a phenolic-paper 
tube and appropriately glued in, and the wind­
ings are laid into a shallow threaded groove 
cut on the outside of the tube. The entire as­
sembly is then appropriately varnished or 
epoxy coated. 

Solenoid Drivers 
The solenoid drivers are designed to supply 

a 16 volt, half microsecond long pulse to an 
inductive load of about twenty microhenries, 
with ample margin. They are also designed to 
withstand an inductive overshoot equal to the 
drive pulse, or about 32 volts peak. 

As was mentioned earlier, each solenoid pair 
is connected in parallel, as shown in Figure 7, 
so that the solenoids in each pair always have 
opposite polarities. A second consideration is 
that a "one" input should drive the pair one 
way, and a "zero" the other. In earlier designs, 
a transformer with two input drive windings 
of opposite winding polarity, one from each of 
two separate drivers, coupled to an output 
winding that was connected to the solenoid 
load. When "one" was asserted, one switch 
closed and drove the transformer, and when a 
zero was asserted, the other switch and wind­
ing drove the transformer, thereby generating 
opposite drives on the output winding for the 
two states. Unfortunately, the transformers 
were relatively bulky and somewhat inefficient. 

Instead, each driver solenoid wag cut with 
2 grooves instead of one to allow a bifilar wind­
ing, and one winding on each solenoid was 
driven for a "one," and the other for a "zero." 
Both of the respective pairs of windings on the 
solenoids were connected in parallel, in order 
to maintain opposite magnetic polarity on the 
solenoids for either drive. 

The drivers themselves are arranged to be 
controlled by the input address code. The state 
of the address turns on either of two currents 
II or 10 in the driver, which flow as soon as 
the input address code bits are set up. The cur­
rents are shunted to -18 volts by transistors 

• .. I ~ f '" .... t - ~ ". '- I.... ~.. • :! T; 8l "'!"' r-...; 
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Figure 9. Ferrite Cored Solenoid and its Relative 
Coupling to a Loop. 
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T 1 or T 2 which are saturated continually except 
during the drive pulse. T 1 and T 2 turn on as 
soon as power is applied to form a fail safe 
timing circuit for the solenoid drivers. Tl and 
T:! can only be shut off by a negative drive 
pulse to their bases, and the resistance-capaci­
tance time constant in their base input circuit 
is made long enough to allow them to open only 
slightly over the maximum desired drive pulse 
width. When either II or 12 flows, the opening 
of T 1 and T 2 shunts the current into T 3 or T 4. 

This turns on one drive transistor, causing the 
required drive voltage pulse. At the end of the 
drive pulse, T 1 and T 2 again saturate, rapidly 
shutting off the conducting transistor- with a 
low impedance drive. 

The fail-safe circuit of T 1 and T 2 is needed 
since the D. C. resistance of the solenoid circuit 
is very low, and the drive transistor would soon 
be destroyed if allowed to stay on. 

It should be noted, that when T 3 is switched 
on, the transformer coupling between the two 
solenoid windings causes the collector of T -1 to 
go to double the supply voltage. Similarly, when 
T -t is switched on, T/s collector rises. For this 
reason alone, the inductive overshoot clamp 
diodes on T;-; and T -t must be tied to almost 
twice the supply voltage. Thus, the inductive 
transient causes an overshoot approximately 
equal to the drive pulse both in amplitude and 
pulse width. (Volt-time areas are equal.) 

The large overshoot transient is desirable 
because it shortens the transient duration, but 
tends to produce other unwanted transients. 
These transient currents in the data planes 
occur after the data has been strobed, hence 
they do not affect data read-out, but they do 
require a few microseconds to settle, thereby 
lengthening the cycle time. These transients, 
and means to suppress them, are discussed 
later. 

Correlation Selection Techniques 

The addressing solenoid drive causes a paral­
lel correlation operation on all the stored ad­
dresses on each respective plane. Figure 10 
shows the outputs of one selected plane, and 
three typical outputs of un selected planes, the 
former being the positive drive pulse. A means 
must be provided to uniquely separate the se­
lected plane by allowing a current to flow in 
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Figure 10. Correlation-Coder Outputs. 

its path which is much larger than the linear 
sum of ALL the unselected data plane cur­
rents. t An ordinary silicon epitaxial diode has 
a forward-to-reverse resistance ratio of over a 
million to one. Its capacitance of a few pico­
farads in series with the data plane impedance 
of perhaps ten micro henries and three ohms 
allows only an extremely short transient cur­
rent in the un selected planes, and the sum of 
all these currents is still far exceeded by the 
select current over the drive pulse interval. 

The outputs of the stored address code corre­
lations may be represented by a distribution as 
shown in Figure 4 if no bias is applied. If a 
four or five microsecond memory is desired, a 
simple diode may be placed in series with the 
path on each data plane and additional solenoid 
drive bias of minus nine units may be added to 
shift the distribution to that shown in Figure 
llA. The diode characteristics in Figure lIB 
will allow current to flow in that addressed 
plane whose output is to the right of the origin. 

Unfortunately, after the data has been 
strobed out, and after the drive pulse is. ter­
minated, the overshoot reverses the distribution 
so that the unselected planes then go into con­
duction as shown in Figure llC. As a result, 
current flows in many planes for a few micro­
seconds with a period determined by plane in­
ductance~ resistance and diode conduction volt­
age drop. Due to less than perfect coupling 
from solenoids to planes, the sum of the cur­
rents is far less than would be expected in a 
good transformer, hence the solenoid flux col­
lapses rapidly. 

The technique used to prevent the flow of 
current during the overshoot period is as fol-

t This statement is actually a simplification intended 
to clarify. Actually, the differential of the desired cur­
rent flow over the interrogation period must greatly 
exceed the sum of all the un selected differentiated cur­
rents. Since the small, unselected' current transients 
are very short, their positive and negative differentials 
essentially cancel out during the first fraction of the 
driver pulse period. 
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lows. First, the drive bias is changed so that 
the distribution of outputs is that shown in 
Figure 12A. Second, a zener diode with a break­
down voltage VIis placed in series with the 
diode. Its voltage is chosen such that the sum 
of the diode forward conduction voltage drop 
and the zener breakdown voltage drop equals 
a voltage which is two units higher than the 
right limit of the distribution at + 11 as is 
shown in Figure 12B. Now, during drive, only 
the selected current flows just as before. How­
ever during the overshoot period, the distribu­
tion'is such that no current flows at all, as is 
shown in Figure 12C. Hence, a new memory 
cycle can begin in less than a microsecond. The 
oscillograph in Figure 13 shows the voltage 
sensed by a solenoid in an array loaded with 
fifty planes using simple diodes, and the oscillo­
graph in Figure 14 shows a similar output due 
to fifty planes utilizing the diode combination. 
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Figure 12. Distribution of Outputs for G~v~n Drive and 
Diode-Zener Diode CharacterIstic. 
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Figure 13. Worst Case "Ones" and "Zeros"-Diode 
Detector. 

The diodes are ordinary planar epitaxial 
types, but "gold bonded" germanium paint con­
tact types work almost as well. The zener diodes 
most commonly available have relatively high 
capacitance since they have large junctions de­
signed for high dissipation. The emitter-base 
junctions of a small silicon transistor such as 
a 2N706 have very sharp and uniform zener­
breakdown voltages, and low junction capaci­
tances on the order of a few picofarads. These 
transistors, used as zener diodes, may be seen 
in the photograph of the ~emory in Figure 15 
hanging from the sides of the data planes. How­
ever, the diodes are mounted integrally on the 
data plane in small holes, staggered around 
the planes' peripheries as shown in Figures 2 
and 16. In later units, where the zener diodes 
are needed, the diode-zener diode would be in 
one component mounted as the diodes are now 
mounted as shown in Figure 16. The dual com­
ponent is a commonly built one, and is in 
essence a transistor with no base lead connec­
tion, in which the usual collector j unction is 
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Figure 14. "One" and "Zero" Outputs for 3,as and 
1.5ps Cycle Time with Zener Diode-Diode Detector. 
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the diode and the emitter j unction is the zener 
diode. Dozens of silicon epitaxial type transis­
tors were found to have the desired characteris­
tics, shown in Figure 12B, hence no problems 
are anticipated in obtaining these "integrated" 
circuits. 

Data Readout 
The device described up to this point of the 

paper constitutes a substitute for a pair of 
connections to each plane, with appropriate gat­
ing and drive circuitry. Little has been men­
tioned as to how the current in the plane is 
detected and used. The organization for data 
readout is the subject of the following 
paragraphs. 

The current ramp in the data plane consti­
tutes a primary drive to a multitude of long 
sense solenoids or transformers. Each loop or 
enclosure of a solenoid on a driven plane is a 
primary coupled to the solenoid secondary, or a 
"one" and each bypassed solenoid constitutes a 
"zero" when that plane is interrogated. A 
"one': causes a voltage output of one polarity, 
and a zero causes a smaller voltage of opposite 
polarity. 

Figure 17 is an oscillograph that shows the 
drive current in the data plane, and Figures 13 

and 14 the outputs of a number of "ones" and 
"zeros" from the respectively driven solenoids. 

Obviously, all bits on a plane are emitted in 
parallel, hence some gating is usually desirable 
to connect only the desired subset, or word, to 
the output amplifiers. The method of achiev­
ing this is quite simple. One terminal of each 
solenoid in a word group is tied together with 
the similar terminals of the solenoids in that 
group. This common terminal becomes the 
word-select control terminal. All the other 
word-groups of solenoids are similarly tied 
together. This is shown in Figure 18. 

In each word group, the other terminal of 
each solenoid representing each bit of the word 
is tied to all the other respective solenoids in 
the other words by means of diodes. All the 
common "word line" terminals are biased so 
that their respective diode switches are back­
biased except for those of the addressed word. 
The diodes on the addressed word's solenoids 
are forward-biased before the data plane is 
pulsed, hence effectively connecting the ad­
dressed solenoids to the preamplifiers before the 
interrogating pulse. Since a fraction of a micro­
second is needed for currents to change and for 
diodes to switch, this word preselection pro­
ced ure is timed ahead of the main pulse. 

Figure .15. Photograph of System. 
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Figure 16. Diode Mounting Close-Up. 

The solenoids themselves for most applica­
tions are air-cored. These are simply phenolic 
paper tubing which is wound with a helix of 
thin copper wire, typically, number 30 wire 
gauge. After winding, it is suitably coated to 
protect it with either varnish or epoxy coating. 

For applications where higher outputs .are 
. desired, ferrite cored solenoids, smaller in diam­
eter than those in the drive array (quarter inch 
diameter instead of three eighths) may be 
used. To minimize pattern sensitivity, they 
should either be paired and connected in series 
or spaced far apart. 

Output Circuitry 

The diodes used at the output of the solenoids 
could be matched to those on each bit line to 
allow the use of a direct coupled, single ended 

CURRENT IN PLANE 
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Figure 17. Drive Current in Plane Due to Hamming 
Correlation. 

system. However, for signals below 100 milli­
volts, typical of the simpler air-cored pick-up 
solenoids, capacitor coupling is indicated. 
Hence the gated signal is amplified in a linear 
amplifier, along with any pedestal shifts due 
to word-line switching, and voltage restoration 
is applied. If the access time is to be short 
compared to the pulse width, keying or gating 
of the restoring voltage is required. If the 
access time is long compared to the pulse, an 
ordinary resistance-capacitance high-pass filter 
is adequate. 

The waveforms of the connectionless memory 
shown in Figures 13 and 14 require strobing 
for reliable operation, and it is timed to occur 
just before the end of the drive pulse. 

+v 

-v 

-v 

-v 

f 
SELECTION 
VOLTAGES 

BIT 2 BIT 3 

Figure 18. Word Pre-Selection Matrix. 
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In the limit, with a pick-up array of paired 
ferrite-cored solenoids, which may deliver out­
puts of as much as a volt, output flip-flops 
could be strobed directly from the solenoids. 
In a more typical case, one or two transistors 
can be used for amplification, and another for 
slicing and strobing. For increased speed, a 
two-stage amplifier followed by the voltage re­
storing switch, followed by a slicer and output 
stage is desirable, and the memory described 
here used this system and is shown in Figure 
19. It should be emphasized, that in all cases, 
the amplifiers were single-ended and differen­
tial amplifiers were not required. 

Data Planes 

The data planes in the earliest work were 
simply thin wire, wound on plastic sheets with 
small bobbins attached. However, this tech­
nique did not allow for quick and easy exchange 
of individual circuits paths or planes. Copper­
clad Mylar was soon found to the applicable to 
the requirement. 

The tooling technique involves accurately 
drawing the printed circuit layout, drilling a 
master template which fairly accurately matches 
the layout, and having a stainless steel mesh 
"silk screen" fabricated from the printed cir­
cuit layout. 

To avoid critical alignment and fabrication 
problems, copper path widths are made about 
0.040" wide, distances between closest conduc­
tors are also 0.040" and the closest a copper 
path passes to a hole is nominally 0.060". The 
solenoid array base plate and the data planes 
themselves are drilled through the same tem­
plate, hence with only modest care, alignment 
is no problem. The holes in the planes are about 
0.1" larger than the solenoids; hence they fit 
quite loosely. 
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Figure 19. Pre-Amplifier. 
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All data planes contain both alternate paths 
around the solenoids. In the laboratory, the 
data is entered by simply scraping off the etch 
resist before the planes are etched. The result 
of this operation can be seen in Figure 2. A 
machine has been constructed that mills away 
the copper path, under control of an ordinary 
punch card, at the rate of six bits per second, 
and this is shown in Figure 20, and can be 
seen operating on a large 1428 bit plane. 

The fabrication of the planes themselves is 
straightforward. Silk-screening, mass drilling 
under the template, data insertion and etching 
comprise the laboratory process. Screening, 
drilling and etching are the large scale process 
with subsequent data insertion by punching, 
scraping or milling on the aforementioned 
machine. In the field, the copper paths can be 
severed with a knife. 

The material used mostly so far has been 
one ounce copper (0.00135") on 2 mil Mylar 
(0.002") which has a total thickness of about 
0.004", allowing well over two hundred planes 
per lineal inch along the solenoid. 

Mechanical Considerations 
In a memory in which changes are not fre­

quent, it is simple enough to slide the planes on 
or off individually. For greater convenience, 
many planes can be prealigned to thin· base 

Figure 20. Punch-Card Controlled Cutter for 1428 Bit 
Planes. 
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plates, covered with another thin sheet, and 
handled as magazines. In either case, the only 
disadvantage is that in removing data behind 
or below other data, which is inaccessible until 
the covering data is removed. 

A "file cabinet'" like mechanism has been de­
signed to avoid this problem. In this tech­
nique, shown in Figure 21, the solenoid array 
is fastened to the stationary back panel behind 
a drawer section, with the solenoids extending 
through the drawer when the file is closed. The 
solenoids are withdrawn from the drawer when 
the file is opened. Thus when the file is open, 
magazines can be removed or replaced indi­
vidually, and closing the file mates the data con­
taining drawer and the solenoid array. A unit 
such as this is now under construction. 

The magazines themselves contain one to two 
hundred planes each, which are aligned to the 
magazine by several pins. 

Changing one data plane requires opening of 
the drawer, opening of the magazine much as 
a loose-leaf notebook, finding the "page," and 
exchanging it. 

In some operations, entire programs or tables 
would be stored or shipped in magazines, and 
when the data was to be used, that magazine 
simply dropped into the drawer, and the drawer 
closed. 

Figure 21. "File Cabinet" Mechanism. 

Conclusions 

At present, a 360,000 bit memory has been 
built and about a hundred planes placed in it. 
The signal degradation in increasing the num­
ber of planes from a few to a hundred was very 
minor, hence extrapolation to full capacity ap­
pears justified. The unit built used a Ham­
ming code and has operated well. However, for 
the small increase in complexity, the Golay 
code more than doubles the selected current, 
hence a unit now under construction will use 
that code. 

A practical limit to this technique is about 
4,000 data planes since the practical but power­
ful Golay code is extendable to a 23-12 code. 
Physical dimensions also suggest that a stack 
of 4,000 planes, or about twenty inches, is a 
reasonable limit. Lengthening the solenoid 
causes linearly increased driver voltage require­
ments, and they show practical limits which are 
equivalent to between 2,000-4,000 planes, with 
presently available transistors. 

The limits on the number of bits per plane 
is also between 2,000 and 4,000, imposed by the 
limits of the correlation voltage output drives 
versus the data planes' path resistance and in­
ductance as well as the propagation time in 
the data planes' paths. 

In summary, the size limit per module is 
about 10 i bits, and 2 X 106 bits appears easy 
to reach. 

As to access and cycle times, the limits vary 
with module capacity, and for a 1 megabit 
memory 0.5 microsecond access and 1 micro­
second cycle probably are close to the limit, 
and twice this is relatively straightforward. De­
creases in memory capacity, particularly data 
plane bit capacity, should be followed linearly 
by access and cycle times down to a limit of 
about 0.25 and 0.5 microseconds respectively. 
Below this, directly connected data plane mem­
ories should be considered. 

The cost of these memories is low but highly 
variable since the associated electronics, input­
output buffers, coder, sense amplifier and word 
line selectors set up an "overhead" that is 
almost invariant over a range from under a 
hundred to a thousand planes, and goes up very 
slowly beyond that. The cost of the array, even 
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in hand-made versions, amounts to only a small 
fraction of a cent per bit capacity. The data 
plane cost is between a quarter and one cent 
per bit, including data entry and all fabrica­
tion; and a full electronics complement can add 
anywhere from a quarter to two cents a bit 
depending on memory size and speed. In sum­
mary, this memory has a bit cost ranging from 
half a cent per bit for large memories to a few 
cents per bit for relatively small ones, with some 
downward revision when produced in quantity. 

It is believed that this type of memory will 
find application in digital computers where 
large, infrequently changed blocks of data are 
used, and other applications where the mem­
ory's rapid data change capabilities allow it to 
be used as an input device as well. 
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INTRODUCTION 

With the advancement of computer tech­
nology in recent years, the demand for a very­
high-speed memory has greatly 'increased. 
Scratch-pad memories of smaller than 100 
words with cycle times faster than 500 nano­
seconds are commonly found in computers on 
the market. However, larger memories of the 
same speed range are not yet commercially 
available, due to the fact that the problems in 
building a large memory are much more com­
plicated than those in building a small memory. 
These problems center around the transients 
generated in the digit sense system. 

In order to understand these problems, a 
1024-word 100-bit memory was built. The stor­
age cells consist of ferrite cores (30 mils O.D., 
10 mils LD., 10 mils thick) used in a two-core­
per-bit arrangement in a linear organiz~d array. 
In order to simplify the core-threading work, 
only two conductors per core are used; one con­
ductor is plated, leaving only one wire to be 
threaded. 

As a new approach, digit lines are treated as 
a set of mutually coupled parallel transmission 
lines and are terminated accordingly. Recogni­
tion that different modes of wave propagation 
exist on digit lines was probably the most im­
portant step in obtaining the high-speed opera­
tion of the present memory. 

The word drive system uses a square selec­
tion matrix with transformer coupling to in-
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dividual word lines. This arrangement reduces 
the noise voltages that are coupled into the 
memory stack from the word drive system. 

The sense amplifier is a differential amplifier 
in which a delay line is used to minimize dc 
imbalances and level shift. A tunnel-diode 
strobe circuit is used to provide low-level 
thresholding and high-speed operation. 

Some portions of the electronics of the 
memory system are located very close to the 
memory stack. Interconnections are made either 
by cables or by microstrips. The use of these 
techniques has resulted in a memory cycle time 
of 450 nanoseconds for the, memory system. 

MEMORY CELL OPERATION 

Linear selection (word-organized memory) 
and partial switching1 , 2, 3, 4, 5, 6, 7 are the two 
techniques commonly. employed to achieve a 
cycle time of one microsecond for a high-speed 
ferrite memory. Linear selection offers the ad­
vantage that read currents of large amplitude 
(limited only by drivers) can be used to increase 
speed. This method contrasts with coincident 
current selection, where read currents are dic­
tated by the threshold characteristics of the 
ferrite cores used. 

As the memory speed is increased by narrow­
ing the width of the write and the digit pulses 
and subsequently the width of the read pulse, a 
point is reached where two-core-per-bit opera­
tion becomes necessary. There are two reasons 
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for this: the sense signal generated on reading 
a ZERO becomes large as the rise time of the 
read pulse is decreased; and the sense signal 
difference between reading a ONE and reading 
a ZERO becomes small because the digit pulse 
in the presence of the write pulse switches only 
a small fraction of the core irreversibly. Figure 
1 illustrates these reasons qualitatively. The 
ZERO signal is due to reversible flux change, 
and the ONE signal is due to both irreversible 
and reversible flux changes, with the former 
contributing . to the net -signal difference be­
tween a ONE and a ZERO. 

Two-core-per-bit operation provides a means 
of cancelling the reversible flux contribution to 
the total sense signal. There are many schemes 
employing two cores per bit,8, 9, 10 but the one 
used in this memory is shown in Figure 2. Here, 
each core is threaded by two conductors, one in 
the word direction and the other in the digit 
direction. When writing, both core A and core 
B of the same bit pair receive a write pulse. In 
addition, either core A or core B receives a 
digit pulse depending on the information being 
written in. When reading, a read pulse is ap­
plied to both core A and core B in the direction 
opposite to that of the write pulse. Digit pulses 
are always applied through the cores in the 
direction which is the same as that of the write 
pulse, because the digit disturb threshold of a 
core becomes much lower if opposite~polarity 
digit pulses are used. 7, 9,10 
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Figure 1. Sense signals of one-core-per-bit memory at 
increased speed. 
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Figure 2. Two-core-per-bit scheme: (a) basic read-write 
scheme, (b) magnetization applied to cores when 

reading, (c) net sense signals. 

The sense signals generated at core A and 
core B are added differentially in a differential 
sense amplifier, where the signal due to the 
reversible flux change is cancelled. Therefore, 
only the net signals as shown in Figure 2 ( c) 
reach the threshold circuit of the sense 
amplifier. 

This two-core-per-bit scheme has the follow­
ing features: 

1. Bipolar sense signals provide more reli­
able sensing compared to a unipolar sense 
signal. 

2. Word line impedance ·is constant regard­
less of the information pattern because 
each bit (a pair of cores) presents a con­
stant impedance to word pulses even if a 
ONE or a ZERO is stored. 

3. Read and write pulses may have loose 
tolerances. 

4. Balanced digit lines that are paired for 
one bit location offer a possibility of con­
trolling wave propagation inside a 
memory stack. This point will be de­
scribed in more detail later. 

The ferrite cores used in this memory have 
an outer diameter of 30 mils, an inner ,diameter 
of 10 mils, and a thickness of 10 mils. The op­
erating conditions are shown in Table I. A test 
has shown that the worst-case disturb pattern 
changes the sense signal by less than 10 per 
cent. 
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Table I 
OPERATING CONDITIONS OF THE FERRITE CORES 

CORE DIMENSIONS 30 mils O.D., 10 mils J.D., 10 mils thick 

DRIVE PULSES AMPLITUDE RISE TIME FALL TIME WIDTH (50% point) 

READ 630 ma +5% 80 nsec 30 nsec 80 nsec 
80 nsec 
75 nsec 

WRITE 220 ma +5% 40 
DIGIT 70 ma +3% 30 

SENSE SIGNAL FROM CORES 
KICKBACK VOLTAGE WHEN READING 

WAVE PROPAGATION IN THE MEMORY 
STACK AND TERMINATIONS 

It is a very basic requirement that a memory 
system· must be able to store any ,information 
pattern desired at any word location. Since 
some words are located close to the digit drivers 
and sense amplifiers whereas others are located 
far away from them, it is required that digit 
lines must be able to carry digit pulses and 
sense signals without distortion. These require­
ments make it essential that the wave propaga­
tion inside a memory stack be well under­
stood.n,12 The problem is complicated because 
many digit lines are parallel for a considerable 
distance and because many word lines cross the 
digit lines at right angles, with ferrite cores at 
the intersections. A relatively simple mathe­
matical analysis of this structure can be made 
if one assumes that the delay on the word lines 
is zero. Then, the presence of word lines may be 
considered as contributing only to the coupling 
between digit lines. With this assumption, the 
problem of two-dimensional wave propagation 
changes into that of one-dimensional wave 
propagation on multiple parallel transmission 
lines with mutual coupling. The mutual cou:' 
pIing now consists of two parts, namely, the 
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Figure 3. Equalization of coupling and differential 
mode. 

nsec 40 nsec 
nsec 30 nsec 

+50 mv 
0.25 v/bit 

inherent coupling due to digit lines running in 
parallel and the coupling due to word lines. 

To fulfill the requirement that digit lines 
carry digit pulses and sense signals without dis­
tortion, it is necessary that digit lines be lossless 
and that there be no interference among waves 
propagating on separate digit lines. The first 
condition is met approximately by a memory 
stack. The second condition is normally not sat.:. 
isfied because of mutual coupling. However, 
there is a wave mode that propagates on a pair 
of lines without interference, provided that i a 
certain manipulation of coupling is made. 

In Figure 3, line n and line n' belong to pair 
11, and line k is a line outside pair n. Assume 
that the coupling between line n and line k is 
made equal to that between line n' and line k. 
Then, the differential-mode propagation on pair 
n (Le., simultaneous propagations of same 
amplitude but of opposite polarities on lines 
nand n') does not induce propagation on line k, 
because of cancellation effect. In other words, 
if digIt lines are paired, each pair can have in­
dependent differential-mode propagation with­
out interference, provided that equalization of 
coupling is made. * The transposition method 
used in the stack to obtain equalization of cou­
pling will be explained later. 

Therefore, it is desirable to have all the 
propagations in differential mode. However, 
this is not the case with the memory being dis­
cussed here. In Figure 2 (a) it is shown that 
digit lines are paired, a result of the considera­
tion given above. But the digit pulses are not 
applied differentially because negative digit 

* Proof is given in the appendix. 



126 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

pulses are not permitted. Since either of the 
two lines of a pair is always driven by a digit 
pulse, whether a ONE or a ZERO is being writ­
ten in, digit pulse propagation can be regarded 
as a superposition of the differential-mode 
component and the common-mode component as 
shown in Figure 4, with current amplitude one­
half that of the digit pulse on each line. 

The differential mode component consists of a 
number of differential mode propagations, one 
for every digit line pair, that are made inde­
pendent of each other by equalization of cou­
pling. The common mode component obviously 
has no interference problem, since all the digit 
lines carry the same current pulses simultane­
ously. The information is carried by the differ­
ential mode component and not by the common 
mode component, as the latter merely serves as 
a fixed bias, independent of the information 
being written in. 

Digit lines are terminated to eliminate re­
flections, since undesired reflections reduce sys­
tem reliability and prolong cycle time. For 
instance, a proper termination is the only means 
to minimize the waiting time between writing 
and reading, as the digit pulses must be com­
pletely dissipated before sense signals can be 
detected. 
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Figure 4. Propagation of digit pulses: (a) digit pulses 
on digit lines, (b) differential mode component, (c) 

common mode component. 

The differential mode component and the 
common mode component require different im­
pedance for termination. As shown in Figure 
5, let Zd and Zc be the proper termination for 
the differential mode and the common mode, 
respectively. Zd is smaller than Zc,and the dif­
ference between the two is rather appreciable 
due to the effect of word lines. To terminate 
both modes, either a T network or a 7r network 
may be used, as shown in Figure 5 (c) and (d). 
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Figure 5. Digit line terminations: (a) differential mode termination, (b) common mode 
termination, (c) T termination (both modes), (d) 11' termination (both modes). 
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When reading, signals are sensed by differ­
ential sense amplifiers. It is noted that the net 
signal is propagated in the differential mode, 
and there is no interference problem. Since 
common-mode voltage is not sensed by the 
amplifiers, the common-mode termination is less 
critical than the differential mode termination. 
The fact that the digit lines are terminated 
means that only one-half of the raw sense sig­
nal reaches the sense amplifier. This seeming 
disadvantage is far outweighed by the advan­
tage of being able to control the wave propaga­
tion generated in the memory stack. 

Since the actual memory stack consists of 
eight memory planes, digit lines are folded. 
Figure 6 shows digit lines unfolded in order to 
show the transposition details. This transposi­
tion method equalizes coupling between any two 
adjacent line pairs if transpositwns are done at 
short intervals. Figure 6 also shows that the 
digit lines are terminated on both ends by T 
terminations and that digit drivers and sense 
amplifiers are connected to the mid-points of 
digit lines. This connection minimizes the digit 

line delay measured from the driving and sens- .. 
ing point. Yet, the digit line delay across 1024 
words of 40 nanoseconds requires two different 
timings for the read and write pulses. Digit 
pulses used have negative polarity and are ap­
plied through diodes. These diodes disconnect 
digit driver cables and digit drivers from digit 
lines to avoid loading the sense signals. The 
emitter followers are the first stage of a sense 
amplifier and work as impedance transformers. 
Thes~ diodes and emitter followers are mounted 
on the stack assembly. 

The effect of the new termination method on 
the digit pulse waveform and on the digit 
transient will be shown later. 

DESIGN OF MEMORY STACK 

In the memory, one of the two conductors 
that go through cores is a conventional wire and 
the other is a plated conductor. Figure 7 shows 
the plated conductor as well as how memory 
cores are assembled into a strip. Individual 
cores are first metallized by vacuum deposition 
and then inserted into a groove cut in the mid-
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SENSE AMPLIFIER 
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Figure 6. View of unfolded digit lines showing trans-positions to obtain equalization of coupling and connec­
tions to digit drivers and sense amplifiers. 



128 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

INSULATOR 

Figure 7. Ferrite core strip. 

dIe of an insulator strip, with connecting con­
ductors already etched. Then the.strip is electro­
plated to improve contact and also to lower the 
over-all resistance of the conductive path.9 Since 
the connecting conductors on an insulator strip 
connect two neighboring cores on the same side, 
the resulting conductive path has a zig-zag 
pattern. 

Each ferrite core strip contains 128 cores, 
with each memory plane holding 200 strips. 
Since plated conductors are used as digit lines, 
each memory plane contains 128 words of 100 
bits each with 8 planes comprising a full 
memory stack. Plated conductors were used as 
digit lines because they permit pairing two 
neighboring conductors to form a bit pair. Such 
pairing is helpful in maintaining a good balo.: 
ance between the two lines of a pair and also 
to simplify transposition. If, on the other hand, 
the plated conductors are used as word conduc­
tors, it will be necessary to pair two nonad­
jacent digit lines because of the zig-zag pattern 
of the plated conductors. 

As shown in Figure 8, a memory plane con­
sists of a substrate and 200 ferrite core strips, 
of which 100 are mounted on the top surface 
and the remaining 100 on the bottom surface. 
This packaging technique causes the word lines 
to be folded into hair-pin shape to facilitate con­
nection to the word drive system. Two opposing 
sides are used for word line'; c:onnections; i.e., 
on each memory plane 64 word lines have their 
ends brought out to one side and the other 64 
word lines to the other side. Ground planes are 
provided on the top and the bottom surfaces 

Figure 8. Memory plane. 

of a substrate, over which ferrite core strips 
are placed. The ground planes are connected 
to the supporting structure on the four corners 
of the memory stack assembly. 

When eight memory planes have been assem­
bled, ferrite core strips are connected to form 
digit lines. Since each strip contains 128 cores, 
eight strips connected in series make up a full 
digit line. One group of 50 bit pairs (100 digit 
lines) is made up of core strips mounted on the 
top surfaces of the eight memory planes; 
another group of 50 bit pairs consists of core 
strips on the bottom surfaces of the memory 
planes. This packaging technique is shown in 
Figure 9. It is noted that these two groups have 
symmetry; i.e., (b) is obtained by rotating (a) 
180 degrees. The digit system is divided into 
two groups to make the best use of the. stack 
surface areas· for external connections, which 
include 200 transistors, 400 diodes, 600 ter­
mination resistors and 300 cable connectors for 
the digit system. (See Figure 6.) Figure 10 
shows the utilization of the memory stack sur­
faces for the digit and the word connections; 
all usable surfaces are being used. The top and 
bottom surfaces are actually the top surface of 
the top memory plane and the bottom surface 
of the bottom memory plane, and are not usable 
for external connections. 

In the construction of the present memory, 
bit sense signal testing was done after each 
memory plane had been completed with core 
strips. Bad cores were then replaced. The re­
sistance of the digit lines (plated conductors) 
across 1024 words was found to fall between 
1.6 and 2.0 ohms. 
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Figure 9. Methods of connecting ferrite core strips: (a) one group of 50 bit-pairs is 
obtained by connecting ferrite core strips on the top surfaces of all eight planes, and 
(b) the other group of 50 bit-pairs is obtained by connecting ferrite core strips on the 

bottom surfaces. 
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Figure 10. Utilization of the memory stack surfaces for external connections. 
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ELECTRONICS FOR THE 1024-WORD 
MEMORY 

Figure 11 is a block diagram of the memory 
system, which has four major portions: 

1. Memory stack assembly, 
2. Control system, 
3. Word system, 
4. Digit system. 

The memory stack has been described. The 
control system generates and supplies all timing 
pulses for the drive system and for transferring 
data. The word system at the command of the 
control system supplies the proper read and 
write current pulses to a selected word for 
reading and writing information out of or into 
the memory. The digit system is used in a dual 
fashion: to provide sensing of the information 
stored; and to write back into the memory, 
simultaneously with the write pulse, formerly 
stored or new information. Parts of both the 
word system and the digit system are packaged 
on the memory stack. 

WORD ADDRESS 
SYSTEM • l MEMORY ADDRESS REGISTER 

10 BITS 

CONTROL SYSTEM 

The control system is built of a logic building 
block,\Whichhasatypicalrtwo-leve~AND\-OR !logic 
delay of seven nanoseconds with fan-out of six. 
The system controls all the necessary timing 
pulses for each of three cycle types: 1) read 
cycle, 2) write cycle, 3) split cycle. The first 
two are standard for destructive random access 
memories, the first being the standard read-out 
operation which must be followed by regenera­
tion while the information is still in the memory 
register. The second is the standard means of 
getting new information into the memory, the 
read half of the cycle being used only to clear 
the memory while the strobe pulse is inhibited. 
The memory register is loaded with the new 
information which is then written into the 
memory. The only feature which is unusual is 
the split cycle. The first command for this cycle 
generates only a read operation accompanied 
by a strobe of the sense amplifier. The retrieved 
information is available for processing but is 
not regenerated since the entire memory cycle 
has been temporarily suspended. When the con-

t 
CONTROL 
SYSTEM 

,5 BITS 5 BITS 

COM!AND 

, , 
TIMING ·GENERATOR READ WRITE 

SWITCH DECODER DRIVER DRIVER 
4X8 DECODER ~CODER • 4X8 X8 ___ -r~ABLE; 1 1 TIMING 

PULSES 

I READ WRITE DIGIT DATA 
SWITCHES l 32 I DRIVER DRIVER SYSTEM 

32 32 

I MEMORY REGISTER o 100E- I 
J32 CABLES TRANSFORMER .J 32 CABLES 100 BITS 

MATRIX 
32 X 32 L _____ -, T • SENSE 

I 100 AMPLIFIER 
I CABLES SUCCEEDING 

TERMINATIONS I STAGES 
MEMORY STACK 

1024 WORDS ~ 
AND SE'NSE .J 100 DIGIT 
AMPLIFIER -, CABLES DRIVER ...... 

100 BITS FIRST STAGES ONE 

I 100 DIGIT 

I CABLES DRIVER 

MEMORY STACK AND ZERO 

SURROUNDING ELECTRONICS 

Figure 11. Block diagram of the memory system. 



A 10· BIT HIGH SPEED FERRITE MEMORY SYSTEM 131 

tinue command is given, the memory register 
is reset a second time to receive the newly proc­
essed information which is then stored in 
memory. Thus, the first half starts a conven­
tional "read" cycle which stops itself in the 
middle, upon later command to continue as a 
"write" cycle after clearing the memory regis­
ter. The time-saving features of this type of 
cycle are compatible with many of the common 
computer operations. The timing pulses gen­
erated by the control system for a read cycle 
are shown in their time relationships in 
Figure 12. 

WORD SYSTEM 

The word system is required, with the gen­
eration of minimum noise, to distribute a large 
read pulse, followed by a smaller write pulse 
of opposite polarity, to any of the 1024 words 
which happens to be addressed by the 10-bit 
address register. The bulk of this decoding is 
done in a bipolar diode matrix driven by 32 
pairs of read and write drivers along one side 

and 32 switches along the other side. The 1024 
intersections of this main matrix are trans­
former-coupled to the 1024 word lines of the 
memory stack. The dc level of the word line is 
restored by a diode-resistor network in the 
secondary of the transformer. Without this 
network a dc level shift will appear, as the read 
current pulse is greater in amplitude and dura­
tion than the write current pulse. The circuitry 
of the main matrix is shown in Figure 13. Each 
of the drivers and each of the switches has its 
own preamplifier channel complete with an 
AND gate having one negative and one posi­
tive input. The complete read and write driver 
channels are shown in Figure 14, and the 
switch channel in Figure 15. These driver and 
switch channels are arranged in three 4 X 8 
matrices. These matrices permit the selection 
of one of 32 switch channels and one each of 
32 read drivers and write drivers to select any 
word and drive it. 

The main problem encountered in designing 
a word drive system for a high-speed, high-bit-

READ COMMAND PULSE 
-1l~ ________________ __ 

ADDRESS TRANSFER PULSE 
-1' __________________ __ 

SWITCH TIMING PULSE ~ \ 

READ TIMING PULSE /I \~ 

WRITE TIMING PULSE /I ~\ 

DIGIT TIMING PULSE I , 
MEMORY REGISTER ..J\ 
RESET PULSE 

STROBE PULSE 
__________ ~f\~ ______________ _ 

DATA AVAILABLE PULSE ______ ----~f\~-------------
(COM MUN ICATION PULSE) 

CYCLE COMPLETE PULSE ------------------~ (COMMUNICATION PULSE) 

Figure 12. Timing diagram for a read cycle. Read and write timing pulses shift in time 
depending on the word address. (Solid lines show "Timing A" and broken lines show 

"Timing B"). 
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WRITE 
DRIVER 
CHANNEL 
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DRIVER 
CHANNEL 

WRITE 
DRIVER 
CHANNEL 

liB 
WORD LINE 

SWITCH SWITCH 
S CHANNEL S CHANNEL 

Figure 13. Portion of the 32 x 32 bipolar matrix. 

capacity memory is that of minimizing the 
noise introduced into the stack. As the elec­
tronics are a significant cost factor, it is desir­
able to use a bipolar diode matrix performing 
selection with drivers and switches; such a 
matrix reduces the cost of the word-system elec-

NEGATIVE 
"AND" 0-------, 
INPUT 

750pf 2N828 

POSITIVE 
"AND"~~"""'....I 
INPUT 30n 

NEGATIVE 
nANDn 0------, 
INPUT 

POSITIVE 
"AND·~~""""...J 
INPUT, 30n 

430pf 

430pf 

(a) 

(b) 

tronics for a 1024-word memory about ten to 
one. It has been our experience, however, that 
with all the types of bipolar matrices that we 
can devise, severe switching transients are in­
troduced on n lines of an n2 matrix when the 
switch selection is made. Moreover, it is found 

34.enlWt 1°/. 

OUTPUT TO 
BIPOLAR 

,..-~=--, MATRIX 

560n 

OUTPUT TO 
BIPOLAR 

___ -...-0 MATRIX 

Figure 14. Word drivers: (a) read driver channel, (b) write driver channel. 
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HAND" 
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"AND" 
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Figure 15. Switch channel. 

that the characteristics of the memory stack, 
both with conventional core memories and with 
our partially automated fabrication techniques, 
show much tighter capacitive coupling between 
the network of word lines and the network of 
digit lines than can be made to exist between 
either of these networks and a ground plane. 
The result is a tendency for the conventional 
word selection matrix to introduce a very siz­
able common-mode noise onto the network of 
digit lines. 

An analysis of the switch-noise injection pro­
cedure in the memory, where the word lines 
connected to a single switch are uniformly in­
tersected along the terminated digit line, shows 
that a voltage step on the selected switch cou­
ples via the 32 word lines controlled by the 
switch all along the digit line simultaneously. 
Thus, a step at the switch generates a common­
mode noise, the amplitude of which can be pre­
dicted from the inter-line and line-to-ground 
plane capacitances. The portion of this com­
mon-mode signal which the stack converts into 
the differential mode depends on the balance 
between the two digit lines of a pair and varies 
from one line-pair to another. 

A pulse transformer for each word line was 
used for capacitive decoupling between the 
word selection matrix and the memory stack. 
The interwinding capacitance of the trans­
former is a maximum of 7 picofarads, whereas 
the capacitance between a word line and all the 
digit lines connected together is about 60 pico-

farads, resulting "in a switching noise attenua­
tion of about 10 to 1. Starting with a 35-volt, 
30-nsec rise time step for switch selection, the 
half-selected word lines experience only a 3-volt 
step because of the isolatIon afforded by the 
transformer. " This condition in turn cal1-ses a 
0.5-volt common-mode spike to exist on the digit 
line. In the worst case this spike generates a 
differential noise signal almost as large in 
amplitude as a sense signal. This noise must 
be displaced in time from the. sense signal by 
causing the timing pulse for the switch to start 
earlier than the timing pulse for the read driver. 

As shown in Figure 12, the switch timing 
pulse is used to select a switch. This technique 
differs from normal practice, which does with­
out a timing pulse, with the result that at least 
one switch is turned on all the time. In the pres­
ent memory, a switch is turned on for a spe­
cific length of time to let the read and the write 
currents go through; otherwise, no switch stays 
turned on. The switch noise is appreciably re­
duced by holding the switches off until after the 
memory address register has completely settled 
from the address transfer transient, as other­
wise a spurious selection of switches during the 
address transfer transient will inject additional 
noise into the stack. By turning off the switch 
as soon as the write pulse is terminated, the 
problem of slow switch turn-off can be easily 
eliminated. 

Another closely associated problem is injec­
tion of noise via the half-selected word lines 
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controlled by the same switch during the read 
pulse. This is due to the passage of the read 
pulse through the finite impedance of the switch 
circuit, with its mechanism of noise injection 
being very similar to the one described above. 
This type of noise is a threat due to the fact 
that it always coincides with the sense signal. 
It is obvious that this problem can be minimized 
by lowering the impedance of the switch cir­
cuit. A low switch impedance is also desirable 
from the standpoint of matrix operation be­
cause it permits unimpeded flow of the read and 
the write pulses. The problem was solved by 
avoiding cables for connecting the switch chan­
nels and the word selection matrix altogether, 
and instead packaging the output stages of the 
switch channels at the memory stack. Here 
again the isolation provided by the use of cou­
pling transformers alleviates the noise problem 
greatly. 

Another advantage in using coupling trans­
formers is the speed increase of the switch op­
eration due to the capacitive isolation afforded 
by the transformers. Actually, this speed in­
crease and the switch turn-on noise reduction 
brought about by the coupling transformers are 
closely related. The capacitive charging and 
discharging currents that must come from a 
switch when it is turned on and off are made 
small by the use of the transformers. Thus, 
the switch speed is increased. Since the switch 
noise is caused by the same charging current 
entering the memory stack, the noise is reduced 
by the transformers. 

As shown in Figures 6 and 12, the read and 
the write pulses have two different timings, de­
pending on the word address. This feature is 
necessary because the digit line delay of 20 
nanoseconds from the driving and sensing point 
to the termination is not negligible compared 
with the drive current widths. The problems 
here are basically that of aligning the read and 
the strobe pulses and that of aligning the write 
and the digit pulses. In the present memory, 
the strobe and the digit pulses are fixed and 
the read and the write pulses are shifted accord­
ing to the word address. The 1024 words of the 
memory are divided into two groups of 512 
words. One group is closer to the digit-driving 
and sensing points while the other group is 
closer to the terminations as showri in Figure 

6. The former group uses Word Pulse Timing 
A, and the latter group Word Pulse Timing 
B. Figure 12 shows that the read pulse of 
Timing A is delayed compared to that of Tim­
ing B, and the write pulse of Timing A is ad­
vanced compared to that of Timing B. The 
difference is 10 nanoseconds, which is one-half 
of the effective digit line delay. 

DIGIT SYSTEM 

The digit system (Figure 16) is composed 
of the circuits that are used to detect and to 
write or regenerate information in each of the 
one hundred bits of a selected word. The cir­
cuits include 100 sense amplifiers, 100 digit 
drivers and the 100 flip-flops that form the 
memory information register. 

Digit Driver 

During the write time, the digit driver pro­
vides a 70-milliampere current pulse into one 
of the two digit lines in a direction to add to 
the write pulse in one of the two cores of a 
memory bit. The digit driver consists of two 
identical current drivers which are under the 
dual control of the timing generator and the 
flip-flop in the memory information register. 
The width of the digit pulse, 75 nanoseconds, is 
controlled by the digit timing pulse. 

The first stage of the digit driver produces 
a gated 10-volt pulse. The pulse is produced in 
one of the current drivers by the coincidence of 
the positive digit timing pulse and a low voltage 
level from one side of the flip-flop in the 
memory information register. The second cur­
rent driver is inhibited by the positive level 
from the second side of the flip-flop. 

The gated pulse is applied to the second stage 
through a capacitor that is used to give the 
pulse a negative level shift so that at the input 
to the second stage the pulse goes positive to 
- 25 volts from a reference level of - 35 volts. 
The second stage is a double emitter follower 
which is used to provide a voltage drive for the 
output stage. 

The output stage is a nonsaturating current 
driver whose output current is determined by 
the resistance in the emitter circuit and the 
voltage swing at the base of the transistor. The 
output stage drives the center of the digit line 
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Figure 16. Digit system. 

through a 100-ohm cable and a series diode, pro­
viding a 70-milliampere pulse into each half of 
the digit line. The diode is used at the memory 
stack to isolate the digit driver cable from the 
digit line when the driver is not in use so that 
low-level signals in the memory are not loaded 
by the cable. 

Sense Amplijier13, 14, 15, 16 

The digit lines are terminated at both ends 
in order to reduce the recovery time of the 
memory stack. As a result, only half of the 
difference signal from the two cores of a bit is 
available at the sense amplifier input. The 
difference signal is bipolar where one polarity 
represents a ONE and the other polarity repre­
sents a ZERO. The sense amplifier amplifies 
the difference signal and is strobed during a 
portion of the read time. The polarity of the 
sense signal at strobe time is sensed and if a 
ONE is detected, the sense amplifier produces 
a 3-volt negative-going output pulse which sets 
a flip-flop in the memory information register. 
If a ZERO is sensed, no change occurs at the 
sense amplifier output. During the write time, 
a negative digit pulse of approximately 20 volts 

is applied to one of the two digit lines, depend­
ing on whether a ONE or a ZERO is being writ­
ten into the memory. The sense amplifier is 
inhibited during the write time by the strobe 
circuit and recovers in less than 50 nanoseconds 
after the last difference-mode reflections from 
the digit pulse have ceased to exist on the digit 
lines. 

The first stage of the sense amplifier consists 
of two emitter followers which are connected 
to the center of the digit lines as shown in 
Figure 16and are used to provide a high input 
impedance so that the sense amplifier does not 
load the digit lines and does not interfere with 
the termination of the lines. The emitter fol­
lowers and series diodes are physically mounted 
near the center of the memory stack and are 
connected to the plug-in board that contains the 
regeneration loop circuits by means of a 125-
ohm shielded twisted-pair cable. 

The twisted-pair cable is terminated at the 
input to the second stage with resistors con­
nected to a decoupled power supply. When the 
negative digit pulse is applied to one of the 
digit lines, the corresponding emitter follower 
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is turned off and the transient at the input to 
the second stage is limited to 300 millivolts, 
since the currents in the cable termination are 
reduced to zero. The diodes are used in series 
with the emitter-follower outputs in order to 
prevent the flow of current if the base-to-emitter 
breakdown voltage is exceeded by the digit 
pulse. 

The second stage of the sense amplifier is a 
differential amplifier, with the transistor collec­
tors connected together through a delay line. 
This stage amplifies the difference between the 
input signals and sums the inverted amplified 
difference signal and the delayed amplified dif­
ference signal. This produces output voltage 
waveforms at the collectors that do not have a 
dc level shift with repetition rate variations. 
The output waveforms are on a well-determined 
reference voltage level which is determined by 
the current in the large resistance in the emitter 
circuit. Practically all of the emitter current 
reaches the transistor collectors and produces 
a constant operating voltage across the parallel 
combination of the collector resistors. The op­
erating voltage is constant even if the current 
is not shared equally by the two transistors, 
since' the delay line provides a dc short circuit 
between the collectors. The collector resistors 
are used to terminate the delay line so that 
there will be no reflections and the outputs of 
the second stage will recover to the reference 
level in a minimum of time after the end of 
the digit transient. 

The delay of the delay line is long enough that 
a usable amount of the inverted amplified sense 
signal is passed before the output is reduced 
by the delayed amplified sense signal. The de­
lay in this system is 25 nanoseconds, which is 
approximately one-half the base width of a 
sense signal. 

The third stage of the sense amplifier is an 
ac-coupled differential amplifier. One output is 
used as a test point for observing amplified 
sense signals, and the other output drives the 
next stage. The third stage has a maximum 
output current swing that is limited by the cur­
rent in the emitter current sources. This pre­
vents the digit transient from overpowering the 
inhibit current in the strobe circuit. 

The last stage is the strobe and pulse-stretch­
ing circuit. This stage contains a bistably biased 
five-milliampere germanium tunnel diode which 
drives an output transistor. The tunnel diode 
has two inputs. One input is from the third 
stage which provides the amplified sense signal 
and also provides the normal bias current for 
the tunnel diode. The second input is from the 
strobe circuit which during the inhibit time 
provides sufficient reverse current through the 
tunnel diode to keep it in the low-voltage state 
during the digit transient. 

The operation of this stage is illustrated in 
Figure 17, which shows the tunnel diode volt­
ampere characteristic and its load line. The 
tunnel diode is normally biased in the low­
voltage state at point A and is unable to switch 
to the high-voltage state during the digit transi­
ent because of the current-limiting action of 
the third stage. During a portion of the read 
time the sense amplifier is strobed by removing 
the inhibit current, thereby biasing the tunnel 
diode in the low-voltage state near the knee at 
point B. A difference signal of five millivolts 
at the input of the sense amplifier and the 
polarity of a ONE signal is sufficient to trigger 
the tunnel diode to point C in the high-voltage 
state. The tunnel diode turns on the output 
transistor which produces a three-volt negative­
going pulse used to set a flip-flop in the memory 
information register. The tunnel diode re­
mains in the high-voltage state until the inhibit 

TUNNEL DIODE 
CHARACTERISTIC 

Figure 17. Tunnel diode characteristic and load line. 
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current is applied by the strobe circuit. The 
inhibit current resets the tunnel diode to point 
A and terminates the output pulse. 

The operation of the sense amplifier is illus­
trated by the waveforms in Figure 18. Figure 
18 (a) shows superimposed the read-out signals 
and digit transients on the two lines of a digit 
line-pair. The stored information is represented 
in the difference between the two signals that 
appear on the lines at read time. 

Figure 18 (b) shows the signals that appear 
at the sense-amplifier test point when the delay 
line is removed from the circuit. The solid 
line shows reading and regenerating a ONE 
and the dotted line shows reading and regen­
erating a ZERO. The amplifier has amplified 
the difference in the read-out signals and has 
limited the digit transient. It can be observed 
that these waveforms have a dc component 
which would result in a dc shift in an ac ampli­
fier. This shift would be particularly objection­
able at high repetition rates. In addition, the 
waveform base line is dependent on the dc 
balances of the previous stages. 

Figure 18 (c) shows the test point signals 
with the delay line in the circuit. The wave­
forms represent the sum of the inverted 
amplified difference signal and the delayed 
amplified difference signal. These waveforn1s 
have no dc component other than the base-line 
voltage, which is well determined. 

READ TIME WRITE TIME 

(al SIGNALS ON DIGIT LINE PAIR 
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{b 1 WHEN DELAY LINE IS REMOVED 

FROM CIRCUIT \ : 

{ 1 WAVEFORMS AT TEST POINT 
C WITH DELAY LINE IN CRCUIT 
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Figure 18. Sense amplifier operation. 

Figure 18 (d) shows the strobe pulse which 
is positive only during the first peak of· the 
amplified sense signal shown in Figure 18 (c) . 

Figure 18 ( e) shows the sense amplifier out­
put. The negative-going pulse indicates the de­
tection of a ONE. 

PACKAGING 

The circuitry of the memory, except for 
those parts that had to be near the memory 
stack for special reasons, is packaged in four 
nests surrounding the memory stack as seen 
in the photograph in Figure 19. Each nest 
has 10 removable motherboards, each of which 
could potentially contain up to 56 small plug-in 
modules. Individual modules contain such parts 
as logic blocks, portions of drivers, portions of 
the sense amplifiers, etc. When a nest is com­
pletely assembled, all of the circuitry within it 
is interconnected by 70-ohm-impedance printed 
strip lines on both sides of the motherb()ards 
and perpendicular grandmother boards. Inter­
connections between nests are made by coaxial 
cables. Some of the memory circuitry which 
did not lend itself to modular packaging be .. 
cause of power dissipation or size considera .. 
tio~s, such as driver output stages, was pack .. 
aged on specially built motherboards by remov­
ing some or all of the provisions for pluggable 
modules. All logic level interconnections are 
made via 70-ohm cables. Re~d and write driver 
outputs are transmitted to the bipolar diode 
matrix at the stack via 70-ohm cables. To ob-

Figure 19. Memory system. 
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tain a lower impedance, the output stages of 
the switch channels are located at the memory 
stack. These stages are connected to the rest 
of the switch channels via 50-ohm cables. The 
digit driver outputs are transmitted to the 
stack via 100-ohm cables, and the sense ampli­
fier first stages are connected to the rest of the 
sense amplifier by twisted-pair balanced cables 
having a common ground sheath and a differ­
ential impedance of 125 ohms. 

TEST RESULTS 

The 1024-word two-core-per-bit memory was 
built with a complete word system and a full 
digit system of 100 bits. Also, a special mem­
ory exerciser was built to thoroughly test the 
memory system. 

Figure 20 shows a switch voltage, read and 
write currents and a digit current. The switch 
waveform was observed at the center tap of a 
word line transformer primary winding (see 
Figure 13). The undulations on the plateau 
were caused by the flow of read and write cur­
rents through the switch circuit. These undu­
lations would have been much larger if the 
switches had not been mounted on the memory 
stack. Read and write pulses of both Timing A 
and Timing B are shown in the figure. Note 
that the read and the write pulses of Timing 

SWITCH 
WAVEFORM 

READ AND 
WRITE PULSES 
(TIMING A) 

READ AND 
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DIGIT PULSE 

(
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Figure 20. Switch voltage, read and write pulses 
("Timing A" and "Timing B"), and'digit pulse. 

A are close together, while those of Timing B 
are slightly separated. The digit pulse was 
observed at the end of a digit line. 

As shown in Figure 21 (a), T termination 
networks are used to terminate digit lines. The 
termination impedances are Zrl = 137 ohms and 
Zs = 133 ohms. For practicality, the same ter­
mination networks are used for all the 100 digit 
line-pairs, although there is some indication 
that the optimum value changes from bit to bit, 
not so much for Zd but to some extent for Zs. 
The calculated value of the common-mode ter­
mination is Zc = 403 ohms. The word lines 
crossing digit lines are responsible for the large 
difference between the differential mode and 
the common-mode termination impedances. 

Figure 21 (b) shows the voltage waveforms 
at the three points on a termination network 
as indicated in Figure 21 (a). It is seen that 
the voltage waveform at the end of the un­
driven line B and that at the junction C in the 
T termination are the same. This is important 
because it means that no current flows out of 
the undriven digit line, which is a basic re­
quirement for memory operation as shown in 
Figure 2. To make the net current propagation 
on the undriven line zero, there must be a volt­
age propagation on it. (Here, the same velocity 
is assumed for all the propagation modes that 
exist in the memory operation.) It is to be 
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Figure 21. Voltage waveforms at a termination net­
work: (a) T termination network (Zd = 137 ohms and 

Zs = 133 ohms), (b) voltage waveforms. 
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noted that the condition shown in Figure 21 is 
realized only when all the 100 digit drivers are 
operating. 

Figure 22 shows waveforms at a sense am­
plifier test point, together with related wave­
forms. Figure 22 (a) shows two bits, one at 
the edge of the memory stack and the other at 
the center, regenerating ONES and ZEROS 
alternately over the entire memory of 1024 
words. Note that the sense signals are delayed 
to avoid the switch noise. The switch noise, al­
though comparable in amplitude to the sense 
signal, could have been made as small as it 
is only by the use of coupling transformers. 
The negative-going sense signal represents a 
ONE and the positive-going sense signal a 
ZERO. The digit transient takes about 350 
nanoseconds to die down, measured from the 
start of the digit pulse. This time includes 
approximately 300 nanoseconds attributed to 
the base width of the digit pulse and the stack 
recovery time, plus 50 nanoseconds attributed 
to the sense amplifier. This relatively slow re­
covery of the stack, even with the elaborate T 
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Figure 22. Waveforms at sense amplifier 
test points: (a) regenera tion of ones and 
zeros, (b) regeneration of ones, (c) regen­
eration of ones and zeros at 450-nsec cycle 

time. 

termination, seems due to the imperfection of 
digit lines as transmission lines. 

Figure 22 (b) shows regeneration of ONES 
on all the 1024 words. It is seen that the infor­
mation is available at the memory register in 
about 230 nanoseconds from the beginning of 
the read command pulse. Figure 22 ( c) shows 
a higher repetition rate operation of about 450-
nanosecond cycle time. I t shows regeneration 
of ONES and ZEROS on alternate words over 
the entire memory. Here, the switch noise and 
the digit transient recovery are made concur­
rent without affecting the sense signals. 

The waveforms shown above represent only 
a small portion of the tests performed on the 
memory with the aid of the memory exerciser. 
These tests confirmed the soundness of the de­
sign philosophy, the effectiveness of the prob­
lem solving approach, and the practicality and 
reliability of the memory system actually built. 

CONCLUSION 

Development of the present memory system 
evolved the method of control of wave propaga­
tion. Unless wave propagation is controlled, it 
is almost impossible to operate a high-speed 
memory. The basic requirements for control 
are: 

1. Use of two neighboring digit lines as a 
pair for one-bit location 

2. Equalization of coupling between the 
digit lines 

3. Use of differential sense amplifiers 

4. Termination of digit lines on both ends 
for all the existing wave propagations 
with particular emphasis on the differen­
tial-mode termination. 

The last requirement is met by the present 
memory due to the particular digit drive 
scheme used. It requires careful study to choose 
a digit drive scheme, as otherwise, a simultane­
ous termination for all the possible propaga­
tions becomes a very complex problem, with no 
practical answer. Although not applicable to 
the present memory, it is preferred that only 
the differential-mode propagations exist. This 
may be accomplished by the proper selection 
of memory cell types and digit drive schemes, 
and will simplify the propagation problem 
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greatly. It should be emphasized that the 
approach used in this paper in treating wave 
propagations in a memory stack is applicable 
to any word-organized memory. 

The use of transformers to couple read and 
write pulses to individual word lines proved 
very successful in alleviating the noise problem 
associated with the word selection matrix. 
There is still a possibility of reducing the noise 
further by reducing the transformer inter­
winding capacity, which will increase the sys­
tem reliability and at the same time enable a 
faster access time. 

The use of a delay line in a differential sense 
amplifier minimized the problems of dc im­
balances and level shift when sensing sm:),ll 
signals in an environment of large digit pulses. 
In addition, the use of a tunnel diode strobe 
circuit provided low-level thresholding and 
high-speed operation. 

There seems to be no basic difficulty in build­
ing a memory with twice as many words, using 
the basic design described here. It is expected, 
however, that the cycle time will be slightly 
longer since the digit lines are twice as long. 

APPENDIX 

WAVE PROPAGATION ON MULTIPLE 
PARALLEL LINES WITH EQUALIZED 
COUPLING 

The analysis given below shows the modes 
of wave propagation that can exist on a set 
of multiple parallel lines with equalized cou­
pling. The following assumptions are made: 

1. Propagation is in the direction of the 
digit lines only. This implies that the 
word lines are considered as contributing 
only to the coupling among digit lines. 

2. Digit lines are distributed constant lines. 
This is justified because for the frequen­
cies of interest, it is not necessary to con­
sider the line irregularities caused by 
memory cells. 

3. Digit lines are uniform and have no dis­
continuities. This assumption may not 
hold precisely in practice, but is made to 
permit a mathematical analysis. 

4. A ground plane is present. This assump­
tion is also made to permit a mathemati­
cal analysis. 

A similar problem of multiple line wave 
propagation was studied a long time ago.17 The 
solution given here is more general than the 
one given in the reference and more readily 
applicabl~ to memories. 

Let the number of lines be 2n, where n is an 
arbitrary integer. From these, we form n 
pairs. Pair i consists of line i and line - i, 
where i = 1,2, ... ,n. This is shown in Figure 
A-I. Pair-to-pair coupling is equalized, which 
implies that, when we consider pair i and pair j 
(i *- j, and i, j = 1, 2, ... , n), the coupling is 
the same between line i and line j, line i and 
line - j, line - i and line j, and line - i and line 
- j. To be general, the coupling is made a func­
tion of i and j. The case in which the coupling 
is constant regardless of i and j has been 
treated elsewhere.!' 

Using matrix notation, the pertinent differ­
ential equations are 

[ - ~: ] = [Z] [I] 

[- ;~J = [Y][V] 

(A-I) 

(A-2) 

The above factors are defined as follows: 

r ~-~ 1 

[V] = I [I] 

I 
I 
I 
I Vn I 
L V-n J 

where 

Vi = Voltage on line i 
V- i = Voltage on line - i 
Ii = Current on line i 
Li = Current on line - i 

= 1,2,3, ....... , n. 

L~ 1 

I 
I 

I 
J 



[Z] 

where 
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PAIR I PAIR 2 PAIRi PAIR j ····PAIRn 

~ ~ r-"'----. ~ ~ 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GROUND 1 I utI LINE i 
LINE -i LINE -j 

Figure A-l. Cross section of a system of 2n parallel lines. 

................. J 
Znl Znl Zn2 Zn2. . . . .. Zsn Zmn 

L-Znl Znl Zn2 Zn2. . • . •. Zmn Zsn 

where 

Y si = Self parallel admittance per unit 
length of line i or line - i, i = 1, 2, 3, 
..... ,n. 

Y mi = Mutual parallel admittance per unit 
length between line i and line - i, 
i = 1, 2, 3, ...... , n. 

ZSi = Self series impedance per unit length 

Yij = Mutual parallel admittance per unit 
length between either line i or line 
- i and either line j or line - j, i =I=- j 
and i, j = 1, 2, 3, ..... , n. of line i or line - i, i = 1, 2, 3, ....... , . 

n. Y ij = Y j i i =I=- j and i, j = 1, 2, 3, ...... , n. 

Zmi = Mutual series impedance per unit 
length between line i and line - i, From Equations (A-I) and (A-2) , 

i = 1, 2, 3, ....... , n. 

Zij = Mutual series impedance per unit 
length between either line i or line - i 
and either line j or line - j, i =I=- j and 

[~:J = [Z] [Y] [V] = [1'] [V] (A-3) 

where 

i, j = 1, 2, 3, ....... , n. (equalized) [/L] [Z] [Y] 

Zij = Zji i =I=- j and i, j = 1, 2, 3, ....... , n. 

IY
" Ym

, Y" 
Y l2 YIn YIn -, 

Y ml Y SI Y l2 Y l2 YIn YIn 

Y 21 Y 21 Y S2 Y m2 Y 2n Y 2n 

I 1'" I'm, 1''' /L12 /LIn /LIn 

/Lml /LsI /L12 /L12 /LIn /LIn 

/L21 /L21 /Ls2 /Lm2 /L2n /L2n 

/L21 /L21 /Lm2 /Ls2 /L2n /L2n 

[Y] 
Y 21 Y 21 Y m2 Y S2 Y 2n Y 2n 

................. 
/Lnl /Lnl /Ln2 /Ln2 /Lsn /Lmn ................. 

Y nl Y nl Y n2 Y n2 Y sn Y mn 

Y nl Y nl Y n2 Y n2 ..••.. Y mn Y sn 

L- /Lnl /Lnl /Ln2 /Ln2 ....•. /Lmn /Lsn 

and 

/Ls; = Zsi Y Si + Zmi Y mi + 2 ~ Zik Y ki ; k,. i 

JLmi = Zsi Y mi + Zmi Y Si + 2 ~ Zik Y ki ; 
kli 

1,2,3, ...... , n 

i = 1, 2, 3, ...... , n 

/Lij = Zij (YSj + Y mj ) + Y ij (ZSi + Zmi) + 2 ~ Zik Y kj ; 

k" i 
k I j 

and i, j = 1, 2, 3, .... , n. 
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In general 
P,ij =FJLji; i =F j, and i, j = 1,2,3, .... , n. 

Assume a solution for Equation (A-3) of the form 

V V 
"f.X 

i = oje 1 

i = 1, 2, .... , n. 

In order that the solution not to be trivial (Le., VOl = 0, i = 1, 2, .... , n), the following must 
hold: 

or 

p,nl 
p,nl 

x 

p,ml 
P,sl - y2 
P,21 
P,21 

P,nl 
P,nl 

P,12 
P,12 
p,m2 

p,s2 - ... / 

p,n2 
p,n2 

P,12 
P,12 
p,m2 

p,s2 - y2 

JLn2 

p,n2 

(P,SI - p,ml - y2) (P,S2 - p,m2 - y2) 

(P,Sl - p,ml - y2) 2JL12 
2JL21 P.S2 + P.m2 - y2 

/LIn 
P,ln 

This is a 2n th degree equation in y2. Let the roots be 

2 {P,Sk - JLmk k = 1, 2, .... , n 
Yk = Root of the determinant k = n + 1, n + 2, .... , 2n 

=0 

=0 

Consider only the forward propagation, because the backward propagation is the same except for 
direction. Then 

1 
- V JLsk - P,lllk 

Yk = - V Root of the determinant 

Now the solution of Equation (A-3) is 

V. =~v'keY"l 

V_. == ~ V ••• eY
" } 

k = 1, 2, .... , n 

k = n + 1, n + 2, .... t 2n 

i = 1, 2, .... , nand 
k == 1, 2, .... , 2n 

(A-4) lit 

Substituting Equation (A-4) into Equation (A-3) to find relationships among V 1k and V- ik, 

~ JLlj (V jk + V-Jk) + (P.Si - y!) V ik + /tllli V- ik = 0 
J"rf 
~/tiJ (V jk + V- Jk) + p,ml V ik + (P.Si - y=) V- ik == 0 
~ 

(A-5) 

(A-6) 

* Here it is assumed that A"'oS are all single roots. Inclusion of multiple roots, however, does not change the 
form of Equations (A-ll) and (A-12), because the terms of the form xPe"Y", where p is a non-zero integer, can­
not appear in the solution. 
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where 

i = 1, 2, .... , nand k = 1, 2, .... , 2n. 

By substracting Equation (A-6) from (A-5), 

If k =1= i, /Lsi - /Lmi - Y: =1= O. Therefore 

V ik = V-ik, where k =1= i, and k = 1,2, .... , 2n (A-7) 

Then, Equation (A-5) can be rewritten as 

~ 2/Lij V jk + (}Lsi + /Lmi - y 2k) V ik + /Lik (Vkk + V-kk ) = 0 
j 'I i 

(A-8) 

j I- k 

where 

k =1= i, and i, k = 1, 2, .... , n. 

If k == i, /Lsk - y~ = /Lmk (k = 1, 2, .... , n). 

Then, from Equation (A-5) 

where 

k = 1,2, .... , n. 

For a given k, Equations (A-8) and (A-9) to­
gether form n simultaneous equations in V jk 
(j =1= k; and j = 1; 2, .... , n) and (Vkk + V -kk). 

In other words, if k is fixed, Equation (A-9) 

gives one equation and Equation (A-8) gives 

(A-9) 

(n - 1) equations, because i can take (n - 1) 
different values. Therefore, 

V jk = 0 

and 

j =1= k, and j, k = 1, 2, .... , n 

Vkk + V-kk = 0 k = 1,2, '" 0' n 

These are combined with Equation (A-7) to 
obtain 

V ik = -V-ik 
V ik = V- ik = 0 
V ik = V- ik 

i = k = 1, 2, .... , n } 
i =1= k and i, k = 1, 2, 0 0 0 0, n 
i = 1,2, 000 .,nand k = n + 1,n + 2, 0000' 2n, 

(A-I0) 

Now Equation (A-4) becomes 

U sing Equation 

I _Vii 1'i% + ~.2n 
i --e 

Zoi 
k = n + 1 

2n 

~ 
k = n + 1 

i = 1,2,0000, n (A-II) 

i = 1,2, .000' n (A-12) 
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where 

JZSi - Zmi 
Z·= 

01 Y~i - Ymi 

i = 1,2, .... , n 

Equations (A-II) and (A-12) show that the 
possible modes of propagation are: 

1) Independent differential mode for each 
line-pair 

2) Common modes in which the two lines of 
a pair have identical wave propagation. 
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AN ASSOCIATIVE PROCESSOR 
Richard G. Ewing and Paul M. Davies 

Abacus Incorporated, Santa Monica, California 

1. INTRODUCTION 

This paper describes the computer system de­
signed under an Air Force sponsored study pro­
gram to develop a non-cryogenic Associative 
Processor organization and to study its possible 
use in a variety of Aerospace applications. Two 
approaches were considered to this problem: 
one in which an associative memory would be 
added to a more or less conventional computer 
and another in which a new organization would 
be developed around the principle of memory 
distributed logic. The latter approach was 
chosen because it appears to result in a more 
efficient form of parallel processor. 

Because of the nature of the intended use of 
the processor, emphasis was placed on network 
simplicity, on reduction of size and power, and 
especially, on reliability. While the processor 
organization was designed in terms of a partic­
ular mechanization-wire memory and inte­
grated circuitry-the organization and algo­
rithms are described here in general terms, and 
questions of mechanization are postponed to a 
final section. 

When the fundamental limits of electrical 
and optical signal propogation speeds are 
reached, there are just two ways to further re­
duce the time to perform a given computation. 
One of these is by making things smaller, and 
the other is by performing parallel processing. 
But efforts to achieve efficient parallel proces­
sors have encountered several difficulties. First 
is the problem of providing sufficient memory 
and computing capability within a simple 
module. Some parallel processors, such as the 
Holland 1 machine, have employed relatively 
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simple modules, but the memory capacity and 
computing capability of each module were lim­
ited. Others, such as the Solomon Computer 2, 

provide greater memory capacity and comput­
ing capability in the module, but each module 
approaches the complexity of a small computer. 

Another serious problem is that of communi­
cation. For a periodic computing structure to 
be useful, it is essential that there be efficient 
paths for the communication of control signals 
and operands among the modules. In some 
parallel processors, the communication net­
works are more complex than the processing 
modules themselves. 

The associative memory suggest itself as a 
basis for another approach to the problem of 
parallel processing. Logical operations are per­
formed within the individual memory cells of 
this memory, and communication within the 
structure is particularly efficient. Extension of 
these principles to permit full logical and arith­
metic capability within each memory cell would 
provide a high degree of processing parallelism. 
We shall call an associative memory structure 
and its control logic, which is capable of per­
forming such distributed computation, an As­
sociative Processor. 

In addition to the parallel computing capa­
bility, there are several other advantages which 
one may expect to achieve in the Associative 
Processor. These are: 

1. The data storage and retrieval capabil­
ities of the Associative Memory, which 
greatly simplify or eliminate such com­
mon data manipulations as sorting, col-



148 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

lating, searching, matching, cross refer­
encing, updating and list processing; 

2. Programming simplifications based upon 
the possibility of ignoring the placement 
of data in memory and the extensive use 
of content addressing and ordered re­
trieval; 

3. The periodic structure of a large portion 
of the processor. Periodicity of structure 
lends itself to integrated circuit tech­
niques and batch fabrication. Inter­
connections between components become 
shorter and less tangled, reducing propo­
gation delays and simplifying layout and 
checkout. Since the structure is periodic, 
it can easily be expanded in size; 

4. Fault Tolerance. The periodic structure 
may permit an organization which is tol­
erant of memory or circuit element fail­
ures. If a cell fails, it may be possible to 
avoid its further use with little loss to the 
system capability. A program for an as­
sociative structure makes little or no ref­
erence to a unique cell so that loss of a 
cell "vould not confuse the program. 

Two approaches have been taken in the past 
to solve the problems of parallel processing by 
using associative processing techniques. Rosin 3 

and Fuller 4, 5 have considered an associative 
memory under control of a general purpose 
computer. In Fuller's work, algorithms for a 
variety of arithmetic operations are built up as 
sequences of elementary operations performed 
by the rather limited word logic of the associ­
ative memory. In Davies 6, more extensive 
word logic is provided, and the control is inte­
grated into the associative processor. The pres­
ent paper represents an attempt to achieve the 
higher speed of the second approach with a 
considerably simpler logical structure, which 
could be mechanized from non-cryogenic com­
ponents. 

The design which was adopted provides a 
random access memory for program storage 
and a bit serial associative memory for data 
storage and parallel processing. The ability to 
write tags (i.e. to simultaneously write data in 
a selected bit position of a number of selected 
words), coupled with simplified word logic net­
works, permits relatively efficient bit serial 
algorithms for many kinds of parallel searches, 

parallel arithmetic and ordered retrieval. 
Methods were developed for treating certain 
classes of memory and circuit failures. For 
these cases, the processor can continue to op­
erate in spite of a failure with only slight im­
pairment of the overall system capability. In 
the area of communication, methods were de­
veloped for treating operand pairs in a variety 
of relative locations. 

2. MEMORY DISTRIBUTED LOGIC 

One of the fundamental features of the asso­
ciative memory is that logical operations are 
performed within the memory cells. However, 
even in the random access memory a limited 
amount of logic is performed in the memory 
cell. The boolean function Xi 'Yj 'Sij is per­
formed, where Xi is the selected X address co­
ordinate, Y j the selected Y address coordinate, 
and Sij the bit stored at location ij. The value 
of the function is read out on the sense line. In 
an associative memory, the memory logic is ex­
tended to permit selection of a memory cell on 
the basis of stored data. In some associative 
memories, this is accomplished by the function 

(Sl~Rl) . (S:!~R:!) ... (Sn~Rn) 

which is mechanized in each memory word cell. 
"Si~Ri'" the equivalence function, is the same 
as Si . Ri + Sj • R i. Si is the bit stored in the 
i-th bith position of a typical word, while Ri is 
the corresponding bit of a reference word 
stored in an external register. The function 
selects all words whose stored contents match 
the reference word. This can be improved to 
permit masking of selected bits as follows: 

[(Sl~Rl) + Md r (S2~R2) + M2] 

[(Sn~Rn) +Mn] 

where Mi indicates whether the i-th bit is to be 
ignored in the comparison. 

In addition to providing logic in each mem­
ory bit position, it is also profitable to have logic 
associated with each word cell. This is the case 
in certain word organized random access mem­
ories and in associative memories. In the first 
case, there is the word driver which may be a 
magnetic or semiconductor amplifier which re­
sponds to X and Y coordinate selection lines 
just as the typical bit cell does in a coincident 
current memory. In associative memories, 
there is usually a match detector with each 



word which responds to the match logic de­
scribed above. Ordinarily, the match detector 
has memory. These operatiotls at both the bit 
level and the word level suggest the possibility 
of providing sufficient distributed logic to per­
mit parallel computation throughout the mem­
ory structure. 

In arriving at an Associative Processor capa­
ble of such parallel computation a number of 
important decisions must be made. One basic 
choice is whether to use a separate random ac­
cess memory or the associative memory itself 
for program storage. The first choice is prob­
ably more practical since the random access 
memory is less expensive; furthermore, it will 
be easier to protect the associative portion from 
fault if the program is kept separate. 

A second choice to be made is between bit 
parallel and bit serial operation. Certain asso­
ciative operatibns such as the matching of fields 
for equality can be performed in bit parallel. 
On the other hand, to perform the more com­
plex functions of arithmetic, it appears more 
convenient to use the bit serial approach,· sim­
plifying the bit cell by time sharing one logic 
module among all bits of a word. 

A third problem is that of communication. 
To· perform parallel computation, one must 
have access to the operands and operand pairs. 
In some cases, the operand pairs are stored 
together in the same word. In other cases, 
they are in adjacent words, while in still others, 
they are in non-adjacent words, but always 
some fixed number of words apart. Another 
common requirement involves operand pairs in 
which the first operand of each pair is common 
while the second operands are distinct. In this 
case, the common operand, in an external reg­
ister, must be communicated to the others, 
stored in various memory cells. Still another 
communication problem is based upon the fact 
that while large portions of a problem may be 
susceptable to parallel processing, other parts 
may be essentially sequential. These also must 
be performed efficiently by the Associative 
Processor if they are not to offset the ad van­
ta~es gained in the parallel processing . 

. Techniques for solving these communication 
problems include the following: 

1. Transmission of a common operand to all 
memory word cells. 
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2. Flexible control of field selection to per­
mit operation on pairs of operands in the 
same words. 

3. Use of shift registers for communication 
between words. These can be uni-direc­
tional orbi-directional and can be ex­
tended to two or more dimensions to give 
greater flexibility. 

4. Forms of entry-exit ladder networks 
which permit rapid communication be­
tween non-adjacent word cells. 

The following sections will describe the As­
sociative Processor, which is based upon spe­
cific choices of these options. 

3. ORGANIZATION 

A block diagram of the Associative Proces­
sor is shown in Figure 1. It contains both 
a conventional random access memory (RAM) 
and an associative memory. The RAM pro­
vides storage for instructions and constants; 
it is accessed parallel by bit and serial by 
word. In processing operations, the Associa­
tive Memory is accessed parallel by word and 
serial by bit. In the organization under con­
sideration, RAM contains 4000 twenty-four 
bit words, and the Associative Memory con­
tains 500 ninety-six bit words. 

Instructions accessed from RAIVI are trans-
ferred to the Instruction ·Register where they 
are held during execution. The D-Register, 

INPUT 

ASSOCIATIVE 

MEMO~Y 

WORD 
La G I c} 
SENSE 

& 
W~I TE 

AM P'S 

Figure 1. Block Diagram of Associative Processor. 



150 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

which has the same length as a RAM word, 
serves as temporary storage for operands 
which participate in associative operations. 
For instance, the D-Register may hold the 
argument of a search, may receive data being 
retrieved from the Associative Memory, or 
may communicate with the external world. 
Data originating from outside of the Associa­
tive Processor can be transferred directly to 
either the Associative Memory or RAM. Direct 
input to the memories is under an automatic 
interrupt control. 

In the Associative Memory, only one bit 
column at a time may be operated upon. The 
particular bit column is selected by either the 
A Counter, the B Counter, or the C Counter. 
Associated with the A and B Counters are the 
A and B Limit Registers. Each may contain 
a value which serves to define a maximum or 
minimum value of its companion counter. To­
gether, each counter and limit register define a 
field which can be any length up to the number 
of bits in the Associative Memory word, and 
may overlap the field defined by the other coun­
ter and limit register. 

, The design of the Associative Processor is 
sufficiently general to permit implementation 
by' a variety of memory elements and logic 
techniques. Therefore, the following descrip­
tion of the Associative Memory, shown in 
Figure 2, will present those characteristics 
which are essential to the design of the As­
sociative Processor. 

Storage for one bit is provided at each inter­
section of a word and a bit line. A pulse on 
a bit line causes a signal to be emitted by each 
bit on that line. The signals are transmitted 
through the word lines to the sense amplifiers. 

l 

BIT DRIVERS 

Figure 2. Associative Memory. 

The equivalence function is obtained in one of 
two ways depending upon the particular mem­
ory element. In some memories it is sufficient 
to exercise control over the polarity of the 
interrogating pulse, thereby achieving a signal 
output for a match and no output for a mis­
match. In these cases, the bit element itself 
performs the equivalence function, S~R. In 
other memories, the stored bit is merely read 
out; the reference bit is transmitted to all 
sense amplifiers and logic associated with each 
sense amplifier generates the equivalence func­
tion. 

Writing at a particular bit location is ac­
complished by passing a current through the 
intersecting bit and word lines. The polarity 
of the current in the world line, or in some 
cases the word and bit lines, determine the 
state of the written bit. By energizing all the 
word drivers and one bit driver, one bit of each 
word can be written into. The latter opera­
tion, which is sometimes referred to as "tag­
ging", plays a significant role in the design of 
the Associative Processor. 

The logic associated with each word gives 
great power to the Associative Processor. This 
logic 'is identical for all words and consists of 
a sense amplifier, storage flip-flop, write ampli­
fier, and control logic. Refer to Figure 3.3. 
The sense amplifier is bistable and remembers 
the match state from one interrogation to the 
next. The output ",of the sense amplifier de­
termines the state of the storage flip-flop in 
various ways as determined by the control 
signals, Es, Er, and Ec. In addition, the con­
tents of each storage flip-flop can be shifted to 
the storage flip-flop in the word above under 
control of the signal, Esh. This provides com­
munication between words. 

One of the functions of the storage flip-flops 
is to control writing. In this operation, the 
storage flip-flops in the "1" state select the 
words that are to be written into, while the 
signals, W1 and WO, determine whether "l's" 
or "O's" are written by the selected write 
amplifiers. In addition, the output of each 
storage flip-flop is "ANDed" with the output 
of the corresponding sense amplifier. The out­
puts of these AND gates are ORed together 
to provide an output channel from the Associa­
tive Memory to the remainder of the Processor. 



Control of the word logic networks is exer­
cised through a Control Unit. This unit inter­
prets the contents of the Instruction Register 
and D Flip-flop to determine the control sig­
nals, Es, Er, Ec, Esh, WI, and WO which are 
transmitted to all word logic networks. 

The D flip-flop and D Register are the data 
link between the Associative Memory and the 
Random Access Memory. Data, such as the 
argument for a search, are transferred from 
RAM in parallel to the D-Register. Each bit 
is then shifted into the D Flip-flop where it 
participates in the search operation. Data 
retrieved from the Associative Memory are 
transferred through an adder to the D Flip­
flop and then to the D Register. 

The Associative Processor offers a variety of 
processing options in terms of operand loca­
tion and processing speed. The following list 
illustrates 'some of the possibilities: 

1. D+ M~D 
2. D,+ Mj~Mj 

3. Mj + Mj~Mj 
4. Mj + Mk~Mk 

(1) represents an operation occurring be­
tween the D Register and one selected word in 
the Associative Memory. The result goes to 
the D Register. (2) illustrates a process be­
tween D Register and many words in the 
Associative Memory. The third operation 
occurs between pairs of operands, each pair 
stored in a separate word. (4) represents an 
operation occurring between operands in dif­
ferent words. The same operation may simul­
taneously occur in many such pairs of words. 
In addition to these operations, many varia­
tions are possible, e.g. the operands may be 
located in different words with the results 
going to a third word. 

The capability of the storage flip-flops to act 
as a shift register provides the communication 
link between adjacent words. Another use of 
this shift register occurs in counting the num­
ber of words which satisfy a search algorithm. 
This is accomplished by operating the storage 
flip-flops as a shift register and counting the 
number of "1's" shifted out. Each "I" cor­
responds to a word that satisfies the search. 
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4. COMMAND STRUCTURE 

There are two types of instructions in the 
Associative Processor. Instructions which ex­
ercise control over the Associative Memory 
shall be referred to as associative instructions. 
Instructions which provide access to the Ran­
dom Access Memory or that perform control 
transfers shall be referred to as non-associa­
tive instructions. A list of non-associative 
instructions follows: 

LA Load the contents of memory location 
M into the A-Counter and Limit Regis­
ter. 

LB Load the contents of memory location 
M into the B-Counter and Limit Regis­
ter. 

LC Load the contents of memory location 
M into the C-Counter. 

LD Load the contents of memory location 
M into the D-Register. 

LM Load the contents of the D Register into 
Memory Location M. 

TD Transfer to location M if the D flip-flop 
equals "zero", otherwise proceed se­
quentially. 

TO Transfer to location M if the output of 
the OR gate equals "'zero", otherwise 
proceed sequentially. 

TI Transfer to the location specified by 
memory location M. 

TU Unconditionally transfer to location M. 
SH Up-shift the storage flip-flops a number 

of times equal to M. 
SC Up-shift the storage flip-flops a number 

of times equal to M. The C Counter 
counts the number of ones shifted into 
the highest level storage flip-flop. 

CD Transfer the contents of the C Counter 
to the D Register. 

ID Input data wo;rd from external device to 
the D register *. 

OD Output data word from the D register 
to external device *. 

*The input and output commands generally work 
in conjunction with the automatic interrupt facility. 
An external devicE' requests an interruption by turning 
on an interrupt flip-flop. This causes the Processor 
to complete the present instruction, store the contents 
of the Instruction Address Counter in memory, and 
jump to an Input or Output routine. These routines 
can transfer 1-0 data between the D Register and 
either the RAM or the Associative Memory_ 
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Each associative instruction controls the 
processing during a single bit time, except 
when it is executed in a Repeat Mode. The 
instructions are divided into a number of fields, 
each of which specifices the control of a sepa­
rate part of the Processor. Figure 3 sum­
marizes these fields which are described below: 

Column Select (CS) : The contents of this field 
determine what bit column of the Associative 
Memory is to be interrogated or written into, 
either by specifying the A, B, or C counter, 
which in turn selects the bit column, or by di­
rectly specifying one of the four bit columns. 
The four directly specified columns are ordi­
narily used for the storage of tag bits. 

A A counter 
B B counter 
C C counter 
T1 Column 1 
T2 Column 2 
T3 Column 3 
T4 Column 4 

Counter Control (CC): The contents of this 
field determine whether the counter selected 
in CS will be modified. A counter may be dec­
remented or incremented by one. 

IN Increment 
DE Decrement 
NC No Change 

Transfer Control (TC): In general, instruc­
tions are accessed from sequential memory lo­
cations in RAM. To facilitate exiting from a 
subroutine, it is desirable to be able to transfer 
to another location when the contents of a 
counter become equal to the associated Limit 
Register. 

Ta Transfer to memory location 0 when the 
A-Counter becomes equal to the A-Limit 
Register 
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Tb Transfer to memory location 1 when the 
B-Counter becomes equal to the B Limit 
Register 

NC Proceed sequentially. 

Adder Control (AC) : The contents of this field 
control the manner in which the output of the 
OR gate is transferred into the D Flip-flop. 

L OR gate output copied into the D Flip­
flop. 

C Complemented OR gate output copied 
into the D Flip-flop. 

A OR gate output added to the D Flip-flop. 
The carry is stored in a flip-flop as­
sociated with the Adder. 

S OR gate output subtracted from the D 
Flip-flop 

NC No transfer 

D-Register Shift (RS) : The D Register can be 
made to shift one bit in either direction. The 
shift is end around when the contents of the 
AC field indicate that no transfer is to take 
place. 

R Right shift 
L Left shift 
NC No Change 

• TO O~ 
r----L...I GATE 

Figure 3. Word Logic. 



Interrogate Control (IC) : Upon interrogation, 
the sense amplifier responds with a "1". out­
put to a· match condition between the interro­
gated bit and what previously has been labled 
a reference bit. The IC field defines the ref­
erence bit: 

1 Interrogate for "I". If the stored bit is 
equal to "1", the sense amplifier will be 
set. 

Z Interrogate for "0". If the stored bit is 
equal to "0", the sense amplifier will be 
set. 

D If the D flip-flop is equal to "I", inter­
rogate for "1", if "0", interrogate for 
"0" . 

D If the D flip-flop is equal to "0", inter­
rogate for "I", if "I", interrogate for 
"0" . 

Write Control (WC): This field specifies writ­
ing to occur in the words for which the stor­
age flip-flop is equal to "I". During writing, 
the IC field is available to determine whether 
"1's" or "O's" are to be written. 

W-Write 
NC-Do not Write 

Storage Flip-fiop Control (SC): This field 
specifies the state of the control signals which 
are common to the input logic of each of the 
storage flip-flops. This logic influences the 
transfer of data from the sense amplifiers to 
the storage flip-flops. 

NC O~Es, O~Er 

No transfer takes place. 

Es I~Es, O~Er 

The Storage flip-flop is set if the 
sense amplifier is equal to "I". 

Er O~Es, 1 ~Er 
The Storage flip-flop is reset if 

the sense amplifier is equal to 
"0" . 

Esr I~Es, I~Er 

D 

The state of the sense amplifier 
is copied by the storage flip­
flop. 

I~Es, O~Er, 

if the D flip-flop is equal to "1". 

O~Es, I~Er, 

if the D flip-flop is equal to "0". 
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15 O~Es, I~Er, 

if the D flip-flop is equal to "I". 

I~Es, O~Er, 

if the D flip-flop is equal to "0". 
OR I~Er 

Ec I~Ec 

if the output of the OR gate is 
equal to "I". 

The storage flip-flop is comple­
mented if the sense amplifier 
is equal to "1". 

Instruction Type (IT): This field appears in 
both associative and non-associative instruc­
tions. The contents designate the instruction 
as being associative or not. 

A Associative 
A Non-associative 

Repeat Mode (RM): It is sometimes desirable 
to repeat an instruction during the execution 
of a simple search. 

R Repeat until the counter specified by CS 
becomes equal to its limit register. 

R Do not repeat instruction. 

The time required to execute one associative 
instruction is measured from the time the in-
struction is transferred into the Instruction 
Register to the time the sense amplifier out­
puts are transferred into the storage flip-flops. 
During this time, the next instruction is ac­
cessed, and the previous output of the storage 
flip-flops can be transferred to the D flip-flop. 
This time will be referred to as a "bit time". 
Associative instructions are accessed at a rate 
of one per bit time. It should be noted that 
the AC field of the associative instruction will 
control the disposition of storage flip-flop data 
that resulted from an interrogation specified 
by the previous associative instruction. Non­
associative data tranferring instructions re­
quire two bit times for execution (Both an in­
struction and an operand must be accessed 
from the Random Access Memory). N on­
associative instructions which transfer control 
require one bit time for execution. 

5. MICROPROGRAMMED ALGORITHMS 

The method by which associative instruc­
tions are controlled constitutes one of the 
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major factors contributing to the flexibility of 
the Associative Processor. Each field of the 
instruction directly specifies some. control func­
tion, so that numerous associative instructions 
can be micro-programmed by the appropriate 
selection of fields. Despite the large number 
of options available, the central control unit is 
very simple since the control functions are ob­
tained directly from the instruction fields. 

Following, is a description of several impor­
tant categories of associative instructions with 
typical microprograms; algorithms are also 
given for more complex data retrieval and 
arithmetic processes built up for micropro­
grammed associative instructions. 

Possibly the most often used algorithm is 
ordered retrieval. A number of algorithms for 
retrieval have appeared in recent publications. 
Among these, the algorithm presented by 
Lewin 11 appears to be fastest, making its' im­
plementation in the Associative Processor an 
attractive consideration. However, in view of 
its' unique hardware requirement, (Le., the 
equivalent of a three state sense amplifier on 
each bit column), an algorithm was developed 
which utilizes logic of a more general nature. 
In fact, the development of this algorithm 
greatly influenced the design of the word logic. 
The algorithm, presented in detail later in this 
section, retrieves one bit of data for each bit 
time of execution. 

The ordered retrieval algorithm is used 
whenever data is to be retrieved from the As­
sociative Memory or whenever it is necessary 
to select a word in which to write data. Since 
the time required to identify a word is related 
to tIie number of bits that must be searched, 
it is often desirable to have stored in each 
word a compact address field. Having such a 
field also provides a convenient way to distin­
quish between two words which might other­
wise contain the same data. 

In most instances, before the execution of an 
associative search, it is necessary to precondi­
tion the storage flip-flops either by setting or 
resetting them all, or by setting those corre­
sponding to the set of words which is to be 
searched. Accomplishing this last operation 
requires transferring the contents of the tag 
bit (or whichever bit position holds the infor-

mation) into the sense amplifiers and then 
copying the states of the sense amplifiers into 
the storage flip-flops. These operations can 
be executed with a single associative instruc­
tion. 

CS CC TC AC RS IC Wc S.c IT RM 

Tl NC NC NC NC 1 NC Esr A R 

Setting (or resetting) all the storage flip­
flops requires two associative instructions. The 
procedure is to interrogate the same bit column 
twice; once for "1's", and once for "O's". The 
following instructions reset the storage flip­
flops. 

CS CC TC AC RS IC WC SC IT RM 

1. Tl NC NC NC NC Z NC Er A R 
2. Tl NC NC NC NC 1 NC Er A R 

The following associative searches have been 
microprogrammed: 

Equality 
Less than 
Less than or equal 
Greater than 
Greater than or equal 

Maximum value 
Minimum value 
Similarity 
Ordered Retrieval 

Except for Similarity, the execution time or 
each search is one bit time for each bit of the 
argument. 

'The object of most searches is to leave the 
storage flip-flops in a state which defines the 
locations of those words which meet the con­
ditions of the search. However, it is possible 
to obtain the complementary set of words, as 
well as the set obtained by ORing or ANDing 
the results of several different searches. Fol­
lowing are a few examples of search micro­
programs: 

Equality Search 

CS CC TC AC RS IC WC S.C IT RM 

A IN TA NC R D NC Er A R 

This instruction searches the words in mem­
ory whose storage flip-flops are initially true. 
At the end of the search, the storage flip-flops 
identify those words containing a field exactly 
matching the field in the D Register. The field 
in memory is defined by the A Counter and 
Limit Register. Each bit of the field is inter­
rogated starting with the least significant bit. 



The D flip-flop specifies the match conditions. 
A mismatch will cause the appropriate storage 
flip-flop to be reset. 

Less Than 

CS CC TC AC RS IC WC SO IT RM 

A IN NC NC R Z NC DAR 

This instruction causes a storage flip-flop to 
be set if the .interrogated memory bit is "0" 
and the D flip-flop "I" and reset if the memory 
bit is "I" and the D flip-flop "0". Otherwise the 
storage flip-flJPs are unchanged. Essentially, 
this logic is the same as borrow logic with the 
contents of the D Register being subtracted 
from the contents of each memory word. When 
the storage flip-flop is equal to one, the memory 
word is less than the data register word. 

Ordered Retrieval 

CS CC TC AC RS IC WC SC IT RM 

A DE NC L L 1 NC Or A R 

This instruction transfers to the D Register 
the maximum value field of the set of fields 
which are identified by the true storage flip­
flops, Starting with the most signicant bit 
position of the search field, each bit position is 
sequentially interrogated for a one. When any 
sense amplifier indicates a match for a field still 
in the search set, the storage flip-flops corre­
sponding to those sense amplifiers indicating a 
mismatch are reset. Each time a bit position 
is interrogated and is found to contain a "I" 
in any of the words remaining in the search 
set, a "I" is transferred into the D flip-flop. 

Many arithmetic and logical microprograms 
have been developed for the Associative Proc­
essor. Below is a partial list. The operations 
are identified by S when they apply to an 
operation between a single pair of operands. 
An SP refers to an operation betwen one op­
erand in the D Register and many operands in 
the memory, and P refers to simultaneous 
operations between many pairs of operands in 
memory. 

The number of bit times required for the 
execution of each operation appears in paren­
thesis 

Add M + D~D 

S (1 + no. of operand bits) 
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AddD + M~M 
SP (12 X no. of operand bits) 

Add Ml + M2~M2 
P (12 X no. of operand bits) 

Multiply Ml X M2~D,M3 
S (20 X no. of multiplier bits) 

for a 24 bit mUltiplicand 

Multiply Ml X M2~M3 
P (no. of multiplier bits X no. 

of multiplicand bits) 

Divide D/Ml~M2 
S (30 X no. of operand bits) 

Add (M1 + M2~M2) 

Field Ml is added to field M2 in all words 
which contain a "I" in bit column (T1). Field 
Ml is defined by the A counter and Limit Reg­
ister. Field M2 is defined by the B counter. Bit 
column T2 is temporary storage for the carry. 
Addition is executed in the following steps: 

1. The jth bit of Ml is transfered to the stor­
age flip-flops. 

2. The contents of the storage flip-flops are 
added to the jth bit of M2. The carry is 
developed in the storage flip-flops during 
the addition. 

3. The partial carry resulting from the car­
ry addition_ (preceding step 1) to the j th 

bit of lVI2 is ORea with the partial carry in 
the storage flip-flop. The final carry re­
sults in the storag~ flip-flop. 

4. The carry is added to the j+1 bit of M2; 
the resulting partial carry is stored in T2. 

The following program executes this addition 
algorithm: 

CS CC TC AC RS IC WC SC IT RM 

1. T1 NC NC NC NC 1 NC EsrA R 

2. A IN NC NC NC 1 NC Er A R 

3. B NC NC NC NC 1 NC NC A R 

4. B NC NC NC NC 1 W Er A R 

5. B IN TB NC NC 0 W NC A R 
6. T2 NC NC NC NC 1 NC Es A R 
7. T2 NC NC NC NC 0 W NC A R 

8. B NC NC NC NC 1 NC NC A R 
9. B NC NC NC NC 1 W Er A R 

10. B NC NC NC NC 0 W NC A R 
11. T2 NC NC NC NC 1 W NC A R 
12. Transfer to 1 (TU) A 
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Instruction one transfers T1 to the storage 
flip-flops. Instruction two interrogates the jth 
bit of MI and resets the storage flip-flop where 
mismatches occur. The resulting contents of 
the storage flip-flops constitute the AND func­
tion of T1 and the jth bit of MI' Instructions 
three, four, and five have the effect of comple­
menting the jth bit of M2 in words for which 
the storage flip-flop is equal to "1". In addition, 
if the jth bit of M2 were equal to "1", the stor­
age flip-flop would remain equal to "1", thereby 
representing the partial carry. Instruction six 
OR's the carry resulting from addition of the 
last carry to the jth bit of M2 to the partial 
carry in the storage flip-flop. Instruction seven 
clears the T2 column in preparation for the next 
carry storage. Instructions eight, nine, and 
ten add the carry to the j + 1 bit of M2 using the 
same technique as instructions three, four, and 
five. Instruction eleven stores the partial carry 
in T2. The routine is exited after instruction 
five has been executed and the addition of the 
most significant bits completed. 

6. FAULT TOLERANCE 

An interesting characteristic of this particu­
lar associative memory is its structural pe­
riodicity. Each bit driver is identical to any 
other, and the logic of each word is identical 
to that of any other. There is no addressing 
matrix and no ladder network. The existence 
of these characteristics suggest the possibility 
of making the system operation insensitive to 
local malfunctions in the memory stack and 
memory circuits. 

There are numerous possible causes of mal­
function in the Associative Memory. However; 
most malfunctions can be placed in one of four 
categories. The first is characterized by the in­
ability of the sense amplifier to change state. 
The second is characterized by the inability of 
the storage flip-flop to change state. The third 
category consists of those malfunctions which 
cause a write amplifier to fail, and the fourth 
consists of those malfunctions which cause a bit 
driver to fail. 

The procedures to be described below consist 
of exercising control over the functions com­
mon to the logic of each word in such a way 
as to gain a system tolerance to these malfunc­
tions. Other malfunctions may occur for which 

the only safeguard would be the utilization of 
component redundancy techniques. In the fol­
lowing discussion it will be assumed that no 
more than one type of malfunction exists in 
anyone word. 

To cope with these malfunctions, it is of pri­
mary importance to guard against spurious re­
sults in the retrieval operations. It is of little 
importance if, in a particular word, some other 
operation goes awry as a result of a malfunc­
tion. This merely produces meaningless data in 
that word, which is unimportant if provisions 
are made never to write into and never to re­
trieve information from such a word. Since a 
word is selected for writing by means of the 
retrieval algorithm, the fundamental problem 
is to guard against incorrect retrieval as a re­
sult of a malfunction. 

Malfunctions of the first category cause the 
sense amplifier to permanently store either a 
"1" or a "0". If a "0" is stored, the storage 
flip-flop can never be set. The retrieval of data 
from a particlular word and the ability to write 
into a particular word are dependent upon the 
storage flip-flop of that word being in the "1" 
state. If the storage flip-flop can never be set, 
the word appears to be nonexistent. If infor­
mation were stored in the word prior to the 
malfunction, it would become irretrievable; 
however, as long as the malfunction existed it 
would be impossible for data to be inadvert­
antly stored in that location. 

A "1" locked in the sense amplifier presents 
a different problem. If the storage flip-flop of 
such a malfunctioning word is true, execution 
of the retrieval algorithm will result in the re­
trieval of a word of "1's". To prevent this, it 
is necessary to perform an operation prior to 
the retrieval algorithm which will reset the 
storage flip-flops in words whose sense ampli­
fiers are locked in the "1" state without alter­
ing the states of the other storage flip-flops. 
Furthermore, this operation must not turn on 
a storage flip-flop in a word whose sense ampli­
fier is locked in the "0" state. This can be ac­
complished as follows: Reset the sense ampli­
fiers by interrogating a column of "O's". Then 
by executing the complement control Ec, com­
plement all storage flip-flops corresponding to 
sense amplifiers still in the "1" state. 



Malfunctions of the second category are those 
in which the storage flip-flop does not change 
state. If the storage flip-flop is locked in the 
"0" state, the associated word can not partici­
pate in any reading or writing operations. Such 
a condition will cause that word to appear to be 
nonexistent. A permanently stored "I", how­
ever, may cause an erroneous readout during 
execution of the retrieval algorithm. To avoid 
this, in the case of maximum value retrieval, 
the affected word should be loaded with "O's" 
prior to retrieval. A method of determining 
whether any storage flip-flops are malfunction­
ing is first to interrogate a column of "1's" so 
as to set the sense amplifiers, then to execute 
the Es and then Ec functions. The output of 
the OR gate will be "I" if any storage flip­
flops remain true. 

The third category consists of those malfunc­
tions which disable a write amplifier. If a dis­
abled write amplifier can be detected and the 
word uniquely marked, further operations upon 
that word can be avoided. Detection is accom­
plished by writing a pattern of "1's" and "O's" 
in each word. An equality search is then made 
using the same pattern to identify any words 
in which the pattern was not successfully re­
corded. On each successive execution of this 
procedure, a pattern different from the last 
pattern must be used. If the pattern which is 
read out of a given word is not identical to the 
current pattern, then the write amplifier driv­
ing that word is malfunctioning. The errone­
ous pattern cannot be used again. If the length 
of the pattern is N bits, then N bits in each 
word of the memory must be relegated to stor­
age of the checking patterns at the time of 
execution of the checking procedure. The num­
ber of different patterns must exceed by two 
the number of malfunctions which can be tol­
erated. 

The malfunctions of the last category are as­
sociated with the bit drivers. Once a bit driver 
has failed there is no way of writing into or 
interrogating that particular bit column. There­
fore, it is necessary to isolate malfunctioning 
bit drivers. Detection of a malfunctioning bit 
driver is accomplished by designating two 
words of memory as test words, one of which 
would contain stored "1's" and the other, stored 
"O's'. Special logic on each of these two word 
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lines would compare the real output to the 
theoretical output upon each interrogation. A 
discrepancy would interrupt the program, 
thereby allowing the execution of a pro­
grammed corrective action. 

7. MECHANIZATION 

The critical problem in mechanizing the As­
sociative Processor is, of course, the imple­
mentation of the associative memory. The 
critical requirements of this memory are the 
following: 

1. Non-destructive readout. This is essential 
for the Processor described above; how­
ever, with slight modification, destructive 
readout could be tolerated provided the 
write time was comparable to the read 
time. 

2. Small ratio of word write current to read 
signal. This significantly influences the 
complexity of the sense amplifier and 
write amplifier and limits the number of 
words in memory. 

3. Short write cycle. This makes tagging 
operations practical. 

4. Short interrogation cycle. This is espe­
cially important for a bit serial processor. 

5. Limited power consumption. 

A number of memories were analyzed for 
compliance with these requirements, including: 

1. Plated Wire 7,8 

2. Laminated Ferrite 9 

3. Bi-core 
4. Biax 

At this time, the most promising of these for 
both the Associative Memory and RAM ap­
pears to be the Plated Wire Memory. It can 
be operated in a nondestructive readout mode, 
requires a word current of approximately 25 
ma, and can be interrogated or written into at 
a 10 mc rate. 

The closed flux path, rotational switching 
mode and lose coupling of the switched flux to 
the sense line contribute to the high ratio of 
read signal to word write current and to the 
low power consumption of each bit. 

Our laboratory evaluation of the Plated Wire 
has indicated the feasibility of using integrated 
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circuitry for both the word logic and the bit 
drivers. The periodic structure of large por­
tions of the Associative Processor and the re­
quirement for a relatively small number of 
circuit types facilitate mechanization with in­
tegrated circuits. 

The optimum sizes of the Associative Mem­
ory and the Random Access Memory depend 
greatly upon the application. For the class of 
Aerospace applications for which the Processor 
was conceived, the following dimensions and 
parameters were chosen: 

RAM: 4096 words of 24 bits each. 
Associative Memory: 512 words of 96 bits 
each. 
Bit time = Memory cycle time = .1 fLsec. 

8. CONCLUSIONS 

The Associative Processor possesses several 
virtues as a parallel processor. The basic 
processing module, i.e. one word of Associative 
:Memory with its word logic, possesses consid­
erable computing and memory capability for 
its size and complexity. This implies a large 
amount of parallel processing per dollar. Com­
munication within the Processor is relatively 
efficient, especially where associative techniques 
can be employed. Most of the Processor is pe­
riodic in structure and, therefore, compatible 
with batch fabrication techniques and inte­
grated circuitry. Fault tolerance techniques 
can be employed, at least to a degree. The non­
periodic control structure of the Processor is 
relatively simple. And, finally, the micropro­
gramming characteristics of the instructions 
permit and encourage programming experi­
ments. 
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A HARDWARE-INTEGRATED GPC/SEARCH MEMORY 
Russell G. Gall 

Goodyear Aerospace Corporation, Akron, Ohio 

SECTION I-INTRODUCTION 

A search memory that can be operated in 
conjunction with a USQ-20 computer using 
only the standard input-output channels is, be­
ing developed by Goodyear Aerospace Corpora­
tion. This approach is referred to as the pe­
ripheral search memory. On the other extreme, 
there is the possibility of completely integrat­
ing the search memory with the USQ-20 com­
puter. That is, the instruction repertoire can 
be modified to include associative instructions" 
the control logic cap. be modified extensively, 
and additional registers can be added as neces­
sary. Neither integration can be considered 
the optimum since the latter involves costs 
that are out of proportion with the advantages, 
and the former involves undue transfer time 
penalties and more complex programming. 

This paper presents, a method of integrating 
the search memory with the Univac 1206 (AN/ 
USQ-20) computer more intimately than is pos­
sible through a standard input-output channel. 
The saving of search time that results ap­
proaches that of a completely integrated sys­
tem. The hardware modifications required are 
relatively minor, and therefore increases in 
cost are held to a minimum. A typical four­
variable search problem is formulated and its, 
solution by the following three separate sys­
tems is analyzed: (1) AN/USQ-20 computer, 
(2) AN /USQ-20 computer in conjunction with 
a peripheral search memory tied to a standard 
I/O channel of the computer, and (3) the pro­
posed hardware-integrated USQ-20/search 
memory. Search solution times are derived for 
each of the three systems. They are displayed 
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as curves for ease of comparison of perform­
ance of the three systems. 

While the integration methods described 
could conceivably be applied with some study to 
any general-purpose computer, this document is 
particularly oriented toward integration of the 
Goodyear Aerospace Corporation (GAC) search 
memory with the Univac 1206 general-purpose 
computer. The actual military designation of 
this computer is CP642A/USQ-20 (V) . This 
indicates that it is one of a number of com­
ponents included under the designation AN / 
USQ-20 (V) . USQ-20 is a general term used 
informally to identify this computer and is 
used throughout this paper. 

SECTION II-SEARCH MEMORY 
DESCRIPTION 

1. GENERAL 

The particular search memory model upon 
which this study is based is shown in block dia­
gram form in Figure 1. A brief functional de­
scription is considered sufficient background for 
understanding the ideas presented herein. 
More detailed information is available in the 
literature. 1 

The memory proper has a capacity of 256 
words. Each word contains 30 bits. (The 
word size of the USQ-20 computer is also 30 
bits.) The memory is limited to three types of 
search: 

1. Exact match (=) 

2. Equal to or greater than (» 

3. Equal to or less than «) 
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ADDRESS 
SELECTION 
MATRIX 

MEMORY 
30 BITS--" 
256 WORDS 

+ 

RESPONSE 
STORE 

RESPONSE 
RESOLVER 

Figure 1. Search Memory Block Diagram 

The search types may be combined without 
limit with the logic AND connective. For ex­
ample, the equal-to-or-Iess-than search logically 
ANDed with the equal-to-or-greater-than 
search is, equivalent to a between-limits search. 

2. SEARCH MEMORY INPUT (FROM 
USQ-20) 

a. Information Types 
Three general types of information are trans­

ferred from the USQ-20 computer to the 
search memory: instructions, data, and cri­
teria. 

b. Instructions 
The instruction information consists of a 

single instruction word, the format of which is 
shown in Table 1. The instruction word is the 
only type of information that is transferred 
from the USQ-20 computer via the external 
function mode of data transfer. The configura­
tion of the instruction word tells the search 
memory when to start writing data into the 
memory, when to erase remaining words in 

memory, when to accept criteria, what type of 
search to perform, and what type of response 
is required. 

c. Data 
A total of (n) words (0 < n < 256) of data 

may be transferred from the USQ-20 computer 
to the search memory at a maximum rate of 8 
p'sec per word using the internal interrupt mode 
of data transfer. The USQ-20 program then 
will be interrupted internally after transfer­
ring the nth data word to the search memory 
and will jump to an interrupt routine. This 
routine will generate an "erase" instruction if 
required, load the first set of criteria in an out­
put buffer for the forthcoming transfer to the 
search memory, and initiate the first search in­
struction. The search memory will accept a 
search instruction even though it is not finished 
erasing, although it will not act upon this in­
struction until erasing has been completed. 

d. Criteria 
The criteria consists of either (1) a mask 

word followed by a key word or (2) a key word 

TABLE I-INPUT INSTRUCTION WORD FORMAT 

Bit 

d22 ••• d15 d6 d5 d4 d3 d2 d1 do 

Address d7 Mask Response LIT G/T Exact Stop Start 
(random Response word required search search match write write 
write or count follows search (erase) 
start) required 
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transferred from the USQ-20 to the search 
memory. The search instruction cues the 
search memory as to whether the criteria will 
be transferred according to (1) or (2) (see 
bit d6 in Table I). It is considered sufficient 
that the criteria be transferred from the USQ-
20 to the search memory in the normal buffer 
mode of data transfer. The internal interrupt 
mode of data transfer is not considered neces­
sary in this case since the USQ-20 need not 
take further action until an end-of-search sig­
nal response is received from the search mem­
ory via the input channel. 

3. SEARCH MEMORY OUTPUT (TO USQ-
20) 

The output of the search memory can be 
either response address, response count, or no 
response. Either may be selected by the in­
struction. A no-response instruction indicates 
the response to the present search should be 
saved for logically ANDing with the next 
search. Two address responses per 30-bit word 
are packed for transfer to the USQ-20. There 
can never be more than a single count response 
for any given search. It is placed in the least 
significant portion of the 30-bit word trans­
ferred to the USQ-20. The normal buffer mode 
is used to transfer address or count responses 
to the USQ-20. An end-of-search signal must 
be sent to the USQ-20 whether or not an ad­
dress or count response is desired or available. 
This signal is transferred via the USQ-20 ex­
ternal interrupt. The end-of-search signal al­
ways follows the transfer of address or count 
responses if any have occurred. 

4. SEARCH TIME 

a. Exact-Match Search 
Search time is variable, depending on the 

type of search. The exact-match search is per­
formed in 5 p'sec and is independent of the 
memory size (number of words), number of 
words actually loaded into the memory, and the 
number of unmasked bits searched. 

b. Equal-to-or-Less-Than Search 
The equal-to-or-Iess-than search is actually 

the result of one or more exact-match searches. 
The number of exact-match searches performed 
depends on the number of unmasked zeros in 

the key word. Therefore, the total search time 
is 5mo p'sec, where mo is the number of un­
masked zeros in the key word. 

c. Equal-to-or-Greater-Than Search 
The equal-to-or-greater-than search is simi­

lar to the equal-to-or-Iess-than search, except it 
depends on the number of unmasked ones in 
the key word. The total search time then is 
5m1 p'sec, where ml is the number of unmasked 
ones in the key word. 

5. ADDITIONAL CONSIDERATIONS 

Masked shift load capability is a method of 
specifying n high-order bits of the 30-bit USQ-
20 word, and specifying a particular field of 
the search memory into which this n-bit byte 
should be entered. Although this actual search 
memory model does not have this capability, 
for the purposes of this paper the memory is 
assumed to have it. Although there are sev­
eral methods and variations of methods to up­
date the search memory, the masked shift load 
affords the fastest way to update both the pe­
ripheral search memory and the proposed hard­
ware-integrated GPC/search memory. It also 
allows less complex programming procedures 
in the USQ-20 computer, which will ease the 
analysis and evaluation to follow. 

The USQ-20 is a one's complement machine. 
The search memory must have data in straight 
binary form, from smallest (most negative) 
value to the greatest (most positive) value to 
perform the equal-to-or-greater-than and equal­
to-or-Iess-than searches properly. Therefore, 
the most significant bit of each data word trans­
ferred to the search memory must be inverted. 
This may be handled either by USQ-20 soft­
ware or search memory hardware. The actual 
search memory does not incorporate this hard­
ware at present, but is assumed to have this 
capability to simplify the ideas to be presented. 

SECTION III-PROPOSED METHOD OF 
INTEGRATION 

1. SYSTEM CONSIDERATIONS 

The hardware-integrated search memory will 
require relatively minor modifications to both 
the presently contracted peripheral search 
memory and the USQ-20 computer. The over-
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all system function of the integrated search 
memory will be identical to that of the periph­
eral search memory. A block diagram for the 
integrated search memory is given in Figure 2. 
The block diagram shows that the integrated 
search memory system still uses an output 
channel of the USQ-20 computer. This output 
channel will provide the following functions: 

1. Initial loading of the search memory by 
means of block transfer (masked shift 
load) 

2. A means of providing instructions to the 
search memory utilizing the external 
function mode of data transfer 

3. An additional method of updating dy­
namic data in the search memory by block 
transfer if considered appropriate in a 
given system application. 

The external function mode of data transfer 
is a very efficient method of providing instruc­
tions to the search memory, since a single pro­
grammed instruction in the USQ-20 computer 
can effect the transfer of a single instruction 
to the search memory. 

The main modifications involve supplying the 
search memory direct access to several of the 

, I • C'NES FOR '56-WORD .. EMORV I 
e .. I RESPONSE ADDRESS 
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e LINES FOR 2SS'WORO MEMORY I 

S4 I I 
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Figure 2. Hardware-Integrated USQ-20 ISearch 
Memory Block Diagram 

internal registers of the USQ-20. Specifically, 
output access to the 30-bit A register and out­
put access to the 30-bit Q register is required. 
In addition, two-way access to the Bl index 
register is provided. Although the Bl register 
contains 15 bits, only an 8-bit access is neces­
sary for a 256-word search memory. Output 
access to the Bl register is not used in the time 
analysis that follows, but can be useful in many 
applications. As shown in Figure 2, there are 
only two lines remaining in the interface be­
tween the search memory and the USQ-20. One 
line allows the search memory to clear the B7 
index register of the USQ-20. The other line 
allows the search memory to sense the most 
significant bit of the B7 index register. These 
are the only two lines necessary to effect syn­
chronization between the search memory and 
the USQ-20. Absolutely no modification to the 
complex control circuitry of the USQ-20 com­
puter is required. Without further explana­
tion, one might reasonably question the fact 
that only two leads in the interface between 
the search memory and the B, index register 
could effect complete control and synchroniza­
tion between the two devices. The answer is, 
of course, that the two leads cannot alone pro­
vide the required control and synchronization 
of the two devices. However, in conjunction 
\vith judicious use of certain USQ-20 instruc­
tions, they provide for the control and syn­
chronization of the two devices mainly by 
economical software utilization rather than 
expensive hardware modification. The key 
USQ-20 instruction for synchronization is RE­
PEAT, described as follows: Clear B7 and 
transmit the lower 15 bits of Y (the operand) 
to B7 • If Y is nonzero, transmit (j) to r 
(designator register), thereby initiating the re-
peat mode. This mode executes the instruction 
immediately following the REPEA T instruc­
tion Y times; B7 contains the number of execu­
tions remaining throughout the repeat mode. 

The instruction selected to follow the RE­
PEA T instruction is the ENTER Bo instruc­
tion. It was the shortest instruction that could 
be found in the repertoire, and is normally 
used as a NO-OP instruction since there is no 
Bo register. In the repeat mode, the first exe­
cution of the ENTER Bo consumes 8 fLsec; each 
succeeding execution requires only 4.8 fLsec. 
The repeat mode described above and the added 
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single leads (Figure 2) that control and sense 
the status of the repeat mode synchronize the 
USQ-20 and the search memory during trans­
fer of search data. Details will be clarified 
during the analysis to follow later. 

2. HARDWARE CONSIDERATIONS 

a. General 
The hardware considerations discussed below 

are based on data contributed by R. Horvath. Z 

Since synchronization and control of these in­
tegrated devices will be handled by judicious 
use of the USQ-20 software, the only USQ-20 
hardware modifications will be those necessary 
to provide the search memory two-way access 
with the Bl and B7 registers (18 bits) , and out­
put access from the A and Q registers (60 
bits). The hardware changes that will be 
necessary to the present peri pheral search 
memory to modify it for use in the integrated 
system are the circuitry to terminate and gate 
69 additional input lines, and circuitry to drive 
9 additional output lines. 

b. USQ-20 Modifications 
Each additional input to a register stage in 

the USQ-20 must be ORed with the existing 
inputs to that stage. This is accomplished by 
removing the collector resistor and clamp diode 
from the output transistor of a standard USQ-
20 gated input amplifier. The open collector is 
then directly connected to the proper output 
side of the given register stage. 

Each additional output from the USQ-20 is 
handled in a straightforward manner by pro­
viding a standard USQ-20 data line driver with 
the feedback circuitry removed to decrease the 
rise and fall times. Removal of the feedback 
circuitry may be unnecessary. 

All B registers are located in Chassis No. 7 
of the USQ-20 computer. The required nine 
modified gated input amplifiers and the nine· 
modified data line drivers may be located in 
Chassis No.8, which has 30 spare card locations 
available. The interchassis connectors have a 
sufficient number of spare pins to allow the 
necessary interchassis wiring. 

The A and Q registers are located in Chassis 
4 and 5. The 60 modified data line drivers may 
be located in spare card locations in Chassis 3, 
4,5, and 6. 

SECTION IV-SEARCH TIME ANALYSIS 

1. GENERAL 

In this section, a typical search problem is 
defined and three separate solution methods are 
analyzed: (1) USQ-20 computer only, (2) pe­
ripheral search memory, and (3) integrated 
search memory. The resulting equations and 
curves represent the USQ-20 computer arith­
metic time used. The over-all task can be di­
vided into three basic time-consuming steps no 
matter what the search system configuration 
might be: (1) loading data and updating dy­
namic data, (2) providing search criteria and 
instructions, and (3) handling the resulting 
responses. 

2. TYPICAL SEARCH PROBLEM DEFINI­
TION 

The typical search problem parameters are 
shown graphically in Figure 3. The problem is 
stated verbally as follows. Find the addresses 
of all items that are hostile AND between the 
limits of Xl and Xz AND between the limits of 
Yl and Y2 AND equal-to-or-greater than Zz. 
The solution approaches are governed by the 
following assumptions: 

1. Six bits are used to describe each of the 
four variables for all items. 

2. Initially, each of the 4 variables occu­
pies a complete 30-bit word in the USQ-
20 memory. 

3. Mask word will always be part of the 
criteria supplied by the USQ-20 com­
puter (that is, criteria will always con­
sist of two words-mask and match). 

4. The search memory capacity is 256 
words and 30 bits; however, the number 
of words is treated as a variable in the 
equations to be developed. 

5. Xl and Y 1 are positive. 
6. X2 and Y z are negative. 
7. Zl and Z2 are positive. 
8. 128 items (or half the total items) will 

be found between the limits of Xl and 
X 2 • 

9. 128 items (or half the total items) will 
be found between the limits of Y land 
Y 2 • 
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10. 64 items (or one-fourth the total items) 
greater than Z2 will be found. 

11. 16 items (or one-sixteenth of the total 
items) will prove to be hostile. 

12. Only a single item will meet the logical 
product of all the criteria. 

13. Distribution of items is shown in Figure 
3. 

3. USQ-20 COMPUTER SOLUTION 

The USQ-20 computer method of solution 
uses only the USQ-20 computer without bene­
fit of the search memory and serves as a basis 
for comparison of solution times with those of 
forthcoming solution methods. 

A USQ-20 instruction-oriented flow diagram 
was drawn (Figure 4) to solve the typical 
search problem stated in Item 2, above. Note 
that a step of the over-all search task, that of 
updating dynamic data, is not included in the 
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Figure 4. USQ-20 Computer Search Flow 

flow. When only the USQ-20 computer is used, 
updating is not considered part of the search 
task. Only when an external search memory is 
used, which must be updated in addition to the 
conventional core memory, must updating time 
be considered. A typical distribution of the 
items in the four-dimensional space was as­
sumed as shown in Figure 3. From this as­
sumed distribution, the number of cycles 
through all the loops in the flow diagram can 
be determined and, therefore, a very close esti­
mate of solution time is possible. The expres­
sion for the solution time as a function of the 
number of items (N1 ) and the number of typi­
cal mixed searches (Ns) is handled by four 
possible equations: 

Teol = [0.048 + 0.0866(NI - m) + 0.240m] 
Ns + 0.016ImNs, (1) 

T,'o:l = [0.048 + 0.0192 (N1 - m) + 0.240m] 
Ns + 0.016ImNs, (2) 

Teo:! = [0.48 + 0.224 (N1 - m) + 0.240m] 
Ns + 0.016ImNs, (3) 

and 

Tco4 = Tco2 + 112 (TcQ3 - T co2 ) 

[0.048 + 0.1216 (N1 - m) + 0.240m] 
Ns + 0.016ImNs. (4) 
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With reference to the above equations, 

1. T is search solution time in milliseconds. 
2. The subscript co refers to computer 

(USQ-20) only. 
3. NI is the number of items. 
4. m is the average number of responses per 

typical mixed search. 
5. Equation 1 assumes the typical (see Fig­

ure 3) distribution. 
6. Equation 2 assumes best item distribution 

for the indicated solution sequence. 
7. Equation 3 assumes worst item distribu­

tion for the indicated solution sequence. 
8. Equation 4 is the mean item distribution 

(between worst and best). 

Equation 4 is plotted as Curve 1 in Figures 11 
through 13. The term 0.0161mNs appears in 
all four equations and expresses the time re­
quired to perform some system function based 
on the responses. 

1. 0.016 (msec) is the time per average in­
struction. 

2. I is the number of average instructions 
per response. 

3. m is the average number of responses per 
typical mixed search. 

4. Ns is the number of typical mixed 
searches. 

The term 0.016ImNs, for reasons that are ex­
plained in Section V of this paper, is disre­
garded when the equation is plotted. 

4. PERIPHERAL SEARCH MEMORY SOLU­
TION 

a. Dynamic Case 
As explained earlier, the peripheral search 

memory consists of the search memory model 
that interfaces with the USQ-20 computer 
strictly by means of the standard I/O channels 
of the USQ-20 computer. The typical problem 
will be programmed using this system config­
uration. 

The solution for the dynamic case requires 
periodic search memory updating since the 
parameters describing each item are assumed 
to be variable with time. The single param­
eter table block-transfer method of updating 
will be used since this appears to be the fastest 

method of updating the search memory. An 
equation describing search problem solution 
time will be developed by actually writing an 
abbreviated symbolic program for each of the 
three basic steps of the overall search problem: 
(1) updating, (2) supplying criteria, and (3) 
handling responses. Since instruction execu­
tion times are known quantities, one or more 
terms can be developed for each of these three 
basic steps of the search problem. A collec­
tion of terms results in the required equation. 

The generalized functional flow diagram for 
this configuration is given in Figure 5. The 
broken line blocks are not considered part of 
the search problem, while the solid blocks con­
tain the search functions that are executed 
from the main program. The remainder of the 
search functions are handled by interrupt 
routines that begin with the updating routine 
shown in Figure 6. Internal interrupt routines 
handle the updating, while the search routines 
are handled by external interrupt routines. 

Updating time is determined by adding the 
time to perform the updating functions of 
Blocks F, G, H, and J in Figure 5 to the total 
instruction execution time for performing all 
the instructions found in Figure 6. In addi­
tion, every word that is transferred into or out 
of the USQ-20 computer via a standard I/O 
channel requires 16-p.sec memory-access time 
that otherwise could be used for arithmetic ac­
cess time. The total updating time is shown in 
Table II. 

Figure 7 A displays the instruction list for 
supplying criteria to the search memory. The 
total instruction execution time required to sup­
ply criteria to the search memory is 1176 p.sec. 

TABLE II-UPDATING TIME, 
PERIPHERAL SEARCH MEMORY 

Function Time (msec) 

Blocks F, G, H, and J (Fig- 0.080 
ure 5) 

Updating routine (Figure 
6) 

I/O output access (0.016 X 
4 X NI ) 

Total 

0.684 

0.064NI 
0.764 + 0.064N I 
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START MAIN PROGRAM 

K r------, 

24 pSEC 

r-I-. .---.l ADDITIONAL SYSTEM 
I FUNCTIONS AS REQUIREDI 

SEND WRITE INSTRUCTION TO 
SEARCH MEMORY VIA EXTERNAL 
FUNCTION [STORE CONTENTS OF 
OUTPUT BUFFER (X) INTO SUC- . 
CESSIVE LOCATIONS OF SEARCH 
MEMORY INTO FIELD DESIGNATED 
BY INSTRUCTION] 

L _____ -.J 

I INITIALIZE : 

L ____ J 

256 TIMES THROUGH LOOP (n = 0 THROUGH 255) 

Figure 5. Peripheral Search Memory Search Flow 

16 pSEC 

STORE· A • L (DOG) 

24 pSEC 

ACTIVATE 256-WORO 
OUTPUT BUFFER (X) 
TO SEARCH MEMORY 
WITH MONITOR 

This is, of course, for a single search. The 
total execution time for N s searches per updat­
ing therefore becomes 1.176Ns (in milliseconds). 
Here again, every word that is transferred in 
or out of the USQ-20 by a standard I/O chan­
nel requires 16-f-tsec memory-access time that 
otherwise could be used for arithmetic access 

time. Since 12 criteria words are supplied for 
each search, the total memory access time to 
supply criteria to the search memory is: 

16 f-tsec/word X 12 words/search X Ns searches 

or 
O.192Ns (in milliseconds). 

TITLE UPDATING R()l1TlNE PERIPHERAL SEARCH MEMOR Y PROGRAMMER 
PAGE d CODING FORM ~~E-_EXT __ MS-

LABEL I OPERATOR 1 OPERANDS AND NOTES 

~PDATING _TYPf INSTR EXEC EXEC PER TOTAL 
TIMl" (I.l~l"r.I "l",,,,r.' fJLSl"r.I 

INTINT • RETURN JUMP' PA T 24 5 120 

PAT ·JUMP "P + 1 8 4 32 

.ENTER "A" U (120 + j) 16 4 64 

• SUBTRACT "A' X + 255il · SKIP· A ZERO 20 4 80 

• ENTER "A • U (120 + j) • SKIP 24 3 72 

.JUMP "RAT 8 1 8 

.SUBTRACT "A • Y + 25s.to " SKIP-A ZERO 20 3 60 

.ENTER "A' U(120+j)' SKIP 24 2 48 

.JUMP "TAR 8 1 8 

.SUBTRACT "A " Z + 255 10 • SKIp·A ZERO 20 2 40 

.JUMP "CAN 8 1 8 

.JUMP "TAP 8 1 8 

CAN • ENTER "A· L (PAT) 16 1 16 

• STORE • A " L (ABLE) [FIGURE 7AJ 16 1 16 . 

.JUMP "SEARCH [fIGURE 7AJ 8 1 8 

RAT .OUTPUT "Cn • MONITOR !?56-WORD Y-BUFFER] 24 1 24 

.JUMP • PAT 8 1 8 

TAR .OUTPUT • Cn " MONITOR [256-WORD Z-BUFFER] 24 I 24 

.JUMP "PAT 8 I 8 

TAP .OUTPUT • Cn • MONITOR [256-WORD C-BUFFER] 24 1 24 

.JUMP • PAT 8 I 8 

TOTAL 684 

Figure 6. Peripheral Search Memory Updating Routine 
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The total computer real-time consumption nec­
essary to supply criteria to the search memory 
therefore is 

time for Ns searches per updating and m re­
sponses per search becomes: 

1.176Ns + 0.192Ns (in milliseconds). 0.216 2 Ns + 0.016ImNs 

Figure 7B shows the instruction list for 
handling responses from the search memory. 
The total instruction execution time required 
to handle responses from the search memory 
is 216 + 161 p.sec. This is for a single search 
and a single response. The total execution 

[
m+1] 

where 
(in milliseconds), 

m 

TITLE SEARCH ROUTINE PERIPHERAL SEARCH MEMORY 
PAGE cri CODING FORM 

LABEL T OPERATOR I OPERANDS AND 
~ __ n~ 

SUPPLYING CRITERIA 

EX TINT + RETURN JUMP' ABLE 

ABLE +JUMP • P + 1 !lvrAIN PROGRAM] 

SEARCH + ENTER ·A· RET ff 
+ SUBTRACT 'A' L (DOG)' SKIP' A NOT 

+JUMP • DOG 

+ STORE • Cn - CAT 

+ ENTER 'A • W (CAT) • SKIP - A NOT 

+JUMP • TARE 

DOG JUMP RETN [+IJ 

+JUMP -ABLE 

RET ff + EXT FUNCTION-Cn [STOP WRITE] 

+OUT • cn.- CRIT IX l? WORD~ 
+ EXT FUNCTION-cn [SEARCH' NO REPLY] 

RET 1 + RETURN JUMP· DOG 

+OUT • Cn - CRIT IX? [2 WORDS] 

+EXT FUNCTION-Cn [SEARCH' NO REPLY] 

RET 2 + RETURN JUMP- DOG _. 
OUT - Cn-CRIT IY [? WORDS] 

+EXT FUNCTION-Cn [SEARCH· NO REPLY] 

RET 3 + RETURN JUMP' DOG 

+OUT • Cn - CRIT I Y? [2 WORD§] 

+EXT FUNCTION-Cn [SEARCH· NO REPLyl 

RET 4 .. RETURr.; JUrviP~ DOG 

+OUT • Cn - CRIT 1 Z, [2 WORDs.! 

+ EXT FUNCTION-Cn [SEARCH· NO REPLY] 

RET 5 + RETURN JUMP' DOG 

+OUT • C n - CRIT IC [2 WORDSJ 

+IN • Cn - RESPONSES [128 WORDS] 

+ EXT FUNCTION" Cn [SEARCH. REQUEST REPLY] 

RET 6 + RETURN JUMP' DOG 

m+l 
the greatest integer in ---

2 
number of responses per search, 
and 

PROGRAMMER 
~iE-_EXT-__ MS-

NOTES 
INSTR EXEC ~::iCf,ER ru~i~~ TIME (llSECl 

24 6 144 

8 6 48 

16 5 80 

24 5 120 

8 1 8 

16 5 80 

24 5 120 

8 0 0 

8 6 48 

8 6 48 

24 1 24 

24 1 24 

24 1 24 

24 1 24 

24 1 24 

24 I 24 

24 I 24 

24 1 24 

24 I 24 

24 I 24 

24 I 24 

24 I 24 

24 1 24 

24 1 24 

24 I 24 

24 1 24 

24 I 24 

24 1 24 

24 1 ~ 
24 1 24 

CONTINUED IN FIGURE 7B. HANDLING RESPONSES PORTION 

TOTAL EXECUTION TIME FOR SUPPLYING CRITERIA 1176 

LABEL T OPERATOR I OPERANDS AND NOTES 

~ANDLING RESPONS~""" INSTR EXEC EXEC PER Tu~;~~ TIME (Il"-Fr, "-",,,-,,rt: 

BEG + ENTER Q • L (BUFFER COUNT) 16 2 32 

+ COMPARE Q • L (BUFFER LIMIT) • SKIP 

+ NI IF ~ Q 16 2 32 

+JUMP RET 7 8 I 8 

+ STORE Q L(DOT) 16 I 16 

DOT + ENTER •. A' U ( ) - SKIP A ZERO 24 I 24 

+ ENTER Bn • A • SKIP 16 0 0 

+JUMP ODE 8 1 8 

PERFORM I RESPONSE HANDLING INSTRUCTIONS 16 0 0 

ODE + STORE Q • L (LOW) 16 I 16 

LOW + ENTER B n • L ( ) 24 1 24 

+ PERFORM I RESPONSE HANDLING INSTRUCTIONS 16 I 161 

+ REPLACE L (BUFFER COUNT) • 1 24 I 24 

+JUMP BEG 8 1 8 

RET 7 + RETURN JUMP' DOG 24 I 24 

TOTAL EXECUTION TIME FOR HANDLING RESPONSES 2J6 + lhT 

Figure 7. Peripheral Search Memory Search Routine 
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I = number of instructions per re­
sponse to perform some system 
function based on the response. 

Again, every word that is transferred in or out 
of the USQ-20 by a standard I/O channel re­
quires 16 p'sec memory-access time that other­
wise could be used for arithmetic access time. 
Therefore, the total memory access-time-to­
transfer responses from the search memory is 

16 !'Sec per response word X [m ; 1 J 
response words per search X N s searches 

or 

[ 
m+ IJ . 0.016 2 Ns (in milliseconds) 

where 

[m ; 1 J = the greatest integer in m ; 1 and 

m == number of responses per search. 

The total real-time consumption necessary to 
handle responses from the search memory 
therefore is 

0.216 [m; 1 J Ns + 0.016ImNs 

+ 0.016 [ m; 1 J Ns. 

The final equation that expresses the complete 
search solution time for this system configura­
tion can be found by combining the double un­
derlined expressions that describe each of the 
three basic search steps: 

TpSD == 0.764 + 0.064N1 + 1.368Ns + 0.232 

where 

[ m: 1 J Ns + 0.016ImNs• (5) 

T = search solution time ex­
pressed in milliseconds. 

PSD (subscript) == system configuration (pe­
ri pheral search memory, 
dynamic) , 

N r == number of items, 

N s = number of typical mixed 
searches per search mem­
ory updating, 

m+l 
greatest integer in , 

2 

m = number of responses per 
search, 

I = undetermined (depends 
upon application) number 
of average (16 p.sec) in­
structions required to per­
form some system func­
tion that is based on each 
response address. 

Equation 5 is plotted as Curve 2D in Figures 
11 through 13. However, the last term 
(0.016ImNs ) of the equation is disregarded 
whene plotted for reasons that are explained in 
Section V of this paper. 

b. Static Case 
In some applications of the search memory, 

it is recognized that the search memory data 
could be static. Under this assumption, the 
equation for search solution time is similar to 
Equation 5 with the updating terms removed. 
The equation then becomes 

Tpss = 1.368Ns + 0.232 [m: 1 J Ns 

+ 0.016ImNs, (6) 
where 

PSS (subscript) = system configuration (pe­
ripheral search memory, 
static) . 

The first two terms of this equation are plotted 
as Curve 2S in Figures 11 through 13. 

5. INTEGRATED SEARCH MEMORY 

a. Dynamic Case 

An integrated search memory has been pro­
posed and is described in Section III above. 
The typical problem will be programmed using 
this system configuration. 

The solution for the dynamic case requires 
periodic search-memory updating since the 
parameters describing each item are assumed 
to be variable with time. The single param­
eter table block-transfer method of updating 
will be used since this appears to be the fastest 
method of updating the search memory and 
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also since this is the same method used to up­
date the peripheral search memory above. 

An equation describing search problem solu­
tion time will be developed by actually writing 
an abbreviated symbolic program for each of 
the three basic steps of the over-all search 
problem: (1) updating, (2) supplying criteria, 
and (3) handling responses. The generalized 
functional flow diagram for this configuration 
is given in Figure 8. The broken line blocks 
are not considered part of the search problem; 
the solid blocks contain the search functions 
that are executed from the main program. The 
remainder of the search functions are handled 
by internal interrupt routines that begin with 
the updating routine shown in Figure 9. 

Updating time is determined by adding the 
time to perform the updating functions of 
Blocks F and G in Figure 8 to the total instruc­
tion execution time required to perform all the 
instructions found in Figure 9. 

In addition, every word that is transferred 
into or out of the USQ-20 computer via a 
standard I/O channel requires 16-J-tsec memory­
access time that otherwise could be used for 
arithmetic access time. The total updating 
time is shown in Table III. 

The instructions necessary to perform the 
remaining portions of the over-all search prob­
lem, those of supplying criteria to the search 
memory and handling responses from the 
search memory, are found in Figure 10. The 

256 TUES THROUGH LOOP In = 0 THROUGH 255J 

Figure 8. Integrated Search Memory Search Flow 

TABLE III-UPDATING TIME, 
INTEGRATED SEARCH MEMORY 

Function Time (msec) 

Blocks F and G (Figure 8) 
Updating routine (Figure 

9) 

0.048 
0.708 

I/O output access (0.016 X 
4 X N r 

0.064N1 

Total 0.756 + 0.064Nr 

total time is (481 + 24m + 161m) microsec­
onds. This, of course, is for a single search. 
The total execution time for Ns searches per 
updating, therefore, becomes: 

0.481Ns + 0.024mNs + 0.016ImNs (in milli­

seconds) , 

where 
m = number of responses per search, and 
I = number of instructions to perform 

some system function based on each 
response. 

The final equation that expresses the com­
plete search solution time for this system con­
figuration can be found by combining the fore­
going double underlined expressions. The 
equation becomes 

TrSD = 0.756 + 0.064Nr + 0.481Ns + 0.024mNs 
+ 0.016ImNs, (7) 

where 
T search solution time in 

milliseconds, 
ISD (subscript) system configuration (in­

tegrated search memory, 
dynamic), 

Nr - number of items, 
N s number of typical mixed 

searches per search mem­
ory updating, 

m 

I 

number of responses per 
search, and 
undetermined (depends 
upon application) number 
of average (16 J-tsec) in­
structions required to per­
form some system func­
tion that is based on each 
response address. 



170 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

TITLE UPDATING ROUTINE INTEGRATED SEARCH MEMORY PROGRAMMER 
PAGE of CODING FORM 

PLT. __ E)(T __ MS_ 
DATE 

LABEL 1 OPERATOR T OPERANDS AND NOTES - _ ...... 
~~~} .. R I ;; ... Er.~ ~;:~ r.~ER lj(~i~~ 

OUTINT + RETURN JUMp· PAT [BAT - FIGURE 10 -AFTER PER-

FORMING CA'l] 24 5 120 

PAT +JUMP • P + 1 8 4 32 

+ ENTER .A·U(120+j) 16 4 64 

+ SUBTRACT • A • X + 255, n • SKIP' A ZERO 20 4 80 

+ ENTER • A • U (120 + j)' SKIP 24 3 72 

+JUMP ·RAT 8 1 8 

+ SUBTRACT • A • Y + 255, n' SKIP'A ZERO 20 3 60 

+ ENTER • A • U (120 + j) • SKIP 24 2 48 

+JUMP • TAR 8 1 8 

+ SUBTRACT • A • Z + 255, n • SKIP'A ZERO 20 2 40 

+JUMP • CAN 8 1 8 

+JUMP ·TAP 8 1 8 

CAN + OUTPUT • Cn • MONITOR G WOR!] 24 1 24 

+ ENTER ·A· BAT 16 1 16 

CAT + STORE ·A· L (TAB) 16 1 16 

+JUMP • PRESEARCH 1FIGURE 10J 8 1 8 

RAT +OUTPUT • Cn • MONITOR [256-WORD Y-BUFFER] 24 1 24 

+JUMP • PAT 8 1 8 

TAR +OUTPUT • cn • MONITOR [256-WORD Z-BUFFER] 24 1 24 

+JUMP • PAT 8 1 8 

TAP +OUTPUT • Cn • MONITOR [256-WORD C-BUFFERl 24 1 24 

+JUMP • PAT 8 1 8 

TOTAL 708 

Figure 9. Integrated Search Memory Updating Routine 

Equation 7 is plotted as Curve 3D in Figures 
11 through 13. However, the last term 
(0.016ImNs) is disregarded when plotting for 
reasons that are explained in Section V. 

b. Static Case 
In some applications of the search memory, 

it is recognized that the search memory data 
can be static. Under this assumption, the equa­
tion for search solution time is similar to Equa­
tion 7 with the updating terms removed. The 
equation then becomes 
T1ss = 0.481Ns + 0.024mNs 

where 

ISS (subscript) 

+ 0.016ImNs, (8) 

system configuration (in­
tegrated search memory, 
static) . 

The first two terms of Equation 7 are plotted 
as Curve 3S in Figures 11 through 13. 

SECTION V-SEARCH TIME COMPARI­
SONS AND CONCLUSIONS 

A search time analysis was performed in 
Section IV for each of three search system 
configurations. For each system configuration 
several equations were derived. The dependent 

variable in all equations is search time, T. All 
equations contain the independent variable N s, 
which is the number of searches per search 
memory updating, and m, which is the average 
number of responses per search. Most equa­
tions contain a third independent variable, NT, 
which is the number of items carried in the 
system. T versus Ns is plotted for each system 
configuration on each of the three graphs (Fig­
ures 11, 12, and 13). Figure 11 treats NI as 
a constant 256 items; Figure 12 treats NI as 
a constant 512 items; Figure 13 treats NI as a 
constant 1024 items. In all cases, m is assumed 
equal to one. The search time equations that 
describe all the curves are derived in Section 
IV. Note that one term, 0.016ImNs, is com­
mon to all the equations for all system config­
urations. This term describes ·the time re­
quired to perform some system function, based 
on the search response address and must be 
performed in the USQ-20 computer in all 
cases. This function is not considered part of 
the search but only related to the search in 
that it is based on the results of the search. 
This term is, therefore, disregarded in the 
plots of the equations. 

Equations 1, 2, 3, and 4 describe the search 
time when only the USQ-20 computer is used. 
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TITLE SEARCH ROUTINE INTEGRATED SEARCH MEMORY PROGRAMMER 
PAGE fI CODING FORM PLT. __ EXT. ___ MS 

DATE 

LABEL I OPERATOR I OPERANDS AND NOTES .., 
• 

___ TT~ 
INSTR EXEC EXEC PER TOTAL 

- TIME (liSE C) SFAR r.H (ILSEC\ 

PRESEARCH • ENTER - Bn • ZERO 8 1 8 

SEARCH • ENTER - Q • W (Xl MASK + Bn) 16 1 16 

• ENTER - A • W (X~ + Bn) 16 1 16 

• EXT FUNCTION-Cn [$EARCH - NO REPLyJ 24 1 24 

.REPEAT NI - 10000R fP 7 TIME~ 8 1 8 

• ENTER • BO - ZERO ~O OP] 6.5 (AVE) 2 13 

* ON COMPLETION OF SEARCH, SEARCH MEMORY CLEARS B 7 IN USO-20 

"ENTER • Q • W (X2 MASK + Bn) 16 1 16 

.. ENTER • A - W (X7 + Bn) 16 1 16 

• EXT FUNCTION Cn I§EARCH - NO REPLY] 24 1 24 

.REPEAT NI • 10000R [B? TIMES] 8 1 8 

"ENTER • BO. ZERO [NO OP] 6.5 (AVE) 2 13 

* ON COMPLETION OF SEARCH, SEARCH MEMORY CLEARS B7 IN USQ-20 

• ENTER • 0 • W (Y I MASK + Bn) 16 1 16 

• ENTER • A· W (Y 1 + Bn) 16 1 16 

• EXT FUNCTION-Cn [SEARCH - NO REPLY] 24 1 24 

.REPEAT NI • 10000R ~ 
7 TIME~ 8 1 8 

• ENTER • BO. ZERO [j.lo OP] 6.5 (AVE) 2 13 

* ON COMPLETION OF SEARCH, SEARCH MEMORY CLEARS B7 IN USQ-20 

• ENTER • 0 • W (Y7 MASK + Bn) 16 1 16 

• ENTER - A • W (Y 7 + Bn) 16 1 16 

• EXT FUNCTICN- Cn [sEARCH - NO REPLY) 24 1 24 

.REPEAT NI - 10000R fu7 TIMES] 8 1 8 
• ENTER • BO. ZERO [NO opl 6.5 (AVE) 2 13 
*'ON COMPLETION OF SEARCH, SEARCH MEMORY CLEARS B7 IN USO-20 

• ENTER ·0 - W (Z2 MASK + Bn) 16 1 16 

• ENTER • A • W (Z1. + Bn) 16 1 16 

.EXT FUNCTIO:N~ en [SEARCH - NO REPLY] 24 1 24 

.REPEAT NI • 10000.A B 7 TIMES 8 1 8 

"ENTER • BO. ZERO LNO OP] 6.5 (AVE) 2 13 

*ON COMPLETION OF SEARCH, SEARCH MEMOR Y CLEARS B 7 IN USQ-20 

"ENTER • 0 • W (C MASK -+ en) 16 1 16 

"ENTER • A • W (C + Bn) 16 1 16 

• EXT FUNCTIO~ cn [sEARCH - REOUEST REPL yJ 24 1 24 

REP 6 .REPEAT NI • 10000R B 7 TIMES 8 1 + m 8 + 8m 

"ENTER • BO·ZERO [NO OP] 8 m 8m 

'* ENTER RESPONSE ADDRESS FROM SEARCH MEMORY INTO Bl REGISTER AND CLEAR B7 

REGISTER 

• PERFORM (I) RESPONSE HANDLING INSTRUCTIONS 16 1m 161m 

.JUMP • REP 6 8 m 8m 

BAT • JUMP • P + 1 8 0 0 

• BSKIP • Bn • SEARCH COUNT 16 1 16 

.JUMP • SEARCH [FIGURE 8J 8 0 0 

.JUMP • PAT I FIGURE 22A 8 1 8 

TOTAL EXECUTION TIME FOR PERFORMING 

SEARCH 481 + 24m + 161m 

"'"THESE ARE NOT USQ-20 INSTRUCTIONS; THEY ARE SYSTEM FUNCTION STATEMENTS. 

Figure 10. Integrated Search Memory Search Routine 
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Figure 11. Search Time (T) versus Number of Searches 
per Updating (Ns ), 256-ltem Case, m = 1 

Since the USQ-20 computer must perform the 
search sequentially, the resulting search time 
is highly sensitive to item distribution (with­
in the space constraints) for any given solu­
tion sequence. Equation 1 assumes the typical 
distribution found in Figure 3. Equation 2 
assumes best case distribution for the solution 
sequence used; Equation 3 assumes worst case 
distribution for the solution sequence used; and 
Equation 4 is the calculated mean between 
Equation 2 and 3. Since the item distribution 
changes in a dynamic situation, the mean dis­
tribution is the most meaningful. Therefore, 
Equation 4 was chosen to be plotted (as Curve 
1 in Figures 11 through 13) to display the 
problem solution resulting from use of only 
the USQ-20 computer. Updating is not in­
cluded in the search time, using the USQ-20 
computer only, since it is assumed that up­
dating must occur to meet other system require­
ments. 

Curves 2 and 3 display the problem solution 
time of the peripheral search memory and the 
proposed integrated search memory, respective­
ly. Curves 2D and 3D handle the dynamic 
problem situation where the search memory 
must be updated in addition to the conventional 
memory. Curves 2S and 3S represent a static 
problem situation where updating is not re­
quired. The curves displayed in Figures 11 
through 13 allow unlimited performance com­
parisons to be made between the three system 
configurations. The conditions, however, must 
be specifically stated. Two representative com­
parisons will be made here (see Figure 12). 
The conditions are as follows: 

NI 512 
m 1 

Ns 1000. 
Results are 

1. Peripheral search memory (Curve 2D) 
provides a performance increase by a fac-

100,000 

1 - USQ.20 COMPUTER ONLY SOLUTION j ! I ("MEAN" ITEM DISTRIBUTION) , 
i 2D - PERIPHERAL SEARCH MEMORY 

"l (DYNAMIC CASE) 

~ 2S - PERIPHERAL SEARCH MEMORY 

II I ~~ 
! (STATIC CASE) I 
1\30 - PROPOSED INTEGRATED SEARCH MEMORY 

1 (DYNAMIC CASE) ~ 

3S - PROPOSED INTEGRATED SEARCH MEMORY _ 
10,000 
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Figure 12. Search Time (T) versus Number of Searches 
per Updating (Ns ), 512-ltem Case, m = 1 
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Figure 13. Search Time (T) versus Number of Searches 
per Updating (Ns ), 1024-Item Case, m = 1 

tor of 38 over the conventional computer 
only (Curve 1) solution. 

2. Integrated search memory (Curve 3D) 
provides a performance increase by a fac­
tor of 116 over the conventional computer 
only (Curve 1) solution. 

Note that the curves show only system search 
time of the three system configurations. The 
proposed integrated search memory has an ad­
ditional advantage over the peripheral search 
memory-less complex programs. Comparison 
of the list of instructions for the two system 
configurations (given in Figures 7 and 10) will 
indicate that the proposed integrated search 
memory approach requires fewer instructions 
and allows more familiar and direct program­
ming techniques than for the peripheral search 
memory. 

An important point to remember is the fact 
that the updating terms of the search time 
equations, for the system configurations that 
involve the search memory, only need be con­
sidered if the search memory must be updated 
in addition to the conventional core memory of 
the USQ-20 computer. If only one of the two 
memories requires updating then the updating 
terms may be ignored and, therefore, only the 
straight line plots of Figures 11 through 13 
need be considered. 

Another consideration is the fact that the 
feasibility of transferring large amounts of 
data over the standard USQ-20 I/O channels 
for one purpose (search memory in this case) 
is unpredictable unless the word rate require­
ments of all the I/O channels are known and 
considered. In a complex system, there is the 
possibility that the I/O is already heavily 
loaded and that the peripheral search memory 
I/O requirements could result in overload of 
the I/O. The proposed integrated search mem­
ory, on the other hand, does not have to depend 
on standard I/O channel data transfer, and so 
this unpredictable I/O situation can be avoided. 
Related to this consideration is the definition 
of solution time. The solution times analyzed 
and displayed in this paper are based on com­
puter memory access time. In an approach 
where standard I/O channel transfers are not 
involved, computer memory access time is 
identical with real or actual solution time. 
Where standard I/O transfer time is involved, 
memory access times are not adjacent and the 
actual solution time is greater than the solu­
tion time based on computer memory access 
time alone. This then points to another ad­
vantage of the proposed integrated search mem­
ory approach. 

LIST OF REFERENCES 

1. GER-10857: Collection of Technical Notes 
on Associative M emory. Akron, Ohio, 
Goodyear Aerospace Corporation, 9 October 
1962. 

2. HORVATH, R.: Integrating the Search Mem­
ory with the USQ-20 Computer. GER-
11621. Akron, Ohio, Goodyear Aerospace 
Corporation, 4 June 1963. 



A BIT-ACCESS COMPUTER 

IN A COMMUNICATION SYSTEM 
Dr. Edmund U. Cohler and Dr. Harvey Rubinstein 

Sylvania Electronic Systems 
A Division of Sylvan:ia Electric Products, Inc. 

APPLIED RESEARCH LABORATORY 
40 Sylvan Road 

Waltham, Massachusetts, 02154 

1.0 INTRODUCTION 

Systems having computers and communica­
tions subsystems are increasing in number. 
The application of such systems span such di­
verse fields as process control, message switch­
ing, command and control, and multi-user on­
line computer installations. In these systems, a 
significant portion of the information processed 
is brought to and sent from the computer on a 
large number of communication lines, carrying 
peak bit rates generally from 75 bps to 4800 
bps. 

Often, failure of a portion of the system to 
provide services can entail serious consequences 
to the system users. Thus severe relability 
standards are placed on the system hardware. 
Many of these systems must be capable of pro­
viding service to a range in the number of 
users and must be able to grow as the system 
finds more users. Thus, one finds the need for 
modularity to meet these demands. Finally, as 
these systems are used, they must be capable 
of change so that they can be adapted to the 
ever changing and wide variety of require­
ments, problems, formats, codes and other 
characteristics of their users. As a result, gen­
eral-purpose stored program computers should 
be used wherever possible. 

Past approaches toward meeting these oper­
ating requirements have been made by utilizing 

two computers (full redundancy) to obtain the 
required reliability and availability. One com­
puter stood by while the other processed data 
on line. When it failed, the computers were 
interchanged. To handle the incoming data, 
many of these past systems were designed with 
costly complex fixed programmed bit and char­
acter buffers, and message assemblers. The 
buffers operated in such a way that a failure 
in one of them could prevent usage of a num­
ber of transmission lines. As a rule, the fixed 
programs wired into these units did not permit 
rapid changes of the characteristics of the line 
it handled. 

175 

In this report, a design for a low-cost multi­
processor system is described which alleviates 
these past deficiencies. This system performs 
the store-and-forward operations of a message 
switch. A unique design of the input and out­
put interface is central to meeting these ob­
jectives, and is the primary topic of this paper. 

1.1 Operational Objectives of the Design 

The basic objectives of the work described 
were to design a message switch which pro­
vides: 

A. Improved operational reliability, 

B. Greater economy, both in the initial in­
stallation and in operation, and 
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c. Greater adaptability to a wide variety of 
communication environments and proce­
dures, initially and during operation. 

These goals were achieved through the de­
sign features which are summarized below: 

1. The design is made modular through the 
use of equipment pools. These pools of 
processing and storage equipment lead to 
a very high order of reliability with low 
initial and maintenance costs. In particu­
lar, a method has been evolved for using 
a number of small digital computers to 
provide message switching functions with 
a large amount of flexibility and modu­
larity in operation and in installation. 

2. A unique method of interfacing lines 
with processors has been invented which 
decreases buffering costs, failure interac­
tion, and bit processing equipment re­
quirements. The method is a combination 
of hardware, logic and software which 
ideally suits the problem at hand. It 
makes possible to use general-purpose 
processors in transferring and processing 
messages and thus provides great adapta­
bility to changing environments and re­
quirements. The direct access to memory 
of information lines provided by this 
technique allows much greater equipment 
efficiency in handling incoming and out­
going information in a class of multiuser 
computer systems extending well beyond 
message processing. The message proc­
essing example, however, shows sufficient 
details to support the claims of better 
efficiency. 

3. An efficient method for the orderly stor­
age and retrieval of messages in a modu­
lar drum (or other medium-access-time) 
storage system has been evolved. This 
method reduces the cost of core storage 
by allowing frequent drum accesses and 
reduces the cost of the drum system by 
making efficient use of the storage re­
quired by the drum. 

1.2 Achieving Operational Reliability 

To obtain the reliability offered by redun­
dancy without the impoverishing costs of du-

plexing, we have turned to the use of modular 
equipment pools. As an example, the processor 
pool serves incoming and outgoing lines. Each 
of these lines has a usable service connection to 
three separate processors. Thus, if a single 
processor fails completeley, its lines can be 
serviced by other processors that are not com­
pletely occupied. Because there are four proc­
essors in the pool, we need only 25 percent over­
capacity (redundancy) in each processor to 
assure no loss of system capacity on a single 
processor failure. Many computer-centered 
systems require 100 percent redundancy (com­
plete duplexing to achieve the same result. 
Other such systems do not use the pool concept 
so that despite similar degrees of modularity, 
a loss of a single module causes complete loss 
of service to a group of lines until it is either 
repaired or replaced. A similar pooled approach 
has been taken in the message storage area 
where any of three selection units can give a 
processor access to the message storage drum 
modules. 

The modularity of this design also improves 
maintenance times by reducing the time re­
quired to isolate faults and by simplifying the 
training of maintenance personnel. Shorter 
times to find a difficulty and correct it result in 
greater system reliability. 

An important requirement in pool operation 
is that failures on one side of an interface do 
not cause failures on the other. The magneti­
cally coupled interfaces used in the direct-ac­
cess-to-memory avoid this difficulty. The mag­
netic coupling is sufficiently loose that the fail­
ure of an active component cannot affect other 
equipments across the interface. 

1.3 Achieving Greater Economy 

We have achieved economy in this system 
primarily by the invention of a new type of 
line access to a processor which makes the 
processor more than five times more efficient 
in the acceptance and assembly of bits from a 
serial line. In all past such switching systems 
either external equipment was assigned to the 
task of bit assembly or it was done in the com­
puter at great cost in number of memory cycles 
per bit. By making possible a single instruction 
time for the handling of a single bit, we have 
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been able both to eliminate external equipments 
and to make efficient usage of our computer in 
handling the bit transfers and assemblies as 
well as the more complex but less frequent jobs 
of switching. 

Furthermore, the modularity of the proc­
essing pool allows us to choose the switch ca­
pacity to suit traffic conditions and numbers of 
lines in various installations thus minimizing 
the required equipment. In addition, the pooled 
approach results in much less redundancy so 
that we can expect an almost two-to-one cost 
reduction over other duplexed systems even at 
their optimum capacity. 

1.4 Achieving Greater Operation Adaptability 

The advantage of using a programmed proc­
essor for flexibility and adaptability to meet 
new requirements and situations over the older 
techniques of wired-in operations is now well 
recognized in the industry. Error correction 
and detection schemes may be implemented. 
Very sophisticated priority disciplines can be 
adopted on a moment's notice to suit the situa­
tion at hand. Changes in codes, formats and 
routing indications can be handled. With pooled 
design, vIe can re-assign lines not only under 
failure conditions but under conditions of 
changing traffic patterns because line assign­
ments are made electronically and each line can 
be assigned to any of three separate processors. 

In talking about the adaptability to change, 
we should also speak of protection against un­
warranted change. We observe that. this sys­
tem, being primarily under programmed con­
trol, permits protection from tampering by 
making initial program entry possible only 
from protected devices, while subsequent modi­
fication through the console or other external 
devices would be solely under the control of 
some internal program. 

2.0 Description of the System 

2.1 Description of Switch Operation 

The block diagram of Figure 1 shows the 
equipment pools and their interconnections. 
The most important pools in the normal on-line 
operation of the switch are the processor pool, 
the message drum pool and the processing 
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Figure 1. 200-Line Message Switch Major Subsystems 
Diagram (Maximum Lines). 

drum pool. The tape and console pool playa 
subsidiary job as they are only partially utilized 
in the routine switch operation. Briefly de­
scribing the input processing, the incoming bits 
for each line are sent to three processors in the 
processing pool. A supervisory program has 
previously assigned each line to one of these 
three processors. As the bits arrive, the proc­
essor assembles them into characters and 
checks the characters for special system coordi­
nation and control information. Included in 
these control information groups are the rout­
ing indicators which identify the message des­
tination and precedence characters which indi­
cate the priority of the message. When these 
arrive, an access is made to the processing 
drum pool by the processor to translate these 
groups into outgoing line numbers. When the 
outgoing line numbers and the precedence of 
the message are known to the processor and the 
message has fully arrived, an entry is made 
into a table (queue list) to alert the outgoing 
line that a message is a waiting transmission. 
In addition, the processor enters somewhat dif­
ferent information onto a ledger, which main­
tains an account of the message status; i.e., 
those lines on which the message is to be trans­
mitted, those on which it has been transmitted 
and those which have acknowledged the trans­
mission. Simultaneously, the processor trans-
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fers the incoming message onto the 'in-transit" 
message-drum pool and onto the reference-tape 
pool. This it does in fixed-size bins. The initial 
entries into a journal are also made in the 
course of the input message processing. The 
journal is a chronological listing of the actions 
taken on a message while it is in the switch. 

In output processing when a processor finds 
that one of its outgoing lines is no longer busy 
(or at fixed intervals after a nonbusy condi­
tion) , it refers to the queue lists, which are 
identified by line and precedence, to obtain the 
message-drum address of the next message to 
be transmitted on that line. It then makes ar­
rangements to retrieve that message from the 
drum and to send out the characters one bit at 
a time. In the meanwhile recordings of these 
actions are made upon the journal tape. When 
the message is completely transmitted, addi­
tional entries are made in the ledger to indicate 
transmission. When all transmissions of a mes­
sage have been made the in-transit message and 
the ledger are erased. 

2.2 The Processor Pool Functions 

The processor pool accepts the bits from a 
line, assembles them into characters, disassem­
bles them and sends them to a line. Secondly, 
it examines the incoming characters and per­
forms a variety of routing, queuing and surveil­
lance functions based on these. Thirdly, it 
stores groups of characters in its core memory 
for buffering other storage pools (primarily 
the message drum pool). Finally, during slack 
time and routinely, the processor evaluates 
switch operation and traffic for maintenance 
and adaptation purposes. It is evident that a 
general-purpose processor can handle all of 
these functions, and if it is time shared, efficient 
hardware usage can be achieved along with 
flexible operation. 

In Section 3.1, it is demonstrated that bit 
and character processing dominate the other 
processes in computer usage thus making the 
interface techniques important in improving 
processor efficiency. 

Because this paper is primarily on the inter­
face technique which we have used between the 
communication lines and the processing pool, 
our discussion will center on this pool. 

2.3 Message Drum Pool Functions 

The maj or message drum pool function is the 
storage of messages to accommodate line avail­
ability / demand variations. This variation 
shows up as messages stored in "in-transit" 
storage awaiting lines to become free for trans­
mission. It is clear that this function requires 
orderly and efficient storage of messages. 

Orderly storage of information on the mes­
sage drum and efficient transfer to and from 
the processing pool have been achieved by the 
use of list processing techniques. Because of 
properly chosen accessing procedures, all bins 
of information in the processor memory are of 
the same size, so that the information may be 
stored on the drum in fixed-size bins and suc­
cessive bins chained to previous ones. A com­
plete empties list keeps track of all available 
storage space remaining on the drum, thus 
permitting very efficient storage filling. Because 
all messages are stored in fixed-size bins, the 
problem of cross-office speed conversion is auto­
matically accomplished. A full discussion of the 
message drum pool techniques is beyond the 
scope of this paper. 

2.4 Processing Drum Pool Function 

The processing drum pool stores the lists and 
registers used in the processing job by the 
processor pool. Its lists, as a matter of fact, 
are used in common by all of the processors of 
the processing pool to provide a record of: 
where the message ,viII be kept on the message 
drum pool, on what lines the message is to be 
transmitted, in what sequence the message is 
to be transmitted, to what lines the message 
has been sent, which message to transmit next, 
where the message is located; and to update 
the ledger entry of lines to which the message 
has been sent. Even though normal operation 
of this pool is independent of the message drum 
pool, it makes use of the same drums for stor­
age. This is possible and efficient because both 
storage capacities are determined by the maxi­
mum probable queue build up. 

2.5 Other Equipment Groups 

The other equipment groups within the 
switch are not as central to the normal opera­
tion of the switch, and will not be covered in 
this paper. 
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3.0 SYSTEM DESIGN 

3.1 The Processor Pool 

3.1.1 Processing Jobs 

Messages on various lines and trunks may 
differ in code, bit rate, and message format, 
but in each case, the message consists of a 
header, text and ending. The header includes 
routing and message priority. Some messages 
are divided into 80 character blocks for trans­
mission and reception purposes. 

In a message store and forward system, 
processing of two types are encountered. The 
first type centers about the acceptance, storage 
and transmission of messages and the second 
type about the control of the switching system. 

Tables I, II and III indicate typical message 
processing functions. Routine functions are 
classified in these tables as either of a bit, 
character block or message type. 

System control functions keep the switching 
system performing effectively by supplying the 
switching center supervisor with data useful 
in the management of the store and forward 
center and network, and as an aid in maintain­
ing and testing the switch, its programs, and 
data base. They are generally not performed 

regularly or very frequently and are given in 
Table IV. 

3.1.2 Discussion of Store and Forward Switch 
Functions 

An examination of the list of functions given 
in Tables I-IV shows the store and forward 
switch functions fall into four classes: data 
formating, system operation, signal acceptance 
and transmission and recording (storage) op­
erations. 

In order to obtain an order of the importance 
of these functions to message switching, it is 
desirable to classify them in the order of their 
frequency of occurrence. The acceptance and 
forwarding of bits are the most frequently oc­
curring functions. They occur at the incoming 
and outgoing bit rates. The next most fre­
quently occurring functions are those associated 
with each and every character which enters 
or leaves the system, for example, control char­
acter check. Most functions are not performed 
on each character. Header validations and en­
tries in queue lists for example are performed 
on entire messages independent of the number 
of characters they contain. The character func­
tions occur lib times as frequently as the bit 
function, where b is the number of bits per 
character and averages almost 7 bits per char-

TABLE I-INPUT PROCESSING-ROUTINE 

Accept bits and assemble characters 
Check parity of characters 
Detect system control characters 
Assemble characters in words and bins 
Write messages in "In-Transit Store" 
Initiate preemption for flash messages 
Verify header 
Perform routing 
Enter incoming message data in ledger 
Check block parity 
Write message on reference tape 
Enter data in journal 
Acknowledge accepted messages 
Count blocks 
Enter data in queue lists 
Assign serial number for processing 

Bit 

x 
x 

Character 

x 
x 
x 

Block 

x 

x 

Message 

x 

x 
x 
x 

x 
x 
x 

x 
x 
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TABLE II-OUTPUT PROCESSING-ROUTINE 

Use queue lists to initiate message transmission 
Make journal entries 
Updata ledger 
Retrieve messages from "In-Transit Store" 
Convert formats 
Convert codes 
Construct block parity 
Check security for each block 
Remove messages from storage which have been 

transmitted 
Convert messages to a bit stream 

acter. The next set of operations in the order 
of descending frequency of occurrence, are 
those which occur for each block. They occur 
l/cb as often as the bit functions. Here, c is 
the number of characters per block and is 
about 80 characters. The remaining functions 
occur once per message or so. If there are m 
characters per message, the message functions 
occur l/mb as often as the other functions 
where m is approximately 2000. Then each 
character, block or message function occurs 
respectively 8, 640, 16,000 times as infre­
quently as a bit function. 

The most frequent functions then are the bit 
functions. When a bit arrives, it must be stored 
in the proper place in a character, used to up­
date the character parity count, and counted to 
establish the arrival of a full character. When 
a full character is received, it is transferred to 
another location in memory for further proc­
essing. A similar per line process occurs in 
reverse order when information is disassembled 
for forwarding. These bit functions are per­
formed on each line at a rate determined by 
the information rate on the line. In designing 
an equipment to perform this function, various 

TABLE III-MESSAGE PROCESSING­
NON-ROUTINE 

Control errors. 
Print or display messages. 
Initiate service messages. 
Manually retrieve message. 

Bit Character Block Message 

x 
x 
x 
x 
x 

x 
x 

x 

x 
x x 

line rates (from 75 bits per second to 4800 
bps), and various bits per character (from 5 
to 8 depending on their code) must be con­
sidered. 

The character operations are somewhat more 
complex. Typically, characters must be ex­
amined to determine if they are system control 
or coordination characters, and if their parities 
are correct. When transmitting, the character 
codes may require conversion and the block 
parity must be determined. The characters also 
must be counted to determine block length. 

Two characteristics of these bit and char­
acter functions should be noted. The first is 
that there exists a variety of functions and the 

TABLE IV-SYSTEM CONTROL 
PROCESSING TASKS 

Maintain in-transit storage status. 
Maintain status of traffic. 
Activate overdue message alarms. 
Activate queue threshold alarms. 
Execute maintenance routines. 
Control program maintenance routines. 
Activate and control start-up. 
Activate and control recovery. 
Check confidence levels on equipments and 

links. 
Provide line synchronization. 
Allocate hardware. 
Accept supervisor initiated commands. 
Provide statistical analyses of traffic. 
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second that these same functions are performed 
on all lines. The latter assumptions imply time 
sharing of equipment while the former implies 
a reasonably complex assortment of equipment. 

3.1.3 The Processor Interface With Input and 
Output Lines 

Because the most frequent operations in the 
message switch are the acceptance and the de­
livery of bits of information, earlier switch de­
signs used special equipment to accept bits 
from a line and assemble them into characters 
for use by the processor. That approach in­
volved considerable equipment which was pe­
culiar to a particular line type. Recent designs 
have made this equipment sufficiently flexible 
(generally by pluggable programs) to be suita-
ble for a wide variety of such lines. However, 
in so doing, any efficiency derived from special­
purpose equipment was lost. Furthermore, an 
efficient method of providing alternate capa­
bility (redundancy) in case of equipment fail­
ure was not provided. Seeking economy, re­
dundancy, flexibility and simplicity in handling 
bits, we use a general-purpose machine, taking 
advantage of its high speed to perform service 
for a number of lines. A direct and inexpensive 
interface is made to each line. Each line inter­
faces with a number of processors so that in 
case of failure, assignments can be made elec­
tronically for other processors to take over the 
lines formerly served by the inoperative pro­
cessor. 

The communication lines interface directly 
with computer memory cores in our design. A 
single instruction ( one memory cycle in 
length): (1) accepts a bit from the communi­
cation lines; (2) puts it in the proper bit loca­
tion in a memory word which is employed as a 
character buffer for that particular line; (3) 
checks to see if a complete character has yet 
arrived; and (4) computes the parity bit for 
the character. The operation is accomplished 
almost entirely with existing equipment in the 
main computer memory. Additionally, it pro­
vides alternate servers for each line with suf­
ficient decoupling to assure that no failure on 
one side of the interface can cause a failure on 
the other side. Both the method of entry and 
the handling of the bits within the machine 
will be described in what follows. 

3.1.3.1 Bit Handlin.q By A New Instruction 

The lines coming into the computer are ac­
tually wired into the memory of the computer 
as described in the next section. Each incom­
ing communication line will be accompanied by 
a synchronizing line which specifies timing. 
Each of these wires is wired into a memory 
core at a location which is permanently re­
served for that communication input. A pro­
gram will cause the line termination memory 
locations to be scanned at times specified by 
interrupts from a real-time clock and will then 
put the received data bits into the proper po­
siti()n in that word. When the word is full, it 
will be transferred to another location and 
character processing will begin. A new type of 
instruction in the processor puts the bit into 
the proper place in the memory location for the 
line, checks to see if the location is full and 
computes the character parity. The entire in­
struction takes just one memory cycle of the 
computer. One additional memory cycle must 
be used to determine the line to be scanned 
next. This latter instruction is just an uncon­
ditional branch instruction whose address por­
tion is determined when scan lists are made up. 

The new type of instruction is exteTnally de­
termined which means that its effect is not de­
termined at the time the program is written 
but rather is determined by subsequent input. 
This is not quite the same as a branch or skip 
instruction which merely constitutes a choice 
of where the next instruction is taken based on 
post-programming inputs. 

With the direct interface it allows inexpen­
sive appropriate control of a processor by a 
number of external users. 

For purpose of accepting bits the instruction 
nature is determined by an incoming synch sig­
nal and by a marker bit which determines the 
end of character. However, the instruction is 
programmed in the normal manner as part of 
a subroutine which performs line scanning. 
The instruction format is as shown in Figure 
2. The instruction code part of the instruction 
word contains a partial code and two externally 
set bits. The address field part of the instruc­
tion word contains the operand for the instruc­
tion. When the scan program causes this in­
struction to be read-out from the memory, the 
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GENERAL ORDER 

DATA BIT 

INSTRUCTION CODE INSTRUCTION EFFECT 

o I 0 I X X - - - - - - CHECK SYNCH AND MARKER 

o I 0 I I 0 - - - - - - SHIFT BITS 1-16 lEFT CLEAR BIT 17 AND 

RESTORE. (POSITIONS DAT .... BIT.) 

UPDATE PARITY. 
o I 0 I 0 0 - - - - - - NO OPERATION. 

o I 0 I 0 I - - - - - - BRANCH TO X AND MARK PLACE. 

(THIS STARTS CHARACTER PROCESSING.) 

o I 0 I I I - - - - - - IlI!ANCH TO ~ AND MARK PLACE. (THIS STARTS 

CHARACTER PROCESSING) 

Figure 2. Instruction Formats for Bit Processing. 

operation which is executed will then depend 
upon the two indeterminate bits. For the time 
being, let us assume that the second indeter­
minate bit is a zero. The first indeterminate 
bit is the synch bit, which will be a one if a 
new data pulse has come in since the line was 
last scanned. The full instruction code is then 
010110 which (see Figure 2) entails a shift op­
eration upon part of the instruction word. The 
data bit which was in the last significant bit 
of the word is shifted left one position and, 
thereby, entered into the partly assembled char­
acter. Simultaneously, the character parity is 
updated. In addition, the synchronization bit is 
cleared and the entire word restored in the 
same memory location. If when we had read 
the line word out, no synch bit had come in, 
then the instruction (010100) would be in­
terpreted as a no-op and the word restored 
without modification. 

The use of the marker bit is fairly simple. 
When we arrive at the end of a character, we 
would like to know about it so that the entire 
character can be moved to another location in 
core memory thence to enter on character 
processing. To do this, the program sets a "1" 
into a particular bit of the input line instruc­
tion in the normal address field. Since the- ad­
dress field is initially all zeros, the marker bit 
will be the first one to show up in the second 
indeterminate bit of the instruction code (due 
to a succession· <)f shifts). Thus, whenever a 
"1" appears in this position, it indicates that 
a complete character has been received, and the 
instruction becomes a branch instruction which 
branches to a sub-routine to take care of trans­
ferring the character. Two different branches 

are indicated here because the asynchronous 
nature of the system may allow a data bit to 
come in after the character was filled. On the 
other hand, there may be no new data bit that 
has come in. In one case, a single bit must be 
preserved in the memory location and in the 
other case, it need not be. 

While this is one type of externally deter­
mined instruction, there are others possible, 
and in fact, the line equipment used in making 
the asynchronous to synchronous conversion 
can be embodied in an additional indeterminate 
synchronous bit possible in the instruction code. 
The full power of such an instruction particu­
larly in message switching and command and 
control has not yet been realized. 

3.1.3.2 Description of Interface Electronics 

The basic system of entry into the memory is 
illustrated in Figure 3. Each incoming line is 
wired into a core which is effectively part of 
the main memory. These cores are all in the 
same bit position in the memory. The informa­
tion coming into the core is written into each 
core on the basis of a coincidence of input-cur­
rent and a write-current from the computer; 
the latter being supplied on every memory 

write cycle (by the y-drivers in Figure 3). 
The information is read, out of the core by 

the standard read cycle of the memory. Thus, 
once having been written in, a data bit is avail­
able for read-out with the rest of the word 
using the standard memory equipment already 
in the computer (with some exceptions to be 
covered later) . 
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However, we recognize that a single bit could 
be written in and read-out many times since 
input pulses are much wider than memory 
cycles. Furthermore, a read-out of a zero data 
bit is ambiguous since it may indicate no input 
rather than zero-input. Thus, we must provide 
a synchronizing channel for each line, which 
will indicate when a data bit is available for 
reading. A similar input to another bit of the 
same word will be used for such synchroniza­
tion purposes. However, the synchronization 
pulse must be timed to a single write pulse of 
the computer. This means there must be an 
asynchronous to synchronous converter timed 
from the master timing source (which also 
times the computers) for each incoming line. 
While we have devised a method of employing 
a third channel to obviate the need for the con­
version equipment, we will not discuss it here 
because the economic tradeoffs are not clear. 

Actually, the input lines are not wound 
through the cores which are normally located in 
the main memory stack. Instead, two additional 
very small memory planes (Figure 3, Auxiliary 
Memory Cores) are provided which are the 
storage locations for those particular bits of 
memory. These planes are wired in with the 
x and y and z lines of the main memory. A 
coincident current memory will provide two 
half-writes, x and y. Either the x or the y 
write current will be provided to the external 
cores as a 1/2 write common to all auxiliary 
cores. Thus, coincidence with the external 1/2 
write signal will write in a "I". A separate 
sense winding will be provided to prevent inter­
ference with the normal words of memory and 
thus a separate sense amplifier will be provided 
for each of these two planes. The output will 
be logically added to the output of the normal 
sense amplifiers. Thus, all the input lines can 
be implemented with the addition of the auxil­
iary planes, two sense amplifiers, a few diodes 
and two gates. 

While each line has been described as thread­
ing a single memory, in actuality it would 
thread cores in three sep~rate processor memo­
ries. Thus, anyone of the processors coupled 
to this line could service the line if its pro­
grammed scan included the line. 

On-line program modification could take care 
of reassignment if it became necessary. Be-

cause the input line is magnetically coupled to 
the memory, no processor failure can disable 
it; i.e., it will still deliver its write current to 
the other processors with which it is associated. 
Furthermore, if a portion of the line equipment 
fails, it disables the particular line but in no 
way prevents the processors from servicing 
other lines. Thus, this magnetic coupling has 
the sort of ideal loose coupling described ear­
lier. 

3.1.4 Programming System 

A master control program schedules oper­
ating programs and provides for hardware and 
line assignments. Consequently, it organizes 
routine and non-routine activities. The portion 
of the control program which refers to the rou­
tine functions resides in the core memory of 
each processor and has the facility to call the 
remaining program or portions of it from the 
processor drum memory to core storage when 
required. The operation of the control program 
is tied to interrupt signals from a real-time 
clock. These signals occur as often as required 
for the processor to sample its incoming lines 
for signals and to supply information to its out­
going lines. The processor need not keep 
track of elapsed time. 

The operation of the control program and the 
operational programs for the functions proceed 
as follows: the control program, on the basis 
of information describing the lines assigned to 
it, schedules groups of lines to be scanned at a 
time. When a real-time interrupt occurs the 
program transfers control to an appropriate 
program for handling the line scanning func­
tions. If during the line scan a full character is 
found to have entered the machine, the char­
acter will be entered into core memory with 
others in its message. If the character shoul~ 
be a system control character appropriate ac­
tion will be noted in a list kept for scheduling 
by the control program. When all the lines 
have been scanned, control will be returned to 
the control program. At this time, the control 
program decides what its next course of action 
will be through an examination of its schedul­
ing list. It might examine the control char­
acters to determine their significance. If one 
of these was a start of message, it would initi­
ate a header verification and then have control 
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returned to it for user action. As characters 
are accumulated in memory or transmitted 
from memory by the operating routines, they 
would signal the control program to initiate a 
program which would bring more information 
from the drum for transmission or would have 
information taken from core memory for stor­
age. 

Programs for the handling of change in line 
assignments due to hardware failures will 
either be manually or automatically initiated. 
The manual initiation will occur from the su­
pervisor's console. From this position, a com­
puter will be selected and a message sent to 
this computer to initiate a program that would 
remove a computer from service and reassign 
its lines. This program will be retrieved from 
the processor drum, together with a list de­
scribing line assignments and characteristics. 
It will then determine another group of assign­
ments based on an algorithm previously de­
cided on, which is judged to minimize the over­
loading. Queue lengths would be available to 
this program if required. The change in line 
assignments requires no hardware change. 

3.1.5 Processor Rate and Storage Requirements 

The total number of memory cycles required 
for the processing job can be divided by the 
number of input bits to give a figure of merit 
which is independent of the capacity of the 
system. At times one sees such a figure ex­
pressed as instructions per throughput bit. 
However, the number of output bits exceeds the 
number of input bits in a system where multi­
ple addresses are allowed. According to one 
estimate for a large system, the average output 
rate will be 75% higher than the average input 
rate. Thus, the proposed figure seems more 
natural and allows one to evaluate the required 
processor memory speed. 

Other system factors do influence the pro­
posed figure of merit. For example, the aver­
age number of bits per character, characters 
per block and blocks per message will deter­
mine the number of instructions per bit used 
in character and message processing. These 
parameters have been chosen as discussed in 
Section 3.1.2. 

Trial programs of bit and character func­
tions have been worked out to obtain the data 

on which to assess the processor requirements. 
In estimating program complexity, a prototype 
instruction code containing twenty instructions 
was used. The input bit processing takes two 
memory cycles per bit of direct input proces­
sing and approximately 0.5 memory cycle per 
bit attributable to the control program. The 
former load may be reduced by limiting the 
flexibility of the scan cycle, and in fact may be 
reduced to 1 memory cycle per bit for a fixed or 
nearly fixed scan. The output bit processing is 
similar in memory cycle usage. 

Input character processing can be done in 36 
memory cycles per character and the output 
processing in 28 memory cycles per character. 
To determine the full processor rate required 
for each incoming bit, the bit and character 
process rates must be augmented by the mem­
ory cycles required for the block and message 
functions. Our analysis of the drum transfer 
and other routine block and message functions 
indicates that 2500 instructions per message 
received and 50 instructions per block received 
is a generous allowance for these functions 
(Le., 5000 and 100 memory cycles respec­
tively) . 

The total number of memory cycles per input 
bit is then conservatively fixed at 

36 28 
2.5 + 1.75 X 2.5 + - + - X 1.75 + 

7 7 
5000 50 ---- + = 19.5 memory cycles 

2000 X 7 80 X 7 

This is equivalent to ten instructions which is 
what most systems require for a single inter­
rupt to process one input bit. 

The core memory associated with each pro­
cessor is used to hold the currently executed 
programs (control programs, operating pro­
grams, and maintenance programs when re­
quired), the data base for the execution of this 
program (code conversion tables, empties-reg­
isters, queue entries by precedence for each 
line, address of next ledger entry, etc.) and the 
messages prior to storage on the drum. 

I t is expected on the basis of preliminary 
estimates that the programming and its data 
would consume less than 2000 core memory 
words. 
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The message buffer is required to hold about 
70 words per line. If a double buffer scheme is 
used to prevent buffer overlay before transfer 
to in-transit storage, for a computer handling 
67 lines, about 10,000 words for message buf­
fers are required per computer. 

The most important facets of the processor, 
the interface with the communication lines and 
the memory size and rate have been discussed. 
The remaining features of the processors are 
of conventional nature. 
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1. Introduction 
HITAC 5020 family consists of general pur­

pose computing systems designed to solve a 
wide variety of problems for both scientific and 
business data processing. 

HITAC 5020 system is a medium-scale junior 
version of this family, and would have the same 
performance characteristics as IBM 360/40 -
50.1 A purely serial logic construction is the 
remarkable feature of this system. 

HITAC 5020E (5020 ENHANCED) system 
is a large scale senior version of this family, 
and would have as much performance as IBM 
360/62 - 70. But this system is constructed in 
serio-parallel logic form for economical rea­
sons. 

The central processing unit of this family is 
designed to rapidly and economically perform 
fixed or floating point arithmetic operations in 
either single or double precision, and even more 
to be able to process bit-wise variable length 
data.2, 3 It contains 18 MC, 2-phase serial 
transistor-diode logic circuits and helical trans­
mission lines4 for accumulators, index registers 
and other various registers. 

Our design goals of 5020 family are as 
follows: 

(1) High Performance per Cost. 
We have realized this feature by intro­

duction of helical transmission lines com­
bined with the 18 MC serial logic system. 

187 

(2) Program Flexibility. 
The refined and flexible instruction 

system, in conjunction with a number -of 
multi-purpose registers to be used as 
accumulators, index registers, and many 
input-output control registers, gives 
powerful possibilities to the program­
ming activities. 

(3) Simultaneity and Multiprogram Activ­
ity. 

The memory time sharing, the con­
current operation of various control unit, 
the automatic program interruption, the 
memory- protection, and the introduction 
of priority mode are prepared. 

This paper reviews the engineering design of 
HITAC 5020 and 5020E systems with primary 
concentration on central processing unit. 

2. Outline of HIT AC 5020 and 5020E System 
The 5020 system is organized along four basic 

lines, Main Memory, Arithmetic and Control 
Unit, I/O Channels and I/O Devices. 

Figures 1 and 2 show those 5020 and 5020E 
system configurations, respectively, and Fig­
ures 3 and 4 are pictures of the 5020 system. 

2.1 The Main Core Memory 
The core storage of the 5020 has a capacity 

ranging from 8,192 words to 65,536 words (32 
bits each), and is directly accessible from the 
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Main Memory (2.Ops) 

16 Kw 16 Kw 16 Kw 16 Kw 
1 

2+1 

Ari thmetic end Control Uni t 

to other Computer 

to other Computer 

Figure 1. The System Configuration of HITAC 5020. 

central processor and input-output control chan­
nels, with read-write cycle of 2.0 sec per 32 bits. 

The memory addresses 0 - 31 are transmis­
sion line registers and so absent in the main 
core memory. The read-write control of the 
5020 Arithmetic and Control Unit or Channels 
is rather simple one, not overlapped, and the 
access to the memory by the central processor 
is delayed only if any of the input-output chan­
nels or the central processor are attempting to 
access the storage at the same time. 

In the case of the 5020E, the core storage can 
contain anyone of 16K, 32K, 49K, or 65K words 
as a unit. Although the core storage cycle time 
is 1.5 microseconds, the effective increase of 
the access speed is realized through the com­
pletely independent access to each of the sepa­
rate banks into which the whole core storage is 
effectively divided. (i.e., two banks in case of 
16K words). 

Two words (64 bits) in each bank of 16 KW 
capacity are referred at a time, so the effective 
memory speed is doubled. Moreover, each block, 
which is made up of four separate banks, is 
addressed as shown in Figure 2 (i.e. address 0, 
1 in bank 0; 2, 3 in bank 1; 4, 5 in bank 2; 6, 7 

in bank 3; 8, 9 in bank 0; and so on). This 
increases independent operation efficiency. In 
other words, instructions, operands and I/O in­
formations, etc. are referred through the re­
spective exclusive memory refer controls (four 
in total as seen in Figure 2). With these fea­
tures the effective storage speed is doubled, 
while the controls are referencing the separate 
banks, since more than two banks are simul­
taneously accessed. 

Instructions, operands and I/O data, etc., are, 
through their respective controls, transmitted 
via the Core Memory Multiplexer which time­
shares the data flow between the core storage 
and either the processor or the I/O channels. 
In addition, during one storage cycle, data of 
two word length (64 bits), or three or four 
word length (96 bits or 128 bits), in case of 
the operand, can be transmitted in parallel, 
thereby increasing the storage access efficiency. 

The 5020 instructions can designate up to 
65K words (16 bits address field) of the core 
storage addresses. However, the 5020E is so 
designed that the enlargement of the core stor­
age is possible. A field conversion up to 260K 
words of the store capacity is feasible. 
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16 Kw 
Main Memory (.1.5 ps) 

16 Kw 16 Kw 16 Kw 16 Kw 16 Kw 

40 
32 

l6_1 

Core Memory Multiplexor 

Instruction 

Unit 

Operand 

Unit 

Execution Unit 

Arithmetic and Control 
Unit 

to other Computer 

Channel 
Exchange I 

Channel 

Exchange II 

Figure 2. The System Configuration of HITAC 5020E. 

In the case of more than 65 KW capacity of 
the 5020E, every 32 KW memory module en­
largement is possible. 

The effective address field of 16 bits is ex­
panded to 18 bits (theoretically 21 bits) by 

Figure 3. Front view of HITAC 5020. 

means of a preset instruction and a LMM (large 
memory mode) indicator bit. 

The preset instruction prepares 21 bits 
address information which is added to index 
modified address field of next instruction, and 

Figure 4. Console and II 0 Devices. 
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generates the effective address field of 21 bits. 
When the LMM is off, the index modification is 
performed on 16 bits field so the information is 
performed seen as 0 to 216 

- 1. When the LMM 
is on, the modification arithmetic is executed 
on 16 bits information seen as -215 ~ +215 -1. 
Our choice of the above mentioned convension 
is done for assurance of complete compatibility 
between the system of less than 65 KW capacity 
and the more. 

2.2 Arithmetic and Control Unit 
The Arithmetic and Control Unit executes 

and processes stored programs and data. In the 
5020, the arithmetic and logical operations are 
all performed in serial logic. Basic cycle time 
is 2/Ls for 32 bits information and 4 bits un­
available bits (these are used for multiplication 
acceleration) of 18 MC. 

In contrast to the 5020, the 5020E is designed 
to adopt a four-bit parallel logic configuration 
based on the high speed circuit which has been 
proved to be completely feasible with the 5020 
systems. By this alone, therefore, approximately 
four times increase in operation speed over the 
5020 is readily possible. 

In the 5020 the multiplication of 32-bit by 
32-bit word is executed in 8 basic cycles using 

four adders, whereas the 5020E can perform 
the same multiplication in 2 basic cycles (1.0 
microseconds) using a multiplication unit. 

The 5020E processor takes instructions and 
operands in advance, that is, three controls: the 
control for instructions, the control for oper­
ands and the control for executions are con­
stantly operating in parallel. Therefore, the 
instruction and the operand access times would 
scarcely appear in the total execution time re­
quired for the instruction. 

This is a kind of "advanced control" facility 
and will not present any trouble, since the in­
structions will always be executed sequentially 
and the interruption facility will be the same as 
the 5020. 

Specific comparisons of the internal speeds 
of the 5020 and 5020E are illustrated in Table 
I. Comparative capacities indicate that the 
5020E is approximately 8 to 12 times faster 
than 5020 in scientific applications and 8 times 
in the other applications. 

Table I also shows the performance charac­
teristics of other typical computer systems, for 
comparison.1 ,5 

Furthermore, the 5020E can accept the ob­
ject programs which are written in the 5020 

Table I. HITAC 5020, 5020E-Execution Times (in J.L sec) 
(Including instruction read and index-modification time) 

I single or double 
Ooerationa tvce -lellgth 5020 

I 

5020E 160/W 360/50 3l:IJ/62 f 3l:IJ/70 I~~~ 
!1xed- single 8 0.75 .... 2.2 11.88 4.0 1.87 1.05 207 

Add and DOint double 12 ' 1.25 .... 2.2 
INbtract floating- sinde ~"l.24 '3.0 "",1. 18.66 tI.B8 3.2 1.11 1...21) 

noint doUble 16 ..... 26 3.0 ..... 3. Z1.66 9.69 3.22 1.13 6.18 
fixad- sinde 24 2.0,,- 2. 8L..~ 28.52 tI.12 2.8 6.70 

KultiJll1' 
DOint double ~ 3. ..... '5 

floating- sinde 36,,-38' 2.71 '" rs ~.61 2l.5 6.12 2.2 b:£ 
noint double 72 ..... 74 4.2 '" .25 21)9.18 38.0 9.62 4.2 20:9 

fiDd- sin.d.e l&2 7. "'- .0 186 33.25 . ll.2 5.7 ll.<r 

Diude noint double .JJ3 20.0 ... 23.0 

i fioating- sin.d.e '7 "... 80 9.5 .... 12.;75 I 12S 22.25 8.1 .1 13.0 
noint double 13 .... U&2 17.0""2l.0 I 1..77 69.5 17.62 .3 Zl.2 

s~le .... 10 1.0 ll.21);v25 4~9 1.12 ..... 1.62 O • ...,,1.2 1.25 ... 2.-61 
Shirt double ... 10 1.5 I 12.;,....43 4-1; 1.62".2.8'7 O. "\.1.4 1.~37,..2.C3 

Jump 
jump 4 0.5 ... 1.5 SoL3 .. 75 1. 1.0 2.25 

non-jUJlll) 8 1.5 S.rb .75 1 •. 1.0 1.25 

store llinde 10 1.25 - 2.1) 12'. .0 1 1.26 1.88 
double 16 1.25 .... 2.5 I 17. .75 1. 1.26 l;.5 

Inner--100p of the fixeel- sinde 36 3.5"",5.5 
pol;vnaa:l.al. cal.cu- POint double 96 6.0"" 7. 5 
lation fioating- sinde 64 6.0",- 7.0 

Px ~ ~ =p point double 100 7.01.. 8.0 
Inner--1oop of the fixed- sinJUe 48 5.0 .... 7. 5 121 44 ll.O 4.9 lS.76 
matrix mult1pl1c- Point double 112 8.0 
at10n floating- sinJUe 8 8.0~10.0 125 39 12.3 5.0 rs.-70 

:s .. Bi b_1 = ~ point double II 9.0", ll.O 317 ;9 16.1 7.1 
Inner-loop of the fixed- sinde 50 6.0 .... 10.5 
matrix inversion POint double 12 8.0'1.10.5 
by a direct math- f'loating- sinde 9 10.0 ""12. S 
eel&[ .. ctb1 = &[ point double 13 11.0 ..... 13.; 

I 
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machine language, as well as the programs writ­
ten in external languages. Consequently, the 
various capabilities and functions of the 5020E 
are identical to those of the 5020 except for the 
increased capacities and several expanded 
functions. 

The 5020E is upwards compatible with the 
5020, which means that the 5020E can accept 
all 5020 programs directly as compiled on the 
latter system. 

The 5020E is also completely downwards 
compatible with the 5020, which permits 5020E 
programs to be directly applied to 5020, and 
which also means that the 5020 is provided 
with the "deduction" ability (stored logic fea­
ture) of 5020E hardware instructions, such as 
quadruple arithmetic. 

General Features of HITAC 5020 family6 
are as follows: 

( 1) Arithmetic Operations 

The central processing unit is de­
signed to perform fixed or floating point 
arithmetic in either single or double 
precisions. 

Especially the double length floating 
point arithmetic is to be operated faster 
than in other conventional computers. 

In the fixed point arithmetic opera­
tions, for large scale scientific problems 
requiring fine precision, instructions 
such as ADD WITH PRECEDING 
CARRY and SUBTRACT WITH PRE­
CEDING BORROW are prepared. More­
over, in MULTIPLICATION and DIVI­
SION, the 4-word-Iength product and the 
2-word-Iength quotient with the 2-word­
length remainder are available respec­
tively. 

These instructions give great conveni­
ences to the scientists and engineers for 
obtaining their results with high preci­
sion. In the floating point arithmetic 
operations, the operand in accumulator 
is always given in double length even in 
the "single" length floating point arith­
metic. 

Therefore, the errors caused by the 
accumulative arithmetics are usually 
smaller than with the conventional com-

puter. This fact has been demonstrated 
by simulation for comparison of this 
HITAC-5020 arithmetic with conven­
tional arithmetic using a single length 
accumUlator, by means of HITAC-5020. 

(2) Variable-Length Data Handling and 
Repeat Mode 

Bitwise addressing is one of the most 
remarkable features in this system. All 
bits within the main memory can be 
addressed and bitwise variable length 
data of 1 to 64 bits length can be assigned 
as operand as well as fixed length data. 

In the variable length instructions the 
bitwise address (normally 21 bit address 
field) modification is possible and if the 
repeat mode is defined by a bit in the 
single instruction, "scatter" or "gather" 
of data within memory and "table 
look-up" for equal, greater or less condi­
tion can be performed in the rather uni­
versal form. 

These facilities, variable length data 
handling and repeatability, can be used 
in bit-based or character-based operation 
for sorting, merging and compiling. 

(3) Multi-Purpose Registers 

The HITAC 5020 system contains 14 
index and arithmetic registers. Six of 
them serve as index registers and ac­
cumulator registers, and the other 8 
registers are used as accumulator regis­
ters. These registers are also addressed 
as if they were in the standard core 
storage, but physically, they are helical­
wired transmission line registers. 

Since the index registers may also be 
used as the accumulator registers, their 
contents are subject to the arithmetics 
as well as the address modification. 

This is a powerful feature in compil­
ing and data processing programs. In 
accumulative operations, intermediate 
partial result in accumulators can be 
used in ensuing operations without re­
turning them to the main storage, there­
fore the storing-fetching time and the 
round-off error are eliminated. 
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(4) The Remarkable· Instructions of the 
5020 family are as follows: 
(a) The floating point arithmetic in­

cludes four-word length (8-bit ex­
ponent, 120-bit mantissa) opera­
tions, namely, 

(a, a + 1, a + 2, a + 3) * 
(m, m + 1) ~ 

a, a + 1, a + 2, a + 3 

(a, a + 1, a + 2, a + 3) * 
,..., ,..., 

(m,m + 1,m + 2,.m + 3) ~ 
a, a + 1, a + 2, a + 3 

* denotes an arithmetic code for 
anyone of addition, subtraction, 
multiplication or division. 

(b) Integer arithmetic instructions have 
been added, that is; 

(a) * (m)·~ a - 1, a 

(a) (m) ~ 
a, remainder ~ a + 1 

(c) Operations are included to shift 
data up to four-word length. 

(d) Bit search instructions which allo­
cate the specific bit address, whose 
content is one, to the specific mem­
ory address. 

( e) A preset instruction (Modify Next 
Instruction) which utilizes any of 
the memory addresses as if they 
were index modifiers of next in­
struction. 

(5) Functions, as shown below, are optional 
features of our system, such as, 
(a) Binary to Decimal Conversion, 
(b) Decimal to Binary Conversion, 
(c) Translate by Table, 
(d) Edit, 
(e) Decimal Arithmetic Operations, etc. 

(6) Adaptability to Multi-computer System 
For both the 5020 and the 5020E, 

considerations are given to the multi­
computer system configurations as well 
as the single computer system configura­
tions based on each of the systems. For 
instance, 
(a) Function which allows a program 

to turn on and off the magnetic tape 

switches, or the magnetic drum 
switch share. 

(b) Function to interrupt other com­
puters or transmit a communica­
tion information. 

(c) Main memory share capability has 
been provided. 

2.3 Input-Output Control Channel 
Input-output units are linked with the mem­

ory and the central processor through the I/O 
control channels. After an initial instruction 
from the computer, the channel controls in­
formation transmission between the I/O unit 
and main core storage in accordance with the 
"commands." Up to 12 channels are available, 
and an arbitrary arrangement is permitted. To 
a certain channel, however, the same type of 
I/O units are to be connected and the maximum 
number of units which can be connected is 
assigned. 

2.4 Input-Output Units 

Peripheral units, such as magnetic drums, 
magnetic tape units, printers, etc., can be con­
nected directly to the input-output control 
channels. 

Tables II and III review the typical I/O de­
vices of the 5020 and the 5020E systems. 

3. Instruction System 

3.1 Number Representation 

Figure 5 shows the internal representation of 
numbers in the HITAC 5020 family. Negative 
numbers in fixed point operand or floating point 
fraction part are represented in 2's complement 
form, and negative exponents in 256's comple­
ment form. Bitwise variable length data are 
referred by instruction with the left most bit 
address (21 bits information) and the bit 
length (6 bits information) of the field. 

3.2 M emory Address Assignment 

Figure 6 shows the memory address assign­
ment, and Figure 7 shows the bit assignment 
of special registers. As seen in these, almost all 
information that represents the internal state 
of the 5020 or 5020E system is assigned in the 
particular bit in the main memory. 



VERY HIGH SPEED SERIAL AND SERIAL-PARALLEL COMPUTERS 193 

Table II 

Transfer Rate Av Access or ; RPM. or Max No. Max No. of f 
Type # Type Capacity/Device (6 bits) (3 bits) Start Stop Time' Tape. Val. Derlce per CH. 

H-366-1 D/F 22 Mch 32 Kc/s 6 Kw/s 125 DIS 1,200 rpD. 2 4 .. 
-2 " 44 II " " " " II 

-3 " 66 " " " II II " 
-4 n as II II " II " II 

H-179-1 F/D 32 Kw 51 Kw/s 10 DIS 3,000 rpD. 2 8 

2 " 49 II " n u 

3 II 65 n n II II 

H-582 MIT 66.7 KC/S 12.5Kw/s 5.5ms 2.54 m/s 8 6 

H-175 MiT I 24 KC/S 4.5Kw/s 7.Cbs . 3.0 m/s 8 6 

H-3485 MIT i 30 Kc/s 5.6Kw/s 3 DIS 3.81 m/s 8 6 

* 
I 83.4 " 15.6 " II 

I ~O 
I 

II 22.5 n II 

D/F: Dis c File 
I/O Device (1) 

* 8 bits (9 tracks)H-3l,.85 is also available 
F /D: File Drum 
M/T: Magnetic Tape 

3.3 Instruction Set and Instruction Format 

The instruction set of the HITAC 5020 may 
be classified as follows: 

( 1) 6 types of short (32 bits) instructions 
for fixed length data. These include (a) 
immediate, (b) jump, (c) fixed point 
arithmetic types including logical in­
structions, (d) floating point arithmetic 
types, (e) store, and (f) miscellaneous. 

(2) 2 types of long (64 bits) instructions for 
bitwise variable length data. These in­
clude (a) jump instructions, and (b) 
2-address arithmetic or logical instruc­
tions. 

(3) Long (64 bits) instructions for input 
and output "command." 

The short instructions for fixed length data 
handling may be called "local 2-address instruc-

Table III 

i 

_~e# Type Speed No. of CH 

H- 333 L/p 1000 1/m 120 ch 

800 n 

H- 329 C/R 1,4'70 n so Col 

H- 334 C/p 100 n so 

H-3436 C/p 300 n 

I/O Devices (2) 

I Max No. of· Max No. of i 
CH i Derlce Plr CH . 

I 
2 

2 
; 

2 

2 

L/P: Line Printer 
c/R: Card Reader 
C/P: Card Punch 

2 

I 
I 

2 

2 

2 

tions." Their format is shown as Format I in 
Figure 8. 

where, 

F; function 

B; specify a modifier (index register) 

I; indirect addressing bit 

A; specify a working arithmetic register or 
index register 

V; variation; short (32 bits) or long (64 
bits) (for the length of operand) left 
(0-15) or right half (for the A-register) 
etc. 

M; memory address part or immediate 
number 

When M = 0, I = 0, B = 0, the operand ad­
dress of this instruction is not #0 address but 
next location of this instruction. 

(a) M:JA:JB 
M refers to all core memory addresses 
and helical delay line register addresses, 
address numbers 0 through 65,535. A 
refers to addresses 0 through 15 which 
are the helical delay line registers and 
serve as fast access multi-purpose regis­
ters. Thus, A designates an arithmetic 
register or an index register. In the 
case of "Jump on Indicator" instruction, 
A refers to the local bit address of the 
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half word. 

,f sign 

m; 0 

r Sign 

single word L:,.I -----____ ----1 

m; 0 31 

double word 
,r si€!l 

m; 0 

r sign of fraction 

exponent fraction 
floding single !.....' --+<1 I~---=-----=-----' 

word m; 0 789 31 

rdlJll of frae fraction 
floating double,,-expo-=--n_en_t~1 I~-_______________ ----I 

..oro m; 0 7 8 9 63 

fraction 
. r sign of frac 

exponen~ 

floating quad- L-' ---1-1 L-' --------------/I:j(-------------' 
ruple word m;o 789 127 

,..---_______ data ________ ____ 

example of 
bitwise variable!..... __ _ 
length data, II!; 0 12 31 32 63 64 61 

Figure 5. Number RepresentatiQn. 

indicator bit which is accommodated in 
the address 17 register. B refers to the 
index registers which serve as "zero ac­
cess modifiers" of the M-address of an 
instruction. 

(b) Each instruction operates on A-ad­
dresses indiscriminately, i.e., there is no 
distinction between index arithmetic, 
pure arithmetic and logical operation in 
the addresses from 0 to 15. For example, 
"add" instruction may be used for an 
addition of two index or arithmetic 
registers. Some advantages of this in­
struction system are: 

(i) All registers are always efficiently 
available in the program sequence. 

(ii) Arithmetic results may immedi­
ately be used as index modifiers. 
This is remarkably useful in the 
compiling and data processing pro­
grams. 

(iii) In many cases, several program se­
quences may continue without 
store instruction. This will shorten 
the execution time and eliminate 
the round-off error. 

(iv) The operation of a program se­
quence may be reduced by using 
A- or B-registers in two-address 
way. 

The long instructions for bitwise variable 
length data are divided into two categories, 
Formats II and III in Figure 8, bitwise vari­
able length data handling and variable length 
conditional jump instruction, respectively. 

where, 

F; function example VA (variable length 
add) ; VBM (variable length bitwise multi­
ply) (AND) etc. 

Bh B2; modifier of first operand address 
B2, 12 ; indirect bit of first operand address 
Ml *; bit address of first operand 
L; length of operands 
W; repeat mode bit 
M2 *; bit address of second operand 
A; A-address in which there is a number to 

be compared 
M2 ; jump address 
V; variation bit (absolute or not) 

Some specific features of this instruction 
are: 

(i) Bitwise addressing and bitwise vari­
able length data handling. 

(ii) Complete 2-address. 
(iii) Bitwise modification. 
(iv) Repeatability by W-bit. 

In the repeat mode, many data may be scat­
tered or gathered from memory to memory in 
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the most universal form, where source address 
interval d, destination address interval d', count 
number n and current count-up p are all as­
signed in the addresses 2 and 3 as shown in 
Figure 9 (a) for Format II, (b) for Format 
III. 

Repetition stops when n = p or the -dump 
condition is fulfilled, and when the repetition 
is the case of jump instruction (table look-up), 
the bit address of the current address is stored 

from 0 through 20 bit address of address 3. 
After this the jump occurs. This operation is 
used in the "table look-up." 

The instruction format for the input and out­
put "command" is shown in Format IV in 
Figure 8. 

where, 

F; Function 
B; Modifier of DA parts 

Word address (:32 bits in£o:nna.tion each.) 

#1 

#2 

#3 

114 

, EIIlpty (11011 is read when referred to) 

Special register for variable length data instruction 
(used in case of repeat mode) 

B-register (index register, used as automatic address 
modifier assigned by the B-part of instruction) 

-register (arithmetic register, refelTed to by the 
A-part of instruction, can also be used as index register 
together with a "pseudo indexll instruction) 

#16 memory_ error address indicator, mElllo17 protection 
boundar.y register 

1/17 I/O channel busy indicatcrs, overnov indicators 
compare indicators etc. 

/flJ3 mask register indicators 

#19 channel control register of channel 113 

#2JJ channel control register of channel 114 
( 
') 

#'30 channel control register of channel #14 

#31 Real Time clock register 

#32 } 
~ memor,y address in core mElD017 

r 
1165536 

'-_______ --IJ.referred to by the H part ot instruction 

Figure 6. Memory Address Assignment. 
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,--__ Memory Error Address ______ ,-- Pr3tec~ Bo~ary LRee --;p 

I~ I , I " I f I I , !' 116 
I • • , , I ,2! I 24, I , I ! I , J 

address ,~ 

address 17' 

address 18 
1 OJ I , ~, ~! • ! 5 ! 6 ~ 71 8 , 9 ,", ' ! , ' ! , , , , ! , , ! , ! ! ," I 

~ M '~ ________ ~ ________ ~ 

£= ~ tl= 
.,!!lE r-I C\I Mask indicator corresponding to the same 

8 .Q :§ r-I bi taddress of address 1/1 .... P..... C\I .... \ ~ '" ° M ~ "II:, "'" ~ ~s::+> CIl till ~ 
",om -d MOO CIS = 
trj §,~ ~ ~~ ,--_______ Channel Control Resist.:..:e=-r ______ ~ 

,0 I ! ! ! I ( I , , ! I '~ 116, , I ?O 1
21

, ! , , , ,31 I Ii' 
address S. 

30 ~----~v-----~ ~~--~~--~ Command Address Statios Indicator Count 

Figure 7. Assignment of Special Register Bit. 

I; Indirect address bit 

A; Channel number specification 

B2 ; M2 part modifier 

12 ; Indirect address bit 

M2 ; "Command" location specification 

D; Device number specification 

W; Mask bit setting 

L; "PS" instruction variation 

4. Input-Output Channel and Its Control 

The I/O control of the 5020 family is exe­
cuted by means of I/O channels, and the Arith­
metic and Control Unit or the channel time­
shares main memory as occasion arises. An 
I/O channel is exclusive to a certain type o~ 
I/O devices, and the simultaneous operation of 
maximum 12 channels is allowed. 

The channel operation is initiated in Arith­
metic and Control Unit by I/n instruction 
(Format IV), which is valid when and only 
when the Priority Mode Indicator (the 4th bit 
of address 17, of Figure 7) is on. 

The L part of an I/O instruction assigns sub­
functions such as Read, Read Backward, Write, 
Advance, Advance Backward, Rewind, etc. 

The channel having received the control, 
starts the designated unit and transfers infor­
mations between I/O unit. 

The transmission area is defined by "com­
mands" (as shown in Figure 8), which are ini­
tially- addressed by a I/O instruction and are 
fetched from the main core memory also by 
use of memory read facility of the channel. The 
command operations can be chained by desig­
nating a bit in a command. 

Each part of a command shown in Figure 8 
represents the following: 

M; initial main memory address or drum 
address 

N; number of word or block to be processed 
R; transfer or skip 
S; variation of operation 
T; disconnect or proceed 

The adoption of commands in the 5020 and 
5020E systems makes the I/O operation more 
efficient, as so called scatter read, gather write 
or symbol control is possible. 

Having left the I/O control to the channel, 
the central processor processes ensuing main 
program simultaneously with the I/O opera­
tions of the channel. Its memory refer process 
is delayed only if any of the I/O channels are 
attempting to access the main storage at the 
same time. 

The status of a channel in operation or after 
operation is indicated in the channel Control 
Register as shown in Figure 7 and can be re­
ferred by main control programs. 
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5. Program Interruption and Protections 

The program interrupt conditions are: 
Memory error 
Overflow in fixed point, floating point or 

variable 
Length arithmetic operations 
Memory protection and No operation 
Ready conditions of I/O control channels 
Real-Time clock interrupt 
Manual Console switch, etc. 

These conditions are indicated in the address 
17 Indicator register (Figure 7). 

The built-in circuits continuously and auto­
matically check for above conditions and cor-

responding contents of mask register (address 
18, as seen in Figure 7). 

These program interrupt conditions cause an 
interruption only when there is a "one" bit 
both in Indicator Register and Mask Register, 
and when the Priority Mode Indicator (4th bit 
of address 17) is off. 

If the program interruption occurs, the main 
program routine is turned off, the Priority 
Mode Indicator is forced to turn on, the current 
content of SCC is stored to the address 32 with 
the instruction word count, and a forced jump 
is made to the address 33 from where begins 
Master Control Program, the routine handling 
the specific conditions. 

11 
Fomat I~~~~~~~~~~-L~~~~'~ILv~I~.~,_A~,~I~Ill-Lr~~~'_'L,_FLr~~~~,~, 

15 16 17 2D 21 22 24 25 31 

M* 
[11 Br F 1 , , r , r I , , , , I 

202122 2425 31 

{2, ~ 'PI L , , , , I I I I , 
525354 565758 63 

111* {, ;BI F , , 
I , I I 

, , , , I: I , 
20 21 22 2~ 25 31 

"'2 V A 

I~' ~ 
W L 

I , , I I I , I f I I , 
4748 49 525354 ~ 5758 63 

[ 

I , 

FomatlV 0 

I 

D 
I--d A ,Ill IBl, 

F , , , , I I I I I 
15 17 2D 21 22 24 25 31 

M ' . 12 ~ IWI L 
I I , 1///I/////I/lJ I , , I , , , 

47 5354 5657 58 63 
32 

Command I , 
11 
! , 

R S T 
I LJ ·1 I I I I 

N 
I I 

o 
1517 18 192D 21 

Figure 8. Instruction Format. 
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address I 

2 0 

3 
0 

address I 
2 

3 

0 

I 

0 

f 
I 

o 

4, 

~ 

(a) 

d..
1 

(b) 

Modifier (value) 

n 
3) 21 31 

P 

20 21 31 

n 

20 21 31 

I P I 
20 21 31 

displacement 

15 1& 31 

(e) index word for word adress modification 

,,------modifier (value) 
I 

o 

, 
! 

20 21 31 

(d) index word for bit address modification 

Fig. 9. Repeat Mode Modifier and Index Word. 

The right half word of address 16 is the 
memory Protection Boundary Register (as 
shown in Figure 7), U or L assigns the upper 
bound group number or the lower bound, re­
spectively, where a group represents every 256 
words memory locations, each group having an 
address that is a multiple of 256. (When the 
main memory capacity is over 65 KW in a 
5020E, every 1024 words.) 

The protected memory address X, whose 
group number is X, is assigned by U and L, 
such as 

ifU>L U>X>L 
if U = L 
if U < L , 

no region is assigned 
X < U or L < X 

When and only when Priority Mode Indica­
tor is on, all the instructions which will have 
store operation to the above-mentioned pro­
tected area are suppressed from storing, and 
this is indicated by Transfer Protection Indica­
tor (Oth bit in address 18) and Protection 

Indicator (16th bit in address 17). So the pro­
gram interruption will occur. 

The purpose of this protection is to eliminate 
the interactive of programs in multiprogram­
ming operation. Especially when the system is 
operating under supervision of the monitoring 
system, it is necessary to safeguard the moni­
tor from harm of supervised program, for 
these situations cause not only a single pro­
gram but all the system to stop. Moreover, 
stop protection facility is provided in the 5020 
family. 

Thus, automatic program interrupt ion sys­
tem and protection facility have made effective 
multiprogramming possible. 

6. Logical Structure 

6.1 Logic Circuit 
The logic circuit of the 5020 family is fully 

synchronous, 2 phase (B phase) static circuit. 
Figure 10 (a) shows a basic regenerative ampli-
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fier or flip-flop, in which the connection A is 
specially added to eliminate the hazard of mis­
operation and to have room of the clock phase 
adj ustment. Figure 10 (b) is the symbolic rep­
resentation of circuit (a). (c) in the same fig­
ure shows the rules of worst case logical con­
nection, that is, two levels of pair logic are per­
mitted. Max number of fan-in of logic circuit 
is 7 and max fan out of logic is 6. ( d) shows 
the helical-wired transmission line (delay line) 
register of 36 bit information in the 5020 
system. 

6.2 Arithmetic Unit of the 5020 

In the 5020 arithmetic unit, the pure serial 
logic and the delay line registers feature re­
veals especially its simple characteristics in 
multiplication, division and shift operation. 
The multiplication and the division in the serial 
computer are performed by a series of addi­
tions, subtractions and shifts. Therefore, if the 
most simple procedure is adopted, it will take 

'------00 '}" 

32 words cycle time to execute the multiplica­
tion of one word by one word. Particularly for 
scientific uses it is important to reduce the 
execution time of the multiplication. The sum­
Inarized procedures of the multiplication and 
the division are as follows. 

( 1 ) Multiplication 

The HITAC 5020 has five binary Adder & 
Subtracters. In the multiplication, four Adder 
& Subtracters of them are connected in series. 
The multiplier is divided into eight parts, each 
of which contains 4 bits information. When 
the multiplicand passed through four Adder in 
series according to 4 bits information, the par­
tial product of one-word by one eighth word is 
obtained. Therefore the multiplication of one 
word by one word is performed only in 8 words 
cycle time (16 .p.sec). 

In the case of Integer Multiply (1M), five 
Adders are used. So it takes only 1 word cycle 

x C) , {ci)I'---...oo It 

~ Q-Q _-,I T ___ 
ooOC 

Y 

N/O- OR-EF ANf)-c,· EF 
A .... p 

Q.tu EF ". OR-ANb rt OR- AWD A .... p 

~ l l ~ 1=&1 ~ ~ ~ i ~--t@ 
I-7a.~·"'1 ----. 7i ---.-.. ----4---- _____ ~ ______ ~ 
I.. .J.1:" J 

I ~ --------------------------~~ i ~ 
(C) 

00( '7, 
~ • r K£ !.: r d.efAt ~ ~ ~ ~ 

lei ) 
Figure 10. Logic Circuit. 

I 
I 

~. 

~ 
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time to carry out the multiplication of one word 
by the integer less than 32. This scheme is illus­
trated in Figure 11. 

(2) D-iv-ision 

Generally the non-restoring method is suit­
able for the procedure of the division in com­
puters. According to the test result of signs of 
the divisor and the partial remainder, the di­
visor is added to or subtracted from the partial 
remainder shifted one place to the right. 

In the HIT AC 5020, this method is more im­
proved to reduce the execution time of the divi­
sion by using three binary Adder & Subtrac­
ters. (See Figure 12.) 

The result of the addition or the subtraction 
is transferred to the Adder 2 and the Adder 3, 
in which the divisor is added to or subtracted 
from the result in the Adder 1, respectively. 
These two results appear in the Auxiliary Reg­
isters 1 and 2. At the end of this operation, the 
true result is selected automatically by check­
ing a sign bit of the result in the Adder 1. 
Thus, the division of one word by one word is 
performed in 16 words cycle time (32 p.sec). 

(3) Shift Operation 

In the HITAC 5020, the shift operation is 
performed by means of the shifter. Owing to 
very high clock frequency, the delay lines can 
be used as various registers instead of the tran­
sistorized register, and the use of delay lines 
is very eminent from the viewpoint of econ­
omy and reliability. The Shifter, of course, is 
made of delay lines. For instance, n bits left 
shift is carried out by making the contents of 
a register pass through the delay lines of n bits 

a}---_ 

I 
I 
I 
I 

I I 
I L ___ --- __ --1 
L----________ ..J 

contrel line 

Figure 11. Multiplication Unit of the 5020. 

quotient .e--- r--- - ----- - -------.., 
I I 

I 

I Add Partial ~ I "-------®- _R!'!'!.":!.!!d!'!. __ -0-+ } Adder 1 a } I 
I or Subtracto I 

.witchl ---.... af--.d-----{'a _..J 
Sub Partial I 

a - ~~i.!!9~ __ -0--* 

a -~~~-- ,~-------

Figure 12. Division Unit of the 5020. 

length. The Shifter of the HITAC 5020 con­
sists of delay lines of 0, 1, 2, 4, S, 16, and 36 
bits length. When the number to be shifted n 
places is set in the Shift Control Register 
(SCR), these delay lines are connected auto­
matically to make the total length n bits. Every 
kind of shift operation, thus, can be performed 
by very simple logical circuits. Although the 
one-word information of the HITAC 5020 is 
32 bits, the one-word delay line registers have 
36 bits length for certain reason (ex. multipli­
cation). Therefore, the recirculation time of 
delay line register is 36 bits cycle. Some con­
sideration must be taken to shift the two or 
more-word information because of 4 bits spare 
time. For this purpose, the coincidence circuit 
between the shift control register and the coun­
ter is provided, which controls two output of 
the shifter (see Figure 13). 

6.3 Arithmetic Unit of the 5020E 

(1) Multiplication Scheme of the 5020E 

To perform the mUltiplication of one word 
by one word only in two words cycle time 
(1.0fts in the case of the 5020E), we use eight 
4-bit-parallel-adders, AI, A2 ..... AS (see 
Figure 14). The multiplicand is passed through 
the fifteen black boxes which are n time cir­
cuits, named Nl, N2, . . . . . N15 and we get 
15 outputs (Le. y, 2y, 3y, ..... 15y) simul­
taneously. Now, they are fed into eight gates 
numbered Gl through GS. On the other hand, 
the most significant four bits of the multiplier 
control the gate G 1. That is, they select one 
of the 15 outputs, mentioned above, or inhibit 
all of them when the 4 bits are all zeros. The 
next more significant 4 bits of the multiplier 
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4 Delay line 

information 
;/0--

input of tl:e shifter + 
.! I 

-t.. 16 I 
I I I 
I I I 
I I 36 I I 
I ..J I L ____________ ji---------- I 

I I 
L--_.---,------, Shift Control Register I 

b----------~-_J co:"ncidence 
circuit 

I I L--____ ----'I counter 

Figure 13. The Schematic Diagram of the Shifter of the 5020. 

control the gate G2 and so on. The outputs of 
the gates are fed into the corresponding adders 
and the adders are connected in series. So we 
can get the two-word product from the output 
of the adder A8 in 2 words cycle time. 

(2) Division Scheme of the 5020E 

To speed up the division process, we modify 
the non-restoring method slightly and obtain. 
4 bits quotients in one word cycle (0.5 fLS). 

In this method, comparing the sign of the 
divisor (y) with the sign of the partial remain­
d~r (ri), we can determine the next quotient 
bit (qi) and whether to add or· subtract next. 
But still there are eight possibilities left. That 

lmltiplier Register (xl 

C!I o· 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 

lmltiplicand Reg (yl 

Figure 14. Schematic Diagram of the Multiplication 
unit of the 5020E. 

is, how many times of the divisor should be 
added to (or subtracted from) the 16 "'I i. 

riH = 16 "'Ii -+- (2k + 1) y (k = 0, 1, ..... 7) 

Comparison of the most significant 5 bits of 
the divisor (y) with the most significant 6 bits 
of the partial remainder' '(r i) allows us ~o re­
strict the above eight possibilities to onl~ two. 
(The divisor must have been normalized.) Sup­
pose that we could find k to be n or n + 1 
(n = 0, 1, 2, ... 6). Then, perform three addi-
tions (or subtractions). . 

riH: = 16Yi ± (2n + 1~ y 
riH" = 16 "'Ii ± (2n) y 
ri+4'" = 16 "'Ii -+- (2n + 3) y 

Test the, sign of ri+4" and we c~n determine 
which of the two possible remainders -(r1H" 
ri+4{~). is right. And, of course, we can obtain 
the right quotient bits. This method is sche­
matically illustrated in Figure 15 where N1, 
N2, .... N15 are then times circuits which are 
used also in multiplication operation; G1, G2, 
G3 are gates which choose the n multiple of 
the divisor by the informatio~ of the most sig­
nificant 5 bits of divisor (Dl, D2, .•.. D5) and 
of the 6 bits of the partial remainder (R1, R2, 
... R6). AS1, AS2, AS3 are the Adder-Sub­
tracter. and P is a circuit to select the right 
partial remainder out of two possible ones. 

7. Circuitry 

Recent advancement of transistor technique 
is remarkable and enables us to' easily realize 
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IlL mm~m. 
00000 

Divisor Reg (7) 

Figure 15. Schematic Diagram of the Division Unit of the 5020E. 

the circuit that operates at over 10 Me clock 
frequency. Moreover, we have utilized the cur­
rent switch mode circuit to make the most of 
its high speed feature .. :F.orAND .. OR logic cir­
cuit, however, the diode logic and emitter fol­
lower fan out is adopted, based on economy 
and logic density vs. speed studies. 

Figure 16 illustrates the circuit configuration 
of Amp (which is the same circuit as shown 
in Figure 10(a), (b» (a), AND-OR logic (b), 
and OR-AND logic. 

The "zero" level of signal is ground and the 
"one" level is + 3 V as is done in other current 
switch mode circuitry. The collector of the 
amplifier directly drives the signal transmis-

Figure 16. Circuitry of the 5020 Family. 

sion lines, which are twisted pairs or coaxial 
cables, and the collector load is the matching 
resistance (75 or 100) of these lines. The AND­
OR logic circuit is driven by EF's (emitter fol­
lowers) which are almost uniformly distributed 
on signal lines, and transform the source im­
pedance to low. The reasons why we do not 
drive the line by EF, but from collector di­
rectly, are as follows: 

i) The maximum fan out of EF is confined 
by its Pc (power dissipation of transis­
tor) . 

ii) The direct connection of logic input to 
transmission line disturbs the line char­
acteristics. 

iii) The problem of damping oscillation of 
EF is serious. 

iv) It is necessary to decrease the collector 
load resistance as far as the characteris­
tic impedance of line in order to attain 
very high speed switching of transistor, 
so our configuration has no losses. 

The signal transmission lines are the 
foamed polyethylene twisted pair lines 
and coaxial cables, whose length, for the 
worst case of half phase 2 level logic, 
must be less than 1.8m. The output 
lines of EF are single lines less than 
0.5m length. 
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The computer is fully taken care of 
ground construction and power distribu­
tion, for these may otherwise cause very 
serious problems in very high speed cir­
cuit. 

The circuit data of Figure 16, or Figure 10 
are shown below. 

Ta; delay time of Ampincluding logic witch 
clock, 6.5 ns 

Ta; delay time of Amp including logic witch 
line, 7.5 ns 

T; delay time of two levels of pair logic, 8.5 
ns 

These, all added up, have sufficient room for 
half phase of 18 MC, clock period, that is 27.8 
ns. Actual computer system has been operating 
with sufficient margin, and proved to be com­
pletely feasible. 

8. Core Memory 

The 5020 Magnetic Core Memory is a word­
arranged, linear-:-select system utilizing one fer- -
rite core per bit in a partially-switched mode. 

The basic memory module contains 8,192 
words (33 bits per word including one parity 
check hit) arranged in an array of 4,096 
access lines of 66 bits (2 words) each. This 
enables the transfer of 2 words or up to 64 
consecutive bits per module in a single memory 
cycle which is 2.0 microseconds for 5020 and 
1.5 microseconds for 5020E. Expansion of 
memory capacity can be made in modules or 
banks, as described in 2.1. Each 30-18 mil high 
speed core in the memory array is threaded 
by three windings: One winding each for the 
word read and write currents, one winding for 
the common sense-digit line whose winding 
scheme is such that optimum noise cancellation 
is achieved and the rather liny line is properly 
terminated in view of the high speed operation 
involved. Word selection is accomplished by 
Ineans of a large steering diode matrix in con­
junction with a transistorized cross-bar switch; 
drive current are derived from the constant 
current switch, flow into the selected steering 
diode, word winding and finally the voltage 
switch. The access control and information 
flow control for the memory modules are pro­
vided for every 16 KW as a unit. The built-in 
checkout circuit serves to quick maintenance 

and troubleshooting without the aid of the cen­
tral processor. 

9. Summary 

The paper has described the outline of hard­
ware aspect of the HITAC 5020 and 5020E. 
The design goal of this family, such as high 
performance per cost, is achieved by 18MC 
fully synchronous 2 phase logic circuit, helical 
transmission lines for various purpose regis­
ters such as accumulators, and serial or serio­
parallel logic structure. 10 systems are now in 
production, the largest system of which will be 
installed at the Tokyo University and consists 
of a 5020E and two 5020's. This will be one 
of the most advanced integrated systems in 
Japan, and in the world as well, which is ex­
pected to play an important role and contribute 
to the advancement of Japanese sciences and 
engineerings with its full-fledged power. 
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INTRODUCTION 

The cornerstone of the IBM System/360 
philosophy is that the arch~tecture of a compu­
ter is basically independent of its physical 
implementation.1 Therefore, in System/360, 
different physical implementations have been 
made of the single architectural definition 
which is illustrated in Figure 1. 

One of the initial decisions was the number 
of processors to implement. Specifically, 
should it be four or five (considering the Model 
60/62 as one). The original decision of five 
was based upon a planned increase of about 
2.5 to 3 in internal performance between one 
model and the next. 

Another fundamental decision was to pro­
vide full compatibility, both upward and down­
ward, over the entire range of the IBM 
System/360. This decision was motivated 
primarily by the advantages, both to IBM's 
customens and to IBM, of the interchange­
ability of software. 

It was clear to Engineering that the cost 
targets for each model in System/360 would be 
feasible only if a significant breakthrough were 
made in costs of building transistorized. com­
puters utilizing the IBM SMS technology. 
Therefore, we decided in 1961 to utilize the 
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micrologic components that were then being 
developed by the IBM Components Division. 

The most significant features of this Solid 
Logic Technology (SLT) are the module, 
which replaces discrete transistors, resistors, 
diodes, etc., and the two-layer printed wiring 
'tTT'h;n'h .... .o:n10na..1 ....... n"'+ n-f +'ha IH"'n .... a+a UT;1"'a", rr''ha 
yy~~.1.\...-.I.J.. ... "',t'.1.u-.......... "'" .I..L.l.Vtrr.:)V V..L. V.I."',", """ ... .VV.LVU'-' Y'f.&..L"'JJ_ ..L. ... .L", 

modules are a~embled on small cards in 
groups or 6, 12, 24, or 36. The small card is 
the basic replaceable unit. These small cards, 
in turn, plug into large multilayer printed. 
circuit cards (approximately 8.5 x 13 inches). 
Interconnections between large cards are made 
by flat multiconductor tape cables that plug 
into large cards in the same way that the small 
cards do, and which run in channels between 
the large cards. See Figure 2. 

Experience with read-only storages was de­
rived from an experimental computer built in 
1960-1961 at the IBM Hursley Laboratory in 
England. There were two major reasons for 
the general adoption. of read-only storages in 
System/360. 

1. Assist downward compatibility due to 
the cost advantages. Read-only storage 
(ROS) showed an advantage in cost over 
the circuitry which it replaced. ROS 
is used primarily in the control section 
of the system and its advantages be-
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Fi 

INPUT -OUTPUT CHANNELS 

MULTIPLEX CHAN. SELECTOR CHANNEL 
MODEL MAX. NUMBER MAXIMUM MAXIMUM DATA RATE 

SUBCHANNELS NUMBER PER CHAN. (KC) 

30 96 2 250 
40 128 2 400 
50 256 3 800 
60 6 1300 
62 _ }NOT 6 1300 
70 

_ AVAILABLE 
6 1300 

ADDRESSES 

INSTRUCTIONS 

CONTROL 

MODEL TYPE 
CYCLE 

)II 

30 READ ONLY STORE 1.0 INDEXED 

40 READ ONLY STORE 0.625 ADDRESSES 
50 READ ONLY STORE 0.5 
60 READ ONLY STORE 0.25 
62 READ ONLY STORE 0.25 
70 SLT CIRCUITS -

RELATIVE INTERNAL PERFORMANCE 

MODEL INTERNAL PERFORMANCE 

30 1 
40 3 
50 10 
60 20 
62 30 
70 50 

gure 1. IBM System/360 Architecture. 

comes more pronounced when more func­
tions are to be performed. Therefore, 
ROS units showed a method of maintain­
ing full compatibility by allowing com­
plex function even in the smallest 
systems. 

2. Flexibility., such as the implementation 
of compatibility features with other IBM 
systems. A unique flexibility is achieved 
by being able to add to the control sec­
tion of the computer, when implemented 
by a ROS, without significantly affecting 
the remainder of the system. One re­
sult is to allow certain System/360 
models to operate as another computer, 
such as the 1401, by adding to but with­
out redesigning the system. This ROS 
concept can be combined with software 

MAIN STORAGE 

CAPACITY WIDTH BITS 
MODEL 8-BITBYTES EXCLUDING 

CYCLE 

lK "1024 PARITY )jS 

30 8-64K 8 2.0 
40 16 - 2S6K 16 2.S 
50 32 - 256K 32 2.0 
60 128 -5 r2K 64 2.0 
62 256 - 512K 64 1.0 
70 256 - 512K 64 1.0 

t 

DATA FLOW 

WIDTH BITS CIRCUIT DELAY 
MODEL EXCLUDING PARITY PER LEVEL, ns 

30 8 30 
40 16 (8 ADDER) 30 
50 32 30 
60 64 10 
62 64 10 
70 64 5 

I VARIABLE I FLOATING 
FIXED FIELD LENGTH POINT 

GENERAL REGISTERS I FLOATING POINT 

MODEL 

30 
40 
SO 
60 
62 
70 

(16 It 32) REGISTERS (4 x 64) 

LOCAL STORE 

WIDTH BITS 
TYPE EXCLUDING 

CYCLE 

PARITY )jl 

MAIN STORE 8 2.0 
CORE ARRAY 16 1.25 
CORE ARRAY 32 0.5 

SLT REGISTERS 64 -
SL T REGISTERS 64 -
SLT REGISTERS 64 -

to offer almost any performance from 
pure simulation (no ROS) to maximum 
performance (no software). When this 
can be done with performance equiva­
lent to the original system, it greatly 
simplifies the programming conversion 
problem by offering essentially two 
computers in one. Note that we have 
various technologies for the read-only 
memory control, including card capa­
citor, balanced capacitor, and the trans­
former approach. Certain choices were 
made for initial implementation, but it 
should be made clear that the choices, 
especially in the slow speed unit are not 
critical and that more than one tech­
nique could be used to give the desired 
performance. 



The concept of architectural compatibility 
was carried a step further in the input/out­
put area by the decision to attach the various 
units through the same electrical interface. 
The major reasons for this decision were the 
added flexibility to the IBM customer, and 
the greatly reduced number of different 
engineering and manufacturing efforts 
which would be involved in producing both 
the System /360 I/O channels and the many 
I/O units. 

Other decisions concerned reliability and 
maintainability. The primary improvement in 
reliability involved the advantages of SLT 
over SMS and obtaining more performance 
from a given number of components by using 
high-speed circuits and storages. An objective 
in maintainability was to have hardware and 
software not only detect failures, but to local­
ize them to small areas, such as five specific 
small cards. A programming system was 
created which takes the machine logic, analyzes 
it, and automatically produces a set of pro­
grams with the proper patterns and expected 
results for that specific logic. These fault locat-
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ing programs (FLT's) are then capable of 
being entered to the appropriate computer 
(Model 50, 60/62, or 70) and executed with 
the assistance of special hardware. This hard­
ware allows setting up the proper patterns in 
the various registers, advancing the clock a 
controlled number of cycles, logging these reg­
isters into main storage, and comparing the 
actual versus expected results. The program­
ming system allows for updating these FLTs 
with engineering changes, and they offer a 
powerful diagnostic tool in localizing failures. 

SYSTEM/360 MODEL 30 

Model 30, the smallest member of the Sys­
tem/360 line, was designed for the market area 
currently served by the IBM 1401,1440, 1460, 
and 1620. The design objective was, of course, 
complete function and compatibility with other 
System/360 models. However, System/360 
architecture includes 142 instructions, decimal, 
binary, and floating-point arithmetic, complete 
interruption facilities, overlapped channels, 
storage . protection, and "other features nor­
mallyfound in more expensive computers. 
This made maintenance of full compatibility, 

Figure 2. Solid Logic Technology (SLT). 
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Figure 2b. 

Figure 2c. 

, 
• 



while achieving the required cost and perform­
ance objectives, a very difficult task. 

Therefore, a number of different hardware 
configurations were examined. Data paths 
and storages from four to sixteen bits. wide; 
table lookup addition and logical operations; 
registers built in SLT hardware, in main stor­
age and in a separate high-speed storage, were 
studied in detail to arrive at a configuration 
that would meet the cost performance objec­
tives. The availability of the 2-p,sec. storage 
at an acceptable cost was also established at 
this tim:e and became an overwhelming factor 
in our; selections. 

The, key engineering decisions which estab­
lished Model 30 characteristics were: 

1. Selection of an 8-bit wide, plus parity, 
2-,p,sec storage unit, 64K bytes maximum, 

2. Use of 8-bit wide, plus parity, data path, 
3. Use of 30-nsec SLT circuits, 
4. Implementation of "local storage" in 

main storage, 
5. Use of a 1-p,sec ROS for control, 
6. Provide· integrated, time-shared, multi­

plex and selector channels, 
7. Provide for complete processor growth in 

in a single frame, 
8. Utilize "byte" packaging to facilitate 

checking and fault location. 

"By-te" packaging means placing all the cir­
cuits required for eight data bits plus parity 
on one pluggable small card. This concept, 
along with micro-program diagnostics, per­
mits fault location to a resolution that averages 
five small cards. 

A simplified data-flow diagram ,of the Model 
30 processor is shown in Figure 3. The four­
teen 8-bit registers, with the 8-bit AL U and 
8-bit storage, provide all the functions for the 
CPU and multiplex channel. Additional reg­
isters ,or buffers are required for selector 
channe.ls,: direct control, interval' timer, and 
storage-protection features. 

Figure 4 is a map of local storage, which is 
actually an extension of the main storage unit. 
The first 256 bytes are utilized by the processor 
for general registers, floating-point registers, 
interim storage during multiply time shar-
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ing, and other scratch-pad functions. The 
second 256 bytes are used by the multiplex 
channel for channel-control words. Additional 
control-word storage is available in larger 
storage sizes. 

The multiplex channel time shares the proc­
essor registers by interrupting the micropro­
gram, holding the return address, storing the 
registers in local storage, and then at comple­
tion of the I/O operation, restoring the regis­
ters to their original state. This is analogous 
to a macroprogram interrput. 

TIMING AND ROS CONTROL 

The basic timing is established by the 1-p,sec 
read-only storage. The main storage provides 
the read-write cycle in 2 p,sec and a read-com­
pute-write cycle in 3 p,sec. Within the 1-p,sec 
ROS cycle are four 250-nsec timing pulses. 

The read only storage in the Model 30 is a 
card capacitor ROS containing a maximum of 
8,000 words with 64 bits per word. 

The capacitor ROS consists of a matrix of 
drive lines an<;l sense lines with capacitors at 
the intersections where a one is required, and 
no capacitors at those intersections requiring 
a zero. The voltage change on a drive wire 
will cause capacitive current to flow in those 
sense lines which are coupled to that particu­
lar drive wire by a c,apacitor. In the card 
capacitor store, the 64 sense lines and one plate 
of each capacitor are printed on an epoxy glass 
board bonded to a sheet of dielectric material. 
The drive wires and the other plate of the 
capacitors are printed on mylar cards (pro­
gram cards) the size of a standard IBM card 
(see Figure 5). 

Each program card is punched with the in­
formation pattern specified by the micro-code 
and contains 12 ROS words. A capacitor plate 
is punched out at an intersection where a zero 
is to be stored; thus, an unpunched card will 
give all ones and punching a hole gives a zero 
at that bit in the word. Microprogram changes 
can be made by inserting new program cards. 

MICROPROGRAM 

A single microprogram instruction can initi­
ate a storage operation, gate operands to the 
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TOW TOX 

STORAGE INHIBIT BUSS 

STORAGE 
DATA 
BUSS 
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ADDRESS 

ROS 
BRANCH 

ROS 
BRANCH 
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SOURCE "A" 

"A" INPUT CTL 

SOURCE "B" 

"B" INPUT CTL 

CONSTANT 

CARRY CTL 

TIC ALU CTL 

o EST. "0" 

STORAGE 
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Figure 3. System/360 Model 30 Data Flow. 
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INTP STATUS 

0 I 2 3 4;: 6 7 8 9 10 II 12 13 14 IS 

OX G.P. REG 0 f I X I x+llx+2 FLOATING POINT REG. 0 

lX I 0111213141S1617 .... K ADDRESSABLE LOCAL 
STORAGE BYTES, FOR 
TEMPORARY STORAGE OF 
INSTRUCTION COUNTER, 
STORAGE PROTECTION 
MASK, SELECTOR AND 
MULTIPLEX CHANNEL 
INFORMATION, CONDITION 
REGISTER, ETC. 

2X 2 10SO USE FLOATING POINT REG. 2 

'3X 3 8 I 9 110 III 112 113 I 14 liS .... 
4X 4 FLOATING POINT REG. 4 

SX S 16 I 17 I 18 I 19 120 121 122 123 .... 
6X 6 FLOATING POINT REG. 6 

LOCAL 7X 7 24 I 2S I 26 I 27 I 28 I 29 I 30 I 3 I .... 
STORAGE 8X 8 

9X 9 o 1 LiS I v lUi G1 J I I 

lOX 10 l 
T 

IIX II CPU STORAGE DURING MPLX 
12X 12 SHARE 

13X 13 

14X 14 I CPU WORKING STORAGE 
ISX IS 

OX UNIT CONTROL WORD 0 UNIT CONTROL WORD 16 

1)( 1 17 

2X 2 18 

3X 3 19 

4X 4 20 

SX S 21 

6X 6 22 

MPX 7X 7 23 
STORAGE 8X 8 24 

9X 9 2S 
In ,),c, 

1:~~I~------------------i-j----r------------------~-~--~ 
Figure 4. Model 30 Local Storage,. 

ALU input registers, select the ALU function, 
store the result in the destination register, and 
determine the next micro-word to read from 
read-only storage. Each ROS. word is decoded 
to operate the gates and control points in that 
system. A brief description of the branch, 
function and storage-control fields in each ROS 
word follows. 

Branch Control 
The branch control fields provide the address 

of the next ROS word to be executed. A ROS 
address is a 13-bit binary number. Nor­
mally the branch control group provides 
only 8 bits (leaving 5 bits unchanged) of 

next address information. Of these 8 bits, 
the low-order 2 are called "branch" bits and 
the remaining 6 are called "next address" bits. 
The 6 "next address" bits are specified directly 
in a 6-bit field. The two "branch" bits are 
speficied by two 4-bit fields. These two fields 
are decoded and used in masking and extract­
ing machine conditions and status conditions 
contained in data-flow registers G and S. 

Another 4-bit branch control group provides 
the function of setting several variables to de­
sired values for later use in microprogram 
branching. 
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CONNECTION 
TABS 

MYLAR PROGRAM CARD 

~:iE CAPACITANCE 

EPOXY GLAss 
SENSE PLANE 

Figure 5. Model 30 Card Capacitor Read-Only Storage. 

In summary, every ROS word provides a 
branchjng ability. The branch can be 4-way, 
2-way, or I-way (simple next address). A 
partial next address is normally used, but pro­
vision is made for obtaining a full 13-bit next 
address when required. The total length of 
the branch control group is 18 bits, plus 1 
parity bit. 

Function Control 
The function control· group is subdivided 

into four fields: source A, source B, operation, 
and destination. 

1. Source A (CA) 
This 4-bit field selects one of the 10- hard­
ware registers to be gated to the A input 
of the ALU. 

2. (CF) 
The 8 data bits from a register can be 
presented to the A input "straight" or 
they can be presented "crossed." The 
term· "crossed" means that the high-

order four bits of the source register 
enter the low-order four bits of the ALU, 
and the low-order four bits of the source 
register enter the high-order four bits of 
the ALU. The A input can further be 
controlled by presenting all eight bits, 
the low-order four only, the high-order 
four only, or none, to the ALU. 

3. Source B (CB) 
This 3-bit field selects one of three regis­
ters to be presented to the B input of the 
ALU. The B input is the "true/comple­
ment" input and has HI/LO controls 
but no straight/crossed controls. 

4. (CG) 
This field controls the gating of the B 
input to the ALU. That is, the low-order 
four bits only, the high-order four bits 
only, all eight bits, or none of the eight 
bits of B may be presented to the ALU. 

5. Constant Generator (CK) 
This field is gated to the B buss, main 
core STAR and ROSAR, thus providing 



a source for constants, mask configura­
tions, and address constants. 

6. Carry (CC) 
This 3-bit field controls carry in, AND, 
OR, EXCLUSIVE OR functions and per­
mits the setting of carry out into the 
carry latch, if desired. 

7. True / Complement & Binary / Decimal 
Control (CV) 
This 2-bit field controls the true/ comple­
ment entry of the B input to the ALU, 
also whether the operation is decimal or 
binary. 

8. Destination (CD) 
This 4-bit field selects one of the 10 hard­
ware registers to receive the output of 
the ALU. A given register may be used 
both as a source and as the destination 
during a single ROS cycle. 

In summary, the Operation group specifies 
one of ADD binary, ADD decimal, AND, OR, 
or EXCLUSIVE OR. It also specifies true 
or complement; 0 or 1 carry input; save or 
ignore resulting carry; use true/complement 
latch; and use carry latch. 

Storage Control.'J 
(CM) (CU) 

These two fields control core storage opera­
tion. Either main storage, local storage, or 
MPX (for I/O) storage can be addressed for 
storage read-write calls; five values of CM 
are used to specify the address register to be 
gated to STAR. 

An example of the sequence of ROS control, 
Figure 6, shows an ADD cycle using a simpli­
fied data flow. 

Step i-As the routine is entered, the con­
tents of UV are gated to the STAR, a read call 
is issued to main storage, and register V is 
decremented by 1. 

Step 2-The A-field data is regenerated in 
storage and the A-field data byte is transferred 
from register R to D. 

Step 3-The contents of IJ are gated to STAR, 
a read call is issued and J (lower -4 bits) are 
put in Z. 

Step 4-Z is tested for 0 to set up the branch 
condition at the next step, the B-field data byte 
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is read out (R) to the adder, as are the D­
register contents (A-field data) and the carry 
from a previous cycle. The output (Z) is gated 
into R. 

Step 5-If the zero test of A in Step 4 is true,-a 
write into the B field is performed (the address 
is still in STAR), J is decremented by 1 and the 
routine is repeated. If the zero test of Z in step 
4 is false, then' a branch is made to the write 
call and the routine is exited. 

As an example of Model 30 microcoding 
efficiency, the execute portion of a fixed-point 
binary add uses approximately 20 words. How­
ever, the add can be combined with 13 addi­
tional operation-code executions, such as sub­
tract, AND, OR, EXCLUSIVE OR, etc., using a 
total of 45 words. A one-half word multiply 
giving a full-word product requires about 95 
words. The total floating-point feature, which 
utilizes the fixed-point microprograms, requires 
approximately 500 words. It should be recog­
nized that the microprogrammer has the choice 
of optimizing for minimum words or maximum 
performance. 

IBM 1401/40/60 COMPATIBILITY 
FEATURES 

It was a market requirement that Model 30 
execute the IBIVI 140.1-40/60. instructions di­
rectly. Further, it was desired to provide these 
features without disturbing the Model 30 de­
sign, which was optimized for System/360 re­
quirements. As a result, these features are 
provided by an addition of only four circuit 
cards plus extensive microprograms. 

The general approach utilizes the following: 

1. System/360 input-output devices, 
2. Conversion tables in local storage, 
3. Microprogram decoding and execution of 

the instructions directly. 

The internal performance is several times the 
1401, based on a typical mix of instructions 
found in 1401 programs. For individual in­
structions, however, the speed ratio varies 
widely. 

Method 

The internal code used in Model 30 for the 
compatibility feature is EBCDIC and, further, 
Model 30 has a binary-addressed storage. Thus, 
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Figure 6. Model 30 Read-Only Storage ADD Cycle. 

a certain amount of translation of character 
codes and conversion of numbers from decimal 
to binary radix, and back again, takes place 
during processing. These conversions and 
translations are accomplished by table look-up, 
using the tables in local storage. These tables 
are read into storage as part of the special load 
procedure required prior to execution of a 1401 
program. The table used to translate the 
EBCDIC to BCD requires 128 characters. It is 
used ·during the execution of 1401 instructions 
such as bit test, move zone and move numeric, 
which depend on the actual bit coding. 

A 72-byte table is required to hold the con­
stants used to convert the 1401 decimal ad-

dresses to binary addresses and the converse. 
This conversion takes place at execute time, 
hence the programs can operate correctly no 
matter what methods are used in the 1401 pro­
gram to generate or modify addresses. Each 
conversion requires from 6 to 12 microseconds 
depending on the value of the address. 

Other functions which utilize tables are op 
decode and I/O device address assignment. Ad­
ditional areas in local storage are used for hard­
ware register back-up, sense switches, system 
specification, and working area. While most of 
the available 512 bytes of local storage are used, 
no main storage is used. Hence, an 8K 1401 
program will run on an 8K Model 30. 



Each input or output device type has an indi­
vidual microprogram routine. Most devices are 
attached to the Model 30 multiplex channel. 
Magnetic tapes are also available on selector 
channels. The throughput for the compatibility 
feature requires an analysis of the particular 
I/O devices used and the particular program 
being run. However, in every practical case it 
will exceed the system being simulated. 

SUMMARY 

The Model 30 effort has helped to prove two 
points: 

1. Small systems, with the extensive func­
tion and facility of the largest systems, 
are practical. 

2. The microprogram control is sufficiently 
general that a good system design can be 
used to simulate a wide variety of archi­
tecture. 

SYSTEM/360 MODEL 40 

The performance of Model 40 is approxi­
mately three times that of Model 30. To attain 
this performance at minimum cost, four major 
design decisions were important. 

1. The adoption of a 16-bit-wide storage of 
2.5 p'sec together with a basic 16-bit wide 
data flow; implemented in 30-nsee SLT 
circuits, provided an optimum configura­
tion. 

2. A 0.625 p.,sec read-only storage as a means 
of control for all CPU functions was used 
because this technique offered significant 
advantages in cost, flexibility, and design 
freedom, compared with more orthodox 

. control systems. 
3. The inclusion of a 1.25 p., sec local storage 

of one hundred forty-four 21-bit words to 
provide general register storage. This 
resulted in a considerable reduction in 
accesses to main storage. 

4. By using the local storage to preserve the 
contents of the CPU during channel op­
erations, much of the CPU data flow can 
be used for channel functions, thus con­
siderably reducing the cost of channels. 

MICROPROGRAMMING 

Microcoded programs, physically residing in 
permanent form in a transformer read-only 
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storage (TROS), form the heart of the control 
section of the Model 40. To reduce the resulting 
physical changes associated with changes in the 
microprograms, the microprogram design is 
automated and debugged before actual physical 
implementation by means of an IBM 7090 pro­
gramming system, the Control Automation Sys­
tem (CAS). CAS is utilized not only by Model 
40, but by all the System/360 models using ROS 
control. 

The basic input to the system is a logic sketch 
page produced by the microprogrammer. The 
separate micro-instructions are written on this 
page in a formal language, TACT. When this 
initial writing phase is complete, the page is 
transcribed into punched cards. The control 
program for the 7090 is directly derived from 
the Model 40 control signal specification and 
acts as a set of inviolable rules. Within this 
framework, and using associated established 
microprograms for reference where necessary, 
the 7090 simulates the Model 40 and attempts 
to run the microprogram using submitted data. 
Errors or violations are detected, stop the pro­
gram, and cause a diagnostic analysis routine 
to be entered. 

Facilities are available for various printouts 
to provide for analysis and subsequent correc­
tion. 

The debugged microprogram, in the form of 
magnetic tape, is submitted to assignment 
checking. This operational phase checks the 
manual assignment of the absolute address giv­
en to each ROS word, and produces listings giv­
ing the absolute address and binary bit pattern 
of each assigned ROS word. Two decks of cards 
are also produced and used in the production 
and testing of the read-only storage. 

An output of the CAS program is a fully­
checked and redrawn version of the original 
logical sketch page. If microprograms are sub­
sequently updated, a revised CAS page is auto­
matically printed on receipt of change. 

TROS 

The finally-debugged microprogram is trans­
lated into a series of micro-instructions, held in 
read-only storage. 

In Model 40, this takes the form of a trans­
former read-only storage-TROS. TROS is 
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made up of 16 modules, each containing 256 
ROS words (micro-instructions) to make a 
total capacity of 4096 words. Each module is 
made up of 128 tapes, each tape containing two 
words. The word tape carries two ladder net­
works, each of which, after modification, holds 
the bit pattern derived from a specific micro­
instruction. 

The tapes are stacked in a module, as shown 
in Figure 7, with transformers inserted 
through the prepared holes in the tapes. These 
54 transformers are in the form of U and I 
cores. The I cores carry the sense windings. 
Each stage of the ladder network corresponds 
to one bit position of the ROS word. Whether 
the bit is a 1 or a 0 is determined by breaking 
the current path on one side of the ladder with 
a punched hole through the printed wiring, so 
that the current then either passes through the 
core for a 1 or bypasses it for a O. 

Signals are taken from the tapes to the sense 
amplifiers, the outputs of which are used to set 
54 latches. 

The total cycle time of the TROS and the 
basic cycle time of the CPU are both 625 nsec. 

Figure 7. System/360 Model 40 Transformer 
Read-Only Storage. 

Normally, there are four 625-nsec TROS cycles 
for each 2.5-/1 sec main storage cycle. 

It is possible, by the inclusion of a feature 
which adds additional ROS modules, to simulate 
other equipment, such as the 1401 or the 1410. 
This enables programs written for these ma­
chines to be run on the Model 40. Model 40 
implements these features by microprogram­
ming and conventional programming; Model 30 
utilizes microprogramming exclusively. For ex­
ample: the input/output and edit commands 
in the 1401 simulated on the Model 40 are ex­
ecuted with System/360 programming, while 
most of the remainder of the 1401 instructions 
are microcoded. 

The primary reason for adopting this ap­
proach in the Model 40 is to reduce the added 
TROS requirements and the ensuing packaging 
problems and costs. 

DATA FLOW 

Figure 8 is a schematic representation of the 
Model 40 data flow. 

The data flow may be divided into sections 
characterized by their data-handling capabil­
ities: 

1. one-byte arithmetic handling (8 bits plus 
parity) , 

2. one-byte local storage addressing, 
3. two-byte storage addressing and data in­

put/output referencing, 
4. one-byte service for the channel data and 

one-byte service for flags related to the 
channel interface, 

5. two-byte data flow to and from local 
storage. 

One-Byte Data Flow 
One-byte arithmetic handling is performed 

by the arithmetic and logical unit (ALU). The 
ALU is a one-byte-wide adder/subtracter which 
operates in either decimal or hexadecimal mode. 
It is capable of producing both arithmetical 
and logical combinations of the input data 
streams and is checked by means of two-wire 
logic, where one true and one complement sig­
nal is expected on each pair of wires. 

Data bytes are fed to the P and Q busses 
from the associated registers or from the emit 



field of the current micro-instruction. The data 
are then manipulated by the ALU in accordance 
with the content of the ROS control word. 
Several instructions may have common micro­
program subroutines in which the difference 
lies only in the ALU function. One of 16 dif­
ferent AL U functions is preset by a 4-bit field 
in a ROS control word executed before branch­
ing to the common subroutines. 

Two-Byte Data Flow 
Data transfers between local storage, channel 

registers, CPU registers and main storage are 
carried out in two-byte steps. 

STORE 
PROTECT 

1 P BUS (9 BITS) 

DIRECT CONTROl 
INPUT 

REGISTER 0-7 

DIRECT IN .-J 
DIRECT OUT ·1 I 

DIRECT CONTROL Pt O-15 Pt O-17 
OUTPUT B A 
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LOCAL STORAGE 

This is a small, high-speed storage which pro­
vides registers for fixed and floating-point op­
erations, channel operations, dumping of CPU 
working register contents, interrupts, and for 
general working areas. Only the fixed and float­
ing-point locations are addressable by the main 
program. 

The ferrite local store contains 144 locations 
allocated as shown in Figure 9. Each location 
is 21 bits long. Addressing is completely r~n­
dom and the unit may be split-cycled with read­
or-write operations in any sequence. A read-

MAIN STORE 
2.5 PSt CYCLE 

~ 1881TS 

BUMP 

Q BUS (9 BITS) 

I 
ARiTHMETiC 

I 
I AND LOGIC UNIT 

Pt O-7 Pt O-17 Pt O-15 
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I I I 
MPX OUT 
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CHANNEL DATA 
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CONTROL 144 WORDS STORE -P,O-7 P,O-7 REGISTER 21 BITS P,O-52 P,O-7 

MPXIN 

Figure 8. Model 40 Data Flow. 



218 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

000 

009 

015 

016 

031 

032 

037 

038 

041 

042 

043 

047 

048 

053 

054 

056 

057 

063 

WORK 
AREA 

WORK 
AREA 
AND 

LOG OUT 
AREA 

SELECTOR CHANNEL 1 
UNIT CONTROL 

WORD 

MULTIPLEX CHANNEL 
WORD AREA 

INTERRUPT BUFFER 

UNASSIGNED 

SELECTOR CHANNEL 2 
UNIT CONTROL 

WORD 

UNASSIGNED 

2ND LEVEL 
DUMP AREA 

ADDRESSES IN DECIMAL 

064 WORK AREA IN 

066 UNDEFINED STATE 

067 

PROGRAM 
STATUS 
WORD 

071 
072 START 1/0 SWITCH 
073 

1 ST LEVEL 
DUMP AREA 

SELECTOR 
CHANNEL 1 

BUFFER 

III 

112 

SELECTOR 
CHANNEL 2 

BUFFER 

127 

Figure 9. Model 40 Local Storage. 

FLOATING 
POINT 

REGISTERS 

FIXED 

POINT 

REGISTERS 



or-write cycle requires 625 nsec. A complete 
read-and-write cycle therefore takes 1.25 p.. sec. 

One example of use of the local store is the 
double-dump routine executed under certain 
types of channel operation. If the machine is 
currently in CPU mode and a multiplex channel 
interrupt occurs, all data relevant to the current 
CPU operation are dumped in the local storage 
first-level dump area. If, subsequently, a se­
lector channel interrupt occurs, all data relative 
to the multiplex service are dumped, and the 
selector channel is serviced. When all selector 
channel operations are complete the multiplex 
data are restored and multiplex servicing is 
continued. Similarly, when mUltiplex servicing 
is complete, CPU data are restored and CPU 
operation is resumed. 

MAIN STORAGE 

The main storage array (2.5-p.. sec cycle, 1.25-
p.. sec access) of the machine is divided into two 
logical sections. These are the true main stor­
age, and a special area of 256-2048 bytes, 
called the bump storage. The bump storage is 
used to hold channel control words used in mul­
tiplex channel operations and is accessible by 
the microprogram only. 

CHANNELS 

Multiplex Channel 
The multiplex channel is an extension of the 

CPU in the sense that .the regular CPU data 
flow and microprogram are used for all data 
transfers. This channel, which allows a number 
(maximum of 128) of relatively low-speed units 
to be operating simultaneously, normally scans 
all attached control units continuously. When 
a device reaches the point where it needs to 
send or receive a byte of data, its control unit 
intercepts the first available scanning signal 
and transmits the unit address to the CPU. The 
CPU data flow is then cleared and retained in 
the local store using the dump routine. After 
the byte transfer has been completed, the con­
trol unit and device disconnect from the chan­
nel, permitting scanning of other devices to be 
resumed, and the CPU processing to continue. 

Selector Channels 
Two types of selector channels are available 

on Model 40, the A channel and the B channel. 
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They differ in that the CPU interference caused 
by I/O operations on the B channel is approxi­
mately one third of that caused by the A 
channel. 

The A channel time-shares the CPU data flow 
and microprogram to a high degree. Data bytes 
are never transferred directly between main 
storage and the interface busses, but move via a 
16-byte buffer in the Model 40 local storage. 
The transfer between interface and buffer is 
conducted serially, by byte, at the rate dictated 
by the I/O device. Each transfer causes the 
microprogram to hesitate one 625-nsec cycle. 
When the 16-byte buffer is half full, the channel 
requests the use of the microprogram and CPU 
data flow. Up to 12 microprogram cycles are 
required to preserve the current contents of the 
data-flow registers and to load the control word. 
The 8-16 bytes in the buffer are transferred 2 
bytes per storage cycle to main storage as a 
block, at a rate of 2 bytes every 2.5 micro­
seconds 

The B Channel is more conventional; it uses 
SL T hardware and does not use the local stor­
age as a buffer. Data is transferred to main 
storage as soon as two bytes are accumulated. 
Interference is basically constant at 1.25 p'sec 
per byte. 

SYSTEM MAINTAlNABILITY 

One of the more unique features of Model 40 
maintenance hardware is the use of the read­
only storage as a source of diagnostic routines. 
One module of the TROS contains a complete 
set of tests to validate the CPU, local and main 
storages. These tests are automatically applied 
each time the system reset is operated to ensure 
an operational machine. 

SYSTEM/360 MODEL 50 

The performance range of System/360 Model 
50 is approximately ten times the Model 30. 

A review of the following key engineering 
decisions will highlight the distinguishing char­
acteristics and engineering achievements of 
Model 50. 

1. The 30-nsec family of SLT circuits is 
used. 
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2. A small, 0.5 p,sec, local core storage con­
tains the general purpose and floating­
point registers. 

3. A relatively low-cost 2.0 p,sec. main stor­
age is used. 

4. The data paths, local storage and main 
storage are" each 32 bits wide (plus 4 
parity bits) . 

5. A 0.5 p,sec read-only storage provides se­
quence control throughout. 

6. Both selector and multiplexor type chan­
nels are provided to cover a wide per­
formance range. 

7. The CPU and channels utilize common 
hardware, yet maintain substantially 
overlapped operation. 

8. The CPU, channels, and storage are 
packaged in a unified structure. 

CENTRAL PROCESSING UNIT 

The first four decisions are highly interde­
pendent and were reached somewhat simultane­
ously to produce a system in the right cost and 
performance range, utilizing components that 
would be available at the right time and that 
would fit together in a good physical and speed 
relationship. These components were selected 
on the basis of good performance per-unit-cost 
and a balanced design, rather than for per­
formance alone. 

The choice of the 30-nsec family of circuits 
allowed an internal clock cycle from register 
through adder and back into register of 500 
nsec. This family of circuits provides the com­
bination of compact packaging, good fan in-fan 
out ratios, and low power dissipation, with a 
nominal delay per stage of 30 nsec. 

A typical 30-nanosecond SLT module is illus­
trated in Figure 10, together with its circuit 
diagram. Such a module has a power dissipa­
tion of approximately 30 milliwatts and allows 
a fan-out factor ef 5 and a fan-in to the OR of 
5. The fan-in to the AND is limited only by 
packaging considerations. 

Figure 11 illustrates the basic Model 50 data 
flow. The main adder path, the working reg-

.,,1 __ -

Figure 10. Solid Logic Technology 30-nsec AOI Circuit. 

isters, the main storage, and the local storage 
are all 32-bits wide plus 4 parity bits. An 
auxiliary 8-bit data path through a logical 
processing unit, called the mover, is provided 
for processing variable field length informa­
tion. This path allows a byte to be selected 
from each of two working registers under con­
trol of two byte counters. The two bytes can 
then be combined in a variety of logical func­
tions and returned to one of the working reg­
isters. With the mover, decimal operands are 
first aligned in the working registers, then 
processed arithmetically 32 bits at a time using 
the main adder. 

The main 2-p,sec storage unit for the Mod 50 
is approximately 32" x 14" x 26"; a reduction 
by one-third the physical size of the 7090 stor­
age (Figure 12). It is available in capacities 
of 64K, 128K, and 256K bytes (8 bits plus 
parity). Bump storage which is part of main 
storage is used to hold channel control words 
for multiplex channel operations. Bump stor­
age area of 1024 to 4096 bytes is accessible only 
by microprogram control and not by the prob­
lem program. The use of a combined sense­
inhibit line allowed a three-wire ferrite core 
plane which can be machine wired. 

The local storage contains 64 thirty-six bit 
words (32 plus parity) and has a read-write 



cycle time of 500 nsee. This ferrite core storage 
unit provides working locations for the CPU 
and channels, as well as the general and float­
ing point registers. Regeneration from either 
the L or R register allows a swap of informa­
tion between the CPU and local storage on a 
single cycle. 

READ-ONLY. STORAGE 

The decision to use a read-only storage for 
sequence control produced a great unifying and 
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organizing influence on the design procedure. 
It not only forced a centralization of all con­
trols, but· also forced an early definition of all 
gate signals thereby allowing the design to pro­
ceed independently in several areas of the ma­
chine. Additional benefits resulted from the 
use of the Control Automation System (CAS). 
This system not only provides the necessary 
record-keeping and generation of manufactur­
ing information for the read-only storage, but 
also provides documentation of the instruction 
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Figure 12. Physical Comparison Model 50 and 
IBM 7090. 

sequences and allows complete simulation of 
these sequences before producing hardware. 

The balanced capacitor technology is used in 
the read-only storage unit of the Model 50. A 
bit plate contains the information content of 
the storage in the form of tiny tabs attached to 
a long electrical drive line (see Figure 13). 
These are etched on a glass epoxy plate by a 
process similar to that from which printed cir­
cuit cards are manufactured. This bit plate is 
covered by a sheet of I-mil mylar which forms 
the dielectric of the capacitor. The bit-plate tab 
forms one plate of this capacitor and a sense 
line running orthogonally to the drive line 
forms the other plate. 

The sense lines are also etched lines. A pair 
of these lines form inputs to the base and 
emitter of a differential amplifier at one end 
and are terminated to ground at the other end. 
One sense plate contains 400 parallel sense 
lines. 

The bit plates lie over the sense plates and 
are separated by the I-mil mylar, with the 

drive lines running vertically and the sense 
lines horizontally. Approximately a 5-inch 
pound torque is applied to a system of pressure 
pads to maintain constant pressure between the 
two plates. 

Thus, switching on the array driver provides 
a change in voltage that is capacitively coupled 
from the drive line to the sense line. For im­
pedance-matching purposes in the sensing cir­
cuits, a balancing line is used in conjunction 
with each drive line. The appropriate location 
of the bit tabs determines whether the signal 
received by the sense amplifier is a 1 or a O. 

The read-only storage of the Model 50 con­
tains 2816 words of 90 bits each. It has a cycle 
time of 500 nsec and an access time of 200 nsec. 
To allow the result of one cycle to immediately 
influence the choice of the next, two words are 
read from storage simultaneously, and a choice 
between them is made on the basis of the result 
of the first cycle. The chosen word then con­
trols the second cycle. This technique allows 
the same speed to be'maintained as if sequential 
logic circuit controls were used. 

CHANNELS 

A wide range of channel performance is pro­
vided in the Model 50 by the inclusion of two 
quite different channel designs. Both types of 
channels allow a substantial overlap with CPU 
operations. 

The multiplexor channel provides concurrent 
operation of multiple low to medium speed de­
vices. It makes extensive use of CPU hardware 
and contains relatively little hardware of its 
own. (Example: Local storage and some CPU 
registers are used as working locations.) The 
control words for each operating device are 
held in an extension to main storage called 
bump storage. As each byte is handled, the 
channel takes control of the CPU and obtains 
the required control word from bump storage. 
The CPU registers required for the operation 
are dumped into local store. The multiplexor 
channel can also operate with a single higher 
speed device in a "burst" mode. In this mode 
the control word is held in local storage to speed 
the operation, but bytes are still handled one 
at a time. 
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Figure 13. Model 40 Capacitor Read-Only Storage. 

High speed I/O devices use the selector chan­
nels (up to three are attachable) which can 
handle 8-bit data up to an 800 KC byte rate. 
These channels contain sufficient hardware to 
assemble a full word of data before requiring 
the main storage or CPU facilities. Control­
word information is retained in hardware in­
stead of local storage. CPU facilities are used 
only when transferring a word to storage or 
chaining between I/O commands, resulting in 
a much higher maximum data rate than the 
multiplexor channel. 

An additional selector channel is available 
which operates in a lockout fashion a;nd is 
capable of operating at a data rate up to 1.3 mc. 

MAINTENANCE 

Four decisions stand out in the maintenance 
area. They are: 
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1. The decision to include a hardware Log 
In-Log Out system for the execution of 
fault location tests (FLT's). An inte­
grated approach (using the read-only 
storage to control FLT sequencing and log 
paths, and using existing hardware where 
feasible) reduced the cost from being ex­
cessive to being defendable, and in addi­
tion provided better fault resolution than 
conventional diagnostics. The FLT's can 
provide fault localization to within a few 
small cards, on the average, and have the 
additional advantage of being automati­
cally produced and updated. The Log 
Out system is also used with the error 
checking circuits, to provide a complete 
snapshot of internal status at time of 
error. 

2. Use of a Progressiive Scan technique 
provides a reasonable means of running 
fault-location tests on channel hard­
ware; with resultant improved fault 
resolution, thus the entire processor 

can be examined with high resolution, 
non-functional test. 

3. The DIAGNOSE instruction allows the 
initiation of any micro instructions, 
in any order. This permits integration 
of the control of various maintenance 
techniques into the read-only storage. 
This instruction gives the diagnostic 
programmer a power tool. 

4. The decision to allow for single-man 
servicing. This is made possible by 
bringing all controls and indicators 
together on a single system control 
panel which is usable in two positions; 
the normal operating position, and 
swung left 1800 so that it faces the prin­
ciple servicing area (CPU logic, main 
storage, and channel hardware). See 
Figure 14. The small logic cards, which 
are the principle replaceable item, are 
easily accessible, with the majority 
located on the outer sides of the gates. 

Figure 14. Model 50 System Control Panel (Open Position). 



SYSTEM/360 MODELS 60/62 

Models 60/62 are large-scale processors with 
performances that are approximately 20 and 30 
times that of Model 30. 

Basic design considerations are: 
1. Main storage speeds of 2 p,sec and 1 p,sec. 
2. High-speed circuit family with nominal 

delay of 10 nsec per logical block, 
3. Local storage in transistors, with 125-

nsec access and non-destructive read, 
4. Read-only storage control of CPU func­

tions at a 250-nsec cycle, 
5. 64-bit-wide storage, plus 8 parity bits; 

64-bit data flow, plus 8 parity bits. 

Models 60/62 attach stand-alone storage and 
channel units compared to the integrated de­
signs of the smaller models in System/360. The 
entire instruction set is standard. Model 60 is 
equipped with a 2-p,sec main storage packaged 
in two separate frames. Address interleaving 
between the frames increases the effective 
speed of storage. The combined capacity of the 
storage frames varies and is available in 128K, 
256K, or 512K byte sizes. Input-output control 
is provided through a channel capable of han­
dling 8-bit data at a lo3-mc byte rate. Up to 6 
channels are attachable and capable of oper­
ating simultaneously. Information is passed 
between storage and channel on a 72-bit, dou­
ble-word basis, minimizing interference with 
operating programs. High-speed I/O devices, 
tapes, disks, and drums are primarily intended 
for direct attachment to the channel. Slower 
speed units, terminals, peripheral readers, 
punches, and printers, attach to smaller Sys­
tem/360 Models which, in turn, may be con­
nected to one of the Model 60 channels in a 
multiprocessing arrangement. 

Model 62 differs from Model 60 only in the 
speed and configuration of the main storage. 
The 1-p,sec storage associated with this model 
is available in 256K-byte, self-contained units. 
A maximum of two of these units is directly 
attachable, providing 512K bytes of storage. 
The addressing is conventional and is accom­
plished without interleaving. 

TECHNOLOGIES UTILIZED 

The foundation of the central processing unit 
design is a basic building block or module con-
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taining four logical diodes with load resistors, 
one emitter follower and inverter transistor, 
plus three control diodes fabricated ona single 
substrate. This device houses the primary cir­
cuit used almost exclusively in Models 60/62. 

Variations of diode and transistor arrange­
ments exist within the same circuit family and 
these different module types equip the logician 
with a full array of AND-OR design elements. 
The basic block has a nominal delay of 10 nsec. 
Signal swings vary from + 1 to +3 volts. The 
circuits display good noise-rejection character­
istics in that worst-case simultaneous switch­
ing is tolerable under maximum loading situa­
tions of five-way AND's driving five-way O,R's 
into a ten-load output. Circuit speed has pur­
posely been compromised to improve driving 
and loading capability. 

All the circuitry is contained on one module, 
with the exception of the two collector resistors 
which are located external to the module in a 
resistor pack. With the exception of the com­
ponents outlined, the circuit configuration is 
essentially the same as the 30-nsec circuit block. 

The local store is not required to accommo­
date integrated I/O channels, consequently a 
favorable trade-off is achieved by structuring it 
in transistor registers as opposed to ferrite 

. cores. In addition to reduced cost faster speeds 
are obtained, since the store is not destructively 
read, so regeneration time is eliminated. The 
unit contains twenty-:five 36-bit registers. Six­
teen are general purpose· registers, eight are 
floating-point registers and one is a working 
register used for variable field· length control. 
Since one or more registers participate in the 
execution of each System/360 instruction, the 
accessibility and maneuverability of local stor­
age contents is mandatory for good.internal 
performance. Any of the registers can be easily 
read or modified in 125 nsec, a nice fit for the 
250-nsec machine cycle. All CPU manipulations 
occur within the 250-nsec machine cycle. 

A balanced capacitor read-only storage de­
vice, similar to that used by the Model 50, pro­
vides logical control for the processor. The cycle 
time of the read-only storage is 250 nsec, with 
the output being available 100 nsec after select. 
Sixteen bit planes of 176 words each provide 
a total of 2,816 words. Each word is 100 bits 
wide. 
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To achieve desired CPU speeds, the read-only 
storage is supplemented with conventional con­
trol hardware. Approximately 500 control lines 
are generated in all, of which 400 emanate from 
the read-only storage. Conventional control 
logic is utilized primarily where sequencing be­
comes data-dependent and exclusive read-only 
storage control would require additional cycles 
to be taken. 

LOGICAL ORGANIZATION 

The size of the CPU -storage interface varies 
in width from a byte on Model 30, to half-word 
on Model 40, to a full word on Model 50. In the 
Models 60/62, it is double-word wide. A reduc­
tion in the number of storage cycles required 
fo~ program execution is purchased at the price 
of hardware. The data path continues double 
word throughout. Significant performance im-

provements in the handling of long precision 
floating-point arithmetic and variable field 
length operations are achieved. 

A 64-bit instruction-buffer register is di­
rectly fed from storage and initially receives 
all instructions (see Figure l5). Four half­
words are loaded and passed, one half-word at 
a time, through a I6-bit extender register to a 
I6-bit decoding register where instruction ex­
ecution commences. As the last of the four 
half-words enters the extendor register, storage 
is signaled to refill the buffer register. The flow 
through these three registers neatly overlaps 
instruction fetching with execution and adds 
substantially to the internal performance of 
the CPU. 

A parallel adder, 60-bits wide, is the con­
fluence of the data path. Address calculation, 
arithmetic, shifts, register-to-register trans-
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Figure 15. System/360 Models 60/62 Data Flow. 



fers, and parity generation and checking are 
handled in the adder. It is a high-speed unit 
split into four sections, four groups per section, 
four bits per group for look-ahead propagation. 
Worst-case carries ripple out in 135 nsec. The 
entire adder output can be held in a latch 
register equipped with gates which can shift 
the full sum 4 bits right or left into the latch. 
Adder input gates provide for left shifts of one 
or two bits. The adder accommodates, in one 
pass, the 56-bit fraction arithmetic of long pre­
cision, floating-point instructions. 

Two 64-bit registers operate in concert with 
the parallel adder. Both can be directly loaded 
from storage and one provides the store path 
to main core. At times they participate in an 
action as a 64-bit unit. Frequently they are 
treated as separate and independent 32-bit reg­
isters (identified logically as A-B, S-T). A 
finer subdivision into 8-byte units can also be 
effected. Both the A-B and S-T registers have 
three-position byte counters controlling byte 
movements. By utilizing the 32-bit _ working 
register in local store, in addition to parallel 
adder paths, any combination of register-to­
register transfer between, A, B, Sand T can 
be made. The base registers in local storage 
transmit between the S-T registers. A 24-bit 
instruction counter and a 24-bit storage address 
register connect to the parallel adder for load­
ing and incrementing. 

An 8-bit serial adder draped with extensive 
gating is woven into the data flow. It drives a 
latching register and is byte fed into the work­
ing registers. The many variable field ope:t;a­
tions, including arithmetic, work through the 
serial adder as do the logical functions AND, 
OR and EXCLUSIVE OR. 

To provide maximum flexibility in present 
or future high-performance system configura­
tions, physically-independent storage and chan­
nel units are employed. One common mu1tip1ex­
type interface serves to permit the attachment 
of either the 2360 (2 p.Sec) or the 2362 (1 p.Sec) 
storage units to the CPU and 2860 channel. 
This interface also provides the mechanism for 
the attachment of multiple 2361 large-capacity 
storage units. Figure 16 shows that the key to 
this interface is the cable that serves as the 
conductor for multiple driving circuits feeding 
multiple receiving circuits. This permits effici-
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ent time sharing of the inter-unit data and 
address paths under the control of just a few 
direct connection signal lines. 

SYSTEM/360 MODEL 70 
System/360 Model 70 is designed to fill a 

marketing need for a very-high-performance 
data processing system. It may serve as a direct 
functional replacement for any member of the 
System/360 family, with which it maintains 
complete program compatibility. 

The sole constraints on program compati­
bility are storage size, input/output configura­
tion, and the absence of time-dependent pro­
gram loops. 

The fundamental elements contributing to 
Model 70 performance are: high-speed circui­
try, interleaved 1-ftsec storage units, and logical 
organization. 

CIRCUITS AND PACKAGING 
To achieve the desired performance, the 

Model 70 Engineering team specified a circuit 
family which would permit an effective balance 
between the basic machine cycle, storage-access 
time, and storage-cycle time. 

The optimum cycle time was established at 
200 nsec. This, in turn, coupled with machine­
packaging constraints, dictated a circuit with 
a nominal switching time of 5 nsec. The re­
sultant circuit is of the AND-OR INVERT 
family. The switching time varies from 4 nsec 
and longer as a function of fan-in and loading, 
i.e., line length and number of loads. The basic 
circuit configuration is similar to the 10-nsec 
AOI but differs in component characteristics. 

These circuits are packaged in modular form; 
the modules are mounted on small cards having 
a capacity for either 12 or 24 modules. A sub­
stantial number of these small cards are func­
tionally packaged to achieve high density and 
relatively short line lengths. With a circuit that 
performed well, extreme care had to be exer­
cised, not only in defining the functional cards 
but also in card placement. More difficulty was 
experienced in controlling delays in transmis­
sion than logical delays. 

STORAGE 
Main storage for the Model 70 consists of two 

banks of 1-ftsec storage. Each storage bank has 
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Figure 16. Model 60 Storage-Channel Interface. 

a- capacity of 256 K bytes arranged in 32K dou­
ble words (64 information +8 parity bits). 
Data with even double word addresses are 
stored in one bank; data with odd double word 
addresses are stored in the other. These two 
banks a.re independent of each other, having 
exclusive drive schemes and data registers. 

When accesses are made to sequential storage 
addresses, the storage units operate in an inter­
lea ved fashion. 

The two units cannot be accessed concurrent­
ly but must be offset by at least 400 nsec, a 
restriction imposed by the maximum rate of 
the storage bus. 

LOGICAL ORGANIZATION 

The initial design approach was to accentu­
ate the p~rformance of arithmetic operations. 

Enlphasis, however, was brought to bear on 
those instructions used heavily in the compiling 
function, e.g., load, branch, store, and compare. 
A data flow schematic is shown in Figure 17. 

Instruction buffering is provided via two 
double-word registers, each supplied by inde­
pendent banks of main storage. Instructions 
are executed sequentially and as the contents 
of each register is exhausted, it is replenished 
from storage during which time the contents 
of the second register is being used. 

Some degree of instruction overlap is 
achieved by operand buffering. A sequencing 
unit controls the instruction decoding, effective 
address generation, and operand fetching, while 
the preceding instruction is being executed. The 
sequencing unit is not allowed to operate more 
than one instruction ahead of the execution 
unit and is not allowed to change any addressa-



ble registers while the execution unit is still 
operating on the previous instruction. This 
eliminates recovery problems in the event that 
a branch or interrupt causes the abandonment 
of the instruction being worked on by the se­
quencing unit. Address generation is accom­
plished through the use of a three-input adder 
in one machi!le cycle (200 nsec) ; one input is 
from the instruction register, the other two 
from the general purpose registers specified by 
the instruction. 

The heart of the execution unit is the main 
adder which is a 64-bit adder-shifter' combina­
tion. It has a three-stage full carry lookahead 
scheme which permits an add operation in one 
clock cycle. The main adder is supplemented 
with an 8-bit exponent adder for floating point 
operations and an 8-bit decimal adder for deci­
mal and VFL operations. 

ADDRESSING 
ADDER 

16 

GENERAL 
PURPOSE 
REGISTER 

i I 
I I 
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A read-only storage mechanism was not in­
cluded in the Model 70 since it did not lend it­
self to the machine organization, especially in 
the area of required cycle time. As a result, the 
control functions were implemented through 
conventional logic design. 

A further attempt to improve performance 
was made through utilization of transistor cir­
cuitry, rather than core storage, for the general 
purpose and floating-point registers. This ap­
proach permitted faster access, eliminated re­
generation time between fetches, and permitted 
accessing more than one register at a given 
time. 

In view of the storage interleaving and in­
struction overlap, a precise estimate of ma­
chine performance on a particular program, 
loop or sub-routine, must involve careful scru­
tiny of instruction and data addresses and in­
struction sequences. 

MAIN ADDER 

FLOATING 
POINT 

REGISTER 
4 

I 

STORAGE 
IN BUS 

Figure 17. System/360 Model 70 Data Flow. 
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LARGE CAPACITY STORAGE CHANNEL 

A considerable asset in achieving thruput 
improvement is the addition of large capacity 
storage (LCS) to the Model 70. This storage 
unit, with a read-write cycle of 8 p'sec, may be 
attached to the system in increments of 1024K 
and 2048K bytes up to a maximum of 8 million 
bytes. These units are attached directly to the 
storage bus and can be considered an extension 
of directly addressable main storage. 

The 2860 Selector Channel is a very high 
performance data channel designed to operate 
on Models 60, 62 and 70. 

The performance of this channel utilizing 
30-nsec circuits permits operation at data rates 
up to 1.3 megacycles; the rate being measured 
by the number of 8-bit bytes that pass, via the 
I/O interface, to or from an appropriate input 
or output control unit. Any interconnection to 
input or output control units is via the I/O in­
terface. The LCS can also be attached to Models 50, 

60 and 62, and has the facility of being shared 
between any two of these systems. 

The channel is of the selector type, per­
mitting interconnection of multiple I/O control 
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units to a single channel. A maximum of 6 
channels may be used. Up to 8 control units 
may be attached to one channel. However, the 
channel at any given time operates with one, 
and only one, device of the many attached. The 
channel is "instructed" by the processor system 
to commence an operation. An operation per­
formed by an instruction may involve any se­
quence or list of commands to that particular 
device. After being instructed, the channel in­
dependently obtains "commands" and transmits 
data to or from processor storage until it com­
pletes its operation. 

In operating with storage, the channel shares 
the buss control unit, used by the processor, to 
obtain its storage references. The Models 60, 
62 and 70 use a double level of priority. In the 
first level, each channel vies with the other 
channels attached to that particular CPU for 
priority, and then in turn vies with the proces­
sor for specific priority. 

PHYSICAL ORGANIZATION 

. Figure 18 shows the Model 70 physical ar­
rangement. Each gate in the CPU contains 20 
large cards and 4 half-size cards for termina­
tion of interframe cables. Two of the gates con­
tain the Execution-unit, the other contain the 
sequencing-unit. The maintenance-control unit 
(MCU) frame contains maintenance circuitry, 
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the bulk power supply, and a small amount of 
the CPU circuitry. 

Mounting the CPU and the storage units on 
a common wall helps performance in that it 
allows short, direct cable connections between 
them, rather than long under-floor cables. It 
also means that all installations will have the 
same cable lengths in these paths. 

The 2860 Selector Channel frame is a three­
gate stand alone frame housing three swinging 
gates, each capable of containing 20 large cards. 
Power supplies are mounted in the internal 
column between gates. Since each channel oc­
cupies one full gate, up to three channels may 
be contained in a given three-gate frame. 
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UNISIM-A SIMULATION PROGRAM FOR 

COMMUNICATIONS NETWORKS 
J. H. Weber and L. A. Gimpelson 
Bell Telephone Laboratories, Inc. 

Holmdel, New Jersey 

I. INTRODUCTION 

The design and analysis problems associated 
with large communications networks are fre­
quently not solvable by analytic means and it 
is therefore necessary to turn to simulation 
techniques. Even with networks which are 
not particularly large the computational dif­
ficulties encountered when other than very 
restrictive and simple models are to be con­
sidered preclude analysis. It has become clear 
that the study of network characteristics and 
traffic handling procedures must progress be­
yond the half-dozen switching center problem 
to consider networks of dozens of nodes with 
hundreds or even thousands of trunks so that 
those features unique to these large networks 
can be determined and used in the design of 
communications systems. Here it is evident 
that simulation is the major study tool. 

II. SIMULATOR REQUIREMENTS 

The type of problem to which this simulator 
is directed is quite different from many of 
the queuing and other problems which are 
the primary application for most simulation 
programs. Whereas in management simula­
tion and tandenl queuing processes (job 
shop simulations, etc.) problems are charac­
terized by a fairly complex sequence of pos­
sible alternatives, the number of demands 
simultaneously in process is ordinarily not so 
great as to tax the capacity of the computer. 
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Furthermore, the measured outputs are di­
rectly influenced by most or all of the trans­
actions sequenced through the program. 

In telephone (and other) traffic simulations, 
however, particularly of the network type, the 
possible number of alternatives before any call 
(demand) is not very great, but the number of 
calls which are simultaneously in progress is 
quite large, and their interactions are not 
predictable. The measure of performance is 
typically grade of service (or probability of 
blocking), which is normally in the order of 
one per cent of the total offered calls. This 
measure, furthermore, applies to each traffic 
parcel in the network. For example, if there 
are 20 nodes in a network, there are 190 two 
way traffic items, each with a different demand 
rate. If the smallest demand contributes only 
1/1000 of the total calls in the network at any 
time, then 1000 calls must be processed for 
each one from this smallest parcel. A block­
ing of one per cent should be measured with 
reasonable reliability on this smallest parcel, 
and even if 1,000,000 calls are processed, only 
(1/1000) (1/100) (1,000,000) or ten calls 
will be blocked, and therefore contribute di­
rectly to the measurement on the smallest par­
cel. Since many networks must be tested 
using different load levels, it is clear that a 
primary requirement for a simulator which is 
to be used in traffic network studies is that 
it be fast. An improvement in speed of 5 
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per cent or 10 per cent can be worth many 
thousands of dollars even for a single study. 

The other important characteristic that sim­
ulators for this application must have is that 
they be capable of handling large networks. 
The toll network in the United States has in 
the order of 2000 switching centers. Although 
it is not possible to incorporate even a sub­
stantial fraction of this number into a simula­
tion pl'ogram, the number of nodes which can 
be accommodated must be capable of exercising 
all of the proposed routing and control param­
eters, which can ordinarily not be done with 
anything fewer than about 20 or 30 nodes, 
and preferably should be somewhat larger. In 
practice, the capacity of a, simulator is not 
governed by the number of nodes in the net­
work, but by the number of calls simultane­
ously in progress, and this maximum must be 
commensurate with the maximum number of 
allowable nodes. I t would do no good to 
simulate a 2000 node network which allowed 
less than one simultaneous call in progress 
per node pair since this would not be a real­
istic situation. This requirement, of course, is 
in conflict with the speed criterion, since to 
take advantage of low speed bulk storage 
media such as disc files might cause an intol­
erable slowing down of the program. 

III. SIMULATOR CHARACTERISTICS 

The simulator can accommodate systems 
with both direct (line switched) and store­
and-forward traffic and with two nonpre­
emptive priority levels allowed for each traffic 
mode. It also allows trunk reservation by 
mode, priority, or route and can develop its 
own alternate routing tables according to 
specified rules. These can then be dynamically 
changed according to the state of the system. 

All congestion is assumed to result from 
trunks only: the switching centers offer no 
delay or blocking to any call. This assump­
tion, although perhaps somewhat unrealistic 
in certain circumstances, allows the simulation 
to operate quite rapidly while facilitating the 
evaluation of alternate routing patterns 
strictly on the basis of their basic structure 
and routing doctrine, without introducing ob­
scuring effects of particular switching ma-

chines. It is felt that the structure informa­
tion will be common to a large variety of 
networks, whereas the switching machines are 
of course unique to each particular system. 

The essential characteristics of the simula­
tor are as follows: 

1. Two modes of traffic, direct and store­
and-forward, are allowed. Direct traffic 
is served upon arrival, using either a 
direct or an alternate route. If a direct 
call is unable to be served immediately, 
it is considered blocked and is either 
lost from the system or reattempts after 
some fixed interval of time. The re­
attempt interval may be exponentially 
distributed or constant, and calls may 
either reattempt after each try or be 
lost with a given probability. Store-and­
forward calls are served immediately, 
using the direct or alternate route, if 
possible. If the call cannot be served 
immediately, it is stored and queued on 
the most direct route. 

2. Each mode of traffic is allowed two 
nonpreemptive priorities, and these can 
be distinguished by: 

a. Different retrial times for direct 
traffic. 

b. Head of the line queuing for the 
higher priority store-and-forward 
traffic. 

c. Trunk reservation procedures in 
which a certain number of trunks in 
a group are reserved for high priority 
traffic only. 

3. The simulator accommodates networks 
with the following maximum dimensions: 

63 nodes 
1,953 trunk groups 

These maxima cannot be simultaneously 
realized, the primary limitation being ap­
proximately 6,000 calls in progress si­
multaneously. 

The simulator will handle approxi­
mately 500,000 calls per computer hour; 
this is a maximum speed obtained when a 
moderately loaded network of about 35 
nodes is being simulated (i.e., the number 
of calls in queues and being retried is 
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small compared with the number of calls 
in progress). The time required to proc­
ess the simulator output and produce sta­
tistics on the run (included in the above 
estimate) varies with the network size 
and may take as long as the simulation 
itself. 

4. The alternate routing procedure which 
is provided determines its own sym­
metrical routing arrangement (see Ref­
erence 1) based on the shortest paths 
between each two points, hierarchial 
routing according to preset rules or gen­
eral routing with the route sections read 
in directly. The routing either remains 
fixed throughout the run or can be 
changed at periodic intervals according 
to the dynamic condition of traffic in the 
network. 

5. The output data are arranged such that 
information about probability of block­
ing, delay distributions, trunk usage and 
several other aspects of the system are 
summarized over prearranged intervals 
of time. The results of these summari­
zations are then printed out, as well as 
placed on magnetic tape, and selected 
sections can then be combined using an­
other program to derive means and vari­
ances of the appropriate statistics over 
any group of intervals which is desired. 

6. The simulator has the ability to change 
loads at a linear rate during the course 
of the run; that is, any load or combina­
tion of loads can be made to vary at a 
fi'xed rate over a desired period of time, 
including a step function in which a 
change is made in zero time. 

7. Trunk reservation is set up not only to 
distinguish between high and low prior­
ity calls but also between direct and 
store-and-forward calls: it is possible to 
reserve some trunks for direct calls only, 
as well as for the higher priority. Trunks 
may also be reserved for first routed 
traffic at the expense of alternate routed 
traffic. 

8. Routing is of the Hstage-by-stage" va­
riety. As calls progress through the net­
work their next choice of route is 

determined only by the condition of the 
immediately succeeding links. Calls are 
not allowed to switch through the same 
node twice, and maxima, in the form of 
number of links and distance, can be 
established for each traffic item. It is 
also possible to allow cans to return to a 
previous point for rerouting if they are 
blocked. 

IV. SIMULATOR ORGANIZATION 

The Simulator Program (Figure 1) is made 
up of a number of subprograms, some of which 
are simultaneously in core and some of which 
are read in sequentially. This subprogram 
structure was used in order to accelerate the 
programming, maximize the availability of core 
storage for any program, simplify debugging 
and allow maximum flexibility for future 
changes. Briefly, the sequential programs are 
as follows: 

1. The Traffic Generator accepts as input 
data the point-to-point offered loads, the 
holding times of the various types of 
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Figure 1. Simulator Organization. 
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traffic, and the load changes which can be 
expected during the course of the run. 
The program generates all the calls 
which will be used in a simulation run, 
placing their mode and priority, time of 
arrival, originating and terminating 
points and holding time on the Traffic 
Tape in chronological order. This tape 
is used as input to the main Simulation 
Program. 

2. The Simulation Program accepts as in­
put the structure of the network in terms 
of nodes and trunks; trunk reservation 
information, if any; routing options and 
limitations; retrial specifications; and 
the Traffic Tape. It then processes the 
calls through the simulated system and 
reports the results on two tapes. One of 
these, called the Call Record Tape, con­
tains a record of all calls which have 
been processed; that is, arrival time, 
service time, holding time, mode and 
priority, origin, destination and number 
of links used. The other tape, called the 
Switch Count Tape, records the results 
of periodic measurements of all of the 
trunk groups in the network, reporting 
on occupancy and reservation levels. 
These two tapes contain all of the raw 
output information from the simulation 
and are used as input to the Output Proc­
essor Programs. The Dynamic Alternate 
Router Program, which determines the 
routing pattern as a function of the traf­
fic condition of the network, is alternated 
in core with the main processing pro­
grams, the program not in use being 
temporarily stored on a scratch tape or 
disc file. 

3. The First Output Processor accepts as in­
put the Call Record Tape and the Switch 
Count tape, as well as specifications of 
the number and length of the time inter­
vals over which the information on the 
two tapes are to be averaged. It then pre­
pares mean values of blocking probabil­
ities, delay distributions, average delays, 
trunk usages and links-per-call distribu­
tions over the specified intervals. This 
information is printed out and placed on 
magnetic tape. By visual inspection of 

these outputs the program user can then 
determine the intervals over which the 
system was sufficiently close to steady 
state operation to allow longer term 
averaging. He then can make the ap­
propriate specifications for the Second 
Output Processor. 

4. The Second Output Processor accepts the 
output tape from the First Output Proc­
essor and the interval averaging specifi­
cations of the program user, and deter­
mines over-all means and variances of all 
system statistics originally derived by 
the First Output Processor. 

The detailed operation of the several pro­
grams mentioned above will be given in sub­
sequent sections. 

V. TRAFFIC GENERATOR 

The Traffic Generator Program (Figure 2) 
is run prior to the Simulation Program and 
the Traffic Tape which is produced can be re­
used as required. This procedure realizes a 
saving in computer time since traffic need not 
be regenerated to test several network con­
figurations and routing schemes. 

The Traffic Tape contains an entry for each 
offered call consisting of essential informa­
tion such as arrival time, terminal nodes, hold­
ing time, etc. The calls are generated by using 
input quantities such as offered loads to gen­
erate interarrival times using independent 
random numbers, selected from a specified 
distribution (single parameter with unit 
mean). The program continually searches for 
the next earliest arrival. Finding that item, a 
holding time and direction are determined. 
This information is placed on the output tape. 
The item then receives a new arrival time, is 
placed back into the list, and a new search is 
initiated for the next arrival. 

The selection of the earliest arrival is ex­
pedited by the use of a technique, suggested by 
W. S. Hayward, Jr., in which entries in the list 
are paired, and the earlier of the two arrival 
times of each pair is placed in a second list. 
This same process is continued using pairs 
from subsequent lists until the earliest arrival 
is selected. The node pair and call type as­
sociated with the arrival time can be simply 
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Figure 2. Traffic Generator. 

determined. The economy of this technique 
results from its ability to change individual 
items very rapidly without full reconstruction 
of the lists; in particular, it can select the re­
quired call more quickly than would be possi­
ble with a full search of the first list. 

During prespecified time intervals in which 
there are to be load changes, a calculation of 
each new interarrival time is preceded by a 
test for the presence of a flag in the listing of 
the current item of traffic. Should there be 
one, the interarrival time is modified to pro­
duce a linear change in the load. 

VI. SIMULATION PROGRAM 

A) General Description 
The Simulation Program (Figure 3) is 

composed of a number of subprograms which 
can be grouped into three categories: 

1. Operator Program 
2. Routing Programs 
3. Record Keeping Progr~ms 

The division of tasks between the subpro­
grams was made to allow separate writing and 
debugging of the programs by a team of pro­
grammers. This technique also permits 
changes in operation to be effected in parts of 
the simulator without major rewriting of the 
entire program; for example, several routing 
schemes are available as "plug-in" units. 

The Operator Program maintains a single 
chronological queue (or linked list) containing 
all events which occur in the simulator. This 
includes call arrivals, call departures, call re­
trials and various instructions to perform con­
trol actions. For example, if the event at the 
head of the queue is the arrival of a new call, 
placement is attempted; successful placement 
will move the call back in the queue to a point 
in time equal to the arrival time plus the hold­
ing time; when that time is reached (following 
processing of intervening events), this call is 
removed from the network. 

In order to maximize the number of calls si­
multaneously in progress, advantage was taken 
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INITIALIZE 
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CONTROL 
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ROUTER 

Figure 3. Simulation Program. 

ROUTE 
AVAILABLE 

of the statistics of network behavior in organ­
izing the data structure. Since the chronologi­
cal queue is the basic data item using most of 
the memory, the cell size to be used was of 
critical importance. It turned out that if a 
call used only one, two or three links, then 
three words would be sufficient, but if more 
links were needed (and a maximum of seven 
was a requirement for some calls) a larger cell 
would be needed. In most networks at least 
95 per cent of the calls use fewer than four 
links; so the cell size was set at three words, 
with the possibility of adding additional words 
if the particular call required them. 

The Operator Program presents a new call 
to the Direct Router, which determines 
whether a single-link placement is possible by 
checking trunk availability for the mode and 
priority of the new call. If a direct route cannot 
be obtained, the call is presented to the Alter­
nate Router, which attempts a multiple-link 
connection. The Alternate Router uses a 
Trunk and Routing Table (described below) to 
find an available route for the call. A valid 
route obtained by either routing program is 
transmitted to the Call Placer, which updates 
the Trunk and Routing Table to account for 
the new call. That call (with its event time 
changed to its departure time) is returned to 
the Operator Program for reinsertion into the 
chronological queue. Upon complete failure 
to route the call, the Operator will either add 

the call to a nonchronological queue (for store­
and-forward traffic) or, with a new event time 
obtained by adding a retrial interval to the 
arrival time, place the call at this event time 
in the chronological queue (for direct traffic). 
At the conclusion of the call the Operator pre­
sents the call to the Call Releaser, which alters 
the Trunk and Routing Table to account for 
the call's withdrawal and checks each trunk 
group previously employed by this call for the 
presence of nonchronological queues, reporting 
these to the Operator. 

The Trunk and Routing Table (Figure 4b) 
contains the occupancy status of each equipped 
link (Trunk Data) and routing information 
for each pair of nodes (Routing). Thus the 
same table keeps a record of the traffic on 
individual links and provides full routing in­
formation for each pair of nodes in the simu­
lated network. The routing information con­
sists of lists of intermediate nodes to be used 
for calls which cannot be placed directly. 

ADDRESS 
ADDRESS 
ADDRESS 
ADDRESS 

LIST A 
(LOW NUMBERED NODE) 

LIST B ." 
(H I GH NUMBERED NODE) '---

-- ~ ""'- ----.. 
~. LISTS FOR ENTERING TRUNK AND ROUTING TABLE 

I A I B I C I 0 
I A I B I C I 0 

1-2 2-1 
1-2 2-1 
1-3 3-1 

1-' 3-1 
I A I 8 I c I 0 
I A I B I c I 0 

1-4 4-1 
IAIBlclo 
I A I B I C 10 

~ 

J 
TRUNK 
DATA 
1,2 

) 
ROUTING 

1.2 

) 
ROUTING 
1.' 

~ 
TRUNK 
DATA 
1,_ 

ROUTING 

) 
T:~K 
DATA 
1,5 

b. TYPICAL TRUNK AND ROUTING TABLE 

Figure 4. Typical Trunk and Routing Table. 

1,2 
1,3 
1,4 

2,3 
2.4 

3,4 
:5.5 
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The Trunk and Routing Table is constructed 
from the input data by an Initialization Pro­
gram (Figure 5). For symmetrical routing the 
program is supplied with point-to-point dis­
tances (or other weightings) and the numbers 
of trunks installed throughout the network. It 
then determines a number of economical routes 
in each direction between every two nodes. The 
first intermediate node to be tried for each 

READ GENERAL PARAMETER CARD AND 
GENERAL ROUTING CARD 

CALCULATE ADDRESSES OF LlST BAND 
TRUNK AND ROUT LNG TABLE 

WRITE INPUT DATA ON SWITCH COUNT TAPE 

CALCULATE LIST A 

READ TRUNK INFORMATION FROM DATA CARDS 

FORM TRUNK DATA LlNES 

WRITE TRUNK LINES ON TAPE 

CALL DYNAMIC ALTERNATE ROUTER TO 
SET UP TRUNK AND ROUTING TABLE 

AND COMPLETE LIST B TABLE 

STORE TRUNI AND ROUTING lABLE 
STARTING FROM APPROPRIATE ADDRESS 

CALCULATE AND STORE LIST B 
STARTING FROM APPROPRIATE ADDRESS 

WRITE INITIAL ROUTING DATA 
ON SWITCH COUNT TAPE 

TRANSFER TO OPERATOR 

Figure 5. Initialization Program. 

route selected, together with the minimum 
number of links required using that node, is 
entered into the Trunk and Routing Table. This 
method of preparing the routing data is espe­
cially convenient when large networks are be­
ing tested since the number of alternate routes 
becomes so large that manual specification is 
not feasible. 

The Initialization Program also determines 
two lists which facilitate entering the Trunk 
and Routing Table. Shown in Figure 4a for a 
network of N nodes, there are N entries in 
List A, each consisting of the address of the 
first line of a series of entries in List B. When 
either trunk availability or routing informa­
tion is required for a specific call type between 
nodes X, Y (X < Y, numerically; direction of 
call is not a consideration at this point), in­
direct addressing permits use of line X of List 
A to immediately obtain that line of List B 
which pertains to the node pair X, Y. List B 
contains information required to route a call 
from X to Y. 

B) Direct Router 

When calls of the following classes reach the 
top of a chronological queue they are delivered 
to the Direct Router: 

1. New calls. 

2. Calls which are to be retried after having 
previously been blocked. 

3. Calls at the head of a nonchronological 
queue associated with a link on which a 
call has just been released. 

4. Store-and-forward calls which have just 
completed transmission to an intermedi­
ate node after having previously failed 
to reach their destination. 

The Direct Router (Figure 6) must deter­
mine the nodes between which a connection is 
required. If the node pair is unequipped 
(rapidly determined by a sign-bit test in the 
Trunk and Routing Table), the Call Data is 
sent immediately to the Alternate Router. If 
there is a trunk group installed, the Direct 
Router enters the Trunk and Routing Table 
and, using the call type, determines the avail­
ability (considering reservations) of the trunk 
group for this call. The lack of an available 
trunk sends the Call Data to the Alternate 



240 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

ENTER FROM OPERATOR 

DETERMINE NODE PAIR: EITHER 
TERMINAL NODES OR INTERMEDIATE 

TO DESTINATION 
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ENtER TRUNK 
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TABLE VIA 
LISTS A & B 

YES 

GO TO 
CALL PLACER 

Figure 6. Direct Router. 

NO 

NO 

GO TO 
ALTERNATE ROUTER 

Router, while availability indicates that the 
call can be placed to its destination, and the 
Call Placer is supplied with this information. 

Since every call is offered to the Direct 
Router and most calls are carried over direct 
routes, this program was written with particu­
lar attention to operating speed. In conjunc­
tion with this the structure of the Trunk and 
Routing Table was largely determined to 
facilitate its use by the Direct Router. 

C) Alternate Router 
A call is referred to the Alternate Router 

(Figure 7) only if it has been determined that 
there is no direct route available. 

The Alternate Router attempts an immediate 
multiple-link connection, progressing through 
the network on a node by node basis. Should 
the Router either exhaust the list of node 
choices or be unable to find a route with no 
more than the permitted maximum number of 
links, a direct call will be returned to the Oper­
ator Program for retrial at a later time (a 
specified per cent of the retrial traffic can be 
"lost" rather than retried), while a store-and­
forward call will be queued on a trunk group. 

If there is a direct link between the terminal 
nodes, the store-and-forward call will queue on 
this link immediately; if there is no such link, 
the call will queue along the "first choice 
route;" this is a route selected to have no more 
links than the minimum number of links spec­
ified when the first choice of an intermediate 
node was obtained by the Alternate Router. 

"Crank-back" or call "back-up" for direct 
traffic is available (Figure 8). When used, a 
call which has been blocked at some point in 
its routing releases the last link accepted, re­
turning to the previous node where it now tries 
to reach its destination via another link. The 
number of links which may be released before 
each forward progression is an input quantity. 

D) Call Placer and Releaser 
Upon indication from either router that 

there is an available route for the current call, 
the Call Placer (Figure 9) determines which 

GO TO CALL PLACER 

Figure 7. Alternate Router (Without Dynamic Router 
or Call Back-Up). 
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BACK-UP TO PRECED I NG 
~':'::---------------------.,.jNODEOF ROUTING PATH AND 

ATTEr~PT FURTHER ROUTING 

Figure 8. Option 2 Alternate Router (Without Dynamic Router, But With Call Back-Up). 

links require updating, enters the Trunk and 
Routing Table and alters the appropriate data. 
After updating these records the Call Placer 
returns the call to the Operator for reinsertion 
into the chronological queue at the release 
time. 

At the conclusion of a call, the Call Releaser 
(Figure 10) must update the Trunk Data. 
Then the call is sent to either the output queue 
(for transfer to the Output Tape) or to a non­
chronological queue on a trunk group (for a 
store-and-forward call not yet at its destination 
and still blocked). Finally, the Call Releaser 
checks each of the trunk groups used by the 
call just released to determine if there are any 
nonchronological queues waiting for these 
groups and presents this information and pro­
gram control to the Operator. 

E) Operator Program 

The chronological queue is administered by 
the Operator Program (Figure 11) using 

linked lists, which facilitate the maintenance 
of information in the computer by allowing 
the ordering of data to be easily altered. In 
the simulator, a list number is stored with 
each chronological event. This number is the 
address of the next event in the queue. The 
address (or location in core) of an event re­
mains unchanged from the time it enters the 
simulator until it is removed (for example, 
from original entry from the Traffic Tape until 
the end of processing and placement on the 
Call Record Tape). The position of a call in 
the queue, however, is easily changed by alter­
ing the list numbers of the preceding event 
and the event being moved. Vacancies in core 
are linked together in the same fashion using 
a push down vacancy list. N onchronological 
queues are similarly constructed by taking 
blanks from the vacancy list. When calls have 
been completed they are linked into an output 
queue which is periodically read on to the Call 
Record Tape; after this the slots are returned 
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Figure 9. Call Placer. 
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to the vacancy string. These several cohabit­
ant lists maintain their own links and only the 
first element of each need be identified. 

The large size of the chronological queue 
makes it inadvisable to search through the list 
from the beginning for each insertion. Point­
ers, actually addresses of intermediate events, 
are used by the Operator Program to enter the 
chronological queue at spaced intervals in 
event time; once in the vicinity of the required 
event time, the Operator steps along call by 
(!all to the exact point in time for insertion of 
an event. 

VII. OUTPUT PROCESSOR PROGRAMS 

In order to effectively display the result of 
simulation experiments, processing programs 
calculate and display the expected values of 
important parameters and measure their sta­
tistical variability. In order to perform these 
functions most effectively, these output pro­
grams have been divided into two separate 
sections. 

The first of these, called the First Output 
Processor, reads raw system statistics from 
the Switch Count and Call Record Tapes and 
evaluates the mean values of appropriate sys­
tem statistics over pre specified subintervals 
of time. These statistics are then printed out 
and also read onto magnetic tape. The pro­
gram user can examine the results and, by as­
certaining the time periods over which equilib­
rium was obtained, write the specifications for 
the second program, called the Second Output 
Processor. 

The Second Output Processor collects the ap­
propriate information from the Processor Tape 
(generated by the First Output Processor) 
and determines means, standard deviations, 
and over-all network statistics for a prespeci­
fied number of processing intervals. 

The First Output Processor determines aver­
age values of certain quantities over prespeci­
fied time intervals. Each time interval con­
tains a specified Humber switch counts (which 
are snapshots of each trunk group reporting 
the number of trunks busy at a given instant) . 

CHANGE CALL'S CODE 
TO INDICATE 

PLACEMENT IN 
OUTPUT QUEUE 

"" z: 
...J 

5 
C[ ... 
a: CHECK FOR NON-
~ CHRONOI..OG I CAL QUEUE 

CHANGE CALL'S CODE 
TO I NO I CATE NEXT PLACEMENT 

FROM I NTERMED I ATE NODE 
TO DESTI NAT I ON 

~ ON THIS TRUNK AND NOTIFY 
~ OPERATOR 
It;!'--_-4 __ .... 

Figure 10. Call Releaser. 
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These intervals are ordinarily short enough so 
that no important trends will be obscured. All 
quantities are stored on the Processor Tape in 
a form suitable for reading back into memory. 
The quantities which are evaluated and printed 
out (both on tape and on paper) are as fol­
lows: 

A. Input and Miscellaneous 
1. Input information, including offered 

loads by mode, priority, origin, and 
destination. This information is 
simply transferred from the Traffic 
Tape via the Switch Count Tape to 
the Processor Tape and is printed 
without further processing. 

2. Time of start and completion of the 
measurement period· for each report­
ing interval and the reporting inter­
val number. The reporting intervals 
for each run are assigned consecutive 
numbers to be used in specifying the 
analyses to be done by the second 
stage program. 

B. Call Tape 
1. Blocking probabilities, delay distribu­

tions and average delays of calls by 
nl0de, priority and direction for each 
origin-destination pair. Five points 
in the delay distribution are kept for 
each item. The magnitude of delay 
at each of the five points can be spec­
ified as an input to the First Output 
Processor. 

2. Distribution and average of number 
of links per call, with a maximum of 
seven links per call recorded and with 
the same breakdown as in Item 1 
above. 

C. Switch Count Tape 
1. Number of switch count intervals 

which are included in the reporting 
interval. 

2. Number of trunks in each group. 
3. Carried loads for each trunk group 

(either by mode and priority, or by 
first routed or other). 

4. Trunk reservation levels for each 
trunk group. 

5. Distribution and average of queue 
lengths by priority for each trunk 

group. Three points in the distribu­
tion are kept. These points are spec­
ified in the input to the First Output 
Processor. 

6. Alternate routing tables when they 
have changed. 

The Second Output Processor prints the 
same statistics as the First Output Processor, 
averaged over a prespecified number of proc­
essing intervals. Each period of time for 
which a Second Output Processor calculation 
is made is called a Reporting Interval and the 
program provides the standard deviation of 
each measurement based on the variation 
among processing intervals within a reporting 
interval. In addition, the Call Record Tape 
items are averaged for the two directions of 
traffic in each point-to-point item; that is, the 
blocking probabilities and delays for traffic 
from node 1 to node 2 and from node 2 to node 
1 are averaged to give a single value for the 
node pair (1,2). Means and standard devia­
tions of over-all weighted average values of 
each measurement are also calculated. For 
example, the'· over-all blocking probability is 
the average of all of the point-to-point block­
ing probabilities weighted by the offered loads 
or: 

~aij 
ij 

where aij = offered load between node i and 
node j 

Bij = blocking probability of calls be­
tween i and j. 

In addition to these over-all system means 
and variances or standard deviations, a statis­
tic called the Misery Factor has been added. 
This is a measure of the mal distribution or 
unbalance of call tape statistics throughout the 
network. It is defined for blocking probability 
as: 

- j3:! 
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Sample printouts from the Second Output 
Processor are shown in Figures 12 through 16. 
These were obtained after the simulation of a 
34 node network; note that the printing of 
trivial lines (no traffic, no alternate routes, 
etc.) has been suppressed to condense the data 
and that the figures include only the first page 
of the printout in each case. Figure 13 shows 
the input to the Traffic Tape as transferred to 
the output by the simulator; Figure 13 shows 
the initial alternate routing table determined 
by the simulator; Figure 14 shows the Switch 
Count Tape reduction over specified processing 
intervals; Figure 15 shows the Call Tape re­
duction for the same intervals used in the 
previous figure; and Figure 16 shows the over­
all means, standard deviations and Misery 
Factors for the time intervals listed in the 
columns at the left. The measure of statistical 
variability is the standard deviation of the 
measurement over the reporting interval. 

VIII. APPLICATIONS AND EXTENSIONS 

The most extensive application of UNISIM 
to date has been an investigation into possible 

rES 

"'----, 

routing configurations and control schemes for 
the te,lephone toll network. This work has 
been described in Reference 2. Since the pur­
pose of such simulators is essentially to evalu­
ate performance in advance of detailed design 
and implementation, it, by its very nature, 
cannot be directly validated by comparison 
with experimental results. The results which 
have been obtained, however, to the extent that 
they can be compared with measured perform­
ance of operating systems, have been in good 
agreement with observed phenomena. 

Subsequent applications have been con­
cerned with the evaluation of certain military 
communications networks. 

It was found in the military applications 
that although the program for the most part 
was directly applicable, certain changes were 
required as new routing philosophies were en­
countered. Since the program was modularly 
constructed, these changes were restricted 
to one subprogram, the Alternate Router. 
UNISIM, however, was written almost entirely 
in machine language (assembly) code (FAP), 

YES I DYNAMIC 'i---.---+------+ 
\ ROUTER I 
,----'" 

r-----------------~~.-----------~--------, CALL j CALL 

BRING NEXT BATCH 
OF CALLS INTO 
CHRON. Q. TAKE 
STR I NG NUMBERS 
FROM TOP OF 
VACANCY STRING. 
CHECK FOR END 
OF TAPE. 

NO 

REQUESTS REQUESTS TRUNK 

~~-- ~~ 
(
/ ROUTING '\ CALL CANNOT 'CALL RELEASER~) 

( CALL GIVEN, 
'~OIGR~,1 BE PLACED \.~E!!. CO~_/ 

CALL CAN 
_ e:':LACED 

( CALL ') ~::V~OCpALo~S 
\. ~LACE~/ NON-CHRON. 

Qs RETRIAL 

Figure 11. Operator Program. 
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with suitable use of macros, and the modifica­
tions were therefore not so easy to make as 
they might have been if a different language 
could have been used. 

IX. LANGUAGE CONSIDERATIONS 

As was mentioned earlier, UNISIM is char­
acterized by the requirement to handle large 
numbers of simultaneous demands, using a 
logical structure which is of moderate complex­
ity. It must also estimate quantities which 
occur with low probability, and therefore must 
operate rapidly and be of large capacity. 

These requirements were met in part by sec­
tioning the program, so that all parts of the 
program need not be in core simultaneously, 
which provided more space for the data. In 
addition, most of the program was written in 

machine language in order to obtain maximum 
utilization of memory by means of tight pack­
ing and dynamic storage allocation, and high 
running speeds. 

The simulator section was itself divided into 
subprograms, some of which are used very 
frequently (Direct Router-used for every call) 
and some of which are used infrequently (Al­
ternate Router). Since it was necessary for 
all of these programs to access the same packed 
data, all were written in FAP, although this 
made later alterations somewhat cumbersome. 
Experience with the program quickly brought 
out the need for changing parts of the pro­
gram as new situations presented themselves. 
The parts which needed changing were typi­
cally in the less frequently used portions of the 
simulator itself, such as the Alternate Router. 

N80E PER- PER- PER- 8FFRO LeAD 8FFRD LIlIAD IlIFFRO LIlIAD IlIFFRD LBAD 8FFRD LeAD 
PAIR CENT CENT CENT FRIlIM FRIlIM FR8M FRIlIM FRIJ" 

FRST 8FFD IJFFD 1.000 4000.000 8000.000 12000.000 16000.000 
DIR 8NLY IJNLY T8 Till Til HI Till 
TRAF A,B ArC 3000.000 7000.000 11000.000 15000.000 19000.000 

1 2 50. 100. 100. 61.63 65.33 6l.U 57.72 53.11 
1 3 50. 100. 100. 2.91 3.08 2.90 2.73 2.51 
1 4 50. 100. 100. 2.29 2.43 2.28 2.14 1.91 
1 5 50. 100. 100. 0.20 0.21 0.20 0.19 0.18 
1 6 50. 100. 100. 0.05 0.05 0.05 0.05 0.05 
1 1 50. 100. 100. 0.01 0.01 0.07 0.01 0.0t> 
1 8 50. 100. 100. 0.28 0.30 0.28 0.27 0.25 
1 9 50. 100. 100. 0.09 0.10 Q.09 0.09 o.oe 
1 10 50. 100. 100. 8.87 9.40 9.03 8.48 8.06 
1 11 50. 100. 100. 0.08 0.08 0.08 0.08 0.01 
1 12 50. 100. 100. 0.18 0.18 0.17 0.18 0.17 
1 13 50. 100. 100. 0.25 0.26 0.25 0.26 0.24 
1 14 50. 100. 100. 0.41 0.49 0.47 0.48 0.44 
1 15 50. 100. 100. 0.04 0.04 0.04 0.04 0.04 
1 16 50. 100. 100. 0.12 0.12 0.12 0.12 0.11 
1 11 50. 100. 100. 0.15 0.16 0.15 0.15 0.14 
1 18 50. 100. 100. 0.55 0.51 0.55 0.57 0.52 
1 19 50. 100. 100. 0.82 0.85 0.82 0.84 0.78 
1 20 50. 100. -100. 3.74 3.89 3.73 3.85 3.54 
1 21 50. 100. 100. 0.95 0.99 0.95 0.98 0.90 
1 22 50. 100. 100. 0.81 0.84 0.81 0.83 0.17 
1 23 50. 100. 100. 0.93 0.91 0.93 0.96 0.88 
1 24 50. 100. 100. 0.22 0.23 0.22 0.23 0.21 
1 25 50. 100. 100. 0.38 0.40 0.38 0.39 0.36 
1 26 50. 100. 100. 0.36 0.35 0.35 0.36 0.35 
1 21 50. 100. 100. 0.08 0.08 0.08 0.08 0.08 
1 28 50. 100. 100. 1.56 1.53 1.50 1.54 1.51 
1 29 50. 100. 100. 1.90 1.86 1.82 1.88 1.84 
1 30 50. 100. 100. 0.96 0.94 0.92 0.95 0.93 

131- -5-0-;-10·0. 100. 1.58 1.55 1.52 1.56 1.53 
1 32 50. 100. 100. 0.43 0.42 0.41 0.43 0.42 
1 33 50. 100. 100. 0.56 0.55 0.54 0.55 0.54 
1 34 50. 100. 100. 0.65 0.64 0.62 0~64 0.63 
2 3 50. 100. 100. 46~-89 49.10 46.72 43.92 40.40 
2 4 50. 100. 100. 65.03 68.93 64.80 60.91 56.04 _ ... 
2 5 50. iOO:-100~- 4.48 4.15 4.56 4.29 4.01 
2 6 50. 100. 100. 1.51 1.66 1.60 1.50 1.43 
Z 1 50. 100. 100. 1.14 1.84 1.17 1.66 1.58 
2 8 50. 100. 100. 3.39 3.59 3.45 3.24 3.08 
~-~n5()~o-:--- 3.88 4.11 3.95 3.71 3.53 

2 10 50. 100. 100. 158.81 168.34 161.61 151.91 144.31 
2 11 50. rOO. 100. 2.11 2.24 2.15 2.02 1.92 
2 12 50. 100. 100. 2.28 2.23 2.19 2.26 2.21 
Z 13 50. 100. 100. 3.06 3.18 3.06 3.15 2.90 
2 14 50. 100. 100. 2.88 3.00 2.88 2.96 2.12 
2 15 50. 100. 100. 0.82 0.85 0.82 0.84 0.18 
2 16 50. 100. 100. 1.54 1.60 1.54 1.58 1.46 

2lr--50. 100. 100: 1.10 1.17 1.10 1.15 1.61 
2 18 50. 100. 100. 6.61 6.94 6.66 6.86 6.31 
Z 19 50. 100. 100. 8.38 8.12 8.37 8.62 7.93 
2 20 50. 100. 100. 27.21 28.36 21.23 28.04 25.80 

22T------s-o-~o.----100. ._. ·----··-rO~78 H.2l 10.76 11.09 10.20 

Figure 12. Offered Loads as Used in Generation of Input Tape. 
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Figure 13. Initial Alternate Routing Tables. 

The frequently used sections, such as the 
Direct Router or the Operator, are basic to the 
structure either of the system or of the simu­
lator, and changes in these would normally be 
of a sufficiently fundamental nature to require 
a substantially new approach. This type of 
program, then, need not be easily alterable. 

This sort of experience leads rather natu­
rally to a categorization of simulation pro­
grams according to the following classifica­
tions: 

(1) Basic subroutines which are called by 
virtually every transaction. These pro­
grams should be efficient but need not 
be easily modified. 

(2) Subroutines which specify the logic to 
be followed under more unusual cir-

cumstances, such as when congestion is 
encountered. Such routines are critical 
to the problem, since it is the behavior 
of the system under such circumstances 
that is normally the question under in­
vestigation. The logic followed in these 
cases ordinarily can be varied and is 
under constant assault as new operat­
ing procedures are invented and must be 
tested. These programs, however, must 
have access to the same data structure 
as the basic subroutines of class (1). 

(3) Programs which perform such func­
tions as preparing the inputs or proc­
essing the data. These programs are 
normally reached only at infrequent 
times, and can access data which is buf­
fered and altered from the basic data 
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in the simulation. They also may be 
largely arithmetic in function as op­
posed to the logical operations generally 
performed by the programs within the 
simulation. 

could well be written in some intermediate type 
of simulation language. The characteristics 
of the language would have to include at least 
the following: 

It would be desirable in the development of 
future simulation languages if the capability 
for using different existing languages for cer­
tain sections of the program could be provided. 
For example, heavily used portions of the pro­
gram may be best written in a machine lan­
guage in order to obtain maximum efficiency 
in speed and space. Others may best be writ­
ten in a familiar language which is suitable for 
arithmetic operations (although if a simula­
tion language can incorporate extensive arith­
metic functions, this would be useful). The 
third type of program, however, (type (2» 

(a) It be "natural" in the sense that it be 
reasonably easy to understand and use, 
and has a documenting capability to 
facilitate program changes. 

(b) It be capable of interfacing with a pro­
gram written in machine language and 
perhaps with a commonly used compiler 
language such as Fortran. In particular, 
it must be capable of operating on the 
same data as do machine language sub­
routines, with full capability for flexible 
bit packing and accessing of informa­
tion which is stored in dynamically 
changing arrays. 
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Figure 14. Switch Count Tape Reduction-Mean-For Reporting Interval Number. 
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Figure 15. Call Tape Reduction-Mean-For Reporting Interval Number. 

(c) The implementation should preferably 
be monitor independent, so that it can 
be used at installations with nonstand­
ard systems. Failing this, the structure 
of the translator should be sufficiently 
well documented so that modifications 
can be made locally. 

(d) Although not essential, if the language 
is to be used for an entire program, as 
might be the case for some smaller 
problems, I/O and arithmetic functions 
should be included. Special subroutines, 
such as programs to assemble delay dis­
tributions, would be useful in this re­
spect. 

The above statement of certain desired char­
acteristics of a simulation language in effect 
sets a rather limited goal, on the grounds that 

such a program would provide most of the ad­
vantages of a full new language, while at the 
same time materially reducing the complexity 
of the program. This would improve the like­
lihood of its being learned and used, which is 
the ultimate test of value. 

It also would not be excluded from applica­
tion on grounds of space or speed, since critical 
sections can be done in other languages, and 
full bit manipulation capability would be pro­
vided. 

These requirements are quite general in na­
ture, but we do not believe that detailed ques­
tions of program structure can readily be 
deduced from a specific problem of the sort 
which prompted the writing of UNISIM, nor 
do we expect that this is an appropriate vehicle 
for such discussions. 
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The essential point, however, is that the pro­
grammer_ have available the full capability of 
the machine if necessary, and a simulation lan­
guage which is to have application to problems 
of this sort must make this possible. To our 
knowledge no language which presently exists 
and is in general use, provides this capability. 

Mrs. E. E. Bailey, Miss S. A. Switch, and Mrs. 
A. Sheehan. 
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Figure 16. Overall System Means-Switch Count Data-Reporting Intervals. 





THE DATA PROCESSING SYSTEM SIMULATOR (DPSS) 

(SP.1299/000/01) 
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Paramus, New Jersey 

1.0 INTRODUCTION 

The Data Processing System Simulator 
(DPSS) is a general purpose computer pro­
gram that can be used for the evaluation of a 
proposed new design or a modification to an 
existing design of a data processing system 
prior to making equipment selections or per­
forming any significant computer program de­
sign. The DPSS can also be used to provide 
guidance in the design and development of a 
data processing system during the detailed de-
sign stages. 

The DPSS was initially designed to meet the 
needs of analyzing and developing the data 
processing requirements of the Project 465L 
Strategic Air Command Control System 
(SACCS) . It has subsequently been general­
ized to permit its application to other systems 
in various stages of design and development. 
Results have shown the usefulness of the DPSS 
in Project 465L (SACCS) and, in a prelimi­
nary manner, its usefulness on the Space Sur­
veillance Project and New York State Identifi­
cation and Intelligence System. In all three 
cases, original concepts about the system's po­
tential performance were evaluated and new 
and significant guidance and information ob­
tained as a result of the use of the DPSS. In 
the case of the New York State System, the 
DPSS results showed a whole class of com­
puters to be inadequate for the job. 

251 

The D PSS can be used to determine the sen­
sitivity of a data processing system's perform­
ance to various system loading or design pa­
rameters. In addition, the total system design, 
including the software and equipment portions, 
can be subjected to a rigorous analysis and 
evaluation early in the design process so that 
key decisions can be made in the areas of: 

1. The kind of equipment to be used. 
2. The number of each type of equipment. 
3. The kind of data processing discipline 

and strategy required. 
4. The projected performance of the system 

under varying loads. 
5. The system's maximum capacity. 
6. The system's ability to respond as a func­

tion of loading, capacity, and environ­
ment. 

2.0 DEVELOPMENT OF THE DATA 
PROCESSING SYSTEM SIMULATOR 

In its development, the Data Processing Sys­
tem Simulator has used a higher order simula­
tion language similar to those which have been 
developed previously for general simulation. 
However, unlike other techniques, a single com­
bination of these higher order language macro' 
instructions is used in a single logical arrange­
ment permitting the representation of a wide 
variety of possible data processing system con­
figurations and processing rules with no addi­
tional programming or design. 
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As a consequence, the necessity of writing 
special "event" programs or subroutines, as is 
usually required with the use of simulation 
languages, has been eliminated. Further, the 
flow diagramming, design, coding, compiling, 
and checkout of each simulator or subroutine 
created by the use of simulation languages have 
been totally eliminated. The result is a con­
siderably shortened time required to produce 
a reliable model of the data processing system 
to be investigated. 

2.1 DPSS Description 
The following sections contain a general de­

scription of the DPSS and a sample problem 
illustrating how it can be used. 

2.1.1 General Characteristics 
The Data Processing System Simulator re­

quires approximately 1,500 instructions writ­
ten in JOVIAL, a high-order programming 
language developed by the System Development 
Corporation. 

The D PSS was initially designed to run on 
the AN /FSQ-32-V computer which is de­
scribed in Appendix V, however, a new and 
expanded version of the DPSS has been written 
to run on the IBM 7094. 

The AN/FSQ-32-V version of the DPSS re­
quires 15,000 core locations which are used to 
store the basic program and the parametric in­
puts used for each run. 

2.1.2 Purposes and Limitations 
The DPSS is used to represent (a) the in­

puts to the system, that is, those message units 
or informational units which are to be entered 
into the system, at either local or remote loca­
tions, (b) the processing performed by the 
computer on each input, and (c) the outputs 
generated by the processing portion of the sys­
tem based upon the inputs. Processing includes 
the buffering and the retention of the messages 
prior to processing. It also includes the specifi­
cation of the time to load the system with the 
necessary programs and environment to handle 
the message and the time to unload and the 
time to operate the actual program as well as 
the data preparation and data presentation 
functions. 

3.0 DPSS OPERATION-GENERAL 

To understand the functioning of the DPSS, 
a general idea of the key features of the way 
a possible Data Processing Central (DPC) 
cycle operates will be discussed. The system 
configuration to be considered in the example 
will employ a discontinuous cycle "in which in­
terleaving and interrupting are permitted. The 
material for this example is drawn from ex­
perience with several systems and does not 
represent the design of any single system. See 
the Glossary of Terms, Appendix III, for an 
explanation of key terms used in the following 
paragraphs. 

3.1 Data Processing Central (DPC) Operations 
The input messages which arrive from vari­

ous local and remote locations are batched at 
the D PC (Figure 1) and held until certain 
criteria for one or more of the batches are 
reached or exceeded. The specific nature of 
batching will be discussed subsequently. Once 
a batch criterion has been exceeded, the Execu­
tive program which controls all DPC functions 
then initiates the processing of the input mes­
sages which have been batched. In so doing, 
it calls in from auxiliary storage the necessary 
environment and programs for the operation 
of the processing portion of the DPC cycle. 
When the processing has been completed, a set 
of output programs extracts the appropriate 
data from the data files and prepares the re­
quired system outputs. 

3.2 Input Batching 
An input message batch is characterized by 

three items, time, size, and interrupt, the latter 
having two sub-items (see Figure 2). The 
"time" item indicates that a particular message 
or group of messages will be accumulated for 
a given length of time before an indication 
(cycle initiation request) is given to the Execu-

~N:,.u6.tING H PROCESSING 

'-------
~I OUTPUTS 

Figure 1. DPC Cycle Operation. 
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tive or master program that a cycle should 
start. The second item is the "batch" size. The 
DPC will collect message (s) until a predeter­
mined number of them have been accumulated. 
This given number of message (s) must be 
accumulated in less time than the batch time 
in order to cause a request for the initiation 
of a DPC cycle to be made because of "size." 

Once either' of these two values (time or 
size) has been exceeded, it must then be deter­
mined if the interrupt feature (the third item) 
associated with this particular batch is set to 
"yes" or "no," and if set to "yes" whether the 
"immediate" or "wait" option is set. T.here are 
two cases to consider here: (1) when the DPC 
cycle initiation request occurs during the opera­
tion of an interleaved subsystem, and (2) 
when the DPC cycle initiation request occurs 
during the operation of DPC cycle in progress. 

When any cycle initiation request occurs dur­
ing the operation of an interleaved subsystem, 
the Executive interrupts the interleaved sub­
system at the earliest possible moment, regard­
less of the interrupt setting of the· batch, and 
initiates a DPC cycle. If the cycle initiation 
request occurs during an on-going DPC cycle, 
Ll ____ Ll _____ Ll_! ______ 1 ______ ..J ______ l! ____ LL._ 

l"IleIl l"Ilree l"IlIIlgOS CaIl Ilal' l'eIl, Uel'eIlulIlg UIl l"lle 

setting of the interrupt item and interrupt 
option. If the interrupt item is set to "no" for 
a batch which causes a cycle initiation request 
to be generated, then an indication will be 
given to the Executive program that the batch's 
limits of time or size have been exceeded but 
the Executive will not interrupt the cycle in 
progress. A new cycle will be initiated as soon 
as the present one has been completed. 

INPUT 
BATCHING !----..t 

BATCH'" 

nME IZE INTER 

1.5 10 YES 

Figure 2. Batching Concept. 

If the interrupt item has been set to "yes" 
and the interrupt option to "immediate," then 
the Executive program will initiate a new cycle 
immediately (possibly with certain program­
ming constraints). If the interrupt item had 
been set to "yes" and the interrupt option to 
"wait," then the current cycle will be inter­
rupted when the priority of the message caus­
ing the interrupt request is equal to or higher 
than the priority of the message being proc­
essed in the current cycle. 

The D PSS permits the establishment of as 
many batches as are required for efficientsys­
tem operation, assignment and modification of 
batch characteristics, and the assignment of in­
puts to each batch. 

3.3 DPC Task Processing 

Messages are processed by tasks within the 
DPC Program System. The tasks are sequenced 
according to the priority of the message being 
processed (see Figure 3). One of the tasks 
provides outputs from the system upon re­
quests (display requests). This task is shown 
as the last task in Figure 3, however, there are 
many logical places where the task could be 

When a D PC cycle begins, all of the mes­
sages that have been collected in all of the 
batches up to the time that the cycle begins are 
transferred from the batches to the task proc­
essing area. In the task processing area, the 
messages lose their batch identity and are proc­
essed according to the task sequence. 

INPUT 
BATCHING !-----IPROCESSINGt-----I OUTPUTS 

TASK TASK 

2 
TASK --- ___________ !.. _______ M 

Figure 3. DPC Task Processing. 
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3.4 Input Data for Each Simulation Run 
The use of the DPSS requires the definition 

of the program system configuration and the 
assignment of values for the system param­
eters as input data. The following set of input 
data are typical for each run of the DPSS. The 
sample values (placed within parentheses or in 
tables) are used to describe a system that will 
be simulated as an example. Note that if a sys­
tem does not have some of the characteristics 
described in the inputs, e.g., batching, then 
that information can be left out of the input 
data. 

1. The length of the period to be simulated­
(3600 seconds). 

2. The number of times that this test is to 
be repeated under the same operating 
conditions, referred to as the number of 
cycles in the test- ( 1 ) . 

3. The messages to be used in the test-(A, 
B, C, D, E, F). 

4. The number of each type of message that 
will arrive at the DPC. This number is 
not an absolute number; rather, it deter­
mines the relative frequency of each par­
ticular message arriving at the DPC. This 
number is used in conjunction with the 
traffic rate: 

(A - 10 
(B - 22 

(C - 19 

D - 31) 
E - 5) 

F - 18) 

5. The batch criteria for each batch and the 
messages that are collected in each batch. 
a. Time 
b. Size 
c. Interrupt 

1) Immediate 
2) Wait 

Time Size 
Batch Message Criteria Criteria 

1 

2 

3 

A 0 Sec. 
B, D 5 Sec. 

C, E, F 10 Sec. 

1 

3 
4 

Interrupt 
Option 

Immediate 
Wait 
No 

6. System Tasks-This is a list of the tasks 
or jobs that the DPC Program System is 
required to do. The word "job" or "task" 

means a collection of programs that are 
used to process a message or set of mes­
sages. The performance of a task is 
measured as follows: 

a. "Load Time"-The time it takes the 
environmental data tables and the op­
erating programs to be transferred 
from the auxiliary storage to core 
memory. 

b. "Operate Time"-The time it takes 
after the environmental data pro­
grams are in core for the programs 
themselves to process the messages to 
assess the intelligence they contain. 
In both of these cases, the distribu­
tions of the times to be used for this 
task and the proper parameter (s) 
for the distribution must be specified. 
(See Table I.) 

7. Message-Task Relationship-This indi­
cates the messages that are processed by 
each task. The DPSS will accept any 
message-task relationship. 

Message Task 

A 1 
C 2 

B,D 3 
E,F 4 

8. Message-Display Relationship and the 
~obability of the Forced Display-This 
is the relationship between messages and 
forced displays. It indicates which dis­
play(s) may be forced as the result of 
the message's being processed. Any mes­
sage-display relationship may be estab­
lished and tested. For each message­
display relationship, the probability of a 
display's being forced is the conditional 
probability that the display will be forced 
given that the message has been proc­
essed. If a display is forced by more 
than one message, the probability of a 
displats being forced may be different 
for each message. (See Table II.) 

9. Task Sequence-This indicates the order 
in which the tasks operate. There is no 
restriction on the order in which the 
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TABLE 1. SYSTEM TASK SUMMARY 

LOAD OPERATE 

TASK Distribution Parameters Distribution Parameters 

1 Uniform Min 

Max 

2 Exponential Mean 

3 Uniform Min 

Max 

4 Triangular Min 

Peak 

Max 

Additional Task Uniform Min 
which is per- Max 
formed whenever 
a system output 
is generated. 

tasks operate. In addition, a task may 
operate more than once during a cycle. 

Task 

1 

3 
2 
4 

Sequence No. 

1 
2 

3 
4 

10. Traffic Rate-This indicates the total vol­
ume of traffic per hour that is arriving at 
the DPC. By knowing the traffic rate and 
the relative frequency of each message, 
one is able to determine the expected 
number of each type of message that will 
arrive at the DPC within any time inter­
val. Preplanned changes in traffic rates 
are permitted during the test- (750 mes­
sages/hour). " 

11. Maximum Interleave Time-This is the 
maximum time available for the inter­
leave subsystem. This time could be zero, 
in which case the prime DPCcycle would 
operate in a cyclic fashion-(1800 Sec.). 

12. The Bookkeeping Time for the Interleave 
Subsystem-This is the time that is given 
the interleave subsystem to store and save 

1 Sec 

6 Sec 

4 Sec 

4 Sec 

5 Sec 

1 Sec 

3 Sec 

8 Sec 

2 Sec 

4 Sec 

Exponential Mean .001 Sec 

Exponential Mean .01 Sec 

Uniform Min. .02 Sec 

Max .02 Sec 

Exponential Mean 1 Sec 

Exponential Mean 5 Sec 

pertinent data after a DPC cycle has been 
requested- (0 Sec.). 

3.5 Results for Each DPSS Run 
Each simulation run records and prints out 

the following items of information: 

1. The arrival time of every message that is 
received by the computer. 

2. The time that each cycle is requested. 

3. The time that each cycle begins and the 
reason for initiation. 

TABLE II. MESSAGE-DISPLAY 
RELATIONSHIPS 

Probability 
Message Display of Forced 

A D1 .8 
D2 .3 

B None 
C D1 .6 

D3 .5 
D4 .01 

D None 
E D5 1 
F None 
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4. The number of messages that have been 
collected in each batch at the beginning 
of each cycle. 

5. The time that the processing of each indi­
vidual message begins. 

6. The time that the processing of each indi­
vidual message is completed (processing 
complete means that the data files have 
been updated) . 

7. For every display that is forced during a 
cycle the message that forced the display, 
the time the message arrived and the time 
the display is forced are indicated. 

8. For every cycle the minimum and maxi­
mum time required to process each type 
of message during the cycle. 

9. A cumulative average processing time by 
cycle for each type of message in the sys­
tem. 

10. The time that each cycle ends. 

11. A list of messages remaining to be proc­
essed at the end of each cycle. 

12. The total number of messages that were 
received and processed by the computer 
during the simulation period. 

13. For every type of message: 
a. The number of messages that were ex­

pected to arrive during the simulation 
period. 

b .. The number of messages that actually 
arrived. 

c. The number of messages processed. 
d. The average waiting time for this 

type of message. 
e. The average processing time for this 

type of message. 
f. A histogram which indicates the per­

centage of messages whose. processing 
time was in each of several one min­
ute intervals; e.g., the percentage of 
messages whose processing time was 
between 0 and 1 minute, between 1 
and 2 minutes, ... , 30 to 31 minutes 
and 31 plus. The DPSS does not plot 
the histograms; rather, it supplies the 
data from which a plot can be drawn. 

14. The number of times that each display 
type was forced. 

4.0 DETAILED EXAMPLE OF THE DPSS 

The DPSS is described in detail with the aid 
of an example. This example will consist of a 
description of the system to be simulated and 
a detailed account of the arrival and processing 
of the first few messages. I t should be noted 
that all of the features of the DPSS are not 
identified in this example. However, enough of 
them have been identified and described so that 
the reader can get a good understanding of the 
model by following the example. 

4.1 Description of System Being Simulated 

The input parameters identified in Section 
3.4 which describe the system being simulated 
are summarized in four tables: MESSAGE, 
BATCH, TASK, and SYSTEM tables. The MES­
SAGE table identifies the messages, their fre­
quencies, the batches in which the messages are 
collected and the displays that are associated 
with the messages. The BATCH table identifies 
the batches, the batch criteria for each batch, 
and the message types that are associated with 
each batch. The TASK table is divided into 
two parts: LOAD and OPERATE. The LOAD 
part is used to specify the probability distribu­
tion and parameters that are used to determine 
the length of time it takes to transfer the proc­
essing programs and environment from auxil­
iary storage to core. The OPERATE part is 
used to specify the probability distribution and 
parameters that are used to determine the 
length of time that it takes to process each 
message after the processing programs and en­
vironmental data are in core. The SYSTEM 
table indicates the length of the test, the rate 
of the incoming messages and other pertinent 
information for the test. 

See tables III, IV, V and VI for this example. 

The ADD, CHANGE and DELETE columns 
are for the convenience of the user when he is 
making a series of runs and may wish to add 
or delete displays that are associated with a 
message, or to change the probability of a dis­
play being forced. 

4.2 The DPSS in Operation 

The simulator generates the messages and 
"sends" them to the computer, in the same 
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TABLE III. MESSAGE TABLE 

Number Forced Displays 

Message Per Test Batch Display Add Change Delete Probability 

A 10 1 Dl 

D2 

B 22 2 

C 14 3 Dl 

D3 

D4 

D 31 2 

E 5 3 D5 

F 18 3 

fashion as it would receive them in an operat­
ing system. This system has'isix message types. 
During the simulation period they are "sent" 
to the computer at a rate of 750 messages/ 
hour. 

The incoming system messages arrive ac­
cording to a Poisson distribution, i.e., the inter­
arrival times of the system inputs are exponen­
tially distributed. 

If x is the interarrival time then an exponen­
tially distributed interarrival time has the fol­
lowing form: 

1 1 
x = - In (--) 

a 1 - Y 
(1) 

Where l/a is the mean of the distribution and 
y is a uniformly distributed random number 
between 0 and 1 as determined by the use of 
a pseudo random number generator. 

In our case, if we want x in seconds, then 
l/a = 3600/750. Suppose that the uniformly 

TABLE IV. 

Batch Size Time No 

1 1 o Sec 

2 3 5 Sec 

3 4 10 Sec x 

x .8 
x .3 

x .6 

x .5 

x .01 

x 1.0 

distributed pseudo random number y = .362 is 
picked, then 

1 
x = 3600/750 In ( ) 

1 - .362 
= 2.16 seconds 

This means that 2.16 seconds after the arrival 
of the last message (or from the beginning of 
the test if this is the first message to arrive) 
another message arrives at the central proces­
sor. The type of message that was received 
has not yet been determined. Each type of 
message is assigned a range on the interval 
(0, 1). The range is dependent on the relative 
frequency of the particular message type. To 
determine the message type, another random 
number is generated and checked to see which 
range it falls in. 

It should be noted that the order sequence 
in which the ranges for the various message 
types are laid out on the unit interval does not 
in any way influence the simulation process, the 
reason being that the picked random number 

BATCH TABLE 

Interrupt Option 
Message Associated 

Immediate Wait with Batch 

x A 

x B,D 

C,E,F 
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TABLE V 
-------------------------------------------TASKTABLE-LOAD----------------------------

DISTRIBUTION 

MESSAGES EXPONENTIAL ARBITRARY CONTINUOUS NORMAL TRIANGULAR UNIFORM 

TASK TASK TASK ASSOC. WITH 
MEAN CUM. PROS. VALUE MEAN 

NAME NO. SEQUENCE STANDARD MIN. MAX. PEAK MIN. MAX. 
DEVIATION 

I I A I SEC 6 SEC 
2 3 C 4 SEC 
3 2 B. D 4 SEC 5 SEC 
4 4 E. F I SEC 3 SEC 8 SEC 

DSP. 
TSK 2 SEC 4 SEC 

TASK TABLE - OPERATE 

DISTRIBUTION 

MESSAGES 
EXPONENTIAL ARBITRARY CONTINUOUS NORMAL TRIANGULAR UNIFORM 

TASK TASK TASK ASSOC. WITH 
MEAN CUM. PROS. VALUE MEAN STANDARD MIN. MAX. PEAK MIN. MAX. 

NAME NO. SEQUENCE TASK 

I I A .001 SEC 

2 3 C .01 SEC 

3 2 B. D 

4 4 E. F I SEC 

DSP 
TSK 5 SEC 

TABLE VI. SYSTEM TABLE 

Message Rate 

Rate of 

Length of Test 
3600 Sec. 

Time 
(in 

seconds) Messages MAXIMUM TIME IN­
------------- TERVAL BETWEEN 

o 750 COMPLETION OF A 
CONTROL CYCLE 
AND REQUEST FOR 
A NEW CONTROL 
CYCLE 1800 Sec. 

LENGTH OF TIME 
ALLOTTED THE IN­
TERLEA VE SUBSYS­
TEM TO STORE 
DATA 0 Sec. 

NUMBER OF TEST 
RUNS 1. 

DEVIATION 

.02 .02 
SEC SEC 

is always uniformly distributed over the unit 
interval. 

The ranges for the messages in this system 
appear in Table VII. 

This means that, if alter a message has arrived 
and the random number is picked to determine 
what type of message is in the interval .47 to 
.77, then the message will be tagged as message 
type D. 

Using the procedures just outlined, the inter­
arrival time, the time of arrival and type mes­
sage that arrived of the first 6 messages in the 
system. (See Table VIlla.) 

In addition to these inputs, suppose that the 
messages arrive at the times indicated. (See 
Table VIIlb.) 

The DPSS does not actually generate mes­
sages this far in advance; rather, it always gen­
erates enough messages to keep the arrival of 
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TABLE VII. RANGE OF NUMBERS 
FOR EACH MESSAGE TYPE 

Range 
Message Type (Approximate) From-To 

A .10 o to .10 
B .22 .11 to .32 
C .14 .33 to.46 
D .31 .47 to .77 
E .05 . 78 to .82 
F .18 .83 to 1.0 

the last generated message ahead of the time in 
the processor. The simulator could have been 
designed to generate all of the messages that 
will be used in the simulation prior to making 
the actual run. This is an acceptable method 
provided that feedback from the central proc­
essing unit will not influence the arrival of 
messages. 

4.2.1 DPC Cycle Simulation-Cycle I (Figures 
4 and 5) 

The first message (message D) arrives at 
the computer at 2.16 seconds after the start of 
the test and is collected in batch 2. It is the 
first message in the batch. The time criterion 
of batch 2 is 5 seconds, hence batch 2 will re­
quest a data processing cycle at 7.16 seconds. 
This batch has a "wait-interrupt" option. Mes­
sage E arrives at 2.27 (2.16 + .11) seconds, 
and is collected in batch 3 which will request 
a cycle at 10 + 2.27 seconds or 12.27 seconds. 
Similarly, Message A arrives at 2.29 seconds 
and is coilected in batch 1, which has the "im-

TABLE VIlla. MESSAGE ARRIVAL 
TIMES AND TYPES 

Arrival 
Time 

Inter- from Mes-
Random arrival Start Random sage 
Number Time of Test Number Type 

.362 2.16 2.16 .72 D 

.023 .11 2.27 .82 E 

.004 .02 2.29 .02 A 

.770 7.06 9.35 .35 C 

.478 3.12 12.47 .11 B 

TABLE VIllb. MESSAGE ARRIVAL 
TIMES AND TYPES 

Arrival Time from 
Message Start of Test 

C 18..4 Sec. 
E 19.6 Sec. 
F 20.7 Sec. 
B 21.3 Sec. 
A 21.8 Sec . 
D 22.8 Sec. 
A 23.7 Sec. 
B 25.4 Sec. 
C 27.5 Sec. 
E 36.5 Sec. 

mediate-interrupt" option set. The interrupt 
occurs immediately and a cycle is initiated. 
Note that the computer was available for other 
tasks (other than Executive processing) dur­
ing the first 2.29 seconds. 

As soon as a cycle starts, all of the batched 
messages are tran~ferred to the task processing 
area and the time and size criteria associated 
with each batch is reset. There are three 
messages to process in this cycle: 

Message Time of Arrival 

D 
E 
A 

2.16 
2.27 
2.29 

The cycle is set so that the tasks 1, 2, 3, 4 
operate in the order 1, 3, 2, 4. Task 1 will 
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9.35 12.47 

7.16 
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12.27 
t-------~I REQUEST 
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I 

Figul'e 4. DPC Cycle Simulation Message Batching­
Cycle 1. 
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Figure 5. DPC Cycle Simulation. 
Cycle I-Operation 
Cycle II-Batching 

20.23 

operate during this cycle, since task 1 processes 
message type A and a t least one message A 
arrived before the cycle began. The processing 
time for the task is divided into a load and 
operate time. 

The load time for task 1 is uniformly dis­
tributed between 1 and 6 seconds. The length 
of time that is required to load task 1, this 
time, is determined by picking a uniformly 
distributed random number and applying it to a 
formula. 

To obtain a uniformly distributed random 
number lying between a minimum "m" and a 
maximum "M," one picks a uniformly distrib­
uted random number on the interval (0, 1) and 
uses the formula 

y = m + x (M - m) (2) 

where y is the desired value uniformly dis­
tributed between m and M and x is a uniformly 
distributed random number on the interval 
(0, 1). 

In this case, m = 1, M = 6 and if the random 
number x is .38 then 

y = 1 + .38 (6 - 1) 
= 2.9 seconds 

Hence, it takes 2.9 seconds to load task 1, this 
time. 

Since the cycle started at 2.29 and it takes 
2.9 seconds to load task 1, the time is advanced 
to 5.19 seconds. After the task is loaded, the 

operate part of the task must be performed. 
The operate time for task 1 is exponentially 
distributed with mean .001 seconds. A uni­
formly distributed random number (0, 1) is 
again chosen. The processing time for message 
A is determined in the same fashion as the 
interarrival time was chosen for the incoming 
messages. Suppose that the processing time is 
determined to be .014 seconds, the simulated 
time is now advanced to 5.19 + .014 or 5.204 
seconds. 

The DPSS performs the "load" part of the 
task operation once per task and the "operate" 
part once for each message that is processed 
by the task. 

The D PSS is an event oriented simulator 
hence the simulated time "steps" from event 
to event. However, whenever the time is 
advanced, the simulator always checks to see if 
any other event occurred or was to occur in 
the interval between events. Whenever this 
happens, the simulator "backs-up" to take 
appropriate action. Message processing for 
task 1 is now complete. Since message A has 
two displays associated with it, a check must 
be made to determine if these displays should 
be forced this time. 

The probabilities of forcing the two displays 
D1 and D2 (Table II) associated with message 
A are .8 and .3 respectively. Two random num­
bers are picked, say .94 and .47. Since .94 is 
not between 0 and .8 and .47 is not between 0 
and .3 neither of the displays is forced. If, for 
example, the random numbers chosen were .63 
and .47 then only Dl would be forced. 

The next task in the sequence, task 3, oper­
ates since it processes message Band D and 
one message D arrived before the beginning of 
the cycle. Task 3 is "loaded" into the computer 
with the load time determined in the way as 
was used to determine that for task 1. Suppose 
the load time turns out to be 2.71 seconds; the 
system time is advanced to 7.914 seconds. 

The "operate" part of task 3 is performed 
on message D. Task 3 has a uniformly distrib­
uted "operate" time with minimum equal to 
the maximum hence the "operate" time, .02, is 
constant. The time is advanced from 7.914 to 
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7.934 seconds. Task 3 is now ready to generate 
displays but since message D does not generate 
any displays, the cycle moves to the next task 
in the sequence. 

Task 2 which processes message type C is 
the next task scheduled to be' processed, how­
ever, no C messages arrived before the cycle 
began, hence task 2 is skipped during this cycle. 
Task 4 processes messages E and F and since 
an E message arrived before the beginning of 
the cycle task 4 will operate. Suppose its load 
time is 2.6, advancing the time from 7.934 to 
10.534 seconds. During the load time for task 
4, message C arrived at 9.35. Batch 3 has no 
interrupt option, however, message C will 
cause a cycle initiation request to be issued at 
19.35 seconds (10 seconds from the arrival of 
message C). Since no interrupt occurred, the 
cycle continues, the operate time for message 
C taking 2.79 seconds. This brings the time 
from 10.534 to 13.324. During this time mes­
sage B arrives at 12.47. Message B is collected 
in batch 2 which has a "wait-interrupt" feature 
causing a cycle to be requested 5 seconds after 
its arrival (being the first message in batch 2) 
at 17.47, or whenever 2 messages arrive in that 
batch. The task in progress is continued and 
since message E forces display D5 with prob­
ability 1.0 the task that forces the display must 
be "loaded" taking, say, 3.2 seconds, bring­
ing the time from 13.324 to 16.524. Display D5 
is now forced, which takes 3.71 seconds, bring­
ing the time to 20.234 seconds. Message A 
arrives at 16.60 seconds during the "operate" 
part of the task which forces displays. Since 
message A is collected in batch 1, a new cycle 
is requested at 16.60. The simulator has the 
capability of handling a request for interrup­
tion of a logical operation in two ways. In the 
first way, the DPSS can honor the interrupt 
as soon as it occurs; in this case the "operate" 
part of the task which forces display D5 would 
have been interrupted. The second way is to 
recognize the interrupt request and honor it as 
soon as the current logical operation has been 
completed. For purposes of this example, the 
interruption will take place as soon as the 
current logical operation is complete. Thus 
the interrupt request will be held until the 
output processing is complete, 20.234 seconds, 
hence a new cycle begins at 20.234 seconds. 

4.2.2 DPC Simulator-Cycle II (See Figures 
5 and 6) 

The following messages arrived during the 
first cycle and are waiting to be processed in 
the second cycle: 

Message Time of Arrival 

C 
B 
A 
C 
E 

9.35 
12.47 
16.60 
18.4 
19.6 

The DPSS has the option of processing the 
messages in the order that they are received 
or according to some sequence which is inde­
pendent of arrival order. In this system the 
messages are processed according to a preset 
sequence, i.e., message A is processed before 
message B even though it arrived later in time. 
The two C messages will be processed together 
with the one arriving at 9.35 seconds being 
processed before the one arriving at 18.4 
seconds. 

Again, in this cycle, task 1 is the first one 
to be operated. Suppose the load time is 
determined to be 3.9 seconds; this advances the 
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Figure 6. DPC Cycle Simulation. 
Cycle II-Operation 
Cycle III - Ba tching 
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time to 24.13 seconds. The following events 
occur during the load of task 1: 

Message Arrives at 

F 20.7 
B 21.3 
A 21.8 
D ~2.8 
A 23.7 

Collected Request 
in Batch 

3 
2 
1 
2 
1 

Cycle at 

30.7 
26.3 
21.8 
26.3 

Message A collected in batch 1 causes a cycle 
to be requested at 21.8 seconds. This request 
is the "interrupt-immediate" type. However, 
under the operating rules of this system, the 
cycle interruption will not take place until 
task 1 processing has been completed at 24.132 
seconds. Note that the second message A arriv­
ing at 23.7 seconds does not generate another 
cycle request. The messages that were to be 
processed by tasks 2, 3, and 4 are queued when 
the cycle interrupt occurs. 

4.2.3 DPC Simulation-Cycle III (See Figures 
6 and 7) 

The third cycle starts at 24.132 seconds. The 
batches are again cleared and the time and size 
criteria counters are reset to zero. Task 1 
operates first (there are two A messages to be 
processed) and is completed at 27.9 seconds. 
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Figure 7. DPC Cycle Simulation. 
Cycle III-Operation 
Cycle IV-Batching 

During the operation of task 1, message B 
arrives at 25.4 seconds and message C arrives 
at 27.5 seconds. Message B will cause a cycle 
to be requested at 30.4 seconds and message C 
will cause a cycle to be requested at 37.5 sec­
onds. The request from batch 2 (containing 
message B) will be an "interrupt-wait," that 
is, the interrupt will occur when all of the 
messages which are processed before Band D 
have been processed, but the interrupt will not 
interrupt the currently operating task. In this 
cycle, task 3 operates after task 1 because two 
B's and 1 D are waiting to be processed. Proc­
essing of task 3 is complete at 31.5 seconds. 
N ow since B is a higher priority input than 
those processed by tasks 2 and 4 the cycle will 
be interrupted after task 3 has been completed. 
The inputs that would normally be processed 
by tasks 2 and 4 are queued for the next cycle. 

4.2.4 DPC Simulation-Cycle IV (See Figures 
7, 8, and 9) 

Cycle number 4 begins at 31.5 seconds. The 
following messages have been collected in the 
batches during the third cycle or have been 
queued from previous cycles: 
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Figure 9. DPC Cycle Simulation Summary. 
Cycles I, II, III, IV. 

Therefore, tasks 3, 2, and 4 will operate in cycle 
number IV if no interruptions take place. This 
procedure is continued until the end of the test. 

5.0 DPSS APPLICATIONS 

The DPSS has been applied primarily to real 
time management information and command! 
control type systems. The initial major em­
phasis was in the design and development of 
the 465L SACCS. Approximately 300 produc­
tion runs were made simulating 2000 hours of 
actual operation. 

While the checkout and installation of the en­
tire operational SACCS program system is not 
yet complete, significant portions of it have been 
successfully demonstrated. The results of these 
demonstrations are classified, but it can be said 
that the DPSS predicted results were close to 
actual performance figures. 

The initial application of the DPSS to the 
N ew York State Identification and Intelligence 
System during the feasibility study phase 
showed that a class of computers could not 
handle the job unless the user drastically 
changed his requirements. The choice was of­
fered to the user early in the system acquisition 
process to make the trade-off of dollars versus 

capability on a more informal basis. As the 
work on this system progresses, the DPSS will 
continue to 'be used to evaluate the various 
possible system configurations and aid in the 
selection of the appropriate hardware. 

5.1 Applica.tion of the DPSS on 465L SAGGS 

At the outset of the investigations performed 
with the DPSS, many combinations of SACCS 
system characteristics were checked because of 
the complexity of the problem. A list of the 
maj or system characteristics checked are shown 
in Table IX. 

One of the system characteristics initially 
subjected to detailed investigations was the 
length of the control cycle. This was done be­
cause system response time (the time from the 
initiation of a request for data until the data 
was presented) was found to be a function of 
normal uninterrupted DPC cycle time. * 

Cycle time was, in turn, found to be a func­
tion of many items, such as total message rate, 
tasks, sequencing, and batches. It was also 

* This evaluation was made prior to the introduction 
of the interrupt feature, which permits short cycles 
and fast response, but which causes the average age 
of data presented and message queue lengths to 
increase. 
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TABLE IX. SYSTEM CHARACTERISTICS 
INVESTIGATED IN INITIAL SIMULATION 

RUNS 

1. Length of Control Cycle 
2. Response Time 
3. Maximum Message Capacity 
4. Age of Data 
5. Storage Requirements 
6. Average Processing Time Per Message 

Type 
7 . Average Waiting Time Per Message Type 
8. Queue Lengths Per Message Type 
9. Message Priority System 

10. Relationship and Sensitivity of the Sys­
tem to Combination of 1 Through 9 
Above 

found to be extremely difficult to predict system 
response time with a reasonable degree of cer­
tainty under a wide variety of operating 
conditions. 

To overcome this problem, an "interrupt fea­
ture" was introduced into the design, which 
permits extremely rapid data presentation on 
demand. However, prior to incorporating this 
system change the effect of the interrupt fea­
ture on the system was checked and the "cost" 
of extremely short response time was dramati­
cally demonstrated (Section 5.1.1 and Figure 
11). The costs and other side considerations are 
discussed in the next section, Results of DPSS 
Runs and Their Interpretation. 

5.1.1 Results of DPSS Runs and Their 
Interpretation 

The types of outputs from the simulator runs 
were as shown in Section 3.5 with some typical 
results shown in Figures 10 and 11. 

In testing various possible program system 
structures, one of the objectives was to attempt 
to have the average times to process each mes­
sage type become relatively constant (Figure 
10). The average age is checked for a wide 
range of message loads and the value at which 
this leveling out occurs would then represent 
the expected average age of data in the system 
by message type. 

MAX 

AVG 
TIME 

MIN 

2 3 

CYCLE CONTROL NUMBER 

Figure 10. Min, Max and Average Time to Process 
Each Type of Message by Cycle. 

Message-batch-task arrangements are in­
vestigated to find those arrangements which 
tend to stabilize the average processing time 
values (with minimum spread) in order to 
select an optimum program structure. The his­
togram of message processing time for each 
message type ( Figure 11) for the message­
batch-task arrangement is then evaluated. 

In the case shown in Figure 11, the effect 
of the interrupt feature (for display request­
ing) on system performance was evaluated. The 
high priority display request technique was in­
troduced to permit the interruption of the sys­
tem in order to respond to data presentation 
requests in minimum time. 

It can be seen from Figure 11 that for a given 
set of system loading conditions, 100% of the 
high priority display requests were honored 
in one minute or less. However, the effect on 
a low priority data message was dramatic and 

100% 
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Figure 11. Histogram of Message Processjng Time. 
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required further assessment. N one of the lower 
priority data messages was processed in under 
28 minutes. Only 5% were processed between 
28 and 29 minutes, 10% processed between 29 
and 30 minutes, 35 % processed between 30 and 
31 minutes, and 50% of all messages processed 
took 31 minutes or longer. 

These results can be interpreted to mean that 
the high priority data presentation requests 
which were honored in one minute or less did 
not make use of the data contained in the lower 
priority data messages. For the same case, the 
queue length was determined from the fact that 
only 113 of the lower priority data messages that 
were received were processed. 

I t was further necessary to determine exactly 
what type of data was contained in each type 
of message and what its variability might be. 
If the lower priority messag-e contained data 
which varied relatively little over a period of 
several. hours, then the fact that 50% of the 
data might be as much as 30 minutes old is of 
considerably less consequence than if the data 
were extremely variable in less than 30-minute 
increments. 

Therefore, by investigating the histograms 
for each message type, establishing limits on the 
number of high priority display requests which 
might be made periodically, and determining 
the proper message priority and message-batch­
task relationship, it was possible to arrive at a 
program system structure which satisfied .Op­
erational Requirements. 

5.2 General Results 

The results of the simulations showed that 
the system is most sensitive to the use of the 
interrupt feature. This "system interrupt" 
was found to cause short cycle times which 
could create the impression of highly efficient 
operation. However, the queue sizes and wait­
ing times were increasing as a result of the in­
creased use of the interrupt features. 

The total message rate imposed upon the sys­
tem with all or most message types being pres­
ent was found to be second in importance to the 
system's operational performance. The pres­
ence of all ( or· most) message types causes a 
maximum number of input-output (I/O) trans­
fers to occur. I/O transfers are one of the most 

time consuming aspects of data processing tasks 
and caused total cycle time to increase as the 
number of transfers increased. t 

It was also determined that the system was 
not particularly sensitive to the relative fre­
quencyof each message type for any given input 
rate as long as all or most types of messages 
were present. This particular aspect of the en­
vironment assumed secondary importance based 
on these results. 

The investigation of the "time. to load" and 
"time to process" portions of the system's task 
operating times showed a high proportion of 
time to load vs. time to process. This suggested 
that the system's apparent I/O limitations 
would bear further investigation for possible 
improvement of overall system operation. 

5.3 System Improvements 
A disc file is used as the principal auxiliary 

storage device for the SACCS. A study of its 
characteristics suggested that a change from 
the current serial read procedures to parallel 
read procedures could produce a considerable 
reduction of I/O time. A conservative estimate 
of the I/O time reduction factor attainable was 
set at 10 because of anticipated engineering 
problems, and also because there are existing 
hardware items other than disc files which have 
the desired timing characteristics and do not 
involve modification of the disc. 

When only the times to load and unload 
(I/O) of all system times were reduced by a 
factor of 10 the results of the DPSS runs 
showed a very high payoff available for such 
a modification. 

The probable results from the reduction of 
the I/O time are shown in Table X. In these 
results, the "rates" refer to the message input 
rate per hour; the "load" refers to either a 
"normaP' (N) loading and unloading time or a 
"1/10 normal" loading and unloading (I/O) 
time. "Interleave" means the availability of 
DPC time for other operations which might 
normally occur as part of a time sharing func-

t This is not necessarily a linear function. Also note 
that the effect of I/O transfer time on total cycle 
and response times is a complex relationship, i.e., 
many I/O's can occur with no responses required and 
response time therefore becomes meaningless in this 
case. 
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tion of the system. The load rates shown are 
hypothetical and do not in any way reflect 
actual rates. However, the effect of reducing 
the I/O time factor in the total system operat­
ing time is clearly demonstrated as a function 
of relative loads. 

It is apparent from the results shown in 
Table X that auxiliary storage devices with 
the performance specifications inferred from 
the reduced I/O time factor would be desirable 
to permit maximum time sharing and maximum 
expansion potential in the system. 

6.0 DPSS CAPABILITIES SUMMARY 

A summary of the capabilities of the Data 
Processing System Simulator are: 

1. System Feasibility Studies 

2. Simulates Computer Based Data Process­
ing Systems 

3. Evaluate Equipment and Processing Dis­
cipline Combinations vs. System Opera­
tional Requirements 

4. Establish Equipment Configuration for 
the System 

5. Establish Program Configuration for the 
System 

6. Development of Detailed Design Require­
ments (Operational Program Require­
ments, Subsystem Design Specifications, 
Program Design Specifications) 

7. Set Initial Parameters for the Operational 
System 

8. Determine System Performance Require­
ments (for Acceptance Testing) 

TABLE X. PROBABLE RESULTS FROM 
MODIFICATION OF I/O DEVICE 

Conservative Assumed Improvement of I/O 
Time = Factor of 10 

Rate Load Interleave Comment 

10 N 0-30% Acceptable 
30 N None Poor 
10 1/10 80% All Requirements Met 
30 1/10 60% All Requirements Met 
60 1/10 30% All Requirements Met 

9. Evaluate Proposed System Modification 
and Retrofits before Implementation 

The flexibility of the DPSS in terms of the vari­
ability of both the inputs to be tested and simu­
lation program logic makes this tool useful in 
the early stages of establishing data processing 
system requirements. I t is a powerful tool in 
performing system feasibility studies, simulat­
ing the operation and performance of computer 
based data processing systems, and in evaluat­
ing equipment and data processing discipline 
combinations as a function of system opera­
tional requirements. 

Once past the initial phases of system devel­
opment process, the DPSS can continue to be 
useful in helping to evaluate the equipment 
configurations being considered for the system, 
and in establishing the framework for the 
computer program configuration for the sys­
tem. This latter framework includes items such 
as the need for Executive or master control 
programs, the structuring and organization of 
system inputs, processing tasks, and outputs. 

During the system implementation and acqui­
sition phase, the DPSS is of continuing useful­
ness in the development of detailed design re­
quirements. The key design features for 
Operational Program Requirements (OPR), 
Subsystem Design Specifications (SSDS), and 
Program Design Specifications (PDS) can be 
determined and established as design goals. 
This work, in addition, is valuable in setting the 
initial parameters for the operational system. 

The DPSS can be used to develop System Per­
formance Requirements (SPR) which can be 
used at the conclusion of the system acquisition 
phase during which acceptance testing is per­
formed. The SPR's can be established early in 
the design process and used by both the con­
tractors and the procuring agencies as perform­
ance criteria for determining the successful 
completion of the design and implementation 
phase. 

Proposed system modifications and retrofits 
can be evaluated before commitments are made 
for additional equipment, computer program­
ming, or human action requirements. This 
evaluation is essentially the performance of the 
system feasibility studies discussed earlier in 
this section. Thus, the design, development, in-
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stallation, and acceptance testing procedure can 
be completed by providing the analytic capabil­
ity needed to continually refine and improve 
any system in existence or proposed for future 
development without becoming so deeply com­
mitted in time and dollars that prohibitive 
rework costs are incurred as is currently the 
case in the field of command} control and man­
agement information systems development. 

7.0 EXPANDED DPSS CAPABILITIES­
MODEL C 

The experience gained by applying the DPSS 
to three major management control systems in 
different phases of development (see Section 
1.0) identified areas in the. original version of 
the DPSS which could be further generalized 
and expanded so that it can be used to simu­
late a greater variety of data processing sys­
tems. The expanded DPSS-Model C is now 
operational on the IBM 7090/7094 computer. 
DPSS-Model C is a self contained program 
package; i.e., it does not require the use of a 
control program. In this way, the operation of 
the program is "streamlined" so as to reduce 
the computer time required to make each run. 

In addition to the capabilities of the original 
DPSS described in Sections 1.0 through 6.0 in­
clusive, DPSS-Model C has the following 
additional features: 

a. The DPSS-Model C program is struc­
tured so that one programming task has 
the ability to create inputs for other tasks. 

b. Associated with each message-task rela­
tionship is the probability of message 
being processed by each of its associated 
tasks. A probability of 1.0 ensures that 
a message will always be processed by a 
particular task. 

c. In order to accommodate transient states 
in the input message frequencies, DPSS­
Model C permits changes in the relative 
frequency of input messages during the 
simulation run. This means, for instance, 
that the DPSS can simulate changes in 
the mode of operation of the system. 

d. DPSS-Model C has the capability of 
simulating several levels of system opera­
tion, where one level has priority over 
another. Each level can be considered as 

a system in itself-messages are collected 
in batches, processed in tasks according 
to some processing discipline (e.g., first 
come, first serve or according to a task 
sequence), generate displays, etc. Every 
level may, but need not~ have identical 
characteristics except that one has prior­
ity over the other one. When going from 
one level to another the simulator has the 
capability of aborting the lower priority 
level immediately or at the end of a logical 
operation (e.g., completion of a task) 
going to the higher level, doing the re­
quired processing and then returning to 
the point of interruption. Up to 100 levels 
can be requesting service at the same 
time, with the highest priority service 
first, the next highest priority second, and 
so on. 

e. The simulator has the capability of selec­
tively emptying the individual batches for 
each data processing cycle. This will op­
erate so that only the messages collected 
in the batches whose batch criteria are 
exceeded before the beginning of the 
cycle will be processed in that cycle. The 
simulator has the option of transferring 
to the processing area for processing in 
the next cycle only those messages which 
were collected in batches whose batch 
criteria was exceeded before the begin­
ning of the cycle. The rest of the mes­
sages remain in their respective batches 
until their batch criteria have been ex­
ceeded. This capability enables the DPSS 
to simulate more than one independent 
system with a priority arrangement such 
as might be found in a time sharing 
system.4 

f. It is possible to delete messages in the sys­
tem as a result of other messages being 
processed. This capability covers condi­
tions when "partial updating" of files is 
specified in early messages in the system 
and where a "complete update" message 
is received which includes the conditions 
cited in the "partials." In this way, the 
simulator will not duplicate the processing 
of any message. 

g. The capability is provided to regulate 
task operation so that a task will operate 
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only once in every "n" cycles; "n" must be 
specified in the input data. 

h. The DPSS has the capability of resetting 
the computation counters (e.g., those 
counters used to compute average mes­
sage processing time, maximum process­
ing time, etc.) at a prespecified time after 
the beginning of the test. With this fea­
ture, it is possible to study systems in 
transition, during steady state conditions, 
or a combination of transient and steady 
state. 

1. The DPSS has the capability of providing 
three sets of periodic summaries through­
out the test. The summaries can be pre­
sented for every message-task relation­
ship in the system using three time 
periods. For example, the average process­
ing time for a given message being proc­
essed in a given task may be presented 
every 30 seconds, every 25 minutes and 
every hour. 

j. The concept of generating or forcing dis­
plays as a result of messages being proc­
essed has been generalized as follows: 

(1) There can be any number (limited 
only by the capabilities of the 
simulator) of tasks that produce 
forced displays. Each display pro­
ducing task has its own processing 
characteristics. 

(2) The tasks that produce forced dis­
plays need not follow the task 
which processed the data messages 
which caused the display to be 
forced, indeed, the tasks which 
force displays can be located any­
place in the task sequence. 

k. Additional capabilities have been added to 
the DPSS to permit detailed investiga­
tion of the effects of limited buffer size 
on the functioning of a data processing 
system. The DPSS also has the option of 
"losing-from-the-system" those messages 
which attempt to enter a full buffer. The 
DPSS identifies those messages which 
have been "lost," or it can exercise the 
option of queuing these messages and 
not losing them. 

1. The manner in which outputs from the 
simulator can be presented has been made 
more flexible so that only the necessary 
or desired information will be produced. 

m. The processing of messages by tasks has 
been modified to permit more flexible and 
detailed simulation of the operation of a 
task. Task processing is divided into three 
sub-operations: (1) performing the input 
operation, (2) processing each message 
associated with the task and (3) perform­
ing the output operation. Each of the sub­
operations has its own distribution func­
tion and parameters. In addition, the 
DPSS has the option of performing a 
"save data" operation in the event of an 
interruption during the operation of a 
task. When this option is exercised, the 
"save data" part of the task operation 
will be executed before the request for 
interruption is honored. The "save data" 
operation has its own distribution func­
tion and parameters. There may be a 
"save data" operation associated with 
each task in the system. 

8.0 FUTURE DEVELOPMENTS 

Future developments of data processing sim­
ulators will most likely be along the lines of 
multi- and parallel-processing and will include 
prediction techniques so that the time required 
to develop a data processing system under vari­
ous configurations can be studied. 

APPENDIX I 

SAMPLE PRINTOUT 

This appendix contains a sample printout 
from a simulation run. The output data con­
tains the following items of information: 

1. The cycle number, its begin and end time. 

2. For each message arrival the message 
identity, time of arrival, the batch in 
which the message is batched, the task 
that processes the message (mod cate­
go~y), the priority of the message, the 
time when the processing of the message 
was completed, the displays that are 
forced by this message and the time that 
each display is forced. 
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3. A list of messages that have not been 
completely processed at the end of each 
cycle. 

4. Averages by batch, priority, message of 
a. Processing time 
b. Total time 
c. Waiting time 

DPC SIMULATION-RUN NUMBER 1 

CYCLE REQUEST AT 7.65 REASON SIZE 

BEGIN CONTROL CYCLE NUMBER 1 AT 22.65 

BEGIN CYCLE NUMBER 5 AT 638.48 

MESSAGE QUEUE LENGTH-565 

BATCH SIZES 

BATCH NR. SIZE 

0 0 

1 0 

2 1 

3 373 

4 60 

5. Number of messages queued at beginning 
and end of cycle. 

6. A list of messages remaining to be proc­
essed at the end of the test. 

7. A total time distribution by minute, per 
message at end of run. It tells, e.g., 
what percent of messages were processed 
between, say, 10 minutes and 11 minutes. 

NR. TIME TOTAL 
TYPE MOD ARJUVAL OUT BATCH PRIORITY FORCED FORCED INDENT TIME WAIT 

5 

13C 

21 

21 

2 

o 

2 

2 

643.19 664.29 

382.50 693.63 

568.09 

568.09 

3 

3 

o 
1 

CYCLE INTERRUPT AT 813.67 REASON WAIT 
END CYCLE NUMBER 5 AT 834.86 

690 MESSAGES REMAINING 

TYPE MOD ARRIVAL BATCH PRIORITY 

24 

40 

4 

4 

1.52 

4.41 

3 

3 

1 

1 

1 

2 

809.52 A02 

809.57 A02P 

21.11 5.40 

311.13 311.04 



270 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

AVERAGES BY BATCH 

BATCH NR WAIT TOTAL TIME 

0 NO MESSAGES 

1 NO MESSAGES 

2 56.50 56.56 

3 227.53 227.65 

4 253.24 253.30 

A VERAGES BY PRIORITY 

PRIORITY NR WAIT TOTAL TIME 

0 8.57 17.82 

1 233.19 233.25 

AVERAGES BY MESSAGE TYPE 

TYPE MOD NR PROCESSED WAIT TOTAL TIME MAX TOTAL TIME MIN TOTAL TIME 

0 NO MESSAGES 

1 2 2 275.82 275.88 346.82 346.82 

2 2 1 233.24 233.29 

3 2 18 245.29 245.35 390.05 169.80 

TOTAL TIME DISTRIBUTION 

RAR 

FROM 0 MIN. TO 1 MIN. .33 FROM 1 MIN. TO 2 MIN. .33 

FROM 2 MIN. TO 3 MIN. .33 FROM 3 MIN. TO 4 MIN. 

FROM 4 MIN. TO 5 MIN. FROM 5 MIN. TO. 6 MIN. 

FROM 6 MIN. TO 7 MIN. FROM 7 MIN. TO 8 MIN. 

FROM 8 MIN. TO 9 MIN. FROM 9 MIN. TO 10 MIN. 

FROM 10 MIN. TO 11 MIN. FROM 11 MIN. TO 12 MIN. 

FROM 12 MIN. TO 13 MIN. FROM 13 MIN. TO 14 MIN. 

FROM 14 MIN. TO 15 MIN. FROM 15 MIN. TO 16 MIN. 

FROM 16 MIN. TO 17 MIN. FROM 17 MIN. TO 18 MIN. 

FROM 18 MIN. TO 19 MIN. FROM 19 MIN. TO 20 MIN. 

FROM 20 MIN. TO 21 MIN. FROM 21 MIN. TO 22 MIN. 

FROM 22 MIN. TO 23 MIN. FROM 23 MIN. TO 24 MIN. 

FROM 24 MIN. TO 25 MIN. FROM 25 MIN. TO 26 MIN. 

FROM 26 MIN. TO 27 MIN. FROM 27 MIN. TO 28 MIN. 

FROM 28 MIN. TO 29 MIN. FROM 29 MIN. TO 30 MIN. 

FROM 30 MIN. TO 31 MIN. FROM 31 MIN. TO 
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APPENDIX II 

THE USE OF RANDOM NUMBER 
GENERATOR 

1. The Random Number Generator" 

X Il + l = 129 Xn + 227216619 (mod 268435456) 
is used to genrate numbers between 0 and 1 
which are statistically tested to be uniformly 
distributed. That is 

268435456 

are numbers lying between 0 and 1 and satisfy 
various statistical tests for being uniformly 
distributed (0, 1). The first number of the se­
quence is gotten by letting Xo = 0 and then 
Xl = 227216619. 

2. Uniformly Distributed Random Numbers 

Suppose it required to obtain a uniformly 
distributed random number lying between m 
and M. If one obtains a number x uniformly 
distributed (0, 1) then the converted number 

y = m + x (M - m) (3) 

is uniformly distributed (m,M). 

In practice this is used if the only informa­
tion available is the minimum and maximum 
of a random variable. 

3. Normally Distributed Random Numbers 

A table is assumed stored in core of normal 
distribution with mean 0 and standard devia­
tion 1. Suppose a random number y given with 
normal di.stribution of mean p. and standard 
deviation 0". Then 

Y - Ii 

is a normally distributed random variable with 
mean 0 and standard deviation 1. 

To choose a random number y, normally dis­
tributed with mean 0 and standard deviation 1 
a number x, uniformly distributed (0,1) is 
chosen. Using x find the corresponding Z from 
the table of the normal distribution (mean 0, 
standard deviation 1). 

Now, 
y-p. 

Z=-- (4) 

Hence, 
y=p.+O"Z 

and y is the desired number. 

4. Exponentially Distributed Random 
Numbers 

(5) 

An exponentially distributed random number 
x has the distribution 

{

O, t < 0 
P [x ::;; t] = 1 - e-at , t > 0 

(6) 

where ! is the mean of the distribution. Since 
a 

negative values of t have no application for the 
simulator it will be assumed here that t ~ o. 
To obtain an exponentially distributed random 
number, a random number y, uniformly dis­
tributed (0,1) is given and is set equal to 

1 - e-ax 

Hence, 
y = 1 - e-ax 

and solving for x, 
1 1 

x=-ln-­
a 1-y 

5. The Triangular- Density Function 

(7) 

(8) 

Sometimes, besides the minimum and maxi­
mum of a randoll1 variable, some Hfavorite" 
value is known. This suggests the use of the 
triangular density function. Let m, IvI be the 
minimum and maximum and K the "favorite" 
value. The density function assumes the tri­
angular shape shown in Figure 12. 

The area of the large triangular, mPN, is 
equal to 1. To obtain a number with such a 
density function, a random number X uni­
formly distributed (0,1) is chosen and a num­
ber Y is computed so that the region designated 
by A has area X. 

6. Arbitrary Continuous Distribution 

The random number generator enables the 
user of the simulator to utilize almost any dis-

P 

A 

m Y K M 

Figure 12. Triangular Distribution 
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tribution he desires. The basic requirements 
for such a distribution are: 

a. that it be continuous 
b. that the random variable be bounded. 

Condition 1 is usually the case. A distribu-
tion function that has a discontinuity does not 
usually occur in a simulation, and can, if 
necessary, be approximated by a continuous 
distribution. 

Condition 2 requires that the user specify 
that the value of the random variable not ex­
ceed (so far as the approximation is concerned) 
some specified value. 

Suppose Figure 13 represents some distribu­
tion. Various values (in this case Xl' x2 , x3 , x4 ) 

are chosen from the distribution to be approxi­
mated. 

Let F (x) be the original distribution. Then 

PI = Prob [x S Xl] (9) 

P 2 = Prob [x S x2 ] 

and so on until 

(10) 

Suppose a random number x, uniformly dis­
tributed (0, 1) is chosen. Then if 0 S x S PH 

(11) 

'where Xis the desired value. 

Figure 13. Arbitrary Continuous Distribution 

If PIS X S P 2, then 

X=XI+ (X_PI)(XI -X2
) (12) 

PI P 2 

and so on, testing whether R lies between two 
successive P's and then using linear interpola­
tion to determine the value between the two 
points. 

APPENDIX III 

GLOSSARY OF TERMS 

The following definitions are included for the 
reader who may not be familiar with the ter­
minology of the document. 

BATCH 
A device which is used to request a DPC 

cycle. 

BATCH CRITERIA 
Parameters associated with each batch which 

determines when a batch will request a DPC 
cycle to be initiated. 

DATA PREPARATION 
A task which processes every incoming mes­

sage to make sure that they are valid. The 
Data Preparation Task also determines which 
tasks must operate in the present DPC cycle. 

DISPLAY 
A presentation of information contained in 

the D PC program system files. 

DPC CYCLE INTERRUPT 
A DPC cycle interrupt occurs when all of 

the messages of the present control cycle are 
not processed before a new cycle begins. 

DPC CYCLE REQUEST 
A request for a DPC cycle when the batch 

criteria of a batch is exceeded. 

DPC PROGRAM SYSTEM CYCLE 
A sequence of tasks that are performed to 

process the system message. 

DPC PROGRAM SYSTEM (OR CYCLE) 
That part of the system within the Data 

Processing Central (DPC) which deals with 
the primary processing functions. 

FLASH MESSAGE 
A message that is processed immediately, 
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upon receipt by the computer. This message 
does not cause a new cycle to be initiated. 

FORCED DISPLAY 
A display which is generated as the result 

of a message (data) being processed. 

INTERARRIV AL TIME 
The time between the arrival of two succes­

si ve messages. 

INTERLEAVED SUBSYSTEM 
Any subsystem other than the primary real 

time program system. 

LOAD TIME 
The time required to transfer the operating 

programs and data environment associated 
with a task from tape, drum or disc to core. 

MESSAGE 
An input into the DPC program system. 

MOD 
The position of a task in a sequence of tasks 

(the task sequence number). 

OPERATE TIME 
The time required by the operating programs 

to process a message once the operating pro­
grams and environmental data are in core. 

PRIORITY 
A measure of importance in a message. 

PROCESSING TIME 
The time from when processing in a message 

is begun to when it is completed. 

RANDOM NUMBER 
A number from a random number generator 

tested for certain statistical properties. 

REQUESTED DISPLAY 
A display which is generated as the result of 

a special message being processed (a display 
request message). 

TASK 
A related collection of programs (considered 

in the DPSS as a single operation) which 
operate on a message or a set of messages. 

TOTAL TIME 
The time from the arrival of a message at 

the DPC to completion of message processing. 

WAIT TIME 
The time which begins when a message ar­

rives in the DPC and ends when processing of 
this message begins. 

APPENDIX IV 

MACRO INSTRUCTIONS 
The logical operation of the model is gov­

erned by the interpretive program. The oper­
ation of the simulator can be changed by chang­
ing the flow of the interpretive program. The 
flow diagram that is currently being used in the 
simulator is shown in Figure 14. 

Figure 14 illustrates the interpretive pro­
gram as it is read into the computer. The first 
few instructions of the interpretive program 
are explained below. The last line of the flow 
reads 

STOP IA 

This indicates that the flow diagram data is 
complete and the program is to execute the in­
struction labeled IA first. This instruction is 
found on line 1: 

IA . T"O 
~.L.I 

TT\ 
~~ 

IA is the instruction label. QMSGAR is the in­
struction. The Q usually designates that the 
instruction asks a question. In the case QMS­
GAR asks whether any messages have arrived. 
If yes go to IB, if no go to ID. Suppose a mes­
sage has arrived then one goes to IB: 

IB AGNMSG IA FIN 

AGNMSG begins with an A which usually des­
ignates an action, and the instruction states· 
that a message is to be generated and then one 
goes to IA or FIN depending upon whether 
there is more to do in the simulation or not. 

If no message has arrived, one goes to ID: 

ID QFLASH IE IC 

QFLASH asks whether any flash messages are 
to be processed. If there are go to IE, if not 
to IC. 

Macro Programming Instructions 

The instructions QBEGCC, QMSG, QSTART 
are macro programming instructions. The list 
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IA 
CA 
CB 
CC 
CE 
CF 
CG 
CH 
CK 
CC 
CP 
CQ 
CQO 
CR 
CS 
IB 
IC 
ID 
IE 
IF 
IG 
IH 
II 
1M 
IN 
IR 
FIN 
IS 
III 

QMSGAR 
QBEGCC 
ABEGPC 
QTASKS 
AENDCC 
QSTART 
QMSG 
LDTASK 
APCMSG 
QMSG 
QBEGFD 
QFORCE 
ALDDP 
APCFRC 
QFORCE 
AGNMSG 
QFLDSP 
QFLASH 
APCFLS 
QCC 
QINT 
QFLLD 
ABEGCC 
QREQ 
AGNMSG 
AABORT 
FINISH 
ABEGCC 
AENDCC 
STOP 

IB 
CB 
CC 
IA 
IA 
CG 
CH 
IA 
IA 
CK 
CQ 
CQO 
IA 
CS 
IA 
IA 
IH 
IE 
IA 
IG 
III 
IA 
CA 
IN 
ID 
IS 

IA 
II 
IA 

ID 
CF 
FIN 
CE 
FIN 
CO 
CC 
FIN 
FIN 
CP 
CR 
CC 
FIN 
FIN 
CC 
FIN 
IF 
IC 
FIN 
1M 
CA 
FIN 
FIN 
IR 
FIN 
FIN 

FIN 
FIN 

Figure 14. Interpretive Program Flow Diagram 

of macro instructions and their meanings are 
as follows: 

1. DUMP 

This instruction gives an octal dump. 

2. QBEGCC 

This instruction asks whether at the 
time the instruction is to be operated 
upon the system is at the beginning of 
a cycle. The beginning of a cycle con­
sists of the tasks of loading and oper­
ating the data preparation tasks. 

3. ABEGPC 

This instruction performs the loading 
and operation of the data preparation 
task only at the beginning of the cycle. 

4. QTASKS 
The instruction inquires whether any 
more tasks are to be done in the cycle 
and sets the indicators to the next task 
done by the cycle. 

5. AENDCC 
This instruction resets various indicators 
so as to signal the end of a cycle. I t also 
gives a summary of the output data for 
that cycle. 

6. QSTART 
This instruction inquires whether the 
system is at that moment at the start 
of a task, i.e., whether the program for 
that task was loaded. 

7. QMSG 
This instruction inquires whether there 
are messages in the table for the par­
ticular task to operate upon. 

8. LDTASK 
This instruction "loads" the task in ques­
tion, i.e., determines how long it takes 
to load the task and increment the sim­
ulated clock. 

9. APCMSG 
This instruction processes the appropri­
ate incoming message according to proc­
essing priority. 

10. QBEGFD 
The instruction inquires whether the 
forced display ·task should be "loaded." 

11. ALDDP 
This instruction "loads" the display task. 

12. QFORCE 
This instruction inquires whether there 
are forced displays to process. 

13. APCFRC 
This instruction processes the appropri­
ate forced display. 

14. QMSGAR 
This instruction inquires whether any 
messages have arrived. 

15. AGNMSG 
This instruction generates messages if 
any are due to arrive. 
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16. QFLDSP 
This instruction inquires whether any of 
the ft.ash messages generate display. 

17. QFLASH 
This instruction inquires whether there 
are any ft.ash messages to process. 

18. APCFLS 
This instruction processes ft.ash mes­
sages. 

19. QCC 
This instruction inquires whether the 
cycle is operating. 

20. QINT 
This instruction inquires whether the 
cycle is to be interrupted. 

21. QFLLD 
This instruction either "loads" or proc­
esses the ft.ash display task, whichever 
is appropriate. 

22. ABEGCC 
This instruction begins a cycle. 

23. QREQ 
This instruction inquires whether a mes­
sage will arrive before the request for 
the instruction of a cycle. 

24. AABORT 
This instruction aborts the interleaved 
subsystem. 

25. FINISH 
This instruction finishes the run, sum­
rizes the data and goes on to the next 
run, if any. 

APPENDIX V 

SUMMARY DESCRIPTION OF THE 
IBM AN/FSQ-32 COMPUTER4 

The AN/FSQ--;3'2 computer is a l's-comple­
ment, 48-bit word computer, with 65,536 words 
of high-speed (2.5 m sec. cycle time minus 
overlap) memory available for programs, and 
an additional 16,384 words of high speed mem­
ory available for data and input/output buffer­
ing; the latter memory is called input memory. 

There are four core memory banks (of 16K 
words each) which are individually and inde­
pendently accessible by three control units: the 
central processor unit, the high speed control 
unit, and the low speed control unit. High speed 
I/O, low speed I/O, and central processing can 
take place simultaneously out of different mem­
ory banks, or with certain restrictions, out of 
the same memory bank. 

Characteristics of the AN /FSQ-32 Storage Devices 

Devi.ce Size 

Core Memory 65K 

Input/Output 16K 
Core Memory 

Magnetic Drum 400K 

Disk File 4000K 

Magnetic Tapes 16 Drives 

Word Rate 

2.5 ,usec/wd 

2.5 ,usec/wd 

2.75,usec/wd 

11. 75 ,usec/wd 

128 ,usec/wd 
(high density) 

Average Access Time 

10 msec 

225 msec 

5 to 30 msec (no 
functioning) * 

* Depending on whether the tape is at load point, and whether it is being read or written. 
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THE USE OF A JOB SHOP SIMULATOR IN THE 

GENERATION OF PRODUCTION SCHEDULES 
Donald R. Trilling 

Westinghouse Electric Corporation, Pittsburgh, Pennsylvania 

The following describes some techniques 
under development at the Steam Division of the 
Westinghouse Electric Corporation. This plant, 
located at Lester, Pennsylvania, manufactures 
large Steam Turbines, and its main facility is 
an exceptionally large job shop. It is the locale 
where many of the concepts discussed below 
underwent development. However, it should 
be made clear that this paper is not in any way 
intended to be a progress report on their use 
there. The nature of these techniques remains 
highly experimental, and they are described 
here as a matter of interest to those who are 
concerned with the potential of computers in 
management applications. 

L BACKGROUND 

The technique of job shop simulation is be­
coming increasingly well-established in indus­
try, and the advent of the macro simulator 
languages, such as SIMSCRIPT 7, assures con­
tinued movement in this direction. To date, 
job shop simulators have been used principally 
as a tool for facilities planning \ '2, and as a 
testing mechanism for the merit of various de­
cision rules 3, 10. Typically, a model of the shop 
is set up in the core of the computer, having a 
similar configuration of men and machines as 
exist in the real shop or could exist in a con­
templated shop. It is supplied with data on 
manufacturing orders representing the coming 
load in the shop. The simulator processes the 
orders much as the real shop would. By seeing 
how the model shop fares in processing its load, 
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we gain some insight into how the real shop will 
perform in processing an equivalent load. The 
model shows specifically how machines will be 
loaded, the extent of the queues that form, and 
when orders may be expected to be completed 
compared to the schedules set for them. If 
management is considering a change in facili­
ties, or a change in procedures, much of the 
implications of these changes may be learned in 
advance by trying them out in the model. 

The comparison of different simulations is 
made on the basis of certain shop statistics, re­
ported out periodically as the simulation pro­
ceeds. These statistics are well know, and 
follow the pattern set by the original GE-IBM 
Job Shop Simulator 4. Such measures as ma­
chine utilization, average waiting time in queue, 
average queue lengths, and order lateness are 
given. A sampling of these reports is included 
in Appendix 1. To the original set we have 
added such measures as shop hours, overtime 
hours, machine substitution counts and some 
others. 

The knowledge gained by simulation, in ex­
periments such as outlined above, is quite use­
ful for many scheduling decisions. However, 
in general, we may state that this use extends 
only to what might be called the guiding of 
scheduling decisions. It does not directly assist 
in the preparation of actual schedules. The 
idea that the technique of simulation may be 
turned to such a use is shown below. 

The job shop simulator devised at Westing­
house Steam Division has been named SHOP-
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SHAPE *. It is completely capable of lending 
itself to all of the planning and experimenta­
tion described above. Its antecedent was the 
Job Shop Simulator ** jointly developed by 
General Electric and the IBM Corporation, and 
at this point the substantial contribution of 
their work should be acknowledged. The fact 
that the remainder of this article dwells on the 
extensive changes and departures from that 
program should not minimize this in any way. 

The simulator developed by Westinghouse 
has three essential features which facilitate 
schedule generation. They are: 

1) All shop orders are treated not as linear 
paths but as networks, which acknowledge 
the constant change in the- combinations 
of parts being operated upon, and the 
need for material and component staging 
at any point in the manufacturing line-up. 

2) The entire sequence of events which takes 
place in a simulation is captured and 
made available later for analysis. 

3) The program Is capable of handling ex­
tensive changes in capacity throughout 
the term of simulation. This includes 
selective overtime and changes in manned­
machine configurations. 

In addition to these three major extensions 
to the program, there is also provided exten­
sive flexibility in the assignment of dispatch 
rules, and the capability to recognize that empty 
machines often perform work routed to other 
machines of a like type. 

II. USE OF NETWORKS IN DEPICTING 
SHOP ORDERS 

In the manufacture of steam turbines, parts 
are often worked on jointly as a sub-assembly 
for one operation, and then disassembled and 
worked on individually in parallel in subse­
quent operations. The logic by which this 
process may be handled in a simulator is cov­
ered thoroughly in 13, and will not be dwelt 
upon at length here. However, Figure 1 shows 
the fundamentals of the network idea. The 
entire figure represents one shop order, made 
up of two sub-orders or feeders, AA and BB. 
Each part in the manufacturing line-up for the 

* Simulator to Hunt Optimal Production Schedules 
Highlighting Aggregates and Particular Events. 

** ibid. 

sub-order is given an identifying number which 
is an integer power of two. * Each operation 
in the line-up is coded with a number which is 
the sum of the identifying numbers for each 
part being worked upon at that operation. 
These codes uniquely identify the parts in­
volved. In the diagram, the operation numbers 
are on the left and the binary codes are on the 
right. Operation 6 is one which works on the 
parts labeled 1, 2, 4 and 8 as a sub-assembly, 
and therefore is coded with a 15. After that 
operation the parts are disassembled and the 
parts labeled 1, 2 and 8 are worked on jointly 
at Operation 7. The part labeled 4 is worked 
on individually at Operation 8. After Operation 
8, this part is assembled with the parts labeled 
16 and 32 for joint processing at Operation 12. 
All of the parts are worked on jointly at Op­
eration 13. 

The disassemblies and assemblies represent 
two types of nodes in the shop order network. 
There is still a third, which is seen at operation 
21. This type of node is a "'call-out", and it 
means that in order to perform Operation 21 
the completed part made on the other sub­
order BB is required, along with some inven­
tory item H. ·'It is thus a staging operation. 
One or many call-outs may take place at any 
operation, and call-outs may be for products 
made on other sub-orders, or for raw materials. 
The logic of the simulator prevents call-out 
operations from starting until all elements 
called out have arrived. 

While the order depicted in Figure 1 may 
appear somewhat complicated, it is not nearly 
as complex as many used in steam turbine 
manufacturing which are presently being simu­
lated on a routine basis. 

The upper part of Figure 2 shows a hypo­
thetical form by which an industrial engineer 
can quickly indicate what combinations of 
parts are required and where. The lower part 
shows the implied network. Cards punched 
from such a form would enable a computer 
program to assign the necessary bindary codes. 

III. SIMULATION AS AN EVENTS 
GENERATOR 

In job shop simulators the modeled shop has 
productive resources in the form of men, ma-

* After Kerpelman. See 5. 
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Figure 1. Use of Networks in Depicting Shop Orders 

terials and machines; and a load of work to be 
performed represented by manufacturing data 
on a set of shop orders. The dynamics of how 
the model shop processes its load are governed 
by a set of decision rules. The decision rule 
which has received the most extensive treat­
ment in the literature is the dispatch rule *, 
which reflects the priority system by which 
jobs are assigned out of queue. The addition 
of assembly, disassembly, and call-out features 
adds to the number of decision rules, since the 
simulator program must rigorously prevent op­
erations from beginning (or even being con-

sidered as in queue) until all necessary parts or 
components have arrived at the work station 
where the operation is to be performed. 

Simulator decision rules are generally well 
known and will not be dwelt upon here. How­
ever it would pay to review several pertinent 
points about the logical basis of simulators. 
First, they are queueing devices. W~en ma­
chines are not available, jobs are put In queue 
behind the machine, just as in a real shop. 
Thus, capacity restraints are specifically re~og­
nized. Second, they are sequential devIces. 
Events take place in the simulator sequentially, 
just as they would in the shop, only in com-
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Figure 2. Coding Form and Resultant Binary Coded Network 

pacted time. When a situation arises in the 
model requiring a decision (usually a dispatch) 
it is made, and all subsequent events are based 
on its outcome. ** The arrival of each job at 
a machine, its dispatch, and its completion, are 
events which take place within the model, at 
certain points in modeled time. At the occur­
rence of these events, SHOPSHAPE records 
them and the time they took place. Thus, the 
model is generating points in time when spe­
cific events may be expected to take place, and 
doing so with full recognition of the decision 
rules. Wherever possible, the decision rules are 

** The importance of this sequential decision process 
is fully developed by Rowe in 9. Many of the forth­
coming ideas are found there, and in 10. 

designed so that the resulting event sequence 
reflects desired management policies. By so 
doing, we establish the satisfactory nature of 
the way in which the simulator generates 
events. 

IV. PARA-SCHEDULES 

In looking at the way in which events took 
place in the model, we may examine them from 
two different directions. If we look at them on 
a "by machine" basis, we are looking at a dis­
patch sequence. If we look at them on a "by 
order" basis, we are looking at a schedule. The 
sequencing experienced by the individual op­
erations of an order, leading to the points in 
time when they were done, is what eventually 
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led to the order completion date, or the point 
in time when the last operation was done. This 
sequencing, or succession in which things were 
done in the model, mayor may not lead to 
order completion dates which correspond to the 
master schedule. Therefore, we call the sched­
ules generated by the model "Para-schedules", 
leaving the term "schedule" to still denote the 
desired schedule or the master schedule. There 
are several basic points about para-schedules: 

First, these schedules are resultant sched­
ules. They are created as a result of what re­
sources were available in the modeled shop to 
process the load, and what decision rules were 
used in the model. 

Second, para-schedules are feasible schedules. 
There is nothing impossible about them. They 
could be put into effect immediately, and 
worked to, if in reality one can provide in the 
shop the men, machines and work modeled by 
the simulator. They recognize every form of 
capacity restriction, and most of the technologi­
cal restrictions. Specifically, they recognize the 
entire process of interaction between orders 
competing for facilities. 

Third, para-schedules are highly detailed pre­
dictions of when work may be expected to be 
finished, recognizing all corrective measures 
that are planned to be taken. The matter of 
their accuracy is discussed below. 

Fourth, the para-schedule resulting from a 
simulation may not necessarily correspond to 
the desired schedule but it can be 'Ynanipulated. 
The usual approach in high volume schedule 
generation is to consider an overload as repre­
senting what is desired to be done, but cannot 
be done. In simulation, overload is impossible. 
That which would have been an overload is 
moved down the time dimension. The work 
goes late. Too late to live with? Quite pos­
sibly so, but the schedules can be manipulated 
and brought to the state most highly advan­
tageous for all factors considered. 

Finally, para-schedules are detailed se­
quences. They represent a dispatch list. In 
the short term they should be quite capable of 
being worked to. In the long term they ob­
viously will not be met in every detail. But the 
dispatch list implements the para-schedule that 

has been determined to yield the best possible 
shop results. 

Para-schedule Manipulation 

A para-schedule, while being fully feasible, 
may not be desirable. I t may be undesirable 
for many reasons, but the two principle ones 
would be the inability of certain critical orders 
to meet their due dates, and the problem that 
too much work is in queue behind certain ma­
chines. These two examples embody most 
scheduling problems, and it' would pay at this 
point to hypothicate a schedule analyst and 
follow what he would do in each case as he 
works toward an improved para-schedule. 

The queueing problem is the simpler of the 
two. The "Analysis of Queues" in Appendix I 
shows how long the queues were at each ma­
chine group, and how many days each job lost 
there because of them. U sing this report, the 
analyst identifies coming problem areas. Once 
found, the question arises, what can he do 
about them, in order to improve the para­
schedule? He does the same thing that would 
be done in the real shop-he finds some way to 
increase capacity. Put more men on the glutted 
machines. Put them on second or third shifts 
for a few weeks. Put on overtime people-­
Saturday, or even Saturday and Sunday. How 
much will this improve the situation? He will 
simulate again and see. Now that some ma­
chine groups are putting more work through, 
quite possibly new bottlenecks develop at other 
machine groups. If so, he will take corrective 
measures on them, resimulate, and have an­
other look. Not many simulations will be re­
quired before he has attained the best per­
formance possible, and all the various correc­
tive measures deemed advisable have been in­
voked. 

This procedure does two things. One, it 
balances manned machine capacity against the 
load as the mix changes through time; and two, 
it produces precise feas'ible para-schedules and 
dispatch sequences. The sequences produced 
are feasible because no more capacity is put 
into the model in the form of men and ma­
chines than can actually be reproduced on the 
shop floor. 

In the design of SHOPSHAPE, great empha­
sis was given to recognizing all kinds of ca-
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pacity changes, and permitting them to take 
place at any time for any duration, and for 
any machines, just as managers are free to do 
in the real shop. Changes in number of ma­
chines, number of shifts, manning and over­
time, are all included. Scheduled down time 
may be incorporated and then shifted if de­
sired. All holidays, weekends, and shutdowns 
are specifically recognized. The complete im­
plications of every capacity change to be con­
sidered on the shop floor is recognized speci­
fically in the model. 

N ow consider the problems with certain criti­
cal orders that failed to get through on time. 
First, how does the analyst spot them? In Ap­
pendix II will be seen a report entitled "Feeder 
Completion Report." This is an extract of the 
para-schedule which devotes one line to each 
sub-order (or feeder) and groups them by shop 
order. Each line shows how one sub-order 
fared compared to its scheduled due date, in 
days late or early. It also shows at which two 
operations it slipped the most and why; i.e., 
bottled up in queue, or failure of mating pieces 
to arrive. Incompleted sub-orders show late or 
early status at the last completed operation. 

The schedule analyst will call for the Order 
History Diagnostic for all orders which appear 
to be cause for concern. This is the complete 
para-schedule for the order, and gives the his­
tory and the slippage of every operation. His 
analysis will begin by looking for any cause 
where the order is being held up by mating 
parts or materials, and it is here that the power 
of the network representation becomes appar­
ent. An example is seen at the first operation 
of the last sub-order on the report, the Inner 
Cylinder Assembly. Operation 1 calls out the 
Inner Cylinder (made on the order just above) 
and a Nozzle Chamber. Assume the Nozzle 
Chamber is a part coming from an external 
source, such as an outside supplier or a feeder 
shop. (A comparable call-out configuration is 
seen at Operation 21 of AA in Figure 1.) Even 
if the Inner Cylinder was available on time, 
Operation 1 would still be delayed almost four 
weeks, because the Nozzle Chamber did not ar­
rive until 628.2. Here is a case where the simu­
lator pinpoints a delay that will be caused by 
an externally supplied part. Such a delay, once 

recognized, can usually be avoided by expe­
diting. 

What the analyst may do about accelerating 
the other delaying component, the Inner Cylin­
der, is somewhat more complicated. Examin­
ing the operation-by-operation experience of 
the order, he will note that 19X is an operation 
which requires the part being worked on at 
Operation 17 and the part being worked on at 
Operation 18. But Operation 18 has encoun­
tered a severe queue delay of 426.4 hours, and 
does not arrive until 628.4. The part from Op­
eration 17 must stay and wait for it for 437 
hours *. In order to decrease the lateness of 
the sub-order fabricating the Inner Cylinder 
Assembly, the analyst will have to find some 
way to accelerate Operation 18 on the sub­
order fabricating the Inner Cylinder. 

As a first step he could consider releasing it 
to the shop earlier. This mayor may not be 
sound. After that, he might take whatever 
measures possible to enhance the priority of 
the order within the priority system. For in­
stance, if "Earliest Scheduled Start Date Next" 
is the dispatch rule used on most machines, he 
might try having the scheduled start dates of 
ope.rations on the order made earlier. 

Wherever the priority for one order is in­
creased, some other orders which compete for 
the same facilities will in turn suffer, and this 
may then lead to other points of concern. If 
there are but few orders of critical concern to 
local management, the analyst should be capable 
of improving their schedule performance, but 
perhaps at some sacrifice elsewhere. As this 
number of critical orders gets higher, the ana­
lyst becomes less and less of a manipulator, 
and more and more of a juggler. There are 
more implications to every change he makes, 
and he becomes increasingly burdened with the 
same problem facing all schedulers; judgements 
are made difficult because volume is high and 
all the work is interdependent. Because of this, 
with some exceptions, it is more desirable to 
return to the aggregate measures of shop per­
formance and manipulate machine group ca­
pacities, rather than manipulate individual 
orders. 

* The time a part spends waiting for mating pieces 
to arrive is called "stay time". 
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One cannot discuss manipulation without en­
tertaining the problem of what constitutes bet­
terschedules. The answer to this lies with the 
viewpoint of local managemnet, and the policies 
which rule in their industries. As many man­
agers can be found who consider on-time de-

livery the dominant consideration as consider 
high machine utilization the most important, 
yet in a job shop a special emphasis on one 
must result in a demeaning of the other. The 
points which are made in the study of dispatch 
rules hold here as well. The use of certain 
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rules tends to implement certain policies, at 
some rejection of others. This applies equally 
well to the schedule analyst, who is also operat­
ing under a set of decision rules. If some cri­
teria could be found lor establishing a cost of 
being late, then schedules could be truly opti­
mized and probably fully determined by the 
computer. Additional research in this area 
could yield rich returns. 

path in the order networks, the overall system 
may be highly or hardly sensitive to changes in 
capacity of a given machine group. While it 
is often startling to see the difference wrought 
by the addition of one man-shift at certain 
machines, it can also be very revealing to see 
the fruitlessness of another placement else­
where. It will be up to the schedule analyst to 
know these sensitivities. 

One of the most important functions of the 
schedule analyst is to learn the sensitivity of 
the system to. changes in different variables. 
Assume he w~~hes to accelerate schedules, and 
is followingt~e aforementioned procedure of 
adding mento·a machine group with a trouble­
some queue. . As one would expect from the 
lessons of queueing theory, or marginal eco­
nomic analysis, each successive addition of a 
man should result in a small absolute reduction 
in the average queue delay there. In turn, de­
.pending on where the jobs are routed to after 
they leave that machine group, the reduction 
in delay may result in substantial, little, or no 
reduction in general aggregated order lateness. 
At some point it will pay to divert the next in­
tended man increment to some other trouble­
some machine group. Depending on its queue, 
its level of utilization, and its importance as a 

One procedure, which is the converse to the 
one above, has also been tried to advantage. 
Here, the analyst begins with the simulation 
of a shop where all .possible capacity is avail­
able, no matter what the utilization percentages. 
This gives an upper limit to the possible sched­
ule performance of the shop. From this point, 
successive selective cutbacks can be made on 
the machine groups showing low utilization in 
the Shop Performance report. Again, as utili­
zations go up, the extent to which the cutbacks 
are continued, with their commensurate de­
terioration in schedules, would be a matter of 
local management decision. This decision 
would be based on comparison of the cost of 
the retained man to the reduction in lost time 
attributable to him. 

The above procedures depict a situation 
which appears to incur extensive computer 
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costs, since repeated runs would be made in 
order to establish the proper balance between 
load and capacity. Actually, in practice this 
will not be the case. If, for instance, new 
para-schedules were generated weekly, then 
much knowledge gained from last week's run 
can be put to use in the current run. In addi­
tion, orders don't suddenly get into trouble. 
They either start out in trouble, or work their 
way into it gradually. In most cases there will 
be sufficient lead time for the analyst to observe 
the impact of his corrective measures in suc­
ceeding simulations. 

Para-schedules can also be influenced by 
changes in decision rules, such as dispatch rules, 
subcontracting policies, and others. However, 
their efforts are studied by separate experi­
ments. If sensitivity to their change proves to 
be high, then they should be programmed to 
respond internally as the schedule analyst 
would manipulate them externally. 

It has been shown above that by manipulat­
ing machine capacities in the model, and manip­
ulating the priorities within the model, the 
para-schedules generated are being manipu­
lated. Coming problems are recognized and 
corrective actions tested weeks or months be­
fore the time they will actually be encountered 
in the shop. If it is impossible to find a para­
schedule in which all of the orders meet all of 
their due dates, then a pretty strong case is 
made that some commitments will have to be 
changed. All of the due dates simply cannot 
be met. Again, the model is available to help 
pick and choose. All this is done without the 
slightest gamble in the shop itself. When the 
analyst has arrived at the best resolution of 
limited capacities and disappointed customers, 
he adopts the para-schedule which represents 
the decisions which gave the best result. At the 
same time he has in hand the major instru­
ment for implementing these decisions: The 
para-schedule itself and the dispatch sequence 
which should produce it. 

Dispatch Lists and the Fuzzy Future 

The dispatch list is the sequence in which op­
erations are to be performed on each machine. 
An example is seen in Appendix II under the 
title "Short Term Schedule." The jobs are 
listed in the order in which they would be dis-

patched, with start time, job times, and other 
pertinent data. They may be printed for any 
interval of time, but what the time span for 
the Short Term should be is a matter particular 
to the shop being simulated. The dispatch list 
is the tool to be used in the shop to implement 
the desired para-schedule. In theory, if the 
shop followed it precisely the para-schedule 
adopted would be met precisely. Obviously, 
however, this cannot be done. From the instant 
the list 'is prepared, things will be happening in 
the shop to prevent this. Parts may not arrive. 
Men may report in sick, leaving machines un­
manned. Work may be scrapped. Metals may 
be extra hard, and machining therefore might 
take a little longer. Nevertheless, in general, 
the lists may be followed. If the dispatcher 
always goes to the highest remaining job on the 
list, he will be implementing the adopted para­
schedule. * 

This leads us to the question: For how long 
into the future are these lists useful? Failure 
to do one job at the appointed time can have 
perturbations throughout the shop, since other 
parts of the list for other machines are based 
on that job being done at the proper time. One 
failure compounding another and another can 
lead to substantial misalignments, when it 
comes to trying to sequence the machines as the 
list says. However, the actual results should 
not be so bad. Here are some reasons why. 

Suppose that the job missed was to have 
proceeded on to a machine where a large bottle­
neck exists. In such a case, the expected queue 
time itself at the bottleneck machine will act as 
a buffer, allowing extra time for the work to 
actually arrive at the machine before the dis­
patch time appearing on the dispatch list. On 
the other hand, suppose the missed job was to 
have proceeded on to a relatively slack machine. 
Such a slack machine would be quite adaptive, 
and capable of handling the work whenever it 
did arrive, or shortly thereafter. Similar rea­
soning would hold for machine groups with 
high traffic. If many machines are working on 
many jobs, then machines empty and are ready 
for new work frequently, and at any such point 

* At the EI Segundo Division of the Hughes Aircraft 
Co. a job shop simulator prepares daily dispatch lists 
for their Fabrication Shop. They are apparently being 
used with great success. See 12. 
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previously scheduled work arriving late will be 
accommodated, tending to put it back on 
schedule. 

One situation which is not easily resolved is 
the case of a machine group of one or few ma­
chines that processes very long operations. 
Here openings are comparatively rare, and 
when a scheduled job hasn't arrived to be dis­
patched, a high level human evaluation is 
called for. Tying up the only machine for a 
long time on the wrong job could cause a sub­
stantial deviation from the intended schedule. 
Obviously at the present state of the art, al­
though dispatch sequences are prepared in 
great detail, they still require human super­
vision. The need is reduced, but it still re­
mains. Now, when the question is raised of 
for how far into the future dispatch lists are 
good, it really means for how long will they 
continue to require less supervision, rather than 
more. This remains to be seen. 

Feedback and Relations to Support Units 

The setting of due dates for shop orders be-· 
gins as a matter of management preference. 
Once established, the standard backward sched­
uling procedure can be used to determine due 
dates for supporting components and asched­
uled start date for each operation *. The sched­
uled start dates are used by the dispatch rules 
in the simulator. It was seen above that the 
simulated results may indicate some due dates 
cannot be met, but the formal act of reschedul­
ing an order may be forestalled, depending on 
how its dispatch priority within the simulator 
is influenced. However, the simulator results 
also bear a relationship to the components in­
cluded in the order which come from external 
sources, such as support shops or aisles, or 
outside suppliers. The para-schedule acknowl­
edges them fully, by means of the "Call-out" 
mechanism. If information is received that a 
component will be late, the computer program 
holds up the order in the model until the time 

* Rowe's flow allowance 9 could be used nicely here, 
since information on queue time distributions would 
be available from previous simulations. It is obvious 
from the lateness figures that the sample reports reflect 
runs where the simulator is pitted against a backward 
schedule having a theoretical minimum of slack. These 
figures should in no way reflect on the ability of the de­
scribed facility to deliver their orders on time! 

the component is expected to arrive. The Order 
History Diagnostic shows the expected arrival 
times of the called out components, and shows 
the slippage, if any, suffered because of delay 
introduced by them. This means that any 
component holding up an order is brought 
to the attention of the analyst so that appro­
priate pressure may be applied to the source 
while there is still time. There is still another 
aspect to this. If an order is running very late, 
either because of late components or bad queue 
experience, and nothing can be done about it, 
then judicious resetting of the due dates for the 
components may be warranted, especially for 
those coming from support shops that are al­
ready overloaded. New due dates would be 
based on the required times indicated in the 
para-schedule. 

v. PROBLEMS OF IMPLEMENTATION 

As may be expected, a large number of prob­
lems loom in trying to set up such a system. 
We will touch on a few of them. 

Supporting Systems 

The validity of the answers generated by the 
simUlator, as in all systems, depends in large 
measure on the amount of information available 
to it. This information classifies easily into 
three parts: configuration information about 
the shop, manufacturing information on orders 
comprising the load, and third, the intersection 
of the first two, which is present shop status. 
The first consists of such things as machines 
available, manning, scheduled down-time, and 
overtime plans. This information is converted 
into parameters for the simulator. Such data 
is comparatively easy to capture. 

The second set of information consists of all 
necessary data on all the orders that compose 
the coming load in the shop. Depending on the 
size of the shop, this data can be quite massive. 
It is embodied in a very large "work ahead" 
file, and the maintenance of this file requires a 
number of supporting systems. Most of its in­
formation is acquired directly from the manu­
facturing line-up. For the bulk of the items in 
a job shop, the transfer of this data into the 
"work ahead" file is not difficult. 

Because simulations often run far out into 
the future, and because job shops must fabri-
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cate many products which are newly designed, 
very often orders must be included in thesimu­
lation which are booked or are forecast, but for 
which no manufacturing data is yet available. 
Therefore a system of representing this work 
to the simulator is needed. Several systems 
have been devised. One is based on composing 
prototype manufacturing line-ups from similar 
orders previously completed. Another is based 
on using Monte Carlo to generate sanlples from 
a transition matrix constructed from historical 
line-ups. * 

The use of component availability dates was 
discussed above. Such information necessitates 
still another system to capture these availa­
bility dates from the support shops and outside 
suppliers involved. 

The shop status information may be quite 
difficult to acquire. Historically, in job shops 
most operational information is not in com­
puter sensitive form. But if simulation is to 
be used with the precision that has been in­
ferred, then at simulation beginning, the model 
shop has to be set up to reflect as accurately as 
possible the present status of the real shop. 
Such information can come from an extensive 
data collection system. 

A final word about supporting systems. No 
device, no matter how precisely it processes 
data, will generate valid answers if the input 
data is not valid. Everywhere that supporting 
systems fail to supply useful information, sub­
jective evaluations begin to reappear. There 
will always be a need for some interpretation 
and evaluation when appraising the para-sched­
ules generated. Unfortunately such interpreta­
tions will grow more and more subjective as 
the model gets less and less information to work 
with. If too much interpretation is required, 
the model has defeated its -own purpose as far 
as generation of schedules is concerned. 

Frequency of Simulations 

In discussing dispatch lists, it was brought 
out that the shop must be expected to go con­
siderably astray of the sequences generated. 
In addition, it may be expected that the older 
the dispatch lists become, the less valid they 
will be. With the passage of time, more and 
more things will happen to disturb the schedule. 

* See \ 

These would be things that neither the simula­
tor nor any other device could have anticipated. 
The questions arise then: a) How often should 
the model be set up again, based on the latest 
information, and a new simulation run? and 
b) How far into the future should the simula­
tion run? Much depends on the uses to which 
the answers are to be put. Generation of dis­
patch lists should be frequent, but need not 
extend too far into the future. Long range 
simulations for load leveling, manpower plan­
ning, and facilities planning would extend very 
far into the future, but are run infrequently. 
In the simplest sense these considerations are 
a function of the production cycle time, the 
number of operations done per day, and the ac­
curacy of the data. There can be, in addi­
tion, many other factors such as engineering 
changes and repair orders, whose effects are 
more difficult to determine. At present, the 
answers must be determined empirically for the 
shop in question. 

Unrepresented Production Patterns 

As may be expected, the usefulness of the 
results of the simulator will be colored by how 
closely the model is an analogue to the real pro­
duction patterns in the shop. A case in point 
is the ,vorking of operations out of sequence. 
The manufacturing line-up infers that this 
should not be allowed, yet sometimes foremen 
on the shop floor find cases where they can 
circumvent this restriction to advantage. The 
simulator does not recognize such a possibility 
at all. 

Other places where the simulator fails to ac­
curately represent some standing shop practices 
is in lap phasing, bumping, and the saving of 
set-ups. Simulators can be written which will 
do such things. The problem is that the cap­
turing of the necessary information which they 
need is prohibitive. 

Replication 

Each run in a simulation is only one sample 
from the joint distribution describing possible 
results from the shop complex. Clearly a 
greater number of samples, or replications, will 
improve the accuracy of the predictions em­
bodied in the para-schedule *. The displays in 

* How much is not certain. See B. 
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Appendices I and II reflect the results of a 
single run, but could easily represent the re­
sults of many replications. It is not a difficult 
data processing problem to merge the results 
of many runs, and format average figures (with 
accompanying dispersion measures) instead of 
a single value. 

Unfortunately, the number of runs required 
to allow for a reasonably stated prediction with 
very modest confidence limits is prohibitively 
high in cost. ** Naturally, in an industrial en­
vironment the cost determines the use. Because 
of this, the number of replications will be low, 
and scientifically justified statements on ac­
curacy will be limited. However, it is felt that 
this does not entirely impugn the usefulness of 
the simulator as an operational tool, for several 
reasons. The first is the above-mentioned fact 
that queues tend to act as buffers. - Another is 
that given a feasible schedule to shoot at, man­
agement will put a marked bias on the play of 
otherwise random events in the shop. Finally, 
the dispatch sequence generated is at least like­
ly to lead to the goals represented by the 
adopted para-schedule. Some dispatch se­
quences which wouldn't lead to the desired 
schedule have been revealed in prior runs, and 
have already been eliminated by manipulation 
of the capacities and priorities in the _ model. 
A large number of possible sequences may yet 
remain which might lead to equally desirable 
para-schedules, but it is questionable how much 
would be gained by seeking them out. 

Scaling 

A major limitation of the scheduling scheme 
may appear with the inability to fit some shops 
into the core of the computer. LeGrande re­
ports on problems of this type in 6. The prob­
lem revolves only partly around the number of 
machines in the shop. A more predominant 
consideration is the amount of load which must 
be represented. Each sub-order is on the 
average half-finished, and all of the unfinished 
part is in core. Thus, one-half the average 
number of operations per sub-order, times the 
average number of orders on the floor, gives the 
minimum number of operations which must be 
kept in core during simulation. The program 

** The proper number of replications per simulation 
could be in the thousands. For example, see 14. 

can require from one to two words of core per 
shop operation, depending on the complexity 
of the networks. To this must be added the 
core required for programs (upwards of 8K) 
and core for tables, which is approximately 

G 

44G+3M+2F+ 154+ ~ 
i = 1 

where 

G is the number of machine groups, 
M is the number of machines, 
F is the maximum number of jobs which 

will be forced into a queue overflow 
zone when the queue area for a particu­
lar machine group is full, 

qj is the mean number of jobs in queue for 
the i-th machine group, 

O'j is the standard deviation of the number 
of jobs in queue for the i-th machine 
group, and 

k is an arbitrary constant which trades 
room for speed when searching for jobs 
in queue. 

There are several remedies which may be 
tried when the model shop becomes too large for 
core, but they are too involved for discussion 
here. 

VI. CONCLUSION 

Job shops by their very nature make auto­
matic procedures difficult. Yet it is hoped that 
these experiments will lead to efficiently mech­
anizing one of the most difficult of the shop's 
control problems: the schedule-sequencing de­
termination. For the first time it appears pos­
sible that at one central logical control point 
the entire shop, with all of the interaction 
among orders competing for facilities, can be 
examined as a unified whole. Ideally, this 
should reduce the need for segmenting and as­
signing to the various departments the resolu­
tion of the scheduling problems that occur 
there. This has been done in the past because 
of the great complexities involved. Those fa­
miliar with this practice know that it adds to 
lead times, and encourages suboptimization. 

We have outlined above a method that might 
be considered somewhat unorthodox to current 
scheduling concepts, since the detailed sequenc-
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ing determines the schedule, instead of vice 
versa. The full extent of its value remains 
to be proven. We have tried to accurately 
portray the problems that exist in implementing 
such a scheme. It should be pointed out that 
most of these problems are not especially dif­
ficult, or beyond the capabilities of present 
practices. They are typical implementation 
problems. 
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HYTRAN* - A SOFTWARE SYSTEM TO AID 

THE ANALOG PROGRAMMER 
Wolfgang Ocker and Sandra Teger 

Electronic Associates, Inc., Princeton, New Jersey 

1. INTRODUCTION 

In recent years much attention has been 
given to combined analogi digital computation, 
dividing the problem on hand into an analog 
and a digital part and letting each task be per­
formed most economically by the part of the 
system which suits it best. This philosophy not 
only applies to simultaneous analog and digital 
computation, but also to a sequential use of 
these two means of computation. One such ap­
plication is the use of digital C0111puters in the 
programming and checking of analog comput­
ers, a task ideally suited to a digital machine 
and especially practical in an hybrid installa­
tion where the digital computer is most readily 
available to the analog programmer. HY­
TRAN, a system of software programs has 
been developed to provide quick digital assist­
ance in the programming of the analog part of 
the HYDAC 2400 hybrid computer system **, 
even to the analog programmer unfamiliar with 
digital computers. 

Since the function of the HYTRAN system 
is to replace or complement certain manual pro­
cedures, it is necessary to briefly consider the 
manual method of analog programming and 
checking on which it is based 1. This method 
features a two-way static check and can be 
broken down into the following steps: 

(1) In order to comply with the voltage 
range of the analog computer every 

* A service Mark of Electronic Associates, Inc. 

problem variable is multiplied by a scale 
factor to form the machine variable in 
volts. 

(2) Parameters stated implicitely have to be 
evaluated. 

(3) A computer diagram is prepared, show­
ing the analog hardware implementation 
of the equations, component modes and 
the expressions represented on pot­
sheets and amplifier sheets. 

IA\ 
\'"%1 Potentiometer settings are determined 

by evaluating the constant expressions of 
the scaled equations. 

(5) To check proper scaling and the correct­
ness of the computer diagram, an off­
line static check is carried out as fol­
lows: 
(a) The theoretical calculations are per­

formed by substituting into the ori­
ginal equations a test initial condi­
tion for each variable that is repre­
sented by an integrator output, and 
solving for their highest derivatives. 

(b) After the chosen test initial condi­
tions are scaled and entered into the 
computer diagram as integrator out­
put voltages, the programmer cal­
culates and records on the diagram 
all component outputs using the 
voltages present at their input. 

( c) The computed voltages representing 
the highest derivatives are com-

** The HYDAC 2400 includes the digital DDP-24 and the analog PACE 231R. 
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pared with their respective theo­
retical values, any discrepancies are 
traced back to their origin and cor­
rected, and finally the static check 
voltages are recorded on the poten­
tiometer, multiplier, and amplifier 
sheets. 

(6) The analog patch-panel is wired accord­
ing to the computer diagram, and the 
potentiometers are set. 

(7) To insure correct patching and opera­
tional hardware, all amplifiers are read 
out on-line and compared with their re­
spective, computed static check values. 

HYTRAN has been written to process digit­
ally the following rather tedious routines of 
analog programming: 

(1) The calculation of the theoretical static 
check values, voltage static check values, 
and potentiometer settings. 

(2) The performance of the static check it­
self, both off-line and on-line *. 

(3) The complete documentation of the ana­
log program. 

Figure 1 shows the steps required to program 
an analog problem with HYTRAN. 

The scaling of the physical equations and the 
preparation of the computer diagram are still 
performed by the programmer who thereby 
maintains direct control over the analog imple­
mentation of the problem. In order to permit 
the calculation of the theoretical static check 
values, HYTRAN must be given the original 
problem statement and a set of test initial con­
ditions. To calculate the static check voltages 
and to perform the static checks, the input has 
to include the patching according to the com­
puter diagram, component settings or modes, 
and the highest derivatives with their corres­
ponding integrators and scale factors. Expres­
sions representing other component outputs 
may be optionally inputted to aid in the auto­
matic pin-pointing of errors during the off-line 
static check. All inputs are punched on paper 

*Since the use of an ADIOS desk for input/output to 
the analog computer is of particular advantage with 
HYTRAN, this discussion presumes its availability for 
the automatic setting of potentiometers and perform­
ance of the on-line static check from data punched on 
paper tape. 
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Figure 1. Programming of an Analog Computer. 

tape in an analog oriented format, which uses 
patch-panel terminology and allows complex 
algebraic expressions. 

HYTRAN outputs include the conventional 
amplifier and potentiometer sheets, cross-refer­
encing and symbol tables. Potentiometer set­
tings and static check values are put out as 
typewriter documents and on paper tape. The 
format of this tape allows automatic setting of 
potentiometers as well as automatic read-out 
and check of static check values by means of 
the ADIOS input/output desk. For a more 
thorough check of the analog set-up and hard­
ware, the ADIOS tape of measured static check 
values can be processed by HYTRAN, provid­
ing a rapid means of locating mispatching or 
component failures (Figure 2) . 

II STATIC CHECK 

The practice of computing two independent 
sets of check values has been used as a basis for 
the HYTRAN off-line static check. The conven­
tional analog circuit diagram states for at least 
some components their expected outputs, by an 
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Figure 2. HYTRAN Inputs and Outputs. 

expression in terms of parameters, variables 
and scalefactors. By substituting for the para­
meter and variable names in these expressions 
their values in physical units, the so-called theo­
retical static check value is obtained. 

Further input defines the analog component 
interconnections or patching inf()rmation, 
which is used to calculate the voltage check 
values. In this computation all input voltages 
to a component, the kind of input to which they 
are connected and the transfer· function of the 
component are used to determine its voltage 
output. 

When both voltage and theoretical values are 
available for a component output they.are com­
pared and, if in agreement, they yield the off­
line static check value for that component; If 
the values do not agree then the error is isolated 
by retaining the theoretical value as static 
check value for all subsequent use and an error 
message is given. Values exceeding the voltage 
range of the computer will also cause error­
messages, but will be retained for further static 
check calculations. 

The amount of input information required de­
pends upon the degree of checking desired. If 
the expression for some component _ output is 
omitted the voltage value is retained as static 
check value. This has the disadvantage of al­
lowing any undetected error to propagate, rath­
er than isolating it to one component as is 
done when the expression is given. Conversely, 
if the patching connections are not stated, the 
theoretical values are used as _ static check 

values. In this case this particular portion of 
the computer diagram cannot be checked for 
consistency with the problem statement. 

In the special case of a high gain amplifier, 
checking can be performed only if the expres­
sion at the component output is explicitly 
stated. The program here checks that the sum 
of the component inputs is zero. Similarly for 
an algebraic loop, the output expression of some 
component in the loop must be given. 

The statements defining the analog connec­
tions need not be given in any particular order. 
Since a connection statement can only be evalu­
ated once all· input voltages to the component 
have become defined, the resulting static check 
values are computed in an order that is different 
from the order of their input statements. The 
static check values are punched in this computa­
tional order in ADIOS tape format for all com­
ponents with voltage outputs. This is impor­
tant for the on-line static check, which if per­
formed by ADIOS in a conventional way can­
not distinguish propagated errors from original 
errors. However, discrepancies typed out in 
computational sequence are always preceded by 
the original error"thus eliminating any tracing 
for the error source~ In addition a typeout of 
the errors in computational sequence and an al­
phabetical listing of all component names and 
their static check values is gi~en. 

III THE ON-LINE STATIC CHECK 

While in systems without digital access to the 
analog computer the on-line static check must 
be performed by manual comparison, the avail­
ability of a digital input/ output. system pro­
vid~s the HYTRAN user. with a choice of two 
automatic procedures in systems using ADIOS. 
One method is to feed the HYTRAN.generated 
static check tape into ADIOS to obtain an auto­
matic comparison between the calculated and 
the measured values. It is used whenever the 
digital computer is not available at the time of 
the analog on-line check. 

However if the DDP-24 is available at on­
line check-out time, the use of HYTRAN allows 
an improved consistency check that is ex­
pectedto become an invaluable tool for debug­
ging of complex problems as well as for pre­
ventive maintenance. checks. Rather than 
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merely comparing the measured component out­
puts with their respective, computed voltages, 
the HYTRAN on-line check tests the transfer­
functions of each component used. To accomp­
lish this the voltages present at the inputs of a 
particular component as well as its output volt­
age must be known. The outputs are easily 
measured since ADIOS allows automatic punch­
ing on paper tape of the output voltages of the 
components used. The inputs on the other hand 
are either zero (unused) or equal to the voltage 
at the output of some component, and are there­
fore easily determined from the connection 
statements given by the programmer. HY­
TRAN then computes the output voltages of 
each component used in the program and com­
pares it with the measured output, using the 
tolerances stated in the individual component 
specifications. 

In these computations only the measured 
voltages are used. The resulting theoretical 
outputs are discarded immediately after the 
comparison with the measured value. There­
fore, errors do not propagate, but are always 
pin-pointed at the component level. As a re­
sult, accumulated errors do not necessarily 
cause an error message (as they would in the 
conventional on-line check), but the contribu­
tion of. each component involved is investigated 
and checked against its specifications. 

It is sometimes desirable to repeat the on-line 
check at some later time after initial conditions 
and parameters have been changed. This is 
possible without the manual entry of such 
changes, as they are reflected in a change of 
potentiometer settings. These settings are up­
dated by reading in a paper tape containing the 
actual settings of all potentiometers used, which 
can be automatically punched by ADIOS. All al­
gebraic loops, including high-gain amplifier cir­
cuits can be checked in closed-loop fashion even 
if their output is unknown, because the on-line 
check never uses the given component expres­
sions. 

It is also possible to use the on-line check 
after switching the analog computer into hold 
mode during a problem run for a reading of 
component outputs. Because HYTRAN simu­
lates integrators in initial condition mode (i.e., 
the output is solely determined by the voltage 
of the initial condition input), a read-out dur-

ing hold causes an error at every integrator 
output. But since HYTRAN can distinguish 
between actual errors and propagated errors, 
the remainder of thp "program can be checked 
correctly. 

Error messages generated in the on-line 
check state the erroneous component, the cor­
rect output voltage, and the actual voltage 
measured. We recall that the correct voltage 
is computed from the component function and 
the connection statement. Therefore, discrep­
ancies can be caused by component failure as 
well as by patching errors. These error sources 
can be separated if the analog computer hard­
ware is thoroughly checked before the program 
is set-up. This hardware check too can be per­
formed with the HYTRAN on-line diagnostic 
program, using an artificial problem which has 
been correctly and permanently wired on an 
analog patch-panel. 

IV THE HYTRAN LANGUAGE 

The input language used in HYTRAN is ori­
ented toward the analog programming proce­
dure rather than towards the digital machine. 
Input data can be written in a form which 
closely resembles the programmer's own way of 
documenting analog programs. The HYTRAN 
inputs fall into two main categories: inputs 
which describe the problem to be solved, and 
inputs describing its implementation on the 
analog computer. 

1. The Problem Statement 
The problem is usually stated in mathemati­

cal notation. HYTRAN therefore accepts the 
problem statement in a mathematically oriented 
language which bears resemblance to the pro­
gramming languages ALGO L 6 and FO R­
TAN 7. 

The problem information to be inputted in­
cludes parameter values, variable initial condi­
tions, and a set of algebraic and differential 
equations-all in terms of physical units. 
Parameters can be defined by expressions con­
taining numerical values as well as other 
parameters, while initial conditions of variables 
can be given in terms of numerical values 
parameters, or other initial conditions. All al­
gebraic and differential equations have to be in 
explicit form with respect to the unknown vari-
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able, or the highest derivative, respectively. 
Otherwise, the equations should be inputted in 
their original form so that any errors that may 
occur during further manipulations on the 
problem equations will be revealed or the theo­
retical static check. 

HYTRAN accepts expressions and equations 
containing· not only the basic algebraic opera­
tions, but also the functions sine, cosine, arctan­
gent, square root, logarithms to the bases ten 
and e, and the exponent of e. In addition, the 
program processes certain discontinuous func­
tions which are often used in analog computa­
tion such as absolute value, sign, limits and 
dead zones. 

Relational operators are another means of ob­
taining step-functions. They are represented by 
the relations less than and greater than (for 
practical purposes, equal to does not exist in 
analog computation). While a logical and can 
be performed by multiplication, the or is an ex­
plicit Boolean operator in HYTRAN. 

2. Circuit Diagram Information 
An analog program is generated in the form 

of an analog circuit diagram by which the pro­
grammer states the outputs of components, 
their modes, their interconnections (patching), 
and in case of potentiometers and switches, 
their setting or position. Inputting this infor­
mation enables HYTRAN to check the analog 
program both against the original problem in­
put and against the physical set-up on the ana­
log computers. The general form of a com­
ponent statement is: 

Component Name and Number, Mode = 
Expression; Connection Statement 

A console number is given only when a 
change from one console to another occurs. 
By mode one designates the configuration in 
which a component is used, or any special 
connections not involving problem variables. 
For example amplifiers can be connected in 
integrator, summer or high gain mode. The 
expression gives the (static check) output of 
the analog component in terms of problem 
variables and scalefactors, written in the 
format used in the problem statement. Fin­
ally, a connection statement is defined as a 
sequence of up to 32 input statements. Each 

input statement consists of an input designa­
tion (usually identical with the pre-patch 
panel input name), followed by the name of 
the analog component which is connected to 
the specific input. 

All computer input data are punched on 
paper tape, each type of information being pre­
ceded by one of the following keywords. These 
input sections must be presented in the order 
given below, although within any section the 
statements can be in arbitrary order. 

(1) The PARAMETER and VARIABLE 
keywords are followed respectively by 
parameters as used for the static check, 
and all variable initial conditions. 
Parameters and variables may be re­
ferred to by mnemonic names which, in 
turn, can be defined in terms of other 
parameters, initial conditions, or by nu­
merical values. A name thus defined need 
not be referred to beforehand, but must 
be specified within the same keyword 
section. 

(2) The EQUATION portion contains the 
set of theoretical differential and alge­
braic equations· to "be implemented on the 
analog computer. 

(3) The keyword COMPONENTS is fol­
lowed by the illforIl1ation contained in 
the circuit diagram whcih represents the 
analog program. 

As a simple example of how the input infor­
mation to HYTRAN is written let us consider 
the case of a second order equation (see Figure 
3). The inputs shown in Figure 4 should be pro­
vided if a complete check is desired. Note that 
comments pertinent to the program input, but 
meaningless to the digital program, can be in­
serted if preceded by a tab. The input begins 
with the problem identification, which contains 
any information the programmer wishes to use 
as a heading for all typewriter outputs. The 
resulting outputs are shown in Figures 5 
through 7. 

V. THE INDIVIDUAL HYTRAN PRO­
GRAMS 

The HYTRAN system presently consists of 
three programs which together provide the 
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Figure 3. Sample Problem and Analog Circuit 
Diagram. 

features described above (see Figure 8). These 
programs are: 

(a) an interpretive (off-line) static check 
generator, 

(b) an on-line diagnostic program, 
( c) a documenting program. 

Each program can be contained in memory, 
yet allows enough data storage to process 
three, 120 amplifier, analog consoles in an 8K 
core. 

The off-line static check generator converts 
the information on the programmer's input 
tape into a compact form suitable for digital 
processing. A t the same time, it checks the 
input for proper format, typing format-error 
messages when necessary. Defined expressions 
are evaluated immediately, while expressions 
containing undefined symbols are stored in 
memory until they become defined by subse­
quent input statements. Static check voltages 
are evaluated in a similar manner. Here the 
connection statements may be stored awaiting 
the calculation of the static check values of all 
components mentioned in the statement. Dur­
ing the entire process, an intermediate tape is 
punched containing in compact form all in-

PARAMETERS 

S =5 

A =zo 

OMEG = 10 

BETA = 10 

TO =1/10 

VARIABLES 

Y' = A*SIN (OMEG*TO) 

Y = A*COS(OMEG*TO)/OMEG 

EQUATIONS 

Y" = - OMEG**Z*Y 

COMPONENTS 

POO = S*Y'/IOO;+REF 

AOO, I=S*Y'; IC:POO 

COO = s*y" I(BETA*lO);I:QOO 

Q01. = OMEG/BETA;AOO 

POI = S*OMEG*Y 1100; -REF 

AO!, I = --S*OMEG*Y; IC:POI 

S = SCALE FACTOR 

A = AMPLITUDE 

BETA = ~ = TIME SCALE 

COl = -S*OMEG*Y'/(BETA*IO); I:QOl 

AOZ, S=S*OMEG*Y; I:AOI 

QOO = OMEG/BETA; AOZ 
Figure 4. HYTRAN Input Format. 

formation necessary to run the remaining 
HYTRAN programs, including possible future 
extensions of the HYTRAN system. 

The inputs to the on-line diagnostic genera­
tor are the intermediate tape punched by the 
off-line program, a tape of measured potenti­
ometer settings, and a tape of measured com­
ponent outputs. The intermediate tape pro­
vides the connection statements and potenti­
ometer settings necessary for the computation 

STATIC CHECK VALUES 

AOO 47.48 

AOl 87.99 

AOZ 87.99 

COO -8.79 

COl 4.75 

POO -47.48 

POI 87.99 

QOO 87.99 

QOl 4.74 

Figure 5. HYTRAN Static Check Output. 
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PARAMETERS 

A 2.00000 El 

BETA 1. 00000 El 

OMEG 1. 00000 El 

S 5.00000 EO 

TO 1. 00000 E-l 

VARIABLES 

Y 8. 799416E-2 

Y' 4.74835E-l 

Y" 8.7994l6EO 

Figure 6. HYTRAN Symbol Table Output. 

of the exact output voltages. The two remain­
ing tapes are direct outputs from the ADIOS 
input/output desk. Any measured potentiom­
eter setting read replaces the corresponding 
theoretical setting which was read previously 
from intermediate tape, however, the reading 
of the measured settings is optional and can 
be suppressed by the use of a console switch. 

The documenting program sorts and con­
verts the compact information on the inter-

COMPONENTS 

COMP MODE EXPR SETT 

AOO A*S*Y' 

AOI ~*S*Y 

A02 S A*S*Y 

POO A*S*Y'/100 .4748 

POI A*S*OMEG*Y /100 .8799 

QOO OMEG/BETA 1.0000 

001 OMEG/BETA 1. 0000 

CROSS REFERENCE 

PARAM OCCURRENCE 

A POO, POI 

OMEG 000,001 

S POO, POI 

Y POI 

Y' POO 

Figure 7. HYTRAN Component Sheets and Cross 
Reference. 
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Figure 8. Flow of Information in HYTRAN. 

mediate tape, resulting in component sheets 
that contain the analog components in an 
orderly sequence, together with their modes, 
and their outputs or settings in terms of prob­
lem parameters, variables and scalefactors. In 
addition, an alphabetic list of values of para­
meters and variables is typed out, and ADIOS 
tapes are generated. One ADIOS tape con­
tains all potentiometer settings in a' format 
which allows the automatic settings of potent i­
ometers, the other one contains the computed 
static check values for on-line static check by 
ADIOS. 

The documenting program finally generates 
a cross-reference sheet which consists of an 
alphabetic list of parameters and variables. 
Each name is followed by a list of potenti­
ometers, the settings of which are dependent 
upon the parameter in question. 

VI CONCLUSIONS 

HYTRAN is expected to become an im­
portant tool to the analog programmer as it 
increases programming efficiency and justifies 
a high degree of confidence in the analog solu­
tion. Some of the reasons that lead to this con­
clusion are: 

(1) The automatic evaluation of algebraic 
expressions saves programming time 
and prevents arithmetic errors. 

(2) The generation of pot-set tape saves 
time and eliminates the errors which 
could occur when transferring the nu­
merical settings from the desk-calcula­
tor to the ADIOS keyboard. 
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(3) The documentation generated by HY­
TRAN provides a complete, error-free, 
and standard documentation of analog 
programs. Cross-referencing is ex­
pected to speed-up the changing of 
parameters and scalefactors. 

(4) The off-line static check will check 
every component in the computer dia­
gram. Automatic static check calcula­
tions save time and are error free. The 
checking on the component level allows 
one to omit the checking of any selected 
portion of the computer diagram, such 
as circuits that must be checked dy­
namically or that are considered stand­
ard routines. Such an omission does not 
prevent the checking of other compo­
nents in the same algebraic chain. 

(5) Simple changes of connections, para­
meters or scalefactors may change the 
majority of the static check values and 
pot-settings in a program, but only a 
simple change is necessary on the HY­
TRAN input tape in order to generate 
a complete, updated set of ADIOS tapes 
and documents. Obviously, when a new 
static check is not required, changes can 
be made in a conventional way and 
there is no need to update the input 
tape for every minor change. 

(6) When the on-line static check is per­
formed by ADIOS, the computational 
sequence of the static check values on 
the HYTRAN generated tape eliminates 
tracing for the error sources. 

(7) The use of the on-line diagnostic pro­
gram allows pin-pointing of errors on 
the component level, even for closed 
algebraic loops of unknown output. 

(8) In conjunction with a permanently 
wired test problem, the on-line diagnos­
tic program can be used for daily main­
tenance checks. 

Man-power savings from the above benefits 
out-weight by far the additional effort involved 
in preparing the HYTRAN input tape, a job 
that is comparable in size to that of manually 
preparing potentiometer and amplifier sheets. 

The present system is easily expanded to in­
clude new features (such as the generation of 
a digital check solution for example), some of 
which may 'evolve from the practical use of 
the present HYTRAN system. Since such 
additions will require little additional input 
information, their benefits will be available at 
small extra cost and therefore further increase 
the over-all economy of the system. 
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I. INTRODUCTION 

Perhaps the most formidable challenge in the 
field of digital computer applications is the de­
velopment of equipment and programs which 
will extend the creative power of scientific 
users. The crux of the problem, of course, is 
intimate man-machine communication-a most 
elusive and difficult-to-define characteristic. The 
engineer requires a conveniently manageable 
system; the scientist requires sufficient inti­
macy to provide real insight into the complex 
interplay of problem variables; the creative 
user requires computing power and flexibility 
to permit imaginative use of the computer and 
graphic display to permit recognition of inven­
tive solutions. The development of computers 
designed specifically for such applications has 
been slow due to the difficulty of ascertaining 
the proper man-machine relationship. 

Simulation is perhaps unique. It does require 
close man-machine communication but the na­
ture of this interplay is fairly well known. 
Years of experience are available in which 
analog computers were used for simulation in 
the entire spectrum of scientific disciplines. 
The structural organization of the analog com­
puter-its collection of specialized computing 
elements which can be interconnected in almost 
any desir~d configuration-makes it a most 
flexible tool for the engineer, who is trained 
to visualize a system as a complex of subsys­
tems. The forte of the analog computer is in 
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the very intimacy of the man-machine com­
munication it permits. Since the nature of the 
task can be so well defined for this particular 
application, digital simulation seems a most 
logical starting point in the quest for more 
creative use of computers. Only when we are 
able to perform this task well-with ease and 
flexibility comparable to simulation using ana­
log computers-only then, should we proceed 
to those applications where the man-machine 
relationship is more nebulous. 

Digital analog simulator programs-pro­
grams which affect the elements and organiza­
tion of analog computers-are no novelty. 
Since the first attempt by Selfridge 1 in 1955, 
there have appeared a number of such pro­
grams; best known perhaps are DEPI,2 
ASTRAL,3 DEPI 4,4 DYSAC,5 PARTNER,G 
DAS, 7 JANIS, 8 and MIDAS.9 Significant im­
provements have been made in both the inter­
connection languages and the computational 
aspects. The latest and most sophisticated of 
these programs is MIDAS; it incorporates the 
best features of its predecessors while present­
ing several important innovations. However, 
all these previous programs seem to share a 
common failing in that while they succeed to 
a greater or lesser extent in using block­
oriented languages to express the simulation 
configuration, they fail to provide the on-line 
operational flexibility of the analog computer. 
P ACTOL US is an attempt to focus attention 
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upon this seemingly ignored aspect of digital 
simulation. 

According to ancient myth, everything that 
King Midas touched turned into gold. This was 
fine until dinner time when his food and drink 
also turned into gold and what had seemingly 
been a boon wrested from the gods became a 
curse. To remedy this golden problem, he was 
advised to bathe in the River Pactolus. Digital 
simulation programs, particularly MIDAS, 
have certainly seemed aurous to many users; 
yet they must be regarded with mixed feelings, 
at best, by the engineer who is accustomed to 
"twisting a pot" or "throwing in a lag circuit" 
at an analog computer console. To such a user, 
the remoteness of the digital computer and 
"turn-around" time seem something of a curse 
on digital simulation. P ACTOLUS is intended 
to demonstrate that with an appropriate termi­
nal as an operating console, this "curse" can 
be remedied. P ACTOL US is designed to per­
mit the user to "modify the patchboard," 
"twist pots," and "watch the plotter" as is the 
wont of the analog devotee. The name of the 
program was chosen in deference to the struc­
tural and computational excellence of the 
MIDAS program and to suggest a direction for 
future development. 

II. GENERAL DESCRIPTION 

Simulation is a well-established engineering 
and scientific tool with applications ranging 
from simple mechanics to hydrodynamics, aero­
space, and bio-niedical research. It is presently 
so widely used that most definitions are unduly 
restrictive. An excellent definition which 
avoids this fault is the following: "Simulation 
is the act of representing some aspects of the 
real world by numbers or symbols which may 
be easily manipUlated to facilitate their 
study."lo Analog and digital computers obvi­
ously differ m3:rkedly in the manner in which 
they operate; thus, considerable differences are 
to be expected between analog and digital simu­
lation. Digital simulation offers significant ad­
vantages which have been capably described in 
References 1-9. The consensus of these is that 
for many types of problems, digital simulation 
can provide more reliable and accurate results 
with less over-all engineering time and effort. 
Much of this potential has already been 

achieved in the various digital analog simula­
tor programs. In part, the development of 
P ACTOL US was intended as a commentary on 
the language and computational aspects of 
these programs. Primarily, however, we are 
concerned with the second half of the defini­
tion; that is, improving the ability of the digi­
tal computer user to manipulate the numbers 
or symbols. 

PACTOLUS might be described as a block­
oriented interpretive program with on-line 
control and input-output capabilities. The pro­
gram, written in FORTRAN II-D, was devel­
oped for the IBM 1620 computer with the 1627 
Plotter and the Card Read-Punch. This is a 
comparatively small, scientific computer and 
several features which might have been incor­
porated with a larger computer had to be fore­
gone. The overriding concern, however, in the 
development of this program was the demon­
stration of operational flexibility. For this 
purpose, the 1620 with its plotter, typewriter, 
and sense switches has been an excellent choice. 
The configuration and parameter specifications 
may be prepared in advance of a problem ses­
sion in the form of a deck of cards, or this data 
may be entered via the typewriter in a simple, 
convenient manner. If "patchboard wiring" is 
performed at the console by means of the type­
writer, the punch automatically produces a 
card which may be added to the previously 
prepared deck. The user, observing the pri­
mary output as it is plotted, may interrupt the 
run at will to modify the configuration, param­
eters, or initial conditions. The typewriter 
provides a neat, permanent record of the con­
figuration and parameter values and any modi­
fications specified by the user. In addition, the 
user specifies those variables of secondary in­
terest which will be recorded by the typewriter 
at specified intervals during the run. 

The program incorporates all the standard 
analog computer elements-summing ampli­
fiers, inverters, integrators, multipliers, relays 
-plus many special purpose analog circuits­
absolute value, bang-bang, dead space, limiters, 
clippers, zero order hold circuits. Table I con­
tains the complete list of the available elements 
and symbols. The program is presently limited 
to a maximum of 75 blocks in a simulation; 
no more than 25 integrators or 25 unit delay 
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NAME 

ARCTANGENT 

BANG-BANG 

COSINE 

DEAD SPACE 

EXPONENTIAL 

FUNCTION 
GENERATOR 

GAIN 

HALF POWER 

INTEGRATOR 

JITTER 

TYPE 

I 

J 

SYMBOL DESCRIPTION 

+1 >0 
e 0 for e = 0 

o -1 i<O 

eo .. cos (e
i
) ARGUMENT IN 

RADIANS 

e = 0 
o 

eo = Max (O,e
i 

- PI) for ei > 0 

eo = Min (O,e
i 

- P
2
) e

1 
< 0 

LINEAR INTERPOLATION 
10 EVEN SEGMENTS 
BETWEEN e

i 
'" 0 AND 

e
i 

=- 100 

eo = ~ SQUARE ROOT 

e
i 
~-eo RANDOMNUMBERGENERATOR 
~ BETWEEN:1 

Table r. Definition of PACTOLUS Elements. 
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NAME 

CONSTANT 

LIMITER 

MAGNITUDE 

NEGATIVE 
CLIPPER 

OFFSET 

POSITIVE 
CLIPPER 

QUIT 

RELAY 

SINE 

TIME PULSE 
GENERATOR 

TYPE 

K 

L 

N 

P 

Q 

R 

S 

T 

SYMBOL 

a-1 
n e . 0 

e-~e 
i~ 0 

e.··~e 
i~ 0 

e··-~e 
1 ~ 0 

e 1=9-Q n e e 0 
2 

e ~ e 
1 ~ 0 

e ~e 
i~ 0 

DESCRIPTION 

e = P 
o I 

Min(ei , PI) > o· 
for e

i 
e = o 

e 
o 

e 
o 

Max(e1"p 2) > 0 

o s 0 

> 0 

QUIT(TERMINATE RUN) 
IF e

1 
> e2 

e 
o ~ 

< 0 

e = s1n(e
i
) ARGUMENT 

o IN RADIANS 

GENERA TES PULSE TRAIN WITH 
PERIOD EQUAL TO PI FIRST PULSE 

OCCURS WHEN e
1 

?! 0 
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NAME TYPE 

UNIT DELAY U 

VACUOUS V 

WEIGHTED 
SUMMER W 

MULTIPLIER X 

WYE Y 

ZERO ORDER Z 
HOLD 

SUMMER + 

DIVIDER / 

SIGN INVERTER 

SPECIAL 1-9 

SYMBOL 

e~O 

e~eo 

e~ e P2 n e 
Pa 0 

e 

e~ 
e l n eo 

e1=B>-n e 
e

2 
0 

e~~ e Z n e 
I 0 

DESCRIPTION 

e = ei(t -at/2) 
0 

eo ;&! f(ei) 

USED IN CONJUNCTION 
WITH ELEMENT WYE 

e = Ple l + P2e2 + Paea 0 

e o = e l e2 

LOGICAL BRANCH ELEMENT 
USED FOR IMPLICIT OPERATIONS 

SAMPLES WHENEVER e
2 

> 0 

e = ±e ±e ±e 
o I 2 a 

ONLY ELEMENT WHERE NEGATIVE' 
SIGN IS PERMISSIBLE IN 
CONFIGURA TION SPECIFICATION 

e = o 

SUBROUTINES SUPPLIED 
BY USER 

n REPRESENTS THE BLOCK NUMBER 
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elements may be used. The program is also 
restricted at present to a maximum of three 
function generators. The structure of the pro­
gram is sufficiently simple that modifications 
or additions to the set of PACTOLUS elements 
may easily be made to accommodate the re­
quirements of particular users. 

The innovation in PACTOLUS is its atten.., 
tion throughout to operational flexibility. In 
most other respects, PACTOLUS represents a 
conscious synthesis of those features which in 
our opinion are the best of the many previous 
programs. Its interconnection language is mod­
eled on that of ASTRAL which is flexible yet 
simple. Each block is identified by number 
which also identifies the output from the block. 
The type of element for each block is specified 
by a single alphanumeric character or mathe­
matical symbol. The inputs to a block are speci­
fied by listing the block numbers of those ele­
ments which provide the inputs. Structurally, 
PACTOLUS is an interpretive program and is 
closely modeled on MIDAS. Like MIDAS, it 
uses the excellent sorting procedure-a logical 
test for determining the proper order for the 
block computations-which had been a feature 
of the ASTRAL program. The second-order 
Runge-Kutta integration scheme used in PAC­
TOLUS is a compromise between the Euler 
integration advocated by the developers of DAS 
and PARTNER and the more sophisticated 
formulas used in many of the other programs. 
For those simulations which commonly involve 
discontinuous functions, the use of higher­
order numerical integration formulas seems 
unwarranted; apart from accuracy considera­
tions, the requirements of the output plotter 
demand fairly small time increments even at 
the cost of prolonged solution time. 

In addition to the complement of computing 
elements provided with most of the digital ana­
log simulator programs, PACTOLUS includes 
an element similar to the Implicit Function 
element which is one of the outstanding fea­
tures of MIDAS. This element is used for the 
solution of equations of the form Y = f (Y). It 
permits iteration without advancing the time 
clock until convergence is (hopefully) achieved. 
The implementation of this feature seems 
somewhat superior in PACTOLUS; if the con­
vergence criterion is not satisfieq, the computa-

tion proceeds again through those blocks in the 
algebraic loop. MIDAS appears to recompute 
all the preceding blocks on the sort list, regard­
less of whether or not they pertain to the 
Implicit Function. This modification would 
seemingly result in a significant reduction of 
solution time for large problems involving Im­
plicit Functions. 

Another modest contribution in P ACTOL US 
is the incorporation of a number of special ele­
ments of unspecified function. An interconnec­
tion specification for one of these special ele­
ments results in a subroutine call during the 
interpretive portion of the program. The user 
may design any complex function for this ele­
ment by development of the appropriate sub­
routine. This permits the user to add elements 
to the. standard complement without repro­
gramming the main P ACTOLUS program. The 
JANIS program, although structurally quite 
different, must be credited with first utilizing 
subroutines to achieve this "do-it-yourself" 
capability.ll 

III. OPERATING PROCEDURE 
AND EXAMPLES 

The simulation configuration is the specifica­
tion of the interconnection of the computing 
blocks, where each block is one of the standard 
set of P ACTOL US elements or one of the nine 
special element blocks which the user may pre­
pare for his particular requirements. Each 
block has but a single output and no more than 
three inputs. The program is incapable of 
handling algebraic loops; the existence of such 
a loop will result in a "sort failure" message. 
Since the digital computer is a serial device, 
the various computations specified by the simu­
lation configuration must be performed for 
each time cycle in some particular order. The 
computation for any block should not be at­
tempted until all its inputs have been computed 
during that iteration. The program automati­
cally performs a sorting operation to achieve 
this ordering after each configuration change. 
It is presumed that each simulation involves at 
least one integrator; the program uses a simple 
second-order Runge-Kutta numerical integra­
tion formula to approximate the outputs of the 
integrators during the specified integration 
interval. 
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Example 1: Use of the program is perhaps 
best understood by consideration of several 
simple examples. Figure 1 is a simulation dia­
gram for a second-order system. The program 
presumes that ordinarily the user will approach 
the computer with most of the "patchboard" 
pre-wired; that is, with a deck of cards specify­
ing the configuration and parameter values. 
For this simple example, however, it is as easy 
to put a deck of blank cards in the card reader 
and do the "wiring" at the console. Figure 2 
shows the typewriter record from this problem 
session. The user first turned on Sense Switch 
# 1 to indicate his intention to enter configura­
tion specifications from the typewriter. The 
computer then typed the following: 

Figure 1. Simulation Diagram for Second-Order 
System Example. 

~ ~o ~~ i 
( 2.0 ~ 
(20) ; 
(13) ; 

CONFIGURATION SPECIFICATION 

BLOCK TYPE INPUT 1 INPUT 2 INPUT 3 
() () () () () 

The user then turned the typewriter paper 
roller back one line and inserted the first speci­
fication within the parentheses. After he 
pressed the RS (release and start) key, the 

PACTOLUS DIG IT AL ANALOG SIMULATOR PROGRAM 

BLOCK 
(17 ) 
(IJ6) 
(7) 
(23) 
( IJ) 
(13) 
(19) 
( 20) 

CONF I GURATION SPEC I F I CATI ON 
TYPE INPUT 1 INPUT 2 

(K) ~ () () 
(+) ( 17' (-13) 
(I) ( IJ6 J; ( ) 
(G) (1) ~ ( ) 
(G) (1); ( ) 
(I) (IJ); ( ) 
(0) ( 76); ( ) 
(G) ( 19); ( ) 

INPUT 3 
( ) 
(-23) ; 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 

INITIAL CONDITIONS AND PARAMETERS 
BLOCK I C/PAR1 PAR2 PAR3 

(17) ( 0.0 ;) 
(13) (-100.0;) 
( IJ) ( 1.0 ; ) 
( 23 ) ( 0 • 8 ) ,. 
(20) (20.0; ) 
(19) (-5.0; ) 

) INTEGRATION INTERVAL 
) TOTAL T !ME 
) PRINT INTERVAL 

HOR I ZONTAL AX I S 
VERTICAL AXIS 

TIME OUTPUT("6) 
0.000 100.00000 
2.000 -30.51581 
IJ .000 -13.03217 
6.000 9.20051 
8.000 ."8282 

10.000 -1.96715 

OUTPUT( 7) OUTPUT( 13) 
0.00000 -100.00000 

"1.30857 -1.21098 
-11.02521 21.8523" 

-6.96698 -3.62699 
3.8"609 -3.55969 

.50806 1.56010 

INITIAL CONDITIONS AND PARAMETERS 
BLOCK IC/PAR1 PAR2 PAR3 

(23) ( 1.2 ; 

TIME OUTPUT 116 OUTPUT 1 OUTPUT 13 
0.000 100.00000 0.00000 -100.00000 
2.000 -23.IJ3231 31.60320 -21.691"6 
".000 -8.61192" -.65"6" 9."31181 
6.000 2.27288 -3.39"39 1.8003§ 
8.000 .111380 .11838 -.88581 

10.000 -.21880 .30531 -.1"76" 
INITIAL CONDITIONS AND PARAMETERS 

BLOCK Ie/PARI PAR2 PAR3 
(23) ( 0.11 ; 

TIME OUTPUT 116 OUTPUT 1 OUTPUT 13 
0.000 100.00000 0.00000 -100.00000 
2.000 -38.091118 63.26133 12 .19025 
".000 -25.5018" -32.190511 38.38"06 
6.000 30.08132 -12.01936 -25.21358 
8.000 -3.85580 20.56715 -11.37106 

10.000 -11.511220 -5.06982 13.51013 

OUTPUT< 2 3) ; 
0.00000 

31.8IJ686 
-8.82016 
-5.51358 

3.07681 
."06IJ5 

OUTPUT 23 
0.00000 

"5.123811 
-.18556 

-IJ.07321 

.1"206 

.366"5 

OUTPUT 23 
0.00000 

25.30IJ53 
-12.81621 

-11.807111 
8.22686 

-2.02192 

Figure 2. Typewriter Record for Second-Order System Example. 
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typewriter automatically typed another line of 
parentheses in anticipation of the next specifi­
cation. In addition, as each configuration speci­
fication was entered from the typewriter, the 
punch produced a card with the identical data. 
The collection of these cards forms the wired 
"patchboard" which may then be saved for 
subsequent problem sessions, thereby eliminat­
ing the necessity of re-typing the specifications. 
Just as the analog user merely needs to get the 
patch-cord into a hole to make a connection, the 
PACTOLUS user need only get the proper 
block number within the parentheses; he is not 
distracted at the console by complicated input 
format requirements. 

The equivalence of the format of the con­
figuration specifications shown in Figure 2 to 
the simulation diagram of Figure 1 should be 
obvious. Block 17 is a Constant input (K). 
Block 46 is a Summer (+) with inputs from 
blocks 17, 13, and 23; sign inversion is indi­
cated for the latter two. In a similar manner, 
blocks 4 and 23 are Gain potentiometers (G) 
and blocks 7 and 13 are Integrators (I). Thus, 
each component is uniquely identified by a 
block number. The type of element for each 
block is specified by a single letter or symbol. 
These have been assigned as either the first 
letter of the name of the element or as the 
common mathematical symbol for the opera­
tion. Table I contains the complete list of ele­
ments and the corresponding symbols. The 
inputs to a block are specified by the block 
numbers of the components which provide the 
inputs. Block numbers may be assigned arbi­
trarily between 1-75. Block 76 by definition 
is the time variable; it appears as the input to 
block 19 since ~t is desired to plot the time 
response of the second-order system versus 
time. It should be noted that the plot size is 
fixed at 10 inches square. The origin is at the 
center and each axis is scaled for a maximum 
of +100.0. In this example, blocks 19 and 20 
correspond to the horizontal position and gain 
controls of the conventional X-Y recorder. 

After entering the last configuration specifi­
cation, the user turned off Sense Switch # 1 
and turned on #2 to enter initial condition and 
parameter values from the typewriter. Once 
again, the typewriter typed a line of paren­
theses to indicate the proper format. Figure 2 

shows that the user specified an initial condi­
tion for Integrator 13 at -100.0 and the 
damping factor control, Gain potentiometer 23, 
at 0.8. After each of these parameter specifi­
cations, the punch again produced a card; thus, 
both the configuration and the parameters be­
came part of the permanent deck. After enter­
ing the last of these specifications, the user 
turned off the sense switch. The typewriter 
then requested timing data for the run and 
specification of those outputs which were to be 
plotted and those which were to be printed. 
These entries are simply performed since it is 
only necessary that the typing be within the 
parentheses provided. The actual time required 
to "wire at the console," "set the pots," and 
"adjust the output devices" for this example 
was 6V2 minutes. This time cost would seem 
to be comparable to that required for the 
equivalent analog setup, particularly if we in­
sist that the analog operator prepare a neat, 
permanent record of the interconnection and all 
parameter values. 

The plotter record is shown in Figure 3. 
Three runs were made, each for a different 
value of the damping factor. Figure 2 shows 
the parameter changes for Gain block 23. Each 
run required 1 minute, 45 seconds; the "pot" 
changes required 15 seconds each. Run times 
might have been shortened by increasing the 

100 r----------.,.--------..., 

Time in seconds 

Figure 3. Plotter Record for Second-Order 
System Example. 
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typewriter print interval or the integration 
step. 

Example 2: Let us next consider a slightly 
more complicated example which illustrates 
how P ACTOL US might be used for a study in 
speech synthesis. This particular simulation 
is concerned simply with the response of the 
first speech formant when driven by a glottal 
pulse. The first formant corresponds roughly 
to that portion of the speech signal which re­
mains after passing the signal through a 1 KC 
low-pass filter. The glottal pulse is closely mod­
eled by the triangular waveform produced by 
block 6 of Figure 4; the effect of the vocal tract 
is simulated by blocks 7-9. During utterance 
of a stop consonant such as the "b" of the word 
"bah," the lips must open quickly with a result­
ing rapid rise in the natural frequency of the 
vocal tract. This variation in frequency of the 
first formant is controlled by blocks 10-12. The 
user might experiment with various frequency 
changes to match actual speech records. To 
add the second or third formants, it would only 
be necessary to add additional second-order fil­
ters and their associated frequency controllers. 

In preparation for this problem session, the 
ll~Pl' pntpl'Pc1 the configuration and parameter 
;~~~ifi~~ti-o;;~ on speci;l coding forms which 
"I'YIi-nimi'7o r>cmr>ovon ·with data format; from these 
~~di~;~f~rv~~~~-; deck of cards was punched. In 

PLOTTER 
VERTICAL 
AXIS 

~PWI'TER 
76(t) --~=IZONTAL 

Figure 4. Simulation Diagram for Speech Synthesis 
Example 

this sense, the user approached the console with 
a "pre-wired patchboard." The specifications 
for blocks 10-12 were omitted, however, as 
might have occurred from oversight or from 
early indecision with the form of this formant 
frequency controller portion of the simulation. 
The program caused the configuration specifica­
tion cards to be read until a blank card was 
encountered; each of these statements was also 
printed by the typewriter for the convenience 
of the user. Since a block 12 had been specified 
as the input to block 13, but block 12 was as 
yeturlspecified,\the program recognized an oper­
ator' error. After listing the sort failures as 
an aid for debugging, the typewriter produced 
a line of parentheses, anticipating that the user 
would wish to correct the error or omission. 
The user then turned on Sense Switch #1 until 
he had entered blocks 10-12. The program 
then proceeded to read the parameter specifica­
tion cards until a blank card was encountered. 
During this period, the user had turned on 
Sense Switch #2 to permit typewriter entry of 
the parameters for blocks 10-12. 

Figure 5 shows that the user neglected to 
depress the numeric shift key of the typewriter 
when entering the total time for the run. To 
recover from this or any other typing error, the 
user simply turns on Sense Switch #4 prior 
to pressing the RS key. He would then turn 
the switch off and reenter the data on the next 
line. Figure 6 shows the plotter output from 
this run. The total time for reading the input 
deck, adding the three blocks, adj usting their 
parameters and performing the run was 11 
minutes. The user finally changed the configu­
ration and repeated the run in order to plot the 
"glottal pulse." Note that for this purpose, it 
was not necessary to change parameters, tim­
ing, or output data; a series of runs can be 
performed with a minimum of effort. 

Exa1nple 3: The third example is a simula­
tion of a sampled-data feedback control system. 
Figure 7 is a diagrammatic representation of 
the system; Figure 8 shows the corresponding 
simulation diagram. The objective of this 
study was to obtain a digital compensator de­
sign which would permit the system output to 
respond in an acceptable manner to the flat­
topped ramp input. Of particular interest is 
the manner in which the Time Pulse Generator 
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PACTOLUS DIGITAL ANALOG SIMULATOR PROGRAM 

BLOCK 
1 
2 
3 

-5 
6 
7 
I 
9 

13 
n 
19 
20 
50 
51 
60 

CONF I GURA TI ON SPEC I FICA TI ON 
TYPE INPUT 1 INPUT 2 

G 2 0 
I 50 51 
R ~ 1 

76 -51 
3 0 
5 0 
6 I 
9 a 
7 0 

12 0 
13 13 
76 0 
19 0 
o 0 
o 0 
9 0 

INPUT 3 
o 
o 
2 
o 
o 
o 
7 
o 
o 
o 
o 
o 
o 
o 
o 
o 

SORT FAILURE - BLOCK 7 
SORT FA I LURE - BLOCK I 
SORT FA I LURE - BLOCK 13 
SORT FAI LURE - BLOCK n 

( O.O~ t 
( UI*' I 

12.0 , 
( 2.0' 
(20) , 
(60) 

ClO) 
(11) 
Cl2) 

(K), ( ) 
(I) ( 10) I 
(L) ( 1111 

INITIAL CONDITIONS AND PARAMETERS 
BLOCK I C/PARI PAR2 PAR3 

1 -1.50000 0.00000 0.00000 
5 0.00000 0.00000 0.00000 
7 0.00000 -1.00000 -.30000 

13 6.21320 0.00000 0.00000 
19 16.66666 0.00000 0.00000 
20 -100.00000 0.00000 0.00000 
50 100.00000 0.00000 0.00000 
51 ~.OOOOO 0.00000 0.00000 
60 2.00000 0.00000 0.00000 

(10) (O.~' ) ) ) 
(11) (0.2,) ) ) 
(12) ( 0.6 ) 0.0') ) 

) INTEGRATION INTERVAL 
) TOTAL TIME 

) PRINT INTERVAL 
HORIZONTAL AXIS 
VERTI CAL AX I S 

TIME OUTPUT( 6) 
0.000 0.00000 
2.000 50.00000 
~.OOO 100.00000 
6.000 25.00000 
1.000 0.00000 

10.000 0.00000 
12.000 0.00000 

OUTPUT(12) 
.20000 
.21000 
.36000 • __ 000 

.52000 

.60000 

.60000 

CONFIGURATION SPECIFICATION 

OUTPUT( 7l 
0.00000 

n.760U 
-5.ln,. 
-9.'1651 
-2.126-' 
-.51610 
1.7H51 

BLOCK TYPE INPUT 1 INPUT 2 INPUT 3 
(60) (.) (611 () () 

INITIAL CONDITIONS AND PARAMETERS 
BLOCK IC/PARI PAR2 PAR3 

TIME 
0.000 
2.000 
_.000 
6.000 
1.000 

10.000 
H.OOO 

OUTPUT 6 
0.00000 

50.00000 
100.00000 

25.00000 
0.00000 
0.00000 
0.00000 

OUTPUT 12 
.20000 
.21000 
.36000 
.~_ooo 
.52000 
.60000 
.60000 

OUTPUT 7 
0.00000 

1'.760.0 
"-3.11391 
-9.'1651 
-2.126,7 

-.51610 
1.rU51 

OUTPUT( 9)1 
0.00000 

17.66a5 
15.79_76 

.56082 
-.52720 
-.69110 
-.27715 

OUTPUT 9 
0.00000 

17 .6&1'5 
15.79"6 

.56012 
-.52720 
-.69110 
-.27715 

Figure 5. Typewriter Record for Speech 
Synthesis Example. 

element is used in conjunction with Zero Order 
Hold and Unit Delay elements to implement the 
digital compensator. Block 50 produces a series 
of pulses at the sampling rate; these pulses 
trigger the hold elements. By alternating hold 
and delay elements, one may obtain the sam­
pled-data operators z-I, z-2, etc. The output of 
the system is shown in the plotter record, Fig­
ure 9. A number of runs were conducted with 
various values for the parameters of blocks 12 
and 13 which determine the gain and weighting 
factors for the digital controller. Each of these 
runs required 1 Y2 minutes, exclusive of the 
time required to decide upon the next set of 
values. 

Special Elements 1-9 

When a user finds recurring use for a par­
ticular operation, it may be advantageous to 

define a Special element rather than resort to 
a number of the standard PACTOLUS ele­
ments. For instance, one might prepare a 
defining subroutine for element Special 1 to 
perform the function of the digital controller 
of the third example: 

E() (z) k (I-a Z-l) 

(l-b Z-l) 

100 r-------------~~-----.----------------------~ 

-100~ ____________________ ~ __________________ ~ 

o Time in milliseconds 

Figure 6. Plotter Record for Speech Synthesis 
Example. 

--

I 
~ 

12 

Figure 7. Diagrammatic Representation of Sampled­
Data Feedback Control Problem. 

TI(I) 

PlDI'TD 
VllRTlCAL 
AD! 

~_PL<7M'EII TI(I) __ ~ ~~ORTAL 

Figure 8. Simulation Diagram for Sampled-Data 
Feedback Control Problem. 



PACTOLUS-A DIGITAL ANALOG SIMULATOR PROGRAM FOR THE IBM 1620 309 

200 .-------------r--------,----...... SUBROUTINE SUBIIC.PAR.I.J.K.LI 
C I NPUT IS CI J I 

Time in minutes 2.5 

C OUTPUT IS CI I I 
DIMENSION CI761.PARI75.31 
IF I C(76) I 2.1.2 

C INITIALIZE AT T • 0 
CAY· PARII.lJ 

A .. PARII,21 
B .. PARI 1,3 I 

EO .. 0.0 
ZMIEI .. 0.0 
lMIEO .. Q.O 

2 IF I CIK) I 4.4,3 
C SAMPLING OCCURS WHEN SECOND INPUT IS POSITIVE 

EI .. ClJ) 
EO .. CAY*IEI - A*ZMIEI) + B*ZMIEO 

ZMIEO • EO 
ZM1EI .. EI 

4 C( I I .. EO 
RETURN 
END 

Figure 10. FORTRAN Program Example for Definition 
of Element "Special 1." 

Figure 9. Plotter Record for Sampled-Data Feedback 
Control Problem. 

guage. Figure 10 shows a FORTRAN program 
which would perform this operation; it is im­
portant to note that due to the simplicity of the 
P ACTOL US program, only modest program­
ming skill is necessary for the definition of the 
element. This new element, Special 1, can then 
replace blocks 2-15 of Figure 8. The type­
writer record illustrating use of this element 
as block 13 is shown in Figure 11. 

Such a program might be easily written in 
FORTRAN or, for a large simulation in which 
speed was critical, in symbolic machine lan-

( 0~02 V 
( 2.5; 
( 0.5; 
(5); 
(70); 

PACTOLUS DIGITAL ANALOG SIMULATOR PROGRAM 

CONFIGURATION SPECIFICATION 
BLOCK TYPE INPUT 1 INPUT 2 INPUT 3 

1 6l -41 0 
13 1 1 50 0 
20 I 21 13 0 
21 G 20 0 0 
30 I 21 0 0 
31 G 30 0 0 
40 I 41 31 0 
41 G 40 0 0 
50 T 76 0 0 
60 G 76 0 0 
61 L 60 0 0 
70 0 31 0 0 
74 G 76 0 0 
75 '0 74 0 0 

INITIAL CONDITIONS AND PARAMETERS 
BLOCK I C/PARI PAR2 PAR3 

20 0.00000 -1.00000 0.00000 
21 -10.00000 0.00000 0.00000 
30 0.00000 0.00000 0.00000 
31 10.00000 0.00000 0.00000 
40 0.00000 -1.00000 0.00000 
41 -20.00000 0.00000 0.00000 
50 .20000 0.00000 0.00000 
60 125.00000 0.00000 0.00000 
61 125.00000 0.00000 0.00000 
70 -100.00000 0.00000 0.00000 
74 80.00000 0.00000 0.00000 
75 -100.00000 0.00000 0.00000 

(13) (0.75 ) (0.6 ) ( 0.5 ~ ) 
) INTEGRATION INTERVAL 
) TOTAL TIME 
) PRINT INTERVAL 

HORIZONTAL AXIS 
VERTICAL AXIS 

TIME OUTPUT(13) 
0.000 0.00000 

.500 24.87666 
1.000 6. Q5500 
1.500 -5.72807 
2.000 3.14409 
2.500 -3.21131 

OUTPUT(21) OUTPUT(31) 
0.00000 0.00000 

21.64Q80 40.72684 
".65402 115.54003 

-3.77466 128. Q7023 
3.20176 121.58805 

-2.35386 127.13260 

OUTPUrc4 1>, 
o.oonrtl! 

31.04115 
112.51337 
130.}t1467 
1?0.33100 
128.0!W'-4 

Figure 11. Typewriter Record for Sampled-Data Feedback Control 
Problem. 
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Implicit Operations: The "Wye," logical 
branch element is used in conjunction with 
the Vacuous element V for simulations which 
involve implicit equations of the form Y = 
f(Y,X). On a digital computer, such an equa­
tion is usually solved by iteration. In a realistic 
problem, Y will often be merely an intermedi­
ate variable used in subsequent equations of the 
form Z = g (Y,X). It is the function of the 
Wye element to determine whether the itera­
tion on Y is sufficient to satisfy the error cri­
terion. If not, further iterations must be made 
until the test is (hopefully) satisfied. This iter­
ative procedure must be performed within each 
of the integration time steps. 

There is no need, however, to recompute X 
at each iteration since it is independent of the 
iteration. Similarly, the computation of Z 
ought not be attempted until the iteration on 
Y is satisfied. The MIDAS program was the 
first of its kind to have a capability for implicit 
equations, but it does not presently incorporate 
these considerations. The implementation in 
PACTOLUS is presented (as a peace offer­
ing?) for possible improvement of MIDAS and 
subsequent programs. 

The manner in which the elements are to be 
used is indicated in Figure 12. Although block 
numbers may be assigned arbitrarily, for illus­
trative purposes they have been assigned in 
the same sequence as that determined by the 

z 

Y test 

~---:x~-----~ --..I 

Figure 12. Example Use of the Wye and Vacuous 
Elements for Simulations Involving Implicit Equations. 

sorting operation. Blocks 1-16 compute a 
quantity X. The initial estimate for Y is given 
as an initial condition for V block 17. Blocks 
18-30 compute f (Y,X). Block 31 compares 
f (Y,X) with the previous estimate of Y. Pa­
rameter 1 of the Wye element specifies the rela­
tive error criterion. If the relative error be­
tween the outputs of blocks 30 and 17 is less 
than specified by that parameter, then the out­
put of block 31 is set equal to that from block 
30. Computation of Z then proceeds in normal 
manner. 

If the error criterion is not satisfied, the 
operation of Wye block 31 is as follows: 

(1) A new estimate for Y is computed using 
parameter 2 of the Wye element 

Yn+l = (l - P2) f (Yn,X) + P2Yn ; 

(2) Yn +1 replaces the previous Yn as the out­
put of block 17; 

(3) The program "branches back" to the 
computation of that element on the sort 
list which follows the V block-in this 
case, it branches to block 18. 

The inputs, if any, to the Vacuous element V 
do not affect its output. Its initial output is 
specified as an initial condition; its subsequent 
output is determined by the associated Wye 
block. The position of the V element in the sort 
list follows that of each of its inputs. Its pur­
pose is to ensure that, when a "branch back" 
occurs, these preceding blocks will not be re­
computed. There is no requirement that the 
implicit equation actually involve any of the 
inputs to the Vacuous block. 

Sense Switches 

An important factor in the flexibility of ana­
log simulation is the ease with which the oper­
ator can control the run, starting and stopping 
it at will. PACTOLUS uses the sense switches 
of the 1620 to achieve the same measure of 
control provided by the usual "Standby-Initial 
Condition-Operate" switch of the analog com­
puter. The operator may terminate a run at 
any time by momentarily turning on Sense 
Switch .#4. He then sets the sense switches in 
accordance with the operational option he de­
sires and presses the Start switch to continue. 
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The sense switch settings for the various op­
tions are as follows: 

Sense Switch #1 on permits the operator to 
modify both the config­
uration and initial con­
dition/parameter speci­
fications; 

Sense Switch #2 on permits the operator to 
modify the initial con­
dition/parameter speci­
fications; 

Sense Switch #3 on permits the operator to 
modify the timing and 
output specifications; 

Sense Switch #4 on causes the plotter to 
move the paper beyond 
the present plot and 
prepare a new plot 
frame. 

Sense Switch #3 may be used independently 
or in conjunction with Sense Switches .#1 or 
#2. Sense Switch #4 is always used in con­
junction with one or more of the other switches. 
If the computer is restarted with all switches 
off, the program presumes that an entirely new 
simulation is to be started and attempts to read 
the configuration specifications. 

IV. SUMMARY 

Our objective in developing PACTOLUS has 
been twofold: to make a critical evaluation of 
the various techniques employed in previous 
digital analog simulator programs and to dem­
onstrate that a modus operandi comparable to 
that of analog computer users could be ob­
tained for digital simulation. P ACTOL US em­
bodies the conclusions of that evaluation. No 
attempt has been made herein to detail the rea­
sons for accepting certain features while re­
jecting others. With the hope that this" effort 
will be of value in the development of subse­
quent simulation programs, we merely wish to 
state that this is our considered~ opinion after 
serious study. 

Whether P ACTOLUS does indeed represent 
an innovation in operational flexibility will only 
be known after the program achieves much 
wider usage. It has been used for a number of 

small applications,12 but we readily admit a 
measure of bias. We do feel that P ACTOL US 
demonstrates that our objective can be ob­
tained. To the user of the small scientific com­
puter, the program offers a means of conveni­
ently solving many of those problems for which 
an analog computer would otherwise have been 
required. The techniques employed in P ACTO­
LUS are hopefully suggestive of the manner 
in which digital simulation might be provided 
at remote terminals serviced by a large digital 
computer. It is our thought that digital simula­
tion is on the brink of significant expansion. 
The availability of appropriate terminals and 
visual display units will herald this event. 
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,MIDAS - HOW IT WORKS AND HOW IT'S WORKED 
Harry E. Petersen, F. John Sansom, Robert T. Hartnett, 

and L. Milton Warshawsky 
Directorate of Computation 
Wright-Patterson AFB, Ohio 

INTRODUCTION 

The possibility of using a digital computer 
to obtain check solutions for the analog was 
recognized by many people at the dawn of our 
15 year old history. Unfortunately several 
problems existed then, mainly at the digital 
end, which made this impracticable. Digital 
computers of that day were terribly slow, of 
small capacity and painfully primitive in their 
programming methods. I t was usually the 
case when a digital check solution was sought 
for an incoming analog problem, that it was 
several months after the problem had been 
solved on the analog computer and the results 
turned over to the customer before the digital 
check solution made its appearance. The fact 
that the two solutions hardly ever agreed was 
another deterrent to the employment of this 
system. 

As we all know, digital computers have 
made tremendous strides in speed, capacity and 
programmability. In the area of programming 
-and throughout this paper-we're talking of 
scientific problems expressible as differential 
equations; the main effort has been in the con­
struction of languages such as Fortran, Algol, 
etc. to permit entering the problem in a quasi­
mathematical form, with the machine taking 
over the job of converting these to the individ­
ual serial elemental steps. While the progress 
along this line has been truly awe-inspiring to 
an analog man (usually an engineer), the re­
sulting language has become quite foreign to 
him so that if he wishes to avail himself of the 

313 

digital computer he must normally employ an 
interpreter in the form of a digital program­
mer (usually a mathematician). This means 
that he must describe his engineering problem 
in the required form, detail, and with sufficient 
technical insight to have the digital program­
mer develop a workable program on the first 
try. This doesn't happen very often and it is 
the consensus of opinion among computing fa­
cility managers that a maj or source of the 
difficulty lies in the fact that the engineer does 
not always realize the full mathematical impli­
cations of his problem. For example, in specify­
ing that a displacement is limited, he might 
not state what happens to the velocity. This 
can lead to all sorts of errors as an analog 
programmer would know. It is, of course, 
possible for an analog programmer to learn 
to program a digital computer by studying 
Fortran. This has been attempted here at 
Wright-Patterson AF Base with little success, 
mainly because, unless used very often, the 
knowledge is lost so that each time a consider­
able relearning period is required. Some 
computing facilities have even embarked on 
cross-training programs so that each type of 
programmer knows the other's methods. 
While this has much to recommend it, it is 
often impracticable. 

In March of 1963, Mr. Roger Gaskill of 
Martin-Orlando explained to us the operation 
of DAS (Digital Analog Simulator) / a block 
diagram type of digital program which he in­
tended for use by control system engineers who 
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did not have ready access to an analog com­
puter. We immediately recognized in this type 
of program the possibility of achieving our 
long-sought goal of a means to obtain digital 
check solutions to our analog problems by hav­
ing the analog programmer program the 
digital computer himself! We found that our 
analog engineers became quite proficient in the 
use of DAS after about one hour's training 
and were obtaining digital solutions that 
checked those of the analog. 

At this point several limitations of this en­
tire method should be acknowledged. First, the 
idea that obtaining agreement between the 
digital and analog solutions is very worthwhile 
is based mainly on an intuitive approach. After 
all both solutions could be wrong since the 
same programming error could be made in 
both. Secondly, the validity of the mathemati­
cal model is not checked, merely the computed 
solution. Finally, it might be argued that the 
necessity of the analog man communicating 
the problem to his digital counterpart has the 
value of making him think clearly and organize 
his work well. This is lost if he programs the 
digital computer himself. In spite of these 
limitations we thought it wise to pursue this 
idea. 

Although DAS triggered our activity in the 
field of analog-type digital programs, several 
others preceded it. A partial list of these and 
other such programs would include: 

DEPP California Institute of Tech-
nology 

DYSAC:J University of Wisconsin 

DIDAS4 Lockheed-Georgia 

P ARTNER5 Honeywell Aeronautical Divi­
sion 

DYNASARG General Electric, Jet Engine 
Division 

Almost all of these-with the possible ex­
ception of PARTNER (Proof of Analog Re­
sults Through a Numerical Equivalent 
Routine) -had as their prime purpose the 
avoidance of the analog computer. They merely 
wished to borrow the beautifully simple pro­
gramming techniques of the electronic differ­
ential analyzer and apply them to the digital 
computer. 

While DAS proved to be very useful to us, 
certain basic modifications were felt to be 
necessary to tailor it better to our needs. Prin­
cipal among these modifications was a rather 
sophisticated integration routine to replace the 
simple fixed interval rectangular type of DAS. 
Other important changes were made but the 
change in the integration scheme and our wish 
to acknowledge our debt to DAS, led us to the 
choice of the name MIDAS, an acronym mean­
ing Modified Integration Digital Analog Simu­
lator. In this paper a brief description of the 
method of using MIDAS. will be given, fol­
lowed by a summary of our experience in using 
it in a large' analog facility for about 18 
months. 

How MIDAS Works 
To a large degree, programming in MIDAS 

closely resembles the methods used in DAS 
and, therefore, an analog computer. There are 
usually three steps we go through in obtaining 
a solution. First we prepare a block diagram 
very similar to an analog schematic indicating 
the operational elements required to solve the 
problem. N ext we prepare a listing which is 
our means of directing the punching of the 
cards, one for each line. This listing indicates 
the source of the inputs to each element and 
defines the values of the required numerical 
data. After the cards have been punched and 
checked they are turned in to our IBM 7094 
operations group where the information is 
placed on magnetic tape and this tape, along 
with the MIDAS subroutine, is used to solve 
our particular problem. The results are given 
to us on printed form according to a rather 
fixed format. 

As an illustration of the steps involved in 
preparing a MIDAS program, let us set up the 
classical second-order linear differential equa­
tion for the mass, spring and damper system. 

The equation is: ... ~ 

Mx + Bx + Kx = 0 (1) 

with initial conditions: 
x(O) = A 

~(O) = 0 

The MIDAS block diagram for this equation 
is shown in Figure 1. The following points 
should be noted: 
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DESCRIPTION OF MIDAS ELEMENTS 

SYMBOL & NAME 

1. MATHEMATICAL OPERATIONS 
- - --,IC 

INTEGRATE ~ 

SUM 
Al~ A2 • S. out 
Ak;. l 

NEGATIVE 

MULTIPLY 

DMDE 

ABSOLUTE VALUE -ijABSj I ou~ 
SQUARE ROOT ~ SQRj 

EXPONENTIAL ~ 
NATURAL ~ LOGARITHM LNj 

2. SWITCIUNG ELEMENTS 

OUTPUT RELAY 

~ INPUT RELAY B IRj out 
(SPDT) 

~ FUNCTION SWITCH 
C l (SP3T) 

LIMITER ~ 

OUTPUT 

t 

Out = fAdt + IC 
o 

K 
Out =1; Ai 

i=1 

K~6 

Out = -A 

Out = A/B 

Out = IAI 

Out = +..[A 

Out = eA 

Out = inA 

Bout=sinA 

Cout= cos A 

B~O 

C out A 
D out 0 

.. ,{: 
00" H 

00" H 

REMARKS 

1. Only one input can be accepted. 
2. The initial condition, IC, is transmitted 

via an IC card and its corresponding 

data card. 

The order of listing the inputs is very 
important. The numerator, A, must be 

listed first. 

Defined only for Ali: 0 

InA 

Defined only for A> 0 14 
1. Input angle, A, must be in radians. 
2. Since there are two outputs, tbetle moat 

be specified as RESjB or RESjC 
depe~ on w!!etller tile sine or 
cosine Is required. I 

1. Output Is an angle In radians. 
2. Defined only for the 1st and 4th quadrantst 

i.e., -"'/2 ~ out < 11/2 I 
SPECIAL NOTE: 

Since all of these elements have more 

than one input, the listing of inputs 

must be in the normal order of A, B, C. 

B<O 

~ 0 Equivalent to: A + 

A - D 

Ci!:O 

~ Equivalent to: 
C<O 

D>O 

~ D=O Equivalent to: B + 
0 

D<"O C ~ 

out 
A>B 

~ C"A"B Equivalent to: 
A<C 

B>C 

Table~. Description of MIDAS Elements. 
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TABLE 1 DESCRIPTION OF MIDAS ELEMENTS (cont'd) 

BANG-BANG 

DEAD SPACE 

5. RUN TERMINA nON 

FINISH 

6. INSERTION OF NUMERICAL ITEMS 

CONSTANT or 
PARAMETER 

Name " 
I 

~ 

r A~O out; 

-B A<O 

r· A>B 

out; 0 C;;A~B 

A-C A<C 

None 

Per Data Card 

out 

Equivalent to: f.-
out 

# Equivalent to: 

B>C 

1. When A ~ B, computation is stopped. 
2. Every program must col1taIn at least one 

FIN statement. 
3. Numbering of FIN statements is not req'd. 

1. The name of a constant or parameter can 
be composed of at most six alphanumeric 
symbols excluding blanks and commas. 

2. The names must not be the same as that of 
a functional element used In the.problem. 

3. The name will appear on a C0N or PAR 
card and its numerical value on a data card 

4. Do not use these special names: 
IT, TR, MININT, !/lPTI0N. 

INITIAL CONDITION 

41 

IC 

Ij 

Ij(O) 1. The name must be the same as the inte­
grator with which it is associated. 

2. The name must appear on an IC (or PAR) 
card and its value on a data card. 

3. Only non-zero IC's need be specified. 
4. Such IC's must be specified for every run 

even though they do not change. 
SPECIAL STATEMENTS 

HEADER HDR 

READOUT R0 

END END 

SPECIAL NAMES 

INDEPENDENT IT 
VARIABLE 

TIME BETWEEN TR 
READOUTS 

MINIMUM INTERVAL 
OF INTEGRA TrON MININT 

INTEGRA TION 
OPTION 0PTI0Nj 

None 

None 

None 

Independent Variable 

None 

None 

None 

I. Contents of the HDR statements are 
printed at the beglnning of each run. 

2. Normally used to name the variables 
recorded in each column. 

3. HDR cards should precede the R!/lcardB. 

Specifies tile sources of the variables to 
be recorded for each run. 

Signifies the end of the MIDAS symbolic 
program. Numerical data follows. 

I. Gives the current value of the independent 
variable In the approprtate units. 

2. Generated Internally, thts variable can be 
obtaIned by specifying its source as IT. 

1. When listed on a cl/lN or PAR card, TR 
gives the increment of the independent 
variable, usually time, between successive 
readouts. 

2. if no value of TR Is given, a standard value 
of 0.1 units will be used. 

1. When listed on a CI/lN or PAR card, MININT 
specifies the smallest Interval that the inte­
gration system is permitted to use. 

2. if no value of MININT Ia given, a value of 
ZERO is used. 

When an Integration method with an error 
criterion other than the standard one Ia 
deSired, call for !/lPTI!/lNj In columns 1-7 
somewhere within the MIDAS program. 

Table I 



SYMBOL & NAME 

3. ARBITRARY FUNCTIONS 

For all 4 types of ~tion generators: 

FUNCTION 

CONSTANT 
FUNCTION 

CURVE 
FOLLOWER 

~. out_ --c.r-
~r:l out_ ---c:s---

CONSTANT CURVE ~.~ 
FOLLOWER ~ 

4. ITERATIVE ELEMENT 

IMPUCIT 
FUNCTION 

Example: 
x=f(x)+y 

r-----------..., 
<--__ ....;' MIDAS elements • 

~f~z:. ~~~_~ ~~~..: 
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OUTPUT 

Out = f(A) 

Out = f(A) 

Out = f(A) 

Out = f(A) 

No direct output 

Table I 

REMARKS 

1. Up to 50 sets of x-y coo,dinates can be 
used. 

2. Spacing of breakpoints is arbitrary. 
3. Slope of the function is zero above aud 

below the set of specified points. 
4. Method of introducing data Is in the 

text. 

1. Linear interpolation. 
2. Data needed for ~ run. 

1. Linear interpolation. 
2. Data needed for first run only. 

1. Quadratic interpolation. 
2. Data needed for ~ run. 

1. Quadratic interpolation. 
2. Data needed for first run only. 

1. Tbe inputs must be llsted in the order A, B. 
2. If IA - BI >5x10-6 1A1, iteration occurs 

by tra..n..sferring t.l:!e va.!!!e of B into A{B .... A). 
recomputing a new value of B, transferring 
it into A, etc., until the error criterion is 
sattllfled. I ~BI 

3. Criterion for convergence is I ;tAl < 1. 

4. An initial estimate of A must be given ,via 
a C0N or PAR card aud its associated 
data card. 

5. When A ls needed elsewhere in the 
problem, it can be taken from the C0N or 
PAR source. (See suggested method of 
usage at the left.) 

6. For multiple runs, A must be named on 
a PAR card. 
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(1) SI is a summer which adds the quanti­
ties -Bi and -Kx to yield Mx In ac­
cordance with equation 1. 

(2) Dl is a divider whose dividend is M~' 
(the output of SI) and whose divisor is 
a constant called M. Its output is then 
+x. 

(3) II is an integrator whose input is +~i' 
and output is +x. Unlike the case of 
analog integrators and summers, there 
is no change of sign in the equivalent 
MIDAS elements. Since no initial value 
is specified the output of II will start at 
zero. 

(4) I2)s another integrator whose input is 
+x and whose output is +x. The initial 
value of x is indicated by the dashed 
line extra input to 12. 

(5) Ml and M2 are multipliers which multi­
ply +x by -B and +x by -K to pro­
vide the required inputs to S1. Unlike 
on analog computers the same type of 
multiplier is used whether two con­
stants, a variable and a constant, or two 
variables are being multiplied. 

(6) FIN is a finish element. This element 
will stop computation when its A input 
(in this case t) equals or exceeds its B 
input (in this case the quantity named 
STOP) . Computation can be caused to 
halt by any of several conditions. A 
FIN box is required for each termina­
tion criterion. 

(7) When numerical data corresponding to 
M, B, K, STOP and x (0) are furnished, 
the problem is completely specified. No 
scaling will be required since numerical 
values ranging betwen 10-37 and 10+37 

can be handled. 

N ext the listing is prepared. It will contain 
the following information: 

(1) One card identifying the problem. 

(2) A few cards calling out the MIDAS 
program. 

(3) Cards giving names to the constants 
and parameters of the probem, includ­
ing integrators with non-zero initial 
values (up to 6 per card). 

(4) One card for each MIDAS element in 
the block diagram, identifying it by 
type and number, and indicating the 
source of its inputs (for example S2 
meaning summer number 2). 

(5) At least one FIN card spe~ifying a con­
dition for finishing a run. 

(6) One or more HDR cards and RO cards 
specifying the headeT names to be 
placed on top of the columns of output 
data to be read out at specified incre­
ments of the independent variable. 

(7) An END card indicating the end of the 
symbolic program and the start of nu­
merical data. 

(8) One or more cards assigning numerical 
value to the constants, parameters and 
initial conditions named in (3) above. 

(9) Cards defining arbitrary functions, if 
any. 

An example of a listing is shown in Figure 2 
for the mass, spring, and damper system. 

," 

Note the use of a comment card by the pro-
grammer to identify the problem. Also of sig­
nificance is the columnar location of various 
types of entries. For example, comment cards 
have their first letter in column 1. Operational 
elements, constant and parameter naming 
cards, HDR and RO cards all have their first 
character in column 7. Inputs to these ele­
ments are listed starting in column 15. Nu­
merical data is listed starting in colunms 1, 
11, ... 51. 

lt should be pointed out that in MIDAS, the 
programmer need not concern himself with the 
order in which he prepares the listing since a 
built-in sorting routine will automatically line 
up the program properly. This is another im­
portant difference from MIDAS.' predecessor, 
DAS. 

The particular listing shown will result in 
three runs being made, each starting with 
x (0) = 20 and terminating when t = 5. The 
mass M will have a value of 10 for each case 
since M was named on a constant card. The 
three runs will have the following values of 
-B and -K, each of which was specified as a 
paTameter. 
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PROGR .... ER SflNSOM PHONE 33281 OAT< 20J({L'I 64 PAGE _ OF _ PAGES 

PROGR ..... MASS SPIWJ(i DIIIJ1P€f(. SYST6M , , 
FUNCTION INPUTS 

1 , 
U " 

if.IDANA ftlc/SFlNS(/) 1M. PR(/)Bj61-Z24 • TItnEj5, ailES/SOD 

*" XE~ 

CI1LL" tnID IRs 
END .. Mrll 

5¢1lUTI l/LN ~~ KIt! 55,,. SPItING, A J)RmPER" SYSTEM 

C¢lN M,STd>P 

PAR -5,-K 

Ie rz 
51 IfIl,Jrl2 

DI 5/.111 

II DI 
1Z II 

MI -8,II 

Ml 11., -I( 

FIN IT.ST.P 

HDR TIME, Ace., VEL., DISP. 

HDR 

R$ IT.l)J.II.I2 
END 

FO'" ASO SEP •• O·490b 

MIDAS DATA fORM 

PROGRA •• ER SAN~oll1 

PROGRA. fY/llSS, SPIW/~ "DAmPER. ~YSr.EM 

21 

10. S. 
-2.5 -8.6 
2.0. 
-3.2 -8.6 
2.0. 
-2..5 -15. 

ro 
I . 

Figure 2. Original Listing. 

Run 1 
Run 2 
Run 3 

-B = -2.5 
-B = -3.2 
-B = -2.5 

-K = -8.6 
-K = -8.6 
-K = -15.0 

Finally a portion of the printed output of 
the IBM 7094 is shown in Figure 3. Several 
points are worthy of note. 

(1) The printout of the problem l~sting in­
cluding the data for Case 1. Actually 
some machine mapping and storage in­
formation precedes this but has been 
omitted for clarity. 

(2) The format of the output. Note the 
headers and the spacing of the four col­
umns of output. Provision exists for 
six columns but only four components 
were specified to be read out in this 
simple problem. 

(3) The MAXIMA-MINIMA table. This 
feature, unique to MIDAS, provides the 

analog programmer with all the infor­
mation needed to scale his analog sche­
matic, both in amplitude and time. It 
shows the maximum and minimum 
values achieved by every component 
during the course of a run, whether 
these values occurred at read out inter­
vals or not. 

(4) The printout of the parameter and IC 
data for Cases 2 and 3, followed by their 
output. 

(5) The job accounting summary. The 
three cases took a total of 44 seconds. 

This completes the description of this prob­
lem. Although considerable detail has been 
presented, in retrospect it can be seen that the· 
main idea was simple. An analog-type block 
diagram was drawn and a listing prepared de­
scribing its interconnections. Information pro­
viding numerical data was also furnished. 
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MAXIMA 
SOLUT 1001 Of' MASS, SPRING, DAM.ER SYSTEM 

"INI~' 

CON M,STOP IT 5.1000E 00 O. 
PAR -8.-K 
Ie 12 
SI "1."2 
01 Sl,M 
11 01 
12 11 
"1 -8,11 

12 2.0000E 01 -10I528E 01 
SI 1.0535E 02 -1.1200E 02 
Ml 4.6"7E 01 -2.6790E 01 
M2 9.9142E 01 -1.7200E 02 
01 1.0535E 01 -1.7200E 01 
11 8.3718E 00 -1.4515E 01 

P112 Il.-I\ 
FIN IT,S TOP 
HOR TIME,AtC.,YEl •• DISP. 
HDR 
RO IT,OI.[1,12 
END MAXIMA - MINIMA FOR CASE 2 

1.0000E 01 5.0000E 00 
-2.5000E 00 -8.6000E 00 

2.0oooE 01 

SYMBOLIC PROGRAM AND DATA FOR CASE 1 
[ -2.5000E 00 -1.5000E 01 J 2.0000E 01 

DATA FOR CASE 3 

TIllE ACC. VEL. DIS •• 

O. -1.7200E 01 O. 2.0000£ 01 TIME Ace. Vel. DIS •• 1.0000E-Ol -1.6103E 01 -1.6962E 00 1.9915£ 01 
2.0000E-Ol -1.6016E 01 -3.3362E 00 1.9663£ 01 O. -3.0oo0E 01 O. 2.0000E 01 3.0000E-Ol -1.5328£ 01 -4.9014£ 00 1.9250£ 01 1.0000E-Ol -2.9038£ 01 -2.9554E 00 1.9851E 01 ".OOOOE-Ol -1.""'9E 01 -6.3981£ 00 1.868"£ 01 2.0000£-01 -2.7671E 01 -5.7941E 00 1.9"13E 01 5.0000E-Ol -1.3S08£ 01 -1.7911E 00 1.7973£ 01 3.0000E-Ol -2.5927E 01 -8.4770E 00 1.8698E 01 6.0000E-Ol -1.2456£ 01 -9.0966£ 00 1.7I28E 01, 4.00ODE-OI -2.38HE 01 -1.0968E 01 1.7724E 01 1.0000£-01 -1.1324£ 01 -1.0286E 01 1.6158E 01 5.0000E-OI -2.1458E 01 -1.3236E 01 1.6512E 01 8.0000£-01 -1.0124£ 01 -1.1)59E 01 1.507U 01 6.0000E-OI -1.8815E 01 -1.5251E 01 1.5085E 01 9.0000£-01 -1.8610£ 00 -1.2309E 01 1.3890E 01 7.0000E-OI -1.5958E 01 -1.6992E 01 1.3471E 01 10.0000£-01 -1.5676E 00 -1.3131E 01 1.2617£ 01 8.0000£-01 -1.2936£ 01 -1.8437E 01 1.1697£ 01 1.1000£ 00 -6.2351£ 00 -1.3822E 01 1.1268E 01 9.000DE-OI -9.7963£ 00 -1.9575E 01 9.7933E 00 1.2000£ 00 -4.8826E 00 -1.437SE 01 9.8569E 00 10.0000£-01 -6.5891E 00 -2.D394E 01 7.7922E 00 

I.IOOOE 00 -3.3648E 00 -2.0892E 01 5.7252E 00 
1.2000E 00 -1.696 7E-0 1 -2.1068E 01 3.6245E 00 

4.9000E 00 1.0103E-0"1 9.9Z27E 00 -3.6996E 00 
5.0000E 00 -1.608IE-OI 9.9495E 00 -2.7053E 00 

4.9000E 00 5.1000E 00 -IO.OOOOE-Ol 9.8913E 00 -1.7126E 00 -1.5983E 01 4.1I28E 00 9.9696E 00 

-~ 
5.0000E 00 -1.6018E 01 2.5078E 00 1.0301E 01 - 5.0500E 00 -1.6035E 01 1.1047E 00 1.0406E 01 

NUMERICAL RESULTS FOR CASE 1 -
NUMERICAL RESULTS FOR CASE 3 

MAXIMA MINIJlU 

IT 5.1000E 00 O. 
12 2.0000E 01 -1.30HE 01 

MAX IMA JIIINI"A 

SI 1.1636E 02 -1.1200E 02 
HI 3.8119£ 01 -2.4874E 01 
H2 1.1211£ 02 -1.1200E 02 
01 1.1636E 01 -1.1200£ 01 
II 9.9495E 00 -1.5Z48E 01 

IT 5.0500E 00 O. 
12 2.0000£ 01 -1,"S4E 01 
SI 2.2193£ 02 -3.0000E 02 
MI 5.2611£ 01 -3.8152E 01 
M2 2.1727E 02 -3.0000E 02 
01 2.2193E 01 -3.0000E 01 
11 1.5261E 01 '-2.1068E 01 

MAXIMA' MINIMA FOR CASE 1 ~--------------------------------------------~ 

-3.2000E 00 
2.00OD~ 01 

-8.6000£ 00 

MAXIMA - MINIMA FOR CASE 3 

j r------------~_----, 
L-______ --------------------------------~ 

DATA FOR CASE 2 

TiME ACC. VEL. 

O. -1.1200E 01 O. 
I.OOOOE-Ol -1.6586£ 01 -1.6903£ 00 
2.0000E-OI -1.5851E 01 -3.3132£ 00 
3.0000E-Ol -1.5005E 01 -4.8568E 00 
•• OOOOE-Ol -1.4059E 01 -6.3108F ,00 
5.0000E-OI -1.3024E 01 -1.6657E 00 
6.0000E-OI -1.1'IlE 01 -8.9130E 00 
1.0000E-OI -1.OB2E 01 -1.0046E 01 
8.0000£-01 -9.5001E 00 -1.IOS8E 01 
9.0000E-OI -8.2264£ 00 -1.19"E 01 

10.0000E-01 -6.9232E 00 -1.2102E 01 
I.IOOOE 00 -5.6025E 00 -1.3328E 01 
1.2000E OC -4.276IE DO -1.3822E 01 

'.9000E 00 5.02HE-OI 8.3519E 00 
5.0000E 00 -2.21~IE-OI 8.3718E 00 
5.1000E 00 -9.2155E-OI 8.31"E 00 

NUMERICAL RESULTS FOR CASE 2 

DIS •• 

2.0oo0E 01 
1.9915E 01 
1.9664£ 01 
1.9255£ 01 
1.8696E 01 
1.1996E 01 
1.1I66E 01 
1.6211E 01 
1.5161E 01 
1.4010E 01 
1.2777E 01 
1.1474E 01 
1.0ll5E 01 

-3.69'IE 00 
-2.8570E 00 
-2.0221E 00 

(CQNT'D) 

JOB ACCOUNTING SU"MARY 

DATE 21 JUL 64 BEGAN 13134111 ["OED 1313./55 

JOB ACCOUNTING SUMMARY 

AFIMGoEIt IS PUT OF A HANOI 

HOM IUoNY FING.US DOES JCHt "AYE QI 

I :~~~,.:H:~:e!:iF=~Sp::J~: !~~UMf IH'S' Mfa .. s triAS ,,~ ""lUSt! 
2 

THERE ME hO .'U'S ON .... USONJ 

HOV flANY FIftG,fAS DOES JOHN HAItE eu 

3 :::WA::~ ~:::C~E!\=I~S •• Bur I ASSUME IHA51 "E"IIIS (HAS"~ ""USII 

::~:;~ .. ~~nNtE IS Alle81GUOU5 •• BUT I ASSUMt IHASI In.,'.tS 1""5 "!I P"It'~.J 

HOM ",NY flNGU5 DOtS JOHN HAye QI 

IJHf A8UVE SErwJfNC.f IS A"IHGWUS •• ~U' f ASS'J-E !HASt ",UNS IHAS AS PUHIJ 
IrHE ANSwtR lS UU 

Figure 3. Problem Output. 

283 LINES 
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This was then converted to punched cards, 
turned in to the 7094 operators who subse­
quently supplied the printed output. 

This example utilized only a few of the avail­
able MIDAS elements. The entire complement 
of them is shown in Table I, along with some 
description of their use. The A,B,C lettering 
system has significance where an element has 
more than one 'input. In this case the order 
of the sources of the inputs as given in the 
listing (starting in column 15) should be 
A,B,C, etc. 

Integration System in MIDAS 
The integrations in MIDAS are performed 

by a variable-step, fifth-order, predict-correct 
integration routine.7 This variable-step fea­
ture represents the basic departure of MID AS 
from its predecessor, DAS. It relieves the 
programmer from the chore of having to spec­
ify a fixed increment of the independent vari­
able, an increment which must be small enough 
to handle the highest frequency phenomena in 
a problem but not so small as to cause inordi­
nately long solution times. The step size in 
the MIDAS integration routine adjusts itself 
to meet a certain error criterion, a factor 
which allows it to take large steps for those 
portions of the solution "when not much is 
happening" and small steps for those portions 
when one or more variables are changing at 
rapid rates. 

The net result is that time-scaling, as the 
analog programmer knows it, is eliminated in 
MIDAS. However, he must still face the time 
scaling problem when he prepares his analog 
schematic, especially when certain variables in 
the problem drive narrow bandwidth analog 
components such as servo-multipliers, X~ Y 
plotters, etc. MIDAS helps him here, though, 
because he can observe the maximum values of 
the derivatives of these variables from the 
MAXIMA-MINIMA list and he can then make 
any necessary time base changes. Fortunately, 
for every variable appearing at the output of 
a MIDAS integrator, its derivative must ap­
pear at the output of the element feeding the 
integrator since integrators can accept only a 
single input. 

Miscellaneous Information on MIDAS 
The MIDAS program has limitations on the 

number and characteristics of certain compo-

nents. This information may be of value when 
a very large problem is to be solved on MIDAS. 

Maximum 
Item Number 

1. Operational Elements 750 
2. Symbols (operational elements, 

constants, and header names) 1000 
3. Integrators 100 
4. Function Generators 40 
5. Points for each function gen-

erator 50 
6. Inputs for each summer 6 

Summary of How MIDAS Works 
This has been of necessity a brief review of 

the method of using MIDAS. A much more 
complete description including several fully 
worked out examples is given in Technical 
Documentary Report No. SEG-TDR-64-1, 
"MIDAS PROGRAMMING GUIDE," dated 
January 1964.8 Information on obtaining the 
MIDAS program can be obtained by contacting 
the authors. 

How MIDAS Has Worked 
In the following paragraphs, a brief sum­

mary of the experiences of the Wright-Patter­
son AF Base Computation Facility in the use 
of MIDAS will be given. Actually, at this 
writing, approximately 100 computing facil­
ities throughout the U.S. are using MIDAS; 
thus only a small segment of the total experi­
ence can be reported on. 

The Analog Computation facility at Wright­
Patterson has used MIDAS in almost every 
problem submitted for solution on its large 
analog computer. Generally the MIDAS solu­
tion is attempted prior to the analog in order 
to achieve the maximum benefits as regards 
scaling. Another side benefit of MIDAS has 
been the calculation of Problem Check values. 
It has been found in many cases that the extra 
time involved in programming a MIDAS check 
is saved in checkout time on the analog com­
puter. The increased confidence in the validity 
of the solutions when a check 'between MIDAS 
and the analog solution is obtained is the most 
important benefit of the program. Another 
side benefit is the broadened horizons achieved 
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by the analog programmers in giving them the 
ability to program the digital computer. This 
should be very valuable when hybrid computers 
come into their own. Until now the prob­
lem of finding people with the required capabil­
ity in both areas has proven to be the greatest 
deterrent to the growth of these new devices. 

While everything mentioned above is on the 
positive side, there are quite a few aspects of 
MIDAS that are annoying and time consum­
ing. One thing that the analog programmer 
learns is that the digital computer brooks no 
mistakes. If a "zero" is punched when the 
letter "0" is required, the problem comes back 
-generally the following day-with a diagnos­
tic telling him of an undefined symbol. A little 
thing like a missing decimal point in numerical 
data will cause a day to be lost. Another thing 
that an analog programmer encounters is that 
when an error exists in a MIDAS program 
(however not of the type to prevent its run­
ning) , the solutions look just as good (as many 
significant figures of output) as they would if 
the solution were perfect. On the analog com­
puter errors of the same type would cause 
overload lights to flash, etc. 

The very sophisticated integration routine 
of MIDAS introduces problems at times. For 
example, discontinuities in derivatives some-

times make it impossible for the error criterion 
to be met even though the increment of the in­
dependent variable is halved many times. This 
will cause a solution to "hang up." Provision 
has been made to overcome this problem by the 
use of MININT (see Table I) but it usually 
requires one or more unsatisfactory runs be­
fore the programmer is made aware of the 
difficulty. 

One rather interesting discovery was the 
fact that an operation that was very easy to 
perform on an analog computer was very 
bothersome on the digital. Specifically, a rather 
large missile simulation was performed first on 
the analog computer and later using MIDAS. 
Quite a few first order lags were present 
in the mathematical model in the form of 

-S1 . On the analog computer this offers no 
T +1 
problem. For small values of T one way to 
handle this to parallel the feedback resistor of 
a summer with a capacitor of T microfarads. In 
fact, far from creating a difficulty, it generally 
is beneficial to the analog simulation by re­
ducing some of the high frequency "noise." 
Using MIDAS, small values of T can cause con­
siderable increase in solution time. For ex­
ample, in this particular problem, when such 
transfer functions with T of .001 sees. were 

Figure 1. Block Diagram. 

~ 
IT~ 
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included, the solution time was extrapolated to 
be 51f2 hours for 26 seconds of problem time. 
This was reduced to 121;2 minutes for the same 
length of problem time, simply by neglecting 
these small delays, and the effect on the re­
sults was insignificant. Incidentally, the ana­
log solution was in "real time," i.e., 26 seconds. 

The subject of solution time is rather im­
portant to a digital programmer. We have 
attempted to gather data on the relative speed 
of a MIDAS run compared with a Fortran 
program produced by a skilled programmer. 
With the conditions of the test equalized, the 
solution time of the Fortran program was ap­
proximately half as long; however, the pro­
gramming time for MIDAS was much less. 
The question of solution time is not very im­
portant for the typical problem handled with 
MIDAS because usually we are interested in 
one or two runs, so whether they take 3 min­
utes or 5 minutes each is of academic interest 
only. 

There have been a few problems handled by 
MIDAS alone without recourse to the analog 
computer. In these cases, program efficiency 
was of considerable importance since many 
runs were required. Here, in the present stage 
of the development of MIDAS, a specially 
tailored digital program should receive serious 
consideration. 

At this point the question should be con­
sidered of whether MIDAS or a similar digital 
computer program will take over the role of 
the analog computer in the areas where the 
latter shines. Since a MIDAS~type program 
has appropriated one of the best features of 
the analog computer, viz., simple block diagram 
programming and the speed and capacity of 
digital computers have developed so much, 
there is certainly reason to consider this ques­
tion. 

While anyone would be foolhardy to give an 
answer to hold for all time, it is our opinion 
that MIDAS, rather than threatening the ex­
istence of analog computers, has reinforced 
their position by increasing confidence in their 
output. There are quite a few advantages to 
the use of an analog computer which MIDAS 
doesn't touch. Among these are: 

(1) The intimate relationship between the 
engineer and his problem which enables 

him to design his system by observing 
graphical outputs and changing param­
eters as required. 

(2) The ability to tie in physical hardware 
to the mathematical simulation. 

·(3) The ability to use portions of the com­
puter in direct relationship to the size 
of the problem. 

(4) The fact that certain mathematical op­
erations are performed better, e.g., inte­
gration. 

(5) The very fact that it is a distinctly dif­
ferent technique of solution, thus mak­
ing possible a checking means. 

While some progress has been and is being 
achieved in items 1, 2, 3 and 4, item 5 will 
always remain. 

Future of MIDAS 

Although MIDAS has proven to be very ef­
fective in accomplishing its purpose, certain 
improvements could be made without ma­
terially changing its simple programming 
rules. Among such improvements would be 
the following: 

(1) Increased efficiency, i.e., shorter solu­
tion times without losing programming 
simplicity. 

(2) Additional flexibility in naming outputs. 

(3) Permit the use of fixed point literals in 
the body of the program. 

(4) A greatly expanded operation list that 
would include logical operations such 
as AND, OR, NOT, etc. and others 
equivalent to the elements found in a 
hybrid computer. 

A new program is being developed at 
Wright-Patterson AF Base which already in­
cludes the improvements listed above. In ad­
dition, it is anticipated that the following 
features will be included: 

(1) Ability to add new functions external to 
the basic program. 

(2) Additional controls that would 
( a) Allow the results 6f one run to dic­

tate automatically the conditions 
for the next. 
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(b) Permit more "hands on" control of 
operation of the program as advo­
cated by Mr. R. Brennan in his 
P ACTOLUS!J program. 

It is further hoped that an investigation of 
various integration routines will result in an 
integration system that will 'automatically ac­
count for discontinuities and ·,thus prevent the 
solution from "hanging up.'" 

The new program, MIMIG, is completely dif­
ferent from MIDAS in concept but it retains 
the programming ease of MIDAS. It will be 
written as a system to operate under IBJOB 
control on an IBM 7090/7094 computer. 

It is an assembler type program that gen­
erates machine language code equivalent to the 
original problem. The instruction format is 
very similar to MIDAS but has been designed 
to appeal to both analog and digital program­
mers. If and when this' occurs and both ana­
log and digital programmers employ MIMIC 
regularly, a very significant first step in break­
ing down the communications barrier between 
the two will have been taken since they will, 
for the first time, be speaking the same lan­
guage. Furthermore, just as MIDAS has made 
the digital computer accessible to the analog 
man, this new program might serve to educate 
the digital programmer in analog methods. 
The day of the omniscient, triple-threat pro­
grammer might be on the way! 
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THE RAND TABLET:- A MAN-MACHINE GRAPHICAL 

COMMUNICATION DEVICe* 
M. R. Davis and T. O. Ellis 

The RAND Corporation 
Santa· Monica, California 

Present-day user.:.computer interface mecha­
nisms provide far from optimum communica­
tion, considerably reducing the probability that 
full advantage is being taken of the capabil­
ities of either the machine or of the user. A 
number of separate research projects are un­
derway, aimed at investigating ways of im­
proving the languages by which man communi­
cates with the computer, and at developing 
more useful and more versatile communication 
channels. Several of these projects are con­
cerned with the design of "two-dimensional" or 
"graphical" man-computer links. 

Early in the development of man-machine 
studies at RAND, it was felt that exploration 
of man's existent dexterity with a free, pen­
like instrument on a horizontal surface, like 
a pad of paper, would be fruitful. The concept 
of generating hand-directed, two-dimensional 
information on a surface not coincident with 
the display device (versus a "light pen") is not 
new and has been examined by others in the 
field. It is felt, however, that the stylus-tablet 
device developed at RAND (see Fig. 1) is a 
highly practical instrument, allowing further 
investigation of new freedoms of expression in 
direct communications with computers. 

The RAND tablet device generates lO-bit 
x and 10-bit y stylus position information. It 

is connected to an input channel of a general~ 
purpose computer and also to an oscilloscope 
display. The display control multiplexes the 
stylus position information with computer~ 

generated information in such a way that the 
oscilloscope display contains a composite of the 
current pen position (represented as a dot) and 
the computer output. In addition, the computer 
may regenerate meaningful track history on 
the CRT, so' that while the· user is writing, it 
appears that the pen has "ink." The displayed 
"ink" is visualized from the oscilloscope display 
while hand-directing the stylus position on the 
tablet, as in Fig. 1. Users normally adjust 
within a few minutes to the conceptual super­
position of the displayed ink and the actual 
off-screen pen movement. There is no apparent 
loss of ease or speed in writing, printing, con­
structing arbitrary figures, or even in penning 

. one's signature. 

To maintain the "naturalness" of the pen 
device, a pressure-sensitive switch in the tip 
of the stylus indicates "stroke" or intended 
input information to the computer. This switch 
is actuated by approximately the same pres­
sure normally used in writing with a pencil, so 
that· strokes within described symbols are de­
fined in a natural manner. 

* This research was supported by the Advanced Research Projects Agency under contract No. SD-79. Any views 
or conclusions should not be interpreted as representing the official opinion or policy of ARPA or of the RAND 
Corporation. 
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Figure 1. Complete System in Operation. 

In addition to the many advantages of a "live 
pad of paper" for control and interpretive pur­
poses, the user soon finds it very convenient 
to have no part of the "working" surface (the 
CRT) covered by the physical pen or the hand. 

The gross functioning of the RAND tablet 
system is best illustrated through a general 
description of the events that occur during a 
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maj or cycle (220 fLsec; see timing diagram, 
Fig. 2). Figure 3 is the system block diagram 
with the information flow paths indicated by 
the heavier lines. The clock sequencer furnishes 
a time sequence of 20 pulses to the blocking 
oscillators. During each of the 20 timing peri­
ods, a blocking oscillator gives a coincident 
positive and negative pulse on two lines at­
tached to the tablet. 

Major cycle 
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Figure 2. Timing Waveforms (JLsec). 
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Figure 3. Graphic Input System Block Diagram. 

The pulses are encoded by the tablet as serial 
(x,y) Gray-code position information which is 
sensed by the high-input-impedance, pen-like 
stylus from the epoxy-coated tablet surface. The 
pen is of roughly the same size, weight, and 
appearance as a normal fountain pen. The pen 
information is strobed, converted from Gray 
to binary code, assembled in a shift register, 
and gated in parallel to an interface register. 

The printed-circuit, all digital tablet, com­
plete with printed-circuit encoding, is a rela­
tively new concept made possible economically 
by advances in the art of fine-line photoetching. 
The tablet is the hub of the graphic input sys­
tem, and its physical construction and the 
equivalent circuit of the tablet itself will be 
considered before proceeding to the system 
detail. 

The basic building material for the tablet is 
O.5-mil-thick Mylar sheet clad on both sides 
with 1;2-ounce copper (approximately 0.6 mils 
thick). Both sides of the copper-clad Mylar 
sheets are coated with photo resist, exposed to 
artwork patterns, and etched using standard 
fine-line etching techniques. The result is a 
printed circuit on each side of the Mylar, each 
side in proper registration with the other. (Ac­
curate registration is important only in the en­
coder sections, as will be seen later.) Figure 4 
is a photo of the printed circuit before it has . 

been packaged. The double-sided, printed screen 
is cemented to a smooth, rigid substrate and 
sprayed with a thin coat of epoxy to provide 
a good wear surface and to prevent electrical 
contact between the stylus and the printed cir­
cuit. The writing ·area on the tablet is 10.24 X 
10.24 in. with resolution of 100 lines per inch. 
The entire tablet is mounted in a metal case 
with only the writing area exposed, as can be 
seen in Fig. 1. 

Although it would be very difficult to fully 
illustrate a 1024 X 1024-line system, it does 
seem necessary, for clarity, to present all the 
details of the system. Thus, an 8 X 8-line sys­
tem will be used for the system description and 

Figure 4. Unmounted Printed Circuit. 
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expansion of the concept to larger systems will 
be left to the reader. 

Figure 5 shows the detailed, printed circuit 
on each side of the 0.5-mil Mylar for an 8 X 8-
line system. The top circuit contains the x posi­
tion lines and the two y encoder sections, while 
the bottom circuit has the y position lines and 
the two x encoder sections. I t should be noted 
that the position lines are connected at the 
ends to wide, code-coupling buses. These buses 
are made as wide as possible in order to obtain 
the maximum area, since the encoding scheme 
depends on capacitive coupling from the en­
coder sections through the Mylar to these wide 
buses. It should be further noted that the posi­
tion lines are alternately connected to wide 
buses on opposite ends. This gives symmetry 
to the tablet and minimizes the effect of regis­
tration errors. 

With reference to Fig. 5, at time tl encoder 
pads PI + are pulsed with a positive pulse and 
pads PI- are pulsed with a negative pulse. 
Pads PI + are capacitively coupled through the 
Mylar to y position lines Y5, Y6, y" and Ys, thus 
coupling a positive pulse to these lines. Pads 
PI - are capacitively coupled to y position lines 
Yh Y2, Y3, and Y-l, putting a negative pulse on 
these lines. At time t 2 , encoder pads P2 + and 
P:! - are pulsed plus and minus, respectively, 
putting positive pulses on y position lines y 3, 

Y-l, Y5, and yr" and negative pulses on y position 

lines YI, Y2, Y7, and Ys. At the end of time t3, 
each y position line has been energized with a 
unique serial sequence of pulses. If positive 
pulses are considered as ones and negative 
pulses are zeroes, the Gray-pulse code appear­
ing on the y position wires is as follows: 

Yl 000 
Y2 001 
Y3 011 
Y4 010 
Y5 110 
YG 111 
Y7 101 
Ys 100 

The x encoder pads are now sequentially pulsed 
at times t.1, t 5 , and t 6 , giving unique definitions 
to each x position line. 

If a pen-like stylus with high input imped­
ance is placed anywhere on the tablet, it will 
pick up a time sequence of six pulses, indicating 
the (x,y) position of the stylus. It should be 
pointed out again that the stylus is electro­
statically coupled to the (x,y) position lines 
through the thin, epoxy wearcoat. 

If the stylus is placed on the tablet surface 
at a point (Xt'y~), the pulse stream appearing 
at the pen tip would be as indicated in Fig. 6. 
This detected pulse pattern will repeat itself 
every major cycle as long as the stylus is held 
in this position. If the stylus is moved, a differ-

Figure 5. Double-sided Printed-circuit Layout for 8 X 8 System. 
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Timing pulse 

Pulses at position 
(x .. ' Ys) 
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Figure 6. Timing Diagram and Pen Signals for the 

Example 8 x 8 System. 

ent pulse pattern is sensed, indicating a new 
(x,y) position. 

Since there are 1024 x position lines and 1024 
y position lines, 20 bits are required to define 
an (x,y) position. The actual timing used in 
the RAND system was shown in Fig. 2. Timing 
pulses t 21, t 22, and tzs are additional pulses used 
for bookkeeping and data manipulation at the 
end of each maj or cycle. 

The position lines on the full-size tablet are 
3 mils wide with a 7-mil separation. The code­
coupling pads are 16 to 17 mils wide with a 3-
to 4-mil separation. Figure 4 shows that the 
encoding pads which couple to the lower set of 
position lines (y position lines) are enlarged. 
This greater coupling area increases the signal 
on the lower lines to compensate for the loss 
caused by the shielding effect on the upper 
lines (si]lce they lie between the lower lines 
and the stylus pick-up). The encoding pad for 
the two least-significant bits in both x and y 
was also enlarged to offset the effect of neigh­
boring-line cancellations. With these compen­
sations, all pulses received at the stylUS tip are 
of approximately the same amplitude. 

Figure 7 is an illustration of the approximate 
equivalent circuit of the encoder-tablet-stylus 
system, along with typical system parameter 
values. It is clear that the values of C1 vary 
with encoder-pad size, and the value G,I varies 
according to whether top or bottom lines are 
being considered. The value of C4 is also de­
pendent on the stylus-tip geometry and wear­
coat thickness of the tablet. The signals arriv­
ing at the input to the stylus amplifier are ap-

C 1 = Encoder pad coupling capacity - 5 pf 

C2 = Capacity to adjacent parallel wires in tablet - 10 pf 

C3 = Capacity to crossing lines in screen - 100 pf 

C .. = Stylus-to-tablet coupling capacity - .5 pf 

Cs = Sf}'lus input shunt capacity - 5 pf 

R = Stylus input resistance - 200 Kn 

Figure 7. Equivalent Circuit of Encoder-Tablet-Stylus 
Coupling and Attenuating Elements. 

proximately 1/300 of the drive-line signals. The 
character of the signals at the stylus input is 
greatly dependent on the drive-pulse rise time. 

Figure 8 is an oscilloscope pattern of the 
amplified signals at the stylus output. t These 
signals are amplified again and strobed into 
a Gray-code toggle. An x bit at ts and a y bit 
at t17 are smaller than the rest. This indicates 
that the stylus tip is somewhere between lines 
and these are the· bits that are changing. 

Since the final stages of the amplification and 
the strobing circuit are dc-coupled, the system 
is vulnerable to shift in the dc signal level. For 
this reason, an automatic level control (ALC) 
circuit has been provided to insure maximum 
recognizability of signals. During the first 180 
fLsec of a major cycle, the stylUS is picking up 
bits from the tablet. During the last 40 fLsec, 
the tablet is quiet-Le., the stylUS is at its 
quiescent level. During this 40-fLsec interval, 
the quiescent level of the pen is strobed into 
the ALC toggle. If the quiescent level is recog­
nized as a zero, the ALC condenser changes 
slowly into the proper direction to change the 
recognition (via a bias circuit) to a one, and 
vice versa. For a perfectly balanced system, the 
ALC toggle would alternate between 1 and 0 
with each major cycle. 

A Gray code was selected so that only one 
bit would change value with each wire posi­
tion, giving a complete and unambiguous deter-

t It will be noted in the oscilloscope pattern of Fig. 
8 that the pulsing sequence is x first and y last. This 
is mentioned only because it is the opposite order of 
that shown in the 8 x 8-line example system discussed 
above; otherwise, it is unimportant. 
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Figure 8. Oscillogram of Pen Signal and Strobe. 

mination of the stylus position. Furthermore, 
a reflected Gray code facilitates serial conver­
sion to binary. The conversion logic for an 
N -bit number, when N is the most significant 
bit, is: 

Binary~ = GraYN 

B j = (B j +1 1\ Gj ) V (B j +1 I\~) . j < N 

Time-wise, the bits are received from the stylus 
in the order N, ... , j + 1, j, ... ,1. When all 20 
bits have been assembled in the shift register, 
they are gated to the output register. 

As a new (x,y) value is being converted to 
binary and shifted into one end of the shift 
register, the old binary value is being shifted 
out the other end. This old binary information 
is serially reconverted to Gray and compared 
to the new, incoming Gray value, one bit at a 
time. If the old Gray number and incoming 
Gray number differ in more than one bit in 
either x or y, a "validity" toggle is set to indi­
cate an error. If the two Gray-code series differ 
in more than one bit, this indicates that the pen 
has moved more than one line during the 220-
/Lsec interval. As this is not probable during 
normal usage, it is assumed that an error has 
occurred. If a set of data are determined as not 
valid, the output register is left with its previ­
ous value, and an "old-value" toggle is flagged. 

The binary-to-Gray conversion logic is: 

G~ = B:-.; 

G j = (B j + 1 1\ B j ) V (B j + 1 1\ B j ) • j < N 

In practice, the validity check rarely detects 
errors while the pen is in contact with the 
tablet. The pen validity check is used to sup­
press the display of the pen position as the pen 
is lifted off the tablet. 

The logic and clock systems are made up prin­
cipally with state-of-the-art NOR circuits and 
univibrators. The blocking-oscillator circuit 
shown in Fig. 9 was designed to drive the 
encoder pads. This use of transformer cou­
pling was found to be important since well­
matched positive and negative pulses were re­
quired to obtain proper cancellation at the 
tablet surface. The stylus amplifier has a gain 
of approximately 30 db with an additional30-db 
gain in the principal electronic package. 

The total electronic system is assembled in a 
5" X 5" X 19" printed-circuit card cage and 
contains some 400 transistors and about 220 
diodes; however, little attempt has been made 
to minimize the number of components. Also, 
the electronics could be shared with a number 
of tablets in a mUltiple-tablet system. 
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Figure 9. Blocking Oscillator. 
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Figure 10. Information Paths in Graphic I/O System. 

Figure 10 is a block diagram showing the 
graphic input-output system as used at RAND 
for the evaluation of hardware, human engi­
neering studies, and investigation of program­
ming implications. The computer used was the 
JOHNNIAC, a tube machine of the Princeton 
class. 

Preliminary studies indicate that with a great 
amount of care in construction, a 200-line-per­
inch tablet could be achieved. The resolution of 
this line density would not present a major 
problem; on the other hand, 100 lines per inch 
is adequate for all current intended applications. 

It is certainly "\vithin the state of the art to 
decrease the major cycle time; however, in 
usage at RAND, the 4.5-kc rate has been ade­
quate. When the stylus is swept rapidly across 
-the surface of the tablet, it has been found 
that an average of two or three complete sets 
of position data are obtained for each line. Set­
ting the multiplexing switch (Fig. 10) to dis­
play the stylus position on the scope every 10 
msec has proved adequate, and since only 50 
fLsec are required to display the point, 99.5 per 
cent of the display scope time is left for the 
computer. 

The tablet currently is in regular use at 
RAND in studies toward the development of 
on-line graphical programming languages and 
on-line interaction with problem parameters. In 
addition to its use at RAND, several copies of 
the tablet have been supplied to other research­
ers in the field. 

The tablet has been found to be particularly 
valuable in applications where excellent line-

arity and accuracy are important. N ormal­
thickness C.G.S. maps have been placed over 
the tablet to digitize contours by manual trac­
ing with the pen. 

Development of the stylus-tablet device has 
been carried to the point where, we feel, it 
represents a practical and economical tool for 
use in many applications. Additional applica­
tion areas might be served by more development 
effort in directions such as providing for rear­
proj ection of images onto the (translucent) 
tablet panel; provision for use of more than 
one sensing element, extension of the surface 
dimensions, etc. 
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A SYSTEM FOR AUTOMATIC RECOGNITION OF 

HANDWRITTEN WORDS* 

Paul M errnelsteint and Murray Eyden 
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Laboratory of Electronics 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

INTRODUCTION 

The recognition of handwriting can be con­
sidered an important problem in the general 
pattern recognition area because the set of pat­
terns, say individual words, possesses a degree 
of variability that far exceeds that of problems 
where relatively good solutions have been pre­
viously found. Whereas in the case of character 
recognition the number of pattern classes con­
sidered different usually does not exceed one 
hundred, the number of pattern classes with 
which one finds himself confronted here is only 
limited by the vocabulary of the language. 
Furthermore, the problem is reasonably well­
defined, i.e., in most cases the correct categori­
zation choice is known by comparison with 
human performance. In some cases such per­
formance by different people may not result in 
complete agreement, but even then the number 
of alternative results is restricted to a small 
number. Experimental data are readily avail­
able and their variability, insofar as they de­
pend on subject and context, can be easily con­
trolled. 

The recognition of complex patterns by their 
subdivision into subpatterns deemed simpler to 
recognize has found wide application.1

,2 Since 
the probability for misrecognition of the in­
dividual subpatterns is finite, unless constraints 
are known to exist among the different subpat­
tern categories, the likelihood for correct recog­
nition of the composite pattern decreases rap­
idly as the number subpatterns is illcreased. 
The explicii rules for joining adjacent subpat­
terns are in many cases unknown and hence 
the constraints may be formulated only in 
terms of exhaustive listings of groups of sub­
patterns that mayor may not exist. In other 
words, a collection of subpattern categories is 
determined to for-m a valid pattern if and only 
if there exists a pattern category which may 
be mapped into that collection of subpatterns. 
The task of testing whether a particular collec­
tion of subpatterns is a valid result is thereby 
reduced to the decision of whether such a col­
lection may be generated from the allowable 
collection of patterns. Due to the large number 
of admissible pattern categories, in order to 
demonstrate the usefulness of such procedures, 

* This work was supported in part by the U. S. Army, Navy, and Air Force under Contract DA36-039-AMC-
03200(E); and in part by the National Science Foundation (Grant GP-2495), the National Institutes of Health 
(Grant MH-04737-04), and the National Aeronautics and Space Administration (Grant NsG-496). It is taken 
in part from a thesis submitted by Paul Mermelstein in partial fulfillment of the requirements for the Doctor of 
Science degree to the Department of Electrical Engineering, Massachusetts Institute of Technology, January 14, 
1964. 

t Present address: Bell Telephone Laboratories, Inc., Murray Hill, New Jersey. 
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not only must we be able to recognize patterns 
with good reliability, but the utilization of the 
applicable constraints must be sufficiently ef­
ficient so that real time operation is feasible. 

This paper reports experiments demon­
strating feasibility for machine recognition of 
handwriting, given the pattern as a two-dimen­
sional vector displacement of time. The time­
dependent form of input presentation is used 
to limit the scope of the problem tackeld. A 
concise numerical presentation for handwriting 
deemed more suitable for the programmed re­
covery of the message is presented. This rep­
resentation preserves sufficient information so 
that with the aid of a suitable model for hand­
writing generation the two-dimensional pattern 
can be regenerated. The alphabetic representa­
tion of the message is recovered from the nu­
merical representation with the aid of statisti­
cal estimates based on an ensemble of writing 
samples. 

An algorithm for the segmentation of the pen 
displacement signal of handwriting into func­
tion segments corresponding to strokes has 
been presented.3 This procedure, when re­
peatedly applied to a collection of handwriting 
samples yields function segments that may be 
classified into categories based on topological 
similarities, thereby yielding a representation 
for every cursive letter by means of a small 
number of permissible alternative sequences of 
stroke categories. Such categories are defined 
by means of statistical averages of the numeri­
cal representations of the member functions, 
and the likelihood of membership of new func­
tion segments in each particular category is 
estimated by means of the multi-dimensional 
distance between the representation of the new 
function and the average for the category. 

Constraints are recognized to exist on two 
levels, those between stroke categories, se­
quences of which must form valid letter repre­
sentations, and those between letters, sequences 
of which must form words within the vocabu­
lary of the system. The result of the recogni­
tion process is that word which is generated 
from the stroke category sequence, the constitu­
ent strokes of which correspond to a maximum 
total likelihood. Methods are presented which 
implement the stroke sequence to word map­
ping in an efficient manner. 

Preliminary experiments on the recognition 
of words selected from a limited vocabulary 
generated with the aid of only nine different 
letters have been previously reported.3 These 
experiments have shown that good recognition 
is obtainable using the downstrokes of the writ­
ing only. A representation in terms of down­
stroke categories only is here given for the 
complete alphabet. Experimental results are 
reported for the recognition of 254 word sam­
ples under various conditions of machine learn­
ing. The test samples were generated by four 
writers from a vocabulary of 32 words in which 
each letter of the alphabet occurred at least 
twice. A dictionary of the 10,000 most fre­
quently used English words 4 was used to limit 
the recognition results to words of the lan­
guage. 

METHODOLOGY 

A detailed study of the variations in writing 
speed for several subjects reveals points of 
speed minima predictably situated along the 
time axis. Examples of one test word written 
in turn by four subjects and the corresponding 
pen velocity functions are shown in Fig. 1. The 
writing segments delimited by such points of 
speed minima are found to correspond to re­
gions in which the vertical component of the 
velocity does not change sign, i.e., they form 
the upstrokes and downstrokes of the writing. 
These segments or strokes are classified into 
categories on the basis of topological similari­
ties, corresponding segments from the same 
letter as well as similar segments originating 
from different letters being assigned to one 
category, e.g., the first downstrokes of the let­
ters i, 0, U, v, and w. Similar writing segments 
are assigned to the same category unless such 
assignment precludes a unique representation 
for the letter by means of the categories to 
which its constituent stroke segments belong. 
An incidental property of this assignment is 
the fact that practically unique letter speci­
fication is obtainable by the downstrokes of the 
writing only. This representation is given for 
the lower case Latin alphabet in Table 1. It 
should be noted that in going from a general 
stroke representation to one consisting of down­
strokes only, a special downstroke category is 
added which consists of strokes introduced at 
points where two upstrokes are found to follow 
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each other. The representation so obtained is 
unique except for the letter pair o-v which 
usually can be resolved by the use of the con­
textual environment. 

In order to define a measure of similarity be­
tween strokes we first transform the segment 
of the function giving pen displacement versus 

time into a parameter vector. This vector con­
tains sufficient information so that the displace­
ment function corresponding to the stroke ex­
ecuted may be regenerated with the aid of a 
suitable model of handwriting generation 3 and 
will exhibit only minor differences with respect 
to the original function. 

Figure 1. Handwriting samples and corresponding pen velocity functions 
redisplayed by the computer-top function y (t), bottom function x (t) . 
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Table I. Stroke category representation for the lower case Latin Alphabet. 

CHARACTER LETTER DOWNSTROKE CATEGORY CHARACTER LETTER DOWNSTROKE CATEGORY 
VARIANT SEQUENCE VARIANT SEQUENCE 

-Cl, AI 01 02 if?- PI 06 09 

,et.. A2 SP 01 02 p.-- P2 06 010 003 

'-a A3 001 01 02 .,-- QI 01 016 SP 

~ 81 03 SP ~ Q2 01 016 002 

{J.J 82 03 002 ~y.~ Q3 001 01 016 SP 

'C CI 017 '~/ Q4 001 01 016 002 

rC C2 SP 017 -~-' Rl 015 

""C C3 001 017 ---1' __ R2 004 015 

.dl 01 01 03 4.- SI 018 

.d 02 SP 01 03 ;, ... S2 011 SP 

;-li 03 001 01 03 of.. S3 011 003 

.P, E 04 ... t- TI 012 

-{ FI 05 SP ...j' T2 O~ SP 

? F2 05 002 -/, T3 03 002 

~ GI 01 06 ,U U 02 02 

".. G2 SP 01 06 -0--- VI 02 SP 

--"9- G3 001 01 06 -0-- V2 02 002 

?f H 07 08 V' V3 014 SP 

A, I 02 7.}' V4 014 002 

1 J 06 ,!.tr WI 02 02 SP 

A KI 07 09 --~., W2 02 02 002 

-It K2 07 010 003 X, x 013 

t L 03 y- Yl 02 06 . 
II m. tIo4 014 014 08 Y2 014 06 

h" N 014 08 J- Z 014 016 

7:r' 01 02 SP , NULL STROKE 017 

"t9-/ 02 02 002 

LEGEND: 

01,02,---, 018 = STANDARD .OOWNSTROKE CATEGORIES. 

001,002,---,004 = DOWNSTROKE CATEGORIES FOUND OPTIONAL IN SCRIPT. 

SP = SPECIAL CATEGORY DENOTING VIRTUAL DOWNSTROKE OF ZERO LENGTH. 

The model used for stroke generation is a 
modification of one first presented by Eden 5 

and considers the velocity of the penpoint over 
any stroke to be representable by two pairs of 
quarter-wave sinusoidal segments, one for each 
of the horizontal and vertical components of 
the writing for the vertically accelerating and 
decelerating sections, respectively~ The param-

eter vector components derived from that 
model such as displacement, curvature, pen 
velocity amplitude, etc. tend to prove useful in 
identifying the generated displacement patterns 
because they are likely to be invariant particu­
larly with respect to those transformations of 
the patterns that leave the communicated in­
formation unchanged. 
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The parameters corresponding to an experi­
mentally obtained function segment are deter­
mined by synthesizing a generating function 
that will best match the original function in the 
least mean square sense. There being seven in­
dependent parameters in the model, we impose 
six constraints on the functions to be generated, 
leaving one degree of freedom. Perturbations 
are applied to one parameter, the others being 
recalculated to satisfy the imposed constraints, 
until a local minimum is found for the differ­
ence measure as a function of that parameter. 
Further non-independent parameters, consid­
ered as possibly useful for recognition, are ap­
pended to the previous parameter set resulting 
in twelve component parameter vectors. 

The recognition procedure is effected in two 
successive stages. First, an attempt is made at 
independent stroke recognition or the classifica­
tion of each function segment independently 
into predetermined stroke categories. The re­
liability attained at this stage is strongly de­
pendent upon previous knowledge of the sub­
ject's writing insofar as that information is 
represented by the statistics pertaining to the 
several categories. Second, ordered sequences 
of the selected strokes are considered and the 
applicable constraints are used to eliminate the 
sequences not corresponding to words, thereby 
increasing the likelihood for correct recogni­
tion. This stage is independent of the ensemble 
on which the machine's representation of the 
writing is based. It is implemented in a manner 
that allows the introduction of additional con­
straints while their effects are under investiga­
tion. 

Recognition of Strokes 
An optimal rule for recognition of member­

ship in categories is one that calculates for all 
categories the conditional probability that a 
particular stroke parameter vector from a se­
lected category takes on a value identical to 
that of the stroke to be identified and assigns 
the unknown stroke to that category for which 
this conditional probability is maximum.6 In 
most pattern recognition problems, including 
this particular case, the required parameter 
statistics for the several categories are unavail­
able and may be estimated only by a prohibitive 
amount of sampling. By making assumptions 
about the nature of the probability density 

functions of the parameters of the several cate­
gories on the basis of limited data, we may 
overcome the estimation problem, but the rec­
ognition results will fall below optimal to the 
extent that these assumptions fail to be valid. 
In particular, we assume that the parameters 
describing the strokes have multivariate normal 
distributions with generally unequal covariance 
matrices for the several categories. 

Statistics consisting of the vector of param­
eter means and the covariance matrix of the 
parameters are computed for each stroke cate­
gory from the parameter values of the stroke 
segments assigned to those categories. This 
assignment is carried out manually, and de­
pending on the source of the samples, the re­
sulting representations may correspond to a 
group of writers, or separate representations 
are obtainable for individual writers. When 
several subject dependent representations are 
available the recognition process may be modi­
fied to identify the script of a given word as 
corresponding most closely to a particular one 
of the available representations. 

Recognition of Letter Sequences and Words 

The constraints between adjacent strokes are 
formulated in terms of stroke sequences which 
may correspond to the letters of the alphabet, 
and a list of the valid letter sequences, i.e., the 
vocabulary of the system. Most stroke se­
quences generated at random are not mappable 
into words. We desire to arrive at the sequence 
which among those mappable into output words 
has maximum likelihood as given by the sum 
of the constituent stroke likelihoods. Unless the 
sequence formed by the most likely stroke can­
didates is mappable into a word, less likely 
stroke candidates must also be considered. Con­
ceivably, whenever an unacceptable sequence is 
found, we could make the substitution that least 
decreases the total likelihood for the sequence. 
Since not only single, but also multiple substitu­
tions, must be considered and the independent 
stroke recognition rate is not expected to be 
very high, repeated substitutions are necessary 
resulting in an impossibly time consuming pro­
cedure. Clearly, the number of ordered se­
quences of all stroke candidates is so large as 
to make an unordered consideration prohibi­
tive. 
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We may find the most likely sequence with a 
high probability by establishing a threshold on 
the individual stroke likelihoods and examining 
all sequences generatable from the strokes ex­
ceeding that likelihood. If no sequence satis­
fying the constraints is found, the threshold 
value may be relaxed and the procedure re­
peated. This procedure will miss the most likely 
sequence if that sequence contains one member 
having a likelihood appreciably below the mean 
likelihood for the sequence, as well as below the 
threshold, and there exists a different valid se­
quence with somewhat lower mean likelihood 
all of whose members exceed the likelihood 
threshold. A strategy of this nature has been 
first suggested for the sequential decoding of 
information encoded for transmission over 
noisy channels. 7 

On the assumption that most of the hypo­
thesized stroke sequences will not be trans­
formable into output words, the following pro­
cedure for the exhaustive consideration of all 
possible ordered sequences of the stroke candi­
dates proves efficient. Starting with the first 
choice for the first stroke, attempt a continua­
tion with the first choice for the next stroke, 
continuing until either an illegal sequence (no 
corresponding letter sequence) is found or the 
last stroke of the word is reached. For illegal 
sequences, the last stroke choice selected is 
dropped and a continuation is attempted with 
the next choice, if any, for the same stroke. If 
no such continuation is found possible, one more 
stroke is deleted and further choices for that 
stroke are considered. Whenever enough 
strokes have been processed to complete an 
additional letter, the letter string found up to 
that point is checked against the output vocabu­
lary for presence as the initial subsequence in 
an admissible letter sequence. Words are ac­
cepted as possible results if the last stroke of 
the sequence is found to terminate the last 
letter of the word and ordered by assigning 
likelihoods based on the sum of the constituent 
stroke likelihoods. 

EXPERIMENTAL RESULTS 

Recognition experiments were performed on 
a set of 32 different words written repeatedly 
by four different subjects. The set of words 
was chosen randomly and therefore reflected 

roughly the letter distribution in the language, 
but contained at least two occurrences of each 
letter. Diacritical marks were omitted and sub­
jects were asked to write continuously, not 
crossing the letters t and x where it necessi­
tated a break in the continuity of the writing. 
A dictionary of the 10,000 most frequently used 
English words was used to limit the recognition 
results to words of the language. 

The words were written individually on a 
handwriting transmitter (Telautograph) hav­
ing a 4" x 2" writing surface (see Figure 2). 
The transmitter signals corresponding to pen 
position were fed to the TX-O computer (De­
partment of Electrical Engineering, Massachu­
setts Institute of Technology), the computer 
being used as a multiplexed analog-digital con­
verter and for the recording of data on mag­
netic tape. The IBM 7090 and 7094 computers 
of the Computation Center, Massachusetts In­
stitute of Technology, were used for all subse­
quent data processing. 

Of the total of 254 samples, 249 were success­
fully segmented into stroke sequences. In the 
other five cas'es, as a result of the smoothing of 
the normal direction changes in certain con­
texts under conditions of rapid writing, the 
last upstroke-downstroke pair of a letter and 
the following ligature were found to be in­
separable by the segmentation algorithm used, 
as illustrated by writing instead of 
In two other cases the words, as segmented by 
the program, were not recognizable with the 
aid of downstrokes alone because the last down­
stroke of the last letter of the word was not 
explicitly executed, e.g., 

Recognition was attempted on the remaining 
247 words by using a stroke representation of 
the letters based on downstrokes only and com­
piled from the strokes constituting those words. 
The stroke partition utilized consisted of 22 
downstroke categories, one of which corre­
sponded to downstrokes found at the beginning 
and end of words which did not form part of 
the first or last letter, and was therefore as­
signed to the null letter. The stroke classifica­
tion was carried out by using all 12 computed 
parameters and treating them as if they were 
independent. Eighty per cent of the words on 
which recognition was attempted were cor-
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Figure 2. Writer using Telautograph transmitter. 

rectly identified. Of the 49 samples incorrectly 
identified, 14 had the correct word selected as 
the second choice, 7 as choices lower than the 
second, 26 did not give the correct word as one 
of the 20 possible choices in the threshold 
range, and recognition of 2 samples had to be 
terminated \vhen no result "vas obtained after 
20 minutes of processing. 

The experimental strategy for word recogni­
tion, namely, repeated attempts with succes­
sively lower stroke-likelihood thresholds, does 
not eliminate the possibility that if some lower 
initial threshold setting were used, a previously 
incorrect decision might be performed correct­
ly or a correct decision might be upset. In 
order to observe the frequency of this pheno­
menon, 12 word samples for which the correct 
word was initially not selected were reprocessed 
by using a value for the initial threshold setting 
that permitted consideration of strokes having 
likelihoods down to half the previous minimum 
likelihood. Six of these -words were now cor­
rectly selected as first choices in the recognition 
output. The reason for this improvement in 
performance is that in certain cases the correct 
category may lie just beyond the likelihood 
threshold value and therefore be missed, while 
all of the other strokes are correctly recognized. 
We may, of course, process all samples ·with the 

higher threshold value initially, but this fre­
quently results in an unwarranted sizable in­
crease in the required processing time for word 
recognition. 

N ext, independent stroke statistics were com­
puted for each subject, and recognition was at­
tempted on the previously incorrectly recog­
nized samples by using representations derived 
in each case from the test subject's handwrit­
ing. Forty-three of the previous 49 errors were 
now correctly recognized. Since 40 of the 198 
samples previously correctly recognized were 
correctly recognized now as well, and none was 
misrecognized, we may assume that all of the 
198 samples would have been correctly recog­
nized thereby resulting in a subject-dependent 
recognition rate of 98 per cent. Time require­
ments for recognition in this experiment fell 
to an average of 9 sec on the IBM 7094 com­
puter, as compared to 30 sec for the subject in­
dependent recognition. 

One may gain insight into the magnitude of 
the contribution made by contextual informa­
tion from the fact that in the set of strokes, 
when considered individually in the subject in­
dependent experiment, the calculated most 
likely category was in fact the correct category 
in only 58 per cent of the cases. Hence, the 
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probability that none of a sequence of say ten 
strokes was in error was (0.58) 10 or 0.43 per 
cent. 

Clearly, in carrying out the initial attempt 
at individual stroke recognition, differences 
may be expected between the relative utilities 
of the several parameters describing the 
strokes. The n1isidentification of a particular 
stroke mayor may not result in the misrecogni­
tion of the complete word. The extent of any 
improvement in word recognition rates on the 
basis of specific improvements in the stroke 
recognition rate cannot be readily estimated be­
cause of the complexity of the applicable con­
straints. Therefore all errors were weighted 
equally in calculating the overall stroke recog­
nition rates. 

For the partition of the downstroke space 
corresponding to the alphabet representation 
given in Table I, a partial investigation of the 
relative contributions of the several parameters 
was carried out, based on stroke data from the 
above 249 samples. The effect of the assump­
tion that the parameters may be treated as if 
they were independent was also investigated. 
Although the assumption of independence 
among the parameters is known to be invalid, 
their treatment as if they were independent is 
justifiable if the reduction in complexity of the 
required calculations and the amount of addi­
tional statistic~l data required can be obtained 
at the cost of only a small reduction in the rec­
ognition rate. 

The stroke parameters used in the recogni-
tion experiments are defined below. 

1. X component of stroke displacement 
2. Y component of stroke displacement 
3. X component of initial stroke velocity 
4. X component of final stroke velocity 
5. Frequency of sinusoid matched to initial 

stroke segment 

6. Frequency of sinusoid matched to final 
stroke segment 

7. Initial segment phase shift of x velocity 
relative to y velocity 

8. Final segment phase shift of x velocity 
relative to y velocity 

9. Amplitude of matched y velocity sinu­
. soid 

10. Amplitude of matched x velocity sinu­
soid for initial segment 

11. Amplitude of matched x velocity sinu­
soid for final segment 

12. Constant component of matched x veloc­
ity 

When the dependence among the parameters 
is considered for the subject dependent case, 
the stroke recognition rate is increased from 
·58 to 62 per cent. Several subsets of param-
eters were considered and none yielded a recog­
nition rate higher than 63 per cent. The cor­
responding stroke recognition rates for the four 
subjects treated individually ranged from 68 
to 81 per cent, averaging 74 per cent. It should 
be noted that the increase in stroke recognition 
rate from 58 to 74 per cent was sufficient to 
raise the word recognition rate from 80 to 98 
per cent. The parameter subset {5-12} con­
taining only parameters used in the handwrit­
ing generation model, when compared to sub­
set {1-4}, the one composed of the arbitrarily 
selected parameters, proved significantly poorer 
in the subject independent case, yet equally 
good in the subject dependent case. Evidently 
the detailed dynamic characteristics of the 
writing while consistent in the case of par­
ticular subjects reflect too much subject to sub­
ject variation to prove useful for subject 
independent recognition. For the subject in­
dependent case, once a minimal set of param­
eters is selected, the stroke recognition rate is 
not found to be a very sensitive function of the 
number of additional parameters. 

CONCLUSIONS 

This report presents an approach to machine 
recognition of handwritten script words when 
written on-line, i.e., with the time information 
of the writing available. Experiments carried 
out by general purpose computer simulation of 
the recognition system reveal that the system 
is capable of recognizing well-formed, legible 
handwritten words with a reliability that de­
pends on the correspondence between the script 
of the writing sample and that of the ensemble 
on which the machine's representation of hand­
writing is based. The resulting recognition 
rates are found to be significantly better than 
those previously reported.8 
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A detailed study of the behavior of the recog­
nition system shows the following: 

(a) Recognition reliability approaching that 
of humans is attainable if the machine's 
representation is based on the writing 
of the same subject who produced the 
samples to be recognized. 

(b) When the machine is not given a repre­
sentation originating from the same sub­
ject, but one based on an ensemble writ­
ten by a number of individuals, samples 
from that group of individuals are rec­
ognizable, but with lower reliability. 

Previous experiments 3 show that performance 
deteriorates further when we attempt to rec­
ognize writing samples of subjects not included 
in the ensemble from which the machine's rep­
resentation is derived. 

The problem of selection of a set of param­
eters for stroke description that is to a large 
extent independent of subject and context, one 
clearly of great importance for achieving re­
liable recognition, has not been solved with any 
degree of finality. The system establishes a 
framework within which the utility of the vari­
ous parameters may be investigated. It also 
permits the evaluation of the contribution to 
recognition which word context provides. 

Our simulation experiments demonstrate that 
good recognition is obtainable by means of the 
downstrokes of the writing only. There exist 
a number of ambiguities that are in general 
difficult to resolve by means of downstrokes 
alone, such as differentiation between the let­
ters p and k or the pair cl and the letter d. It 
is suggested that use should be made of up­
strokes as well only in environments giving rise 
to such ambiguities, and not otherwise, thereby 
reducing the complexity of and time require­
ments for the recognition task. 

The program's failure to discriminate cor­
rectly between two strokes can in certain in­
stances be due to the method of partitioning 
the stroke space. A point in the parameter 
space corresponding to a particular function 
segment of the test sample is assigned a likeli­
hood with respect to each stroke category in 
the stroke alphabet. However, if the several 
hierarchies of constraints restrict the choice 
for a given segment to one of a very limited 

number of stroke assignments, then we may 
possibly make improved discriminations on the 
basis of a restricted set of parameters particu­
larly applicable to the discrimination to be 
made. It is therefore proposed that the final 
discrimination decision be based on the results 
of an iterative sequence of successive approxi­
mations to the desired likelihood- measures. 

The most important deficiency of the pro­
gram appears to be the lack of facilities for 
modifying stroke likelihood decisions on the 
basis of the stroke environment. Stroke recog­
nition based on information pertaining only to 
individual strokes is found frequently to be in­
adequate in low contextual information situa­
tions. For example, differentiation between the 
words fall and full could be appreciably aided 
by making available to the recognizer, the hori­
zontal distance between the initial points of the 
first and second downstrokes of the letters a 
and u. The difficulties, which may in most 
cases be recognized by a likelihood ratio be­
tween the two word choices which is nearly one, 
are in many cases resolvable if further infor­
mation pertaining to the specific letter-letter 
confusion can be supplied on demand from the 
recognizer. 

The requirements for on-line input of writ­
ing samples places strong limitations on the 
practical applications of the methodology -pre­
sented. The underlying stroke representation 
may, however, be adapted for such applications 
by using functions segmented at the zero spatial 
derivative of the y displacement _ function. By 
replacing time derivatives by spatial deriva­
tives, we may arrive at a list of parametric de­
scriptors which are adequate to differentiate 
among the stroke set. The immediate and most 
significant problem that remains is the design 
of practically applicable algorithms for spatial 
segmentation of handwritten words into 
strokes. 
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A LABORATORY FOR THE STUDY OF GRAPHICAL 

MAN-MACHINE COMMUNICATION 
Edwin L. Jacks 

Research Laboratories, General Motors Corporation, Warren, Michigan 

INTRODUCTION 

Engineering has evolved rapidly during the 
last fifteen years as analysis techniques geared 
to the computational power of a slide rule and 
desk calculator have been replaced by tech­
niques which make extensive use of computers. 
During these years, however, graphical tech­
niques for conversion of design ideas to final 
products have not changed significantly, nor has 
the role of drawings in engineering design 
changed. The drawing plays a vital role in each 
phase of the evolution of a product. The ori­
ginal design proposals, the engineering anal­
ysis, the design compromises, and the proto­
type product fabrication all depend on graphical 
communication among engineers and designers. 
Whether the product is to be machined, assem­
bled, stamped, wired, welded or hand modeled, 
a drawing is made so that a two-dimensional 
representation of the product may be reviewed 
by the engineers concerned with the product. 
Prior to the final product drawing, many ideas 
are exchanged by the use of sketches, drawings, 
plots, and engineering reports. 

The drawing board is used as the basic mech­
anism for resolving problems in design pack­
aging. For instance, "Where can part B be 
located if part A is made larger?" and "Can 
part A be assembled to part C?" As the design 
evolves, many decisions are made by the engi­
neer while the drawing representing the design 
is being produced by the draftsman. The ques­
tions are endless, and, in many design prob-
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lems, are not finally resolved until after early 
prototypes of a product are made. 

Two key points in this process are: (1) the 
engineer is an integral part of the graphic de­
sign process, and (2) the draftsman is doing a 
task that requires considerable attention to de­
tail and mechanical precision. In many me­
chanical design situations the two functions of 
engineering and preliminary product drafting 
are done by the same man" A drawing serves 
as his way of exploring design ideas. 

The dependence of engineering design on 
graphical techniques is fundamental to the de­
sign process. Graphics serves as a language of 
communication among design personnel and, as 
outlined above, as a mechanism for design 
evolution. 

The General Motors Research Laboratories 
had been using digital computers for engineer­
ing and scientific analysis for several years dat­
ing back to a card-programmed calculator in 
1952, but notably absent from the applications 
were problems relating to graphical design. In 
the late 1950's, the Research Laboratories ad­
dressed the question, "Could computer tech­
niques significantly improve the design proc­
ess ?". To answer this question, a study was 
started on the potential role of computers in 
the graphical phases of design. Prototype hard­
ware and software components were developed 
to investigate the problems of image process­
ing. A 740 cathode ray tube recorder attached 
to the 704 computer was already being used to 
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plot results of engineering computations. It 
satisfied the requirement for graphical output. 
The associated 780 display unit provided a 
graphical on-line display which, along with a 
simple switchboard, became an elementary 
man-machine console. A program-controlled 
film scanner was devised using the 740 re­
corder; a photocell detector was substituted for 
the film magazine, and its output signal was 
connected to a computer sense switch. With 
this breadboard setup, lines on film could be 
digitized under program control.· Programs 
were written for graphic input and output and 
for the manipulation of images in three dimen­
sions. These early software and hardware 
components were integrated into an operating 
system that demonstrated the feasibility of 
using the computer as an aid in the graphic de­
sign process. 

On the basis of this early feasibility demon­
stration, the decision was'tmade to establish a 
more comprehensive laboratory for graphical 
man,.machine communication experiments. The 
facilities were to permit the computational 
power of a large-scale digital computer to be 
brought to bear on the problems of graphical 
design in a manner which fully recognized the 
importance of the man in design. This project 
on Design Augmented by Computers has be­
come known as DAC-I. 

The initial goal of the Design Augmented by 
Computers project was the development of a 
combination of. computer hardware and soft"­
ware which (a) would permit "conversational" 
man-machine graphical communication and (b) 
would provide a maximum programming flexi­
bility and ease of use for experimentation. This 
goal was achieved in early 1963. This paper 
gives a broad outline of the computer technol­
ogy which was developed to meet the above goal. 
Other papers 1,2,3,4 present approaches to solu­
tions and examples of performance of the vari­
ous hardware and software components of the 
system. 

The present hardware complex co.nsists of an 
IBM 7094 computer and an IBM 7960 Special 
Image Processing System. The Image Process­
ing System was designed and built by IBM to 
specifications provided by the General Motors 
Research Laboratories (GMR). 2 

The supporting software was developed by 
the GM Research Laboratories Computer Tech­
nology Department and includes a multipro­
gramming system, an algebraic compiler 
(NOMAD), a data channel command compiler 
(MA YBE), a dynamic storage assignment pro­
cedure, and extensive facilities for the storage, 
retrieval and editing of programs and data 
stored on a disk storage device.1 

Each major portion of the DAC-I system­
the 7960 Special Image Processing System, 
the computer with its attached disk memory, 
the multiprogramming trap control system, the 
DAC-I monitor system, the programming lan­
guages used for system development and the 
disk filing programs-have, via their design 
criteria, all contributed to the system's flexibil­
ity and ease of use for experimentation. 

DESIGN OBJECTIVES OF THE IMAGE 
PROCESSING HARDWARE 

The over-all objective of the image process­
ing system was to achieve the equivalent of 
what is possible with graphical man-to-man 
communication while utilizing drawings. In es­
tablishing systems specifications, four types of 
man-machine communication were sought. 

The first type of drawing communication de­
sired was static. The machine should be able 
to produce a hard copy drawing for engineering 
use. Conversely, it should be able to accept a 
drawing and be able, under computer control, to 
read the drawing. Because of the nature of au­
tomobile design, it was necessary that the DAC­
I system be able to accept free form curves, i.e., 
curves which are constructed without considera­
tion of particular mathematical representations. 
'Furthermore, to provide compatibility with 
existing design procedures, precision input and 
output of such curves was needed. These re­
quirements ruled against a "sketchpad" type of 
operation." The drawing input-output func­
tions have been achieved in the image processor 
of the 7960 System by: (a) using a high resolu­
tion cathode ray tube (CRT) under computer 
control to record drawings onto 35 millimeter 
film and (b) using a second and similar CRT as 
a computer-controlled flying spot scanner to 
scan 35mm film images of drawings. The image 
processor has built into it the ability to photo-
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seconds have the film ready for optical scanning. 
The output drawings are also ready for viewing 
30 seconds after film exposure. 

The second type of drawing communication 
desired was dynamic. The system should simu­
late the type of man-to-man communication 
where one man is drawing or pointing at a par­
ticular part of a drawing while another man is 
observing or 'discussing details of the design 
with the first man. This capability was provided 
in the graphic console of the 7960 through the 
combination of a 17 -inch display tube and a de­
vice called a position-indicating pencil. When a 
designer touches the pencil to the glass plate in 
front of the display tube, the computer program 
can detect what position on the tube face is 
being pointed to and, hence, can react to any 
comments the man may wish to make about the 
indicated portion of the display. Thus, after 
the computer generates a picture on the display 
tube, either the man (by pointing at the dis­
play) or the computer (by placing an "x" on the 
displayed picture) can in effect say to the other, 
"Consider this portion of the picture." 

The third drawing communication objective 
was simulation of the comparison function. The 
system should allow the overlay of two pictures 
to permit comparisons of the differences and 
similarities in the information. 

This feature was provided by having the 
image processor designed such that pictures 
can be recorded on two separate film trains and 
then projected automatically onto a common 
view screen. This feature allows, for exam­
ple, overlay of scanned data with the original 
film source for verification. By programming 
techniques, the graphic console can also be 
readily used to compare drawing information. 

The fourth design objective was to achieve 
man-machine communication of non-graphic in­
formation. The system should provide, via the 
graphic console, a convenient means of com­
municating (a) alphabetic and numeric infor­
mation to the computer, (b) multiple choice de­
cision responses to the computer, and (c) 
permissible actions by the man. For alphanu­
meric information, a 36-position keyboard with 
upper and lower case and a slow-speed card 
reader is part of the graphic console. For com­
munication of gross actions, the console has 36 

program control keys and 36 message lights; 
the computer receives a signal when a program 
control key is depressed by the man, and in­
versely the man receives a visual signal when 
the computer turns on a message light. 

A detailed description of the 7960 Special 
Image Processing System is contained in the 
paper by B. Hargreaves, J. D. Joyce and G. L. 
Cole, et al. 2 

OBJECTIVES OF THE COMPUTER 
HARDvV ARE COMPLEX 

Studies at the GM Research Laboratories in 
1959 and 1960 were made to estimate the com­
puting facilities required to adequately support 
the DAC-I project. Considered in the studies 
were the number of instructions required to 
support the experiments, execution time for the 
required programs, and man-machine response 
rate. These studies indicated that approxi­
mately 200,000 to 500,000 instructions would be 
programmed for the graphic communication ex­
periments. The computation required for 
these experiments was estimated in terms of 
central processing unit use per hour and 
amounted to 6 minutes of 7090 time for each 
hour of console use. 

The response rate considerations were stated 
in terms of system objectives. We wanted the 
designer to be essentially working on-line and in 
"real time." The measure of real time was that 
the man and machine could carryon a mean­
ingful conversation· about a design at a rate 
satisfactory to the man. The response consid­
eration then required a real-time approach to 
receiving and handling data arriving from the 
man. But the computer programs and hardware 
did not need to have a fail-safe time limit ap­
proach to sending a response to the man. For 
this reason the system is best described as on­
line console system rather than a real-time sys­
tem. 

Another more independent consideration was 
the computing requirements of the GM Re­
search Laboratories. In 1959 and 1960, a 704 
was in use between two and three shifts per 
day, and it was forecast that a 7090 or equiva­
lent computer would be reqired by 1961 to sat­
isfy the continuing needs for an engineering 
graph 22 x 22 inch drawings and within 30 
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and scientific computing facility at GM Re­
search. 

The combination of the above requirements, 
we believed, could be met by a 70'90' computer *. 
The speed of the 70'90' would adequately handle 
the computational load and, if properly multi­
programmed, the machine would effectively be 
able to give the response time desired for con­
sole communication and computational pur­
poses without wasting the estimated 54 minutes 
per hour of non-console use. The requirement 
for multiprogramming implied that the com­
puter would need to be modified such that two 
independent programs could reside in its core 
memory with a minimum risk of either pro­
gram modifying the other program. For this 
purpose, a core memory protection system was 
designed which prevents instructions from 
storing into program-specified 4K blocks of the 
memory. 

Multiprogramming also implied that for ac­
counting purposes a clock be attached to the 
computer so that proper timekeeping could be 
performed during the switching from program 
to program. A clock was built by the Delco 
Radio Division of General Motors for GMR 
with a millisecond as its basic interval of time. 

The requirements for 0'.5 x 10'6 words of pro­
gram storage could be satisfied by having a disk 
memory on the computer. The original 7Q9i­
configuration had a 140'5 disk connected via a 
140'1 and a direct data connection to the com­
puter. The current facility uses a 130'1 disk 
and three. drum storage units for the program 
and data library. The computer complex re­
sulting from the above set of specifications is 
shown in Figure 1. 

OBJECTIVES OF PROGRAMMING 
SYSTEMS SUPPORT 

The combination of the IBM 70'90' and the 
IBM 7960' system as described above was to 
provide an experimental graphical communica­
tion hardware facility. To support this system 
from the software standpoint, it was decided 
that an investment would be made in program­
ming techniques which would minimize the time 

* In 1963, the originally installed 7090 was upgraded 
to a 7094. 

from the conception of a man-machine com­
munication experiment until the required pro­
grams were operating. 

Figure 1 shows the computer as a central 
processing unit with five attached data chan­
nels. That is how the machine appears to the 
hardware man. To the people responsible for 
programming graphical communication ex­
periments, however, the machine was to have 
an entirely different appearance. These people 
were to be in a programming position in which 
a large library of procedures were at the "finger 
tips" of their programs. 

The programs were to be able to conveniently 
display situations to the man. If the man was 
expected to require more than a millisecond 
to respond, the programs were to be able to 
say to a control program, "Control, I am in 
standby status now and. when the man answers 
my question or takes other action, return con­
trol to me." 

For programming convenience, the program­
mer should be able to do all his programming 
in a higher level language (higher than an as­
sembly type language at least) including the 
programming of the data channel driving the 
7960' System, the loading of programs by name 
from the disk, and the analysis of all data com­
ing from the image processing or graphic con­
sole equipment. In short, he should be able to 
program all of his graphical communication ex­
periments in a language similar to FORTRAN 
or ALGOL. An algebraic complier (NOMAD) 
and a data channel compiler ( MAYBE) were 
developed for this purpose. 

CHANNEL A 
(16K) (16K) CHANNEL C GMR 

BATCH 

CHANNEL B 
MONITOR 

PROGRAMS DAC-I 
PROGRAMS 

TRAP 
CHANNEL H CONTROL 

SYSTEM 

Figure 1. Computer Configuration. 
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The specifications of the programming sys­
tem revolved around three broad statements 
of facility operational policy. First, for pro­
gramming purposes, the 32K computer memory 
was to be considered as two 16K blocks of mem­
ory *. This is represented symbolically in Fig­
ure 2, with 16K assigned to the DAC-I console 
support programs and 16K assigned to the 
standard batch monitor operation. 

Second, all input/output programs in both 
the DAC-I operation and the batch monitor 
operation must use the trapping hardware built 
onto the 7090 and all trap program operations 
must be compatible 'with a trap control system 
(TCS) developed at GM Research. 

The third policy statement indicated that the 
batch monitor's use of the computer was lim­
ited to channels A and B while the DAC-I con­
sole program's use was limited to channels C 
and D. This condition was imposed to prevent 
conflicts in hardware use ana means, for in­
stance, that tapes in use by the batch monitor 
could not be used by DAC-I during multipro­
gramming. One major exception to this rule 
was that the use of the disk was permitted by 
programs being executed under batch monitor 
control for purposes of compiling or checking 
out programs being developed as part of the 
n L\,.., T ......... ,....-i"ni­
.L..J'.L.J..'-1-.L .l-'~ VJ 0;:;\ .. -1". 

TRAP CONTROL SYSTEM 
SPECIFICATIONS 

Based on the above operation policies and on 
the programming system's objectives, specifica-

* As of March, 1964, the 7094 was expanded to two 
32K memories. 

7094 
COMPUTER 

7960 SPECIAL IMAGE 
PROCESSING SYSTEM 

STORAGE UNITS 
DELCO TIME CLOCK 

Figure 2. Split-Memory Operation. 

tions for the trap control system's performance 
in multiprogramming and the programming 
techniques for DAC-I were developed. 

The trap control system (TCS) was to meet 
the following broad specifications: (Refer to 
Fig 2) 

1. DAC-I channel traps terminate monitor 
job central processing unit (CPU) op­
eration. Machine status is saved by TCS 
prior to transfer of control to the appro­
priate DAC-I program. 

2. If DAC-I has CPU control, monitor job 
channel traps are saved for later action. 
Monitor job traps are processed immedi­
ately upon return of CPU control from 
DAC-I. 

3. TCS must switch memory protection re­
gions as CPU control is switched. 

4. TCS must honor DAC-I requests for ad­
ditional memory space by a dump and 
memory protect release of all remaining 
core (except TCS). Restore and restart 
procedures for monitor jobs must be pro­
vided. 

5. DAC-I channel traps should not be In­
hibited unless absolutely necessary. 

MONITOR SYSTEM'S OBJECTIVES 

With the above type of trap cOLtrol system, 
the batch monitor and DAC-I program se­
quencing monitor each had distinct operating 
objectives. 

1. The batch monitor should be a general 
purpose batch processing monitor and 
should be able to execute any program as 
long as the program was compatible with 
the trap control requirements and the 16K 
core limitations. 

2. The DAC-I monitor was to accept from 
the graphic console card reader a single 
card containing job accounting informa­
tion and a program name. The program 
name was to be the name of any subrou­
tine stored on disk. The monitor loads 
the subroutine and turns control over 
to it. 

3. Any program being executed on the 
DAC-I side should be able to enter a job 
into the batch monitor job stack. This 
permits conventional printed and punched 
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output from a DAC-I program without 
using channels A and B at the time the 
output is generated. The disk is used as 
the temporary storage space for the out­
put while waiting for a between job break 
in the monitor operation. 

4. The DAC-I programming system should 
be duplicated within the scope of the batch 
monitor. This permits debugging of pro­
grams independent of the 7960 System 
and prior to execution in the DAC-I en­
vironment. When operating in batch 
monitor mode a basic monitor facility 
must be provided for the compiling of 
DAC-I programs in the NOMAD lan­
guage and the subsequent filing of the re­
sulting obj ect program in the disk file. 

THE DAC-I MONITOR 

The DAC-I operating monitor was developed 
around the idea of a disk program library 
where all system functions and program execu­
tion sequences are built up from a) the basic 
operations of storage, retrieval, and updating 
of a library, and b) the allocation by the cur­
rently running program of memory core space 
for program and data. 

Basic concepts of the system are: 

a) The basic unit of a program is a subrou­
tine which has a name, an entry point 
name, and a disk file area name. 

b) Data for a subroutine may be either 
global or transmitted to it by a standard 
subroutine calling sequence. A global vari­
able is declared at subroutine compile 
time, but no memory locations are as­
signed until the subroutine is loaded into 
core. 

c) Program execution involves the loading of 
subroutines from disk as they are needed. 
It is the function of the loaded subroutine 
to assign subsequent locations within 
memory for whatever additional subrou­
tines and global variable assignments are 
required for the program's task. 

Based on the above concepts, the DAC-I 
monitor was required to provide: 

a) A table which contains the location and 
size of each subroutine in memory. 

b) A table which contains the location and 
size of all global variables in memory. 

c) The basic codes required to retrieve pro­
grams and data stored in the auxiliary 
disk and drum memories. 

d) A relocation program which, when given 
data in the form of a subroutine in mem­
ory, will relocate the subroutine and as­
sign memory addresses to its global vari­
ables based on the subroutine and global 
variable tables mentioned in a) and b). 

The basic facility ground rule was that given 
essentially the above codes any program written 
in NOMAD could then at execution time do its 
own storage allocation. The paper by M. Phyl­
lis Cole, Philip H. Dorn, and C. Richard Lewis 1 

describes the procedure for storage allocation 
(itself written in NOMAD). The method is 
basically program subroutine selection at execu­
tion time and it allows a programmer to make 
decisions in his programs as to which is the 
best method for handling the storage assign­
ment for a given data set at execution time. He 
may either keep a large block of data in memory 
and pass programs by the data, or keep all his 
programs in memory and pass the data by his 
programs. In practice, for small data sets, the 
programmer keeps all of his program in mem­
ory. As the data set becomes larger, initializa­
tion, computation, and post-processing subrou­
tines are cycled by the data. 

With the combined facility of disk program 
retrieval by subroutine name and memory stor­
age allocation at execution time, a very useful 
feature develops-any alphabetic data can be 
viewed as a subroutine name. This permits con­
venient modular expansion of programs. 

SYSTEM PERFORMANCE 

The system has been in operation eight hours 
per day since early 1963. In this time we have 
been utilizing extensively the hardware and 
software previously outlined. 

The paper by F. Krull and J. Foote 4 illus­
trates the combination of computer-controlled 
image scanning and man-machine communica­
tion. Where the input film is high contrast and 
there are basically no uncertainties, a simple 
computer program rapidly solves the problem 
of conversion from graphics to binary data. 
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When uncertainties, such as arise when scan­
ning low contrast film, become the dominant 
problem, then the man, as referee, can obtain 
control. One can argue that for each uncer­
tainty a program can be written to analyze the 
situation and then the man is not needed to aid 
the process. The strong point of man-machine 
communication via graphic consoles is that for 
any given problem, one may now ask which 
parts of the problem are easily solved by the 
computer and which parts are best solved 
heuristically by man. This results in programs 
being written which have decision points in 
them at which the man at the console can be 
asked for advice. Many of the past discussions 
of man-machine communication have been 
based on the concept of "let the man get to the 
computer" so he can directly ask questions of 
the computer program. Experience at G MR to 
date has been that the payoff from consoles 
comes not from asking the computer a question 
but assigning the computer a task from which 
the response is one of the following: "What is 
my next job?" "Here is the answer; what 
next?" or, "I don't understand; and here is my 
analysis of the situation." 

From the standpoint of a laboratory facility, 
the system is performing excellently. We are 
learning that man and machine can communi­
cate readily via graphical means. 

SUMMARY 

The software development for the graphical 
man-machine communication laboratory has in­
corporated three major departures from con­
ventional higher level language programming: 
1) multiprogramming,2) source program stor­
age allocation control, and 3) a disk library of 
programs available during program execution. 
Each of these programming techniques is es­
sential to the concept of Design Augmented by 
Computers. Multiprogramming permits com­
puter programs to be written such that, even 
though they work at the man's pace, they 
achieve efficient utilization of the computer's 
processing unit. Program storage allocation 
control allows each program to adjust storage 
assignment dynamically as a function of data 
needs. 

A disk library available at execution time al­
lows a control subroutine to view other subrou-

tines as black boxes which required certain 
inputs and produce outputs. The size and name 
of the black box does not need to be known at 
programming time and, in fact, are data at 
execution time, for the control subroutine. This 
feature allows continued growth of the design 
support programs with no change to control 
programs. 

The above three software techniques com­
bined with the flexibility of NOMAD, permitted 
a fourth major departure from conventional 
programming techniques. Ninety percent of 
the DAC-I programming system was written 
in NOMAD. The trap control system and the 
basic subroutine relocation programs were the 
major exceptions to the above. With the new 
laboratory facilities at GM Research, the proc­
ess of man-machine communication for design 
can now be explored with both formal experi­
ments ( direct comparisons of methods with 
planned testing) and informal experiments 
(let's try something to see how it works). 
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OPERATIONAL SOFTWARE IN A DISK ORIENTED 

SYSTEM 
M. Phyllis Cole, Philip H. Dorn and C. Richard Lewis 

Research Laboratories, General Motors Corporation, Warren, Michigan 

1.0 INTRODUCTION 

This is one of a series of papers which de­
scribes the General Motors Research Labora­
tories DAC-I (Design Augmented by Com­
puters) System. (1, '2, 4, .5) For a summary of 
the overall system objectives and organization, 
the reader is referred in particular to the 
paper "A Laboratory for the Study of Graph­
ical Man-Machine Communication" by Edwin 
L. Jacks.1 

In using the DAC-I system, the man at the 
console wants to perform the following types 
of tasks in solving his problems-

1. Introduce data rapidly and accurately to 
the computer. 

2. Operate on this data. 
3. Observe the results of these operations 

and have the ability to modify them 
while still in the on-line environment. 

4. File the original data and final results 
for future references. 

To accomplish these tasks requires the inter­
play of the 7960 Special Image Processing 
System, * the 7094 Computer Complex, and the 
man. 

It is the purpose of this paper to discuss the 
systems software developed in support of this 
interplay. 

* The IBM 796'0 Special Image Processing System, 
consisting of a graphic console, an image processor, and 
a modified data channel, was designed and built by IBM 
to specifications provided by GM 2. 
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Requirements of this software system in­
clude: 

1. Establishing efficient storage and re­
trieval methods for handling large 
numbers of data arrays and subroutines. 

2. Creating an environment within the com­
puter which would allow subroutines and 
associated data to be brought into mem­
ory, processed, overlayed, filed, etc. based 
on the operational denlands TIlade by the 
man at the console. 

A disk oriented software system (hereafter 
referred to as the D-System) has been imple­
mented in order to provide the basic software 
support. The objectives of the D-System are 
to provide compiler level accessibility to the 
new hardware devices and minimize the im­
pact of disk usage on the general programmer. 
The D-System provides all of the necessary 
subroutines required in using the disk for data 
storage and retrieval, for scratch space during 
intermediate computation, and for the loading 
of subroutines based upon program needs. The 
D-System is accessed through a batch monitor 
system in order to generate subroutines and 
data for storage on disk. Program execution 
may be accomplished through the batch moni­
tor or the on-line console. 

Establishing an operational computer en­
vironment also required the development of 
compilers to satisfy needs for both the obj ect 
and system codes which were to be written. 
The NOMAD compiler was used extensively 
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for central processing unit (CPU) codes and 
the MAYBE compiler was developed for 7960 
data channel codes. Processors for disk book­
keeping and a complete system for loading and 
overlaying subroutines in memory were also 
required. 

This paper considers first the organization 
and maintenance of a disk file and then de­
scribes an operating system based on a disk 
with both system and execution time features 
detailed. A brief discussion of the on-line D­
System operation is included. Finally, certain 
conclusions are drawn based on experience 
with a disk-oriented system. 

2.0 THE ORGANIZATION AND MAINTE­
NANCE OF A DISK FILE 

2.1 Introduction 
During 1961, a small disk file was attached 

to the computer permitting experiments in 
disk file usage. Although the file was both 
small and slow, its capacities were sufficient 
to allow meaningful simulation of the ultimate 
system. When the final D-System (a disk 
oriented software system) was being designed, 
certain design principles learned during simu­
lation were applied. 

It was ascertained that when planning stor­
age allocation for a random access device, the 
following design criteria should be followed: 

1. An absolute integrity must be maintained 
between the data to be stored and the 
programs which deal with the data. 

2. The programming system shall not im­
pose restrictions on the quantities of data 
retrieved from or stored on disk. 

3. The system must be free of fixed loca­
tions on the disk file. The optimum is to 
provide one fixed track location and ref­
erence all other locations from this one. 

4. The design of object time programs 
should not be concerned with the manner 
in which data is physically stored on 
disk. 

5. The number and time duration of disk 
arm movements to reach a particular 
piece of information must be kept to a 
minimum even at the cost of inconveni­
ences to the operating system. 

6. Efficient disk back-up procedures are 
necessary. 

In planning the storage allocation, four dif­
ferent types of storage areas were noted. These 
were: first, processor areas where subfunc­
tions of the operating system reside; second, 
subroutine areas where object time subroutines 
are permanently stored; third, data areas; and 
fourth, scratch and temporary working areas. 
Each of these areas is handled in a unique 
manner and the techniques therein involved 
will be discussed below. 

2.2 Storage of System Processors 
A processor is a logical portion of the oper­

ating system which may be called upon to per­
form a unique function. Examples of proc­
essors are the compilers, assembler and a 
processor which files subroutines on disk. 

Processors* are stored in absolute form. 
Filing is handled by a separate non-system 
program which blocks relocatable subroutines 
into an absolute package. During the filing 
process, a dictionary is developed which con­
tains the following information for each proc­
essor: 

1. processor name 
2. disk location 
3. length of processor 
4. processor entry point 
5. processor loading location 

Since both processor storage and retrieval 
is by absolute blocks, it may be seen that speed 
in loading is a feature of the processors. The 
system (using a cylinder reading technique) 
loads each processor as an absolute block into 
the location specified in the dictionary. Control 
is transferred to the entry point as specified by 
the processor dictionary. Since no system 
processor exceeds the capacity of a disk cylin­
der, no provision has been made for handling 
overflow to adjacent cylinders. 

2.3 Storage of Subroutines 
The disk area reserved for subroutine stor­

age is divided into logical areas with each 

* All processors are stored on disk except for the 
basic compiler and assembler. Although there is no 
logical reason why they could not have been placed on 
the disk, as a convenience factor they were left on the 
System Mastel' Tape. 
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uniquely named area assigned on a project 
basis. Each logical area consists of a block of 
physically contiguous tracks bounded for min­
imum access time. 

A separate dictionary is maintained for each 
disk area. Each dictionary entry contains the 
following information for each subroutine 
wi thin that area: 

1. subroutine name 

2. disk address of the subroutine 

3. length of the subroutine 

4. date the subroutine was filed on disk 

Subroutines are stored on disk in a blocked, 
relocatable binary form. Output from com­
pilers and the assembler is post-processed into 
blocked form and then filed in a two record per 
track format. Each record contains a pointer 
to the following record except the last record 
which has a null pointer. When subroutines 
are being retrieved, the pointer becomes a 
command to the loading routine to access the 
next record. 

Allocation of a particular location to a sub­
routine is made from a subroutine space as­
signment table. This table contains the 
following information for each disk area: 

1. area name 

2. location of area dictionary 

3. next available dictionary track 

4. first and next available tracks in the area 

5. number of available records in the area 

6. next available record in the area. 

In addition, the subroutine assignment table 
contains the location of a track "pool" to be 
used by an area whose basic space allocation 
is exhausted. Should this occur, subroutines 
enter the "pool". The area limits may be en­
larged during edit time *. Subroutine areas 
and their respective indexes are located by 
relerencing this table; should it become neces­
sary to redefine any or all areas, only the 
assignment table need be changed. The sys­
tem refers to track assignments through the 
table; references to absolute disk locations are 
not permitted. 

* The edit function is explained in Section 2.6 en­
titled, "Disk File Maintenance Procedures". 

2.4 PeTmanent Data StoTage 
All permanent data is stored in uniquely 

numbered files assigned on a project bais. Each 
file may contain four different data types 
where a data type is defined as one of the four 
different record sizes maintained on the disk. 
The types are: 

type 1: 25 word record~stored 15 records 
per track 

type 2: 111 word record-stored 4 records 
per track 

type 3: 229 word record-stored 2 records 
per track 

type 4: 465 word record-stored 1 record 
per track 

To establish a data file, the user must indi­
cate how many records of each type his file will 
contain *. 

A directory table is maintained for each data 
file permanently stored on disk. The directory 
tables are stored on disk in numeric sequence 
beginning with file number 1. The table con­
tains information as to whether this particular 
file number has been assigned, and if assigned, 
where the first track of each data type may be 
located. The location of the first file directory 
table is maintained in memory so the operating 
system may access the directories quickly. 
Given a file number and the number of direc­
tories per track, it is simple arithmetic to 
compute the disk address for a file directory 
which in turn points to the data file. 

Disk space allocation for permanent data is 
made. from a table stored on disk. This table 
has an entry for each group of uniquely for­
matted tracks.** A group of tracks is called 
an area and the entry for each area contains: 

1. the first track in the area 

2. the currently available track 

3. the next available record on the cur­
rently used track 

* Space allocations, if not sufficient, may be changed 
after the file has been assigned space. This process is 
not, however, performed automatically. 

** The IBM 1301 requires a strict formatting of any 
given cylinder for the size of the records to be main­
tained on the tracks within that cylinder. The file can 
be reformatted under program control but this proce­
dure is not generally available to D-System users. 
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4. number of available tracks in the area 
5. number of available records in the area 

System subroutines have been provided to 
store and retrieve permanent data. In general, 
data files are referred to at execution time as 
record N of type M. 

2. 5 Scratch Data Storage 
A scratch file is available to programmers 

for temporary storage of data during execu­
tion. To use the scratch area, a request is 
made for n tracks of 465 words to a system 
subroutine. Assignment is on a "last-in, first­
out" basis. If the space is available, the sys­
tem returns a key word containing the first 
and last track of the area assigned. Any 
subsequent storage and retrieval is by record 
number with the key being used as a base 
address for computation of the physical track 
referenced. 

When the programmer is finished, he ex­
ecutes a "closing" subroutine and the tracks 
which were made available to him will be re­
turned for future assignment. 

2.6 Disk File Maintenance Procedures 

Because the disk file may have occasional 
mechanical, hydraulic or electronic failures, a 
back-up procedure was developed to insure 
the preservation of the permanently resident 
information. Since both data and subroutines 
change from day to day, a working procedure 
was developed which consists of writing a disk 
save tape(s) daily. These areas are the only 
disk areas saved. Disk back-up tape (s) are 
retained for several days before being released. 

Both subroutine and data areas are periodi­
cally edited by separate programs. Editing is 
a clean-up procedure; information is physically 
moved to designated areas and space made 
available by deletions is returned for reassign­
ment. 

Subroutine editing is basically the process of 
constructing a new area dictionary by omitting 
entries for deleted subroutines. ~The sub­
routines are taken off disk and placed on a 
scratch tape for temporary holding. At this 
point in the edit process any change to the 
boundaries of an area may be made. The sub­
routines are then assigned new locations 

within the area, the area dictionary is updated 
and the subroutines and dictionary written 
back onto the disk. At completion of the edit, 
all subroutines within an area are sequentially 
assigned and remaining space is available for 
future changes. 

The data editing process is basically similar 
to the subroutine edit although the data edit 
program has the additional attribute of being 
able to operate upon anyone type of data (or 
all types if desired) in a given machine run. 

Data and subroutine restore programs re­
verse the save procedure and reload the disk 
from the last save tape (s). This procedure 
normally is used only in the event of maj or ma­
chine failures. A "cold start" procedure in 
the event of complete catastrophe includes sub­
routine and data restoration as well as re­
formatting, rewriting of home addresses, 
reloading processors and rewriting certain 
system control information. 

3.0 THE D-SYSTEM 

3.1 Introduction 
The D-System is a switchbox which ex­

amines the input stream of requests, loads the 
appropriate processor and links processors by 
passing parameters. A pointer is positioned by 
the D-System so that a processor may know 
the current position in the input stream. The 
D-System is also responsible for collecting 
timing information to be used for installation 
billing operations. 

The basic functional breakdown of the D­
System is outlined in Figure 1 ::' : 

Each of these three areas-input, bookkeep­
ing, and execution processing-is described in 
succeeding sections. 

3.2 Input Processing 
Input processing is that set of system func­

tions which results in object programs being 

* The execution of the D-System as well as other 
systems operated at GM Research is controlled by the 
General Monitor Program. The General Monitor de­
cides which system to call in, processes accounting in­
formation, signs tapes on and off the machine, and 
provides a means for operator communication to the 
programming systems. 
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Figure 1. D-System Functions. 

placed on the disk. Object programs are placed 
in one of two disk areas-either checkout or 
scratch, depending on the programmer's re­
quest. Subroutines filed in scratch disappear 
at the end of the job while those filed in 
checkout remain on disk for approximately one 
month. 

The input processors are shown diagram­
matically in Figure 2. 

3.2.1 The NOMAD Compiler 

NOMAD is an algebraic compiler adapted 
from the MAD * language to meet the special 
needs of this installation. It is a high speed 
compiler which permits a wide latitude of gen­
erality in expressions. Since MAD was imple­
mented in a highly modular fashion, there was 
little difficulty redefining code generation se­
quences, adding new operators and enlarging 
the statement repetoire. Although lVIAll is of 
the ALGOL '58 family of languages, it has been 
modified considerably since its original design. 

The NOMAD dialect developed at GM Re­
search Laboratories has four basic areas of 
difference from MAD: 

1. additional operators 
2. new variable types 
3. new relocation scheme 
4. real-time statements 

Thirteen new operators were added to the 
language to permit a full set of logical opera­
tions. Of special note are three bit detection 
operators that seek the first, last, and number 
of "1" bits in a variable, and a set of address/ 

* The Michigan Algorithmic Decoder (MAD) is an 
algebraic compiler based upon ALGOL '58. It was 
originally developed by Arden, Galler, and Graham of 
the University of Michigan Computing Center for use 
on the IBM 704. The language and compiler have been 
updated .through a series of revisions for the 709 and 
7090. The NOMAD compiler springs from the earliest 
7090 version circa 1961. 

decrement packing and unpacking operators. 
These operators were especially designed to 
permit coding of system subroutines in the 
NOMAD language. 

A new class of variables, the GLOBAL 
V ARI ABLE" was introduced. A global vari­
able is defined as a variable, single or array, 
to which storage is not assigned at compile 
time. Unlike the COMMON variables in a 
FORTRAN program, global variables not used 
in a program do not have to be declared merely 
for the information of the loader. No special 
ordering of global variable declarations is 
necessary. 

For each global variable used in a NOMAD 
program, the compiler generates an entry into 
a list attached to the program card informa­
tion **. Each occurrence of a global variable 
results in special relocation bits being pro­
duced to indicate that one or more fields of this 
instruction are global. Additional bits indicate 
the slot in the list to which the global variable 
is assigned. If the global variable is sub­
scripted, the numeric subscript is placed in the 
field normally assigned to the address. 

The relocation scheme is based on a variable 
number or bits assigned to each instruction 
type (e.g., absolute, relocatable address with 
absolute decrement, etc.). The most frequently 
used class of instruction is described by one 
bit, the second most frequent by two bits, the 
next most frequent by three bits, etc. The 
first "0" bit reached acts as a delimiter. Com­
parisons made to other schemes have shown 
non-trivial operating efficiencies as well as 
considerable core and disk space savings. 

The real time statements within the NOMAD 
compiler seek to acknowledge the presence of 
man in the program loop. Since a congole for 
display of graphical information is part of the 
hardware configuration, system users output 
data onto the console display screen rather 
than the system output tape. Because the 

** A NOMAD subroutine contains on its program 
card(s) data relating to the global variable(s), the 
entry point (s), the program length and the number of 
program cards. When the subroutine is actually filed 
on disk, additional information is added during the 
blocking process such as the program's checksum and 
the length of the transfer vector. 
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Figure 2. D-System Input PrQcessors. 

NOMAD statement for writing tape output has 
the form: 

PRINT FORMAT F, List 
where F" is the name of a format and List is 
the data to be written, it is appropriate and 
logical to give the statement: 

DISPLAY FORMAT F, List 
for displaying information on a screen. A 
similar statement exists for production of hard 
copy output through the recording CRT: 

RECORD FORMAT F, List 
where F and List have the same meanings as 
above. 

These statements represent steps toward 
development of a language which recognizes 
parallel processing in a large scale computer. 
Since the IBM 7094 has the capability to drive 
multiple channels in parallel, it is essential to 

permit the direct use of the full capabilities of 
the machine at the source language level. 

Other features of NOMAD which contribute 
to its selection for use in the D-System are 
more conventional but still important. NO­
MAD permits a completely general subscrip­
tion expression, a generalized iteration state­
ment, multiple entries and exits from 
subroutines, the manipulation of statement 
labels, the use of internal procedures, nested 
conditional statements and the use of certain 
elementary push down list facilities. 

3.2.2 The MAYBE Compiler 
The I/O devices of the 7960 Image Proces­

sing System are connected to the central com­
puter through a modified 7909 data channel. 
The data channel is capable of performing 
simple iteration loops, full and partial word 
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substitution and byte testing as well as driving 
I/O devices. It cannot, however, add, sub­
tract, shift or mask. The data channel can be 
viewed as a special purpose processor attached 
to the 7094 memory and capable of running in 
parallel with· the 7094 central processing unit. 
It was necessary that means be provided to 
program this special purpose computer in a 
higher level language. 

The MA YBE compiler was designed and 
implemented to provide the instructions, com­
mands and orders for operation of the data 
channel and 7960 I/O devices. In addition, 
MAYBE automatically produces the necessary 
system linkages to process the data channel 
interrupts and central computer traps. Figure 
3 shows the relationships among the computer, 
the data channel and the 7960 system. 

Each subroutine generated by MAYBE con­
sists of prologue instructions and a main body 
of data channel commands and orders. Stripped 
of its frills, the MAYBE compiler is a macro­
generator which feeds symbolic input to the 
standard assembly program. MAYBE was 
coded in NOMAD and utilizes standard system 
I/O routines. 

The MA YBE language includes approxi­
mately 75 declarations and statements divided 
into the following classes: 

1. storage allocation declarations 
2. replacement statements 
3. iteration statements 
4. control and linking statements 
5. device manipulation statements 

MA YBE declarations are essentially the 
same ones found in the NOMAD compiler and 
provide a means to utili~e local and global 
storage for data variables. The replacement 

I 70.4 CTItAP:J DATA eNTER. RUPT 
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Figure 3. 7909 Relationships. 
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statements allow substitution of data .variables 
even when they are positioned in non-standard 
fields *. Iteration statements permit loops 
within the data channel and testing of the loop 
control index. Control statements permit the 
transfer of control within MAYBE subroutines 
or externally to other MAYBE or NOMAD 
subroutines. Device manipulation statements 
permit the starting, continuance and stopping 
of I/O devices attached to the 7960 system. 

Linkages generated by the MAYBE compiler 
permit MA YBE subroutines to interrupt op­
erations and transfer control to NOMAD 
(main frame) subroutines. In this way, a 
nesting of alternate MAYBE and NOMAD 
subroutines is achieved. The maximum depth 
of this nesting operation is the programmer's 
ability to remember where he is; there is no 
system specified limit. At each step, the data 
channel and the main frame will be jointly 
interrupted and their respective status saved. 
Thus, no matter how deep the nesting, the ma­
chine status will be "restored upon return to 
each higher level. 

MAYBE is essentially a compiler for use .of 
system programmers. Most users operate de­
vices through NOMAD statements (such as 
DISPLAY or RECORD FORr-,IAT). Sub­
routines coded in MA YBE provide the I/O 
commands to drive the requested device. 

3.2.3 The Combine Processor 
The COMBINE processor permits the D­

System user to reduce a set of NOMAD object 
level srib!outines into one physical subroutine. 
This installation's programming standards 
emphasize subroutinizing as a checkout tech­
nique. Advantages may be gained by using a 
combined package of subroutines since the 
number. of disk accesses at load time is sharply 
reduced as ar"e the bookkeeping tasks during 
subroutine execution. 

In addition to producing one relocatable sub­
routine from many, the COMBINE processor 
has the following features: . ~ 

1. Global variables used for communication 
between the set of subroutines to be com-

* Instruction fields for 7966' commands and orders 
vary from the address and decrement fields nprmal to 
7094 instructions. Provisions had to be made to handle 
fields as small as three bits. 



358 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

bined may be drawn inside the package 
and assigned local storage or left as ex­
ternal global variables at the user's op­
tion. 

2. A merged external transfer vector is 
produced for the combined package. In­
ternal connections between the set of 
subroutines involved are handled through 
an internal transfer vector. References 
between one subroutine of the set and 
another within the set do not produce an 
external transfer vector entry. 

3. Any entry point or set of entry points 
associated with the subroutines of the 
set may be retained, discarded or re­
named at the user's option. A discarded 
entry point has no external meaning and 
does not exist outside the scope of the 
set. 

Since all D-System processors ha ve them­
selves been through COMBINE, there remains 
only the single merged transfer vector to be 
set during processor loading. 

3.2.4 The Assembly Program 
A standard 7094 assembly program, F Ap3, 

has been built into the D-System. Although 
it is available for general use, programmers 
are discouraged from using it except for highly 
special cases where extreme speed or efficiency 
is required, or for special purpose utility 
routines (such as number conversion and in­
put/output). The bulk of the D-System and 
the processors, as well as over 957r of the ap­
plications programs, are coded in NOMAD. 

3.3 The Bookkeeping Processors 
The bookkeeping processors exist for the 

purpose of allowing the programmers to add, 
replace, and delete subroutines within the disk 
area to which their project has been assigned. 
Since the system permits retention of many 
subroutines with the same name but allows 
only one version to be in any area at any time, 
users' are responsible for having the right ver­
sion in the right place at the right time. 

The following bookkeeping processors are 
available in the D-System: 

1. Move 
2. Delete 

3. Move and Delete 

4. List Areas 

Subroutines are initially filed in either check­
out or scratch. Programmers generally leave 
new subroutines in checkout until debugging 
is completed. A facility exists for overriding 
normal calls for this particular subroutine * so 
that the new version may be debugged as 
either an, isolated unit or within the total op­
erating environment. Subroutines may re­
main in checkout for one month after they are 
compiled. After that date, if not moved from 
checkout, they will be discarded at edit time. 
MOVE is the programmer's means of sending 
a subroutine to a permanent area. 

DELETE allows the programmer to take a 
version of a subroutine off the disk when it 
has outlived its usefulness. 

MOVE AND DELETE performs the dual 
function of moving a subroutine to a new area 
and deleting it from the old area. 

All these processing functions do not physi­
cally move the subroutine involved but merely 
make entries (or delete entries) in the sub­
routine dictionary for the area under consid­
eration. Actual moving is done at edit time. 
Should a programmer move a subroutine to an 
area which already has a same named sub­
routine on file, the new version will automati­
cally override the old version. 

LIST AREAS permits a programmer to ob­
tain a full listing of all subroutines in a speci­
fied area (s) along with their lengths and filing 
date. The physical disk address is also printed 
out at this time **. 

3.4 The Execution Phase 
D-System exception philosophy diverges 

from execution logic in most systems. Taking 
a standard FORTRAN batch processing moni-

* This is the USE processor described in the section 
on subroutine execution. (Section 3.4.2) 

** While printing the actual location of a subroutine 
may seem to violate the system criteria' of not allowing 
a user to know the physical location of anything on the 
disk, it actually is virtually useless information since 
the physical layout of an area will change at each edit 
pass. Those responsible for the correct operation of the 
hardware need this information occasionally after a 
machine failure. 
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tor for comparison, the following major differ­
ences may be pointed out: 

FORTRAN 
SYSTEM 

Subroutine loaded 
from tape 
Core loads 

Ping-pong and 
overlay 
COMMON vari­
ables loader as­
signed 

3.4.1 Dynamic Loading 

D-SYSTEM 
Subroutines loaded 
from disk 
One subroutine loaded 
at a time 
Continuously chang­
ing core configuration 
Global variables not 
assigned until needed 

While grouping subroutines in a core load is 
reasonably efficient when using magnetic tape 
as an input medium, this' procedure becomes 
wasteful when a random access on-line device 
is available. Subroutines can be loaded indi­
vidually from disk as they are needed without 
the burden of tape spacing and rewind time. 
Variables placed in COMMON in a FORTRAN 
system are assigned locations at compile time. 
D-System global variables are assigned loca­
tions at execute time when the actual core 
availability determines the location assigned. 
This floating quality of a global variabie is es­
sential to maintaining a flexible core arrange­
ment. 

Since multiple versions of any subroutine 
may exist, the D-System loader must receive a 
specification of the area in which the sub­
routine is located. When a global variable is 
first referenced by a subroutine, the dimension 
of the variable is needed to assign space. A 
D-System programmer defines the scope of 
his program by supplying area information for 
his subroutines and dimensions for his global 
variables. The D-System performs the func­
tion of an interface between the programmer 
and the loader to initiate execution. The sys­
tem accepts the name' and area of one sub­
routine and the dimensions of a set of global 
variables and passes this information to the 
loader as "starter" parameters. Execution 
commences with one "starter" subroutine 
which may be located anywhere on disk. The 
disk areas of other subroutines and the dimen­
sions of other global variables are dynamically 
passed to the loader as execution proceeds. 

When a program is in execution, the status 
of individual subroutines may vary as indicated 
in Figure 4. The status of a given subroutine 
is one of the following: 

1. Undefined-This status is included for 
completeness and indicates the basic state 
of all subroutines on the disk. 

2. Not In-The subroutine has been lo­
cated on disk and may be loaded as 
needed. 

3. Active-Whenever a subroutine is ex­
ecuted for the first time, it is loaded from 
disk and becomes "Active". 

4. Inactive-A subroutine declared "Inac­
tive" by the programmer. remains in core 
in anticipation of later use. However, if 
additional core storage is required, it is 
returned to "Not In" status making the 
core location which it occupied available. 

When subroutines have served their pur­
pose, they are declared "Out" and return to 
undefined status. 

The status of global variables may vary as 
shown in Figure 5. A global variable is as­
signed. storage when the first subroutine which 
references it is loaded from disk. The storage 
is released when all subroutines referencing 
the global variables are declared "Out". 

A vailability of core space is maintained by 
the loader as subroutines and global variables 
change status. Therefore, the functions of 
the loader may be summarized as follows: 

1. Change status of subroutines as directed 
by the executing program. 
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Figure 4. Subroutine Status. 
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Figure 5. Global Variable Status. 

2. Change status of global variables as di­
rected by the executing program. 

3. Maintain storage availability. 

3.4.2 Dynamic Subroutine Definition 
A D-System feature allows the checkout of 

a new version of a subroutine without disturb­
ing the production execution of a previous ver­
sion of that subroutine. This is done by placing 
the newer version in the scratch or checkout 
area. The production programs anticipate 
finding the subroutine in a permanent storage 
area. However, the loader may override their 
instructions and find the subroutine from 
scratch or checkout. This is accomplished by 
means of the USE processor which transmits 
a user's request to the loader. All requests to 
load this subroutine will be trapped and the 
version from scratch or checkout loaded instead 
of the production version. 

3.4.3 Error Procedures 
The D-System error package operates in one 

of two modes. The programmer may elect to 
monitor all software error conditions and take 
corrective action, or he may allow the error 
package to perform standard procedures. 
Four classes of error conditions are monitored 
in the error package: 

1. arithmetic underflow/overflow in float-
ing point operations 

2. illegal subroutine parameters 

3. I/O format and data errors 
4. loading errors 

The standard action of the error package is 
to reset and continue on underflow/overflow 
errors and to emit a diagnostic and a dump of 
the programmer's subroutine and data areas 
in all other situations *. 

* The system is not normally dumped. 

When the programmer is monitoring the 
error conditions, he may reenter the error 
package to obtain the following actions: 

1. reset and continue on underflow/overflow 
2. reset and continue on loading errors 

caused by insufficient core storage avail­
ability. Prior to re-entering the error 
package, the programmer must make 
additional core storage available by re­
leasing space taken by either global vari­
ables or subroutines. If the same loading 
error occurs a second time, the execution 
will be terminated by a dump. 

3. job termination with a memory dump of 
either the programmer's core area or all 
of core. 

Since core is constantly changing -during a 
D-System run, a full or selective core dump 
is always accompanied by a core map. The 
map contains the following information: 

1. the name, location, length and status of 
all defined global variables. 

2. the name, location, entry points, length 
and status of all defined subroutines. 

3. the location and length of remaining 
available core space. 

3.4.4 Data Handling 

Data that is to be stored permanently is al­
ways in array form where word one of the 
array is the data name and word two contains 
the length of the array. 

The data name is encoded to contain' a file 
number, a key to which record within that file 
is being referenced and a record revision num­
ber. Upon the first reference to a file, the di­
rectory table * * is brought into memory and is 
used with the data name to compute the track 
and record address for the data request. 

Should a data array exceed the record length 
of the indicated data type, an additional rec­
ord is assigned and chained to the base record 
indicated by the data name. 

At the beginning of each record is a control 
word, CW, containing three flags defined as 
follows: 

flag 1 == 1 if -revision has been filed, == 0 
otherwise 

** The directory table is described in section 2.4 deal­
ing with data storage assignment. 
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flag 2 = 1 if data has been filed, = 0 other­
wise 

flag 3 = 1 if data has been deleted, = 0 
otherwise 

An example will best illustrate the control 
and chaining techniques used. Assume a data 
array, TORQ, 129 words long. Assume also 
the record revision number is O. The first two 
words of TORQ are as follows: 

Assume the directory table for this file to be: 

The encoded name in TORQ (0) references 
the fifth record of data type 2 in file #19. Data 
type 2 (stored 111 words per record, 4 records 
per track) begins on track 1280 for this file. 
Therefore, TORQ (0) points to record 1 of 
track 1281. Since the length of the array is 
greater than 111 words, the first record will 
be chained, as shown on the next page, to an 
additional record taken from a pool of avail­
able records. 

If it is desired to store a revised version of 
the array TORQ at the same time retaining 
the original data, a slightly different procedure 
is followed. First, the data stored on track 
1281, record 1, is moved and the original rec­
ord of 106 words on track 1281 is chained to 
the new location. The remaining 23 words on 
pool track 1682, record 2, do not move. The 
revised data is stored in a newly assigned rec­
ord and another chain in record 1, track 1281 
is set to point to the location of the revised 
data. 

The name given in TORQ (0) identifies re­
vision number 1 of the data. As before, rec­
ord 1 of track 1281 is to be referenced. 

Under this addressing scheme, the program­
mer need only give the name of a data array 
to retrieve it-the length of the array is stored 
in the array itself and wilf govern the number 
of words transmitted from the disk. 

4.0 ON-LINE EXECUTION 

In addition to execution within the batch 
monitor system, a D-system program can be 
executed on-line from the graphic console. In 
this operation the batch monitor is restricted 
to half core, and the other half of core is made 
available to on-line operation. A simplified 

TORQ (0) s OOO~TT" FlL' NU •••• " 

~ DATA TYPE 2 

RECORD NUMBER !5 

RECORD REVISION NUMBER 0 

TORQ m ~ It. 
Figure 6. Data Name Encoding. 

system exists for on-line execution to act as an 
interface between the man at the console and a 
slightly modified D-system loader. iThe man 
at the console indicates to the system the name 
and disk area of the subroutine which initiates 
execution. 

While there is no difference in basic philos­
ophy between batch monitor and on-line execu­
tion, implementation is quite different since 
tapes are not used directly when operating on­
line. Graphical output is used whenever pos­
sible to replace normal output tape functions. 
When printed output is required, as in produc­
ing core dumps, the information is placed on 
the disk and inserted in the output stream of 
the batch monitor system between jobs. The 
on-line program has the ability to insert jobs 
into the batch monitor system via the disk. A 
circular file is used to pass data to these jobs. 
The program in execution must also use the 
disk rather than tape for scratch space. 

5.0 CONCLUSIONS 

Our experience indicates it is feasible to op­
erate from a disk and gain rapid access to 
large amounts of information, thus attaining 
considerable on-line capability. To obtain this 
on-line capability, users must pay a penalty in 
several areas. Core memory space must be re­
served for an in-memory loading and reloca­
tion routine. Machine time must be granted 
for disk bookkeeping and editing functions. 

DISK TA8LE FOR FILE -II 

DATA IEIINNINI N_ROP 
TYPE TRACK RECORDS R!SERVED 

0010 2!5 

2 1210 10 

2.80 12 

4 8800 

Figure 7. File Directory Table. 
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TRACK 1281 

RECORD I RECORD 2 

Figure 8. Data Track Layout. 

Compatibility with other installations is com­
pletely lost. 

In return for this investment, the system 
allows access to an enormous library of 
routines without having to deal with an ob­
ject level deck. Large quantities of data are 
stored on-line and may be added to, modified, 
deleted or used with no difficulty. Both sub­
routines and data are always available; run 
preparation time is sharply reduced. 
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INTRODUCTION 

The General Motors Research Laboratories 
( G MR) obtained the IBlVI 7960 Special Image 
Processing System in order to provide a labora­
tory for the study of graphic data processing 
and related man-machine communication prob­
lems. The IBM 7960, designed and built by the 
IBM Data Systems Division to specifications 
provided by GMR, consists of: 

a) A graphic console which includes a dis­
play tube, control buttons and lights, a 
card reader, an alphanumeric keyboard 
and a position indicating pencil. 

b) An image processor which permits com­
puter-controlled scanning of film images 
and computer-controlled recording on 
35mm film. 

This paper is divided into two parts. Part I, 
written by the IBM authors, describes the de­
sign of the special image processing components 
and the integration of these components into 
the system. The main functional requirements 
for these components are computer compatible 
image generation speeds and high image qual­
ity. The design shows how the diverse technol-

363 

ogies of analog circuits, cathode ray tubes, 
optics and film processing were successfully 
combined to provide a new type of image proc­
essing system. 

Part II, written by the GM authors, is a re­
view of GM's experience with the hardware as 
a component in the General Motors Research 
Laboratories' DAC-I (Design Augmented by 
Computers) System. Other papers in this 
series (1, 2, 3, 4) cover various aspects of this 
system. 

The hardware is a working model of auxil­
iary computer equipment for designers. Pre­
viously, experiments have been conducted on 
individual components of equipment such as 
man-machine consoles or light pens, or image 
digitizers or image recorders or plotters. These 
experiments have pointed out possibilities for 
future developments in computer-aided design 
equipment. Now, all the necessary hardware 
components have been developed and put to use 
as a complete DAC-I hardware system. 

In addition to having demonstrated the capa­
bilities of this equipment for man-machine re­
lationships in design experiments during the 
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past one and one-half years, GM Research has 
created and used extensively new types of pro­
grams that both improve the effectiveness of 
the hardware by calibration and evaluate and 
display the status of the hardware for the user 
or maintenance engineer. One test program is 
described briefly as an example. 

PART I-ENGINEERING DESIGN 

FUNCTIONAL DESCRIPTION 

A block diagram of the 7960 Special Image 
Processing System is shown in Figure 1-1. The 
attachment of this system to the central proc­
essing complex is through data-channel logic. 
In relation to the central processing system, the 
Special Image Processing System appears al­
most identical with any of the other data chan­
nels which may be attached to the system. In 
fact, the special data channel is an IBM 7909 
Data Channel, modified slightly to make it bet­
ter suited to the particular tempo of data flow 
that exists with this system. 

The 7960 system comprises three basic units. 
The display adapter unit performs such func­
tions as control of the basic system, control unit 
selection, and digital-to-analog conversion. 

TAPES II 
CARDS 

PRlNTERI 
_______ ...1 

Figure 1-1. System Block Diagram. 
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The image processor provides for the input 
and output of data in graphic form. The unit 
contains a CRT photo recorder, projectors, CRT 
photo scanner, an input camera (for photo­
graphing drawings and documents), and rapid 
film-processing equipment. (Figures 1-2 and 
1-3) . 

The graphic console is the primary system 
control point (Figure 1-4). It contains a CRT 
display, graphic pencil input, alphanumeric in­
put from keys and punched cards, special func~ 
tion inputs from keys, and status and program 
status indicators. Information may be entered 
or modified in the system through the use of the 
graphic pencil, the program control keys, and 
alpha-numeric keys, or the card input. The 
results of calculations are displayed on the 
cathode ray tube or indicated on the status 
lights. Detailed descriptions of each of these 
units follow. 

Display Adapter Unit 

The display adapter unit controls the trans­
mission of data, unit control information, and 
unit status information, and the sequencing and 
synchronizing of the various units in the sys­
tem. In addition, digital data received from 

Figure 1-2. Image Processor Unit. 
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Figure 1-3. Image Processor Unit. 

computer storage is formatted for deflection 
commands for the CRT devices. 

The display adapter unit and the data chan­
nel recognize five states that may exist. Four 
standard commands (control, write, read, and 
sem~e), perform all data movements in the sys­
tem. These commands serve to transfer data in 
6-bit bytes, which contain the encoded informa­
tion associated with the. operation to be per­
formed. The fifth state, an interrupt signal, is 
used to notify the data channel when operator 
action requires a branch in the program. 

Image Processor 
The image processor provides the input and 

output of data in graphic form. The unit con­
tains two photographic-film transport units 
which are similar iIi operation but which differ 
in the functions that they perform. For con­
venience, they. are designated transport A and 
transport B. Figure 1-5 is a simplified repre­
sentation of the film transport and optical sys­
tem. 

Transport A: 

a. Exposes film from a high-resolution re­
cording cathode-ray tube. 

b. Exposes film from a paper input station. 
c. Processes the film (develops, fixes, wash­

es, and dries). 
d. Scans processed film for computer input 

at the read station using a high-resolution 
scanning CRT. 

e. Projects the processed film from the read 
station to a 20 x 22-inch rear-projection 
screen located at the front of the unit. 

Transport B: 

a. Exposes film from the record CRT. 
b. Processes the exposed film. 
c. Projects processed film. 

Both transports can be operated independent­
ly and simultaneously, within the limits im­
posed by the optical and shared data paths for 
the CRT's. For example, exposing film from 
the record CRT involves a mirror which directs 
the image to the selected film transport; there­
fore, only one film may be exposed at a time. 

Image Input 
The source document for an image-processing 

design system is normally graphic information 
on paper. The paper documents will include 
engineering drawings, sketches, or graphs 

Figure 1-4. Graphic Console Unit. 
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which must be converted by a digitizing process 
into a form acceptable to the computer. In the 
7960 System, paper documents are photo­
gra phed on 35mm film and the film is used as 
the media for the image input process, as shown 
in Figure 1-5. 

Film was chosen as the media to be scanned 
because of the need of being capable of process­
ing a range of paper sizes and image qualities. 
The reduction of various document sizes to a 
standard image size for scanning permits high­
er scanning speeds and the ability to control 
image quality. 

Paper documents up to 22 inches square are 
reduced to a 1.2-inch square on sprocketless 
35mm film by the paper input camera. To ex­
pose the paper it is positioned in the paper­
input drawer and held flat by means of a 
vacuum. An array of eight flood lamps il­
luminates the paper. The intensity of the 
illumination is under operator control and 
exposure can be varied to adjust for differences 
in image density and contrast on the paper. A 
paper-input shutter provides a timed exposure. 

The use of 35mm silver film as the image in­
put media requires an on-line-computer-con-

r-
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Figure 1-5. Image Processor Schematic. 

trolled, rapid-film processor so that the exposed 
film can be developed for immediate scanning. 
A three-station cup application process was 
chosen to provide an image with uniform den­
sity, high-image stability and a resolution com­
parable to that obtained by hand-processing 
methods. 

The processed film image is digitized under 
computer control by a flying-spot, CRT scanner 
(Figure 1-5). A CRT scanner was chosen for 
the reductlon of graphic data to digital compu­
ter data because of the CRT scanner's compu­
ter-compatible speeds and flexibility. The CRT 
beam can be scanned over the 1.2-inch square 
film image area under program control. Light 
from the CR Tpasses through the film and is 
intensity-modulated by the dark and light areas 
of the image. The modulated light is detected 
by a photo-multiplier and the amplitude-modu­
lated signal is converted to digital information. 

The primary considerations in the design of 
the scanner were high scanning speed and ac­
curacy. Accuracy includes both the reliability 
of detected data and the high relative positional 
stability over the period that the image is being 
scanned. The CRT beam is moved from point 
to point over the image by vectors composed of 
straight-line segments of varying length. This 
method of beam positioning is called an end­
point vector method because, regardless of the 
length or direction of a vector, only the new 
end-point must be specified. This results in 
minimum computer data to control the scanning 
vector. 

The data required to draw one vector is given 
by the computer in 12 bits for X position and 
12 bits for Y position. These digital values are 
converted to analog voltages which determine 
the deflection current applied to the deflection 
yoke of the CRT. The scanning beam can be po­
sitioned over 4096 x 4096 addressable positions. 
An effective increase in positional resolution of 
the scanner is obtained by the use of a constant­
time-scan vector system. In the course of a 
vector, the light passing through the film inter­
cepts a line or lines of the image contained in 
the frame. Each line interception is sensed by 
the PMT and is called a strike. With a constant 
time vector system, it is possible to divide a 
vector into time segments which can be related 
to position. A strike occurring during a par-
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ticular time segment can be related to the posi­
tion on the image corresponding to the position 
of the scanning vector at that time. Scanning 
response resolution to a fractional part of the 
vector length can be obtained by this method. 

In the scanner, the time required to draw a 
vector is either 32 or 256 usec. The 32-usec­
scan-vector time is used for short vectors; the 
256-usec-time for long vectors. 'To accommo­
date a wide range of images with varying 
image density, contrast and line widths, it is 
necessary to provide program controlled 
scanner detection sensitivity. The detection 
threshold of the strikes or hits can be varied 
by commands so that optimum detection sen­
sitivity can be selected by the program. 

Image Output 
After an image is processed by the computer 

program and modified and verified by the op­
erator at the graphic console, it is frequently 
necessary to produce a permanent output docu­
ment of the processed image. Film is used for 
the output image media, as for the input 
media, because of its compatibility with com­
puter speeds, flexibility of use, and high image 
quality. 

CR T recording on silver film permits images 
to be generated by computer control at com­
puter-data-channel speeds. The CRT used for 
output image recording is similar to the type 
used for input image scanning. As in the 
scanner, a CRT image is formed by vectors 
drawn on the CRT screen. The vector trace is 
visible when the beam is unblanked, in order 
tha t the beam trace can be recorded on the 
film. When the beam is blanked, the trace is 
not visible and the beam can be positioned over 
the image without exposing the film. An 
imag~for example, a drawing-is divided 
into straight line segments. Core storage 
contains the· X and Y coordinates of the end 
point of each vector. Vectors may vary in 
length from the very' short traces required to 
form a smooth arc to longer traces which are 
used for straight line segments of the drawing. 

The deflection circuits used for CRT record­
ingare the same as those used for CRT scan­
ning and graphic console display. Therefore, 
two fixed vector times are available for image 
recording : 32-usec vector time, generally used 

for drawing short vectors, and 256 usec gen­
erally used for long vectors. Four vector line 
widths are selectable: basic, 2x basic, 4x basic 
and 6x basic. A constant vector time system 
for recording results in a beam velocity that 
varies with vector length. If not compen­
sated, this would result in varying film ex­
posure and therefore, varying density on the 
recorded image. To provide even exposure for 
all vector lengths and vector widths, dynamic 
intensity control is used. This analog circuit 
provides continuous compensation for beam 
speed and line width. 

Other analog circuit corrections must be 
used to obtain a hIgh quality, high resolution, 
linear image on film. Continuous beam focus 
compensation is required to maintain a per­
fectly focused beam over the CRT face. The 
flat screens of the record CRT and scan CRT 
require focus compensation that is a maximum 
when the beam is deflected to the edges of the 
screen, and follows a parabolic function which 
gradually diminishes to zero compensation 
when the beam is at the center of the screen. 

The X and Y signals, which cause beam de­
flection at the record and scan CRT's must be 
corrected to prevent "pin cushion" effect. This 
effect is inherent in fiat CRT screens and 
causes the sides of a square to become concave 
arcs and the overall area to be enlarged. An 
analog pin cushion corrector is used to modify 
the deflection current to make the beam posi­
tion a linear function of the angular position 
of the beam. 

The output image is exposed to film at the 
expose station of either Transport A or B of 
the CRT recorder. The film is pulled through 
the expose station in one-frame increments, 
and is exposed to an image from the record 
CRT as for the paper input. The exposed film 
is accumulated in a storage loop until a suffi­
cient quantity of film is available for rapid 
processing. A loop .of film is maintained in 
front of the expose station so that the frame 
can be quickly pulled down by the drive mech­
anism. The processing of the exposed film is 
identical to that which occurs after paper in­
put exposure. 

After the output image is processed, it may 
be immediately viewed by the operator by pro-
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jecting the film image onto a 20-inch by 22-
inch rear projection screen (See Figure 1-5). 
At the projection station the film may be ad­
vanced or backspaced one frame at a time 
under computer control or advanced or back­
spaced incrementally under operator control. 
By utilizing both of the film transports, each 
with a projection station capable of projecting 
a film image onto the common projection 
screen, it is possible to compare two images or 
to produce 3-dimensional effects on the screen. 

The large screen proj ector permits the op­
erator to study the output image off line from 
the computer. The image is larger and of 
higher quality than can be obtained on the 
graphic console and the image can be studied 
and compared with drawings or other graphic 
console images. 

Graphic Console 
The graphic console (See Figure 1-4) pro­

vides primary system control. The man-ma­
chine - communication components of the 
graphic console are: 

1. A 10-inch-square CRT display surface, 
and a position-indicating pencil. 

2. Thirty-six program-status lights (with a 
message overlay) and 36 program con­
trol keys. 

3. An alphanumeric keyboard. 
4. A card reader. 

The 10-inch-square display surface is a CRT 
display with a phosphor coating designed to 
control flicker and improve viewing comfort. 
As with the scanner and recorder, the display 
is created by having the computer specify the 
end points of the vector to be drawn. The dy­
namic CRT display utilizes a transparent con­
ductive screen with an impressed voltage 
gradient and a voltage-pickup position. pencil 
to aid in operator modification of the displayed 
image. Basically, the data read under pro­
gram control notifies the tracking routine 
whether the pencil position is to the left or 
right and above or below a particular (X,Y) 
position. 

Thirty-six program control keys are pro­
vided for use in addition to the input pencil. 
The function of a particular program control 
key is assigned by the program and can be 

changed from program to program. Replace­
able overlays (See Figure 1-6) are used to 
identify the function of each key for each 
application. The descriptive labels on the 
overlay can be illuminated by the program­
status indicators which are also under program 
control. An alphanumeric keyboard, consist­
ing of 36 keys arranged in a 6-by-6 key matrix 
pattern enables the operator to enter data at 
the console. When the keyboard is operated 
in conjunction with an upper and lower case 
switch, alphabetic, numeric and special char­
acter codes can be generated. There is, in 
addition, a manually-fed, card-reader input for 
the entry of limited amounts of data. 

The code generated by either the keyboard 
or the card reader can be interpreted by the 
program as desired, giving additional flexi­
bility to these devices. 

ENGINEERING DESCRIPTION 

Film Transport Control 
A film transport consists of the following 

units (Figure 1-7) : 
1. A film supply cassette and takeup cas­

sette. 
2. Drive motors, clutches, film guides and 

other controls that move the film from 
the supply cassette. 

3. An expose station. 
4. A - process station with its associated 

processor - applicator - elevating mecha­
nism. 

5. A read station for projection or scan­
ning. 

Figure 1-6. View of Graphic Console Overlay. 
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Figure 1-7. Film Transport. 

Film is fed from a supply cassette capable of 
holding 400 feet of 35mm unsprocketed film. 
The film is moved through the channel to a 
takeup cassette by means of a friction drive. 

Initially, the film motion controls thread the 
film through the film transport. Independent 
motions at each of the three stations (expose, 
process and read) are permitted within the 
limits imposed by film storage loops between 
stations. 

A small loop of film (Loop Feed) is main­
tained prior to the expose station so that the 
film can be quickly pulled down by the drive 
mechanism without encountering excessive 
drag. The film is pulled through the expose 
station in one-frame increments at a rate of 
approximately one frame every 210 ms by the 
expose station drive motor. The exposed film 
is accumulated in Storage Loop 1 until proc­
essing is desired. The maximum capacity of 
Storage Loop 1 is 20 frames before processing 
must be performed. When the computer sig­
nals the channel to process the exposed film, 
the film is moved through the process station 
at a rate of 31 inches per minute by the proc­
essor drive motor. 

Storage Loop 2 (between the process and 
read stations) accumulates the processed film 
until the computer advances the film to the 
read station. If Storage Loop 2 becomes full 
and processing is still going on, film is forced 
to advance through the read station. In this 
way, processing is not interrupted to prevent 
film from being ruined through over-develop­
ment or under-development. Film can be 
backspaced at the read station into Storage 

Loop 2; its maximum capacity is 20 frames. 
At the read station, film may be advanced or 
backspaced one frame at a time under compu­
ter control at a rate of approximately one 
frame every 170 ms or advanced or backspaced 
under operator control at one of two speeds: 
1;4 inch or one inch per second as seen on the 
screen. 

Photographic System 

Optical Elements 
There are five essentially independent opti-

cal systems in the image processor: 

1. Input camera system 
2. Scanner system 
3. Recorder system 
4. Projection system 
5. Alignment system 

'The first four systems are used in the opera­
tion of the image processor while the fifth is a 
maintenance aid. All of the optical paths (ex­
cept alignment) are shown schematically in 
Figure 1-5. 

The input camera system consists of a 22.,­
inch-square, paper-input drawer (See Figure 
1-2) with a vacuum-actuated platen to keep 
documents fiat; a series of tungsten, line-fila­
ment, light sources located above the drawer; 
a series of reflecting mirrors; a 4-inch, f/4.0 
lens with an electrically-actuated shutter and 
an expose station on channel A. 

In operation the drawer would be extended 
. outside the image processor, a document placed 
in the drawer, and the hold-platen actuated. 
Upon depression of a control switch, the 
drawer with the document on it will automati­
cally return to its normal position, the light 
sources will be turned on, the shutter will be 
opened, and an exposure made on 35mm film 
at a reduction of 18.3X. Both the intensity of 
the light sources and the shutter timing are 
variable to provide for flexibility of exposure. 
The resolution of the optical system at the 
film plane is approximately 150 lines/mm. 

Film images at the channel A· read station 
can be projected for visual examination or can 
be scanned electronically by means of the fly­
ing spot scanner. Optical switching is used to 
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obtain the functional selection (See Figure 
1-5). A 9-inch, f/4.5 CRT lens was designed 
to reduce the CRT presentation 2.5X to scan 
the 35mm film. The lens, corrected for the 
P16 phosphor emission band, yields a resolu­
tion at the image plane of 160 lines/mm with 
a distortion of less than 0.1 %. 

A collector lens is placed behind the film 
image which images the exit pupil of the scan­
ner lens on the sensitive cathode of a photo­
multiplier tube (PMT) detector. This lens 
serves to uniformly distribute the light passing 
through the film over the PMT cathode. 

Dual-channel recorder optics are provided 
to expose film on either channel A or channel 
B (See Figure 1-5) using a common CRT 
source with optical switching. Optical switch­
ing is also used to select the exposure source 
from either the paper input or the recording 
CRT on channel A. The recording operation 
utilizes a lens similar to that used in the scan­
ner optics except that it is corrected for the 
Pll phosphor enlission band. 

The simultaneous projection of film images 
in the read stations of the two channels to a 
common viewing screen is provided (See Fig­
ure 1-8). The same lens as that used in the 
paper input camera was selected for projec­
tion. Off-axis projection, using the displaced 
image plane technique, gives maximum screen 
illumination with minimum distortion. Super­
position of the two projected images is ac­
hieved by moving the film along the vertical 
axis of the screen and by racking the channel 
B projector lens along the horizontal axis. 

Color filters are provided in the projector 
lamphouses to aid in differentiating the two 
images at the screen while projecting simul­
taneously into the projectors to provide stero­
scopic or 3-D viewing. When these filters are 
introduced by electrical command into the pro­
jector light path, the projected images are 
selectively polarized. Complementary polariz­
ing glasses must be worn by the viewer. The 
capability of advancing and backspacing the 
film in the read station is provided. A mag­
nification of 18.3X is used in projecting the 
film on the 20 by 22 inch projection screen. 

The CRT's internal alignment optics serve as 
a reference to which the recorder and scanner 
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Figure 1-8. Simultaneous A-B Projection, Simplified 
Diagram. 

cathode ray tubes are aligned. An illuminated 
reticle is brought into visual superposition 
with either CRT display. Switching from the 
recorder CRT display to the scanner CRT dis­
play is accomplished by manual rotation of a 
beam splitter. Variable magnification of the 
alignment system allows for both gross and 
detailed inspection of the CRT displays. 

Recording Media 
The selection of photosensitive material re­

quired the weighing of several desired char­
acteristics. For document-recording, a film in 
the microfilm resolution class was desired. For 
CRT recording, a film with an extremely high 
sensitivity was desired. An additional design 
criterion was that of elevated temperature, 
short-time film processing. The silver halide 
film emulsion designed for this unit has a high 
blue sensitivity, a reasonably high resolution-
130 lines/mm, medium contrast and capability 
of withstanding the rigors of a high-tempera­
ture process. 
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Rapid Film Processing 
Upon a command, the exposed film is auto­

matically processed in the rapid-film processor, 
which brings chemicals for processing at high 
temperatures in contact with the film emulsion. 
This high temperature increases the chemical 
activity of the solution such that the film can 
be processed with a total contact time in the 
developer, fixer and rinse of only five seconds. 

A negative-pressure, cup-application method 
was selected for the processing (S.ee Figure 
1-9). The compliant rubber lips on the solu­
tion-applicator cavities form a seal with the 
film emulsion. Pumps situated in the heated­
fluid container draw the solution from the con­
tainer through the hose to the applicator cav­
ities and back to the pump. The negative­
pressure fluid system greatly reduces liquid 
spillage hazards since any leakage in the liquid 
circuit results in air being drawn into the cir­
cuit. This is particularly important when a 
process such as this one is integrated into a 
complex electronic device. The rubber lips on 
the applicator act as squeegees between the 
sequential processing steps to minimize con­
tamination of solutions. The exit lip of the 
applicator removes the surface moisture from 

Figure 1-9. Film Processing System. 

the film to minimize drying time. The film 
dryer directs high-velocity heated air against 
the film emulsion which is thus dried in ap­
proximately one second. Vent valves located 
in the return line to the pump are used when 
the processor is moved away from the film. 
When these valves are actuated, air enters the 
fluid line allowing for gravity drain of the 
applicator cavities. The applicator can then 
be lowered away from the film, without spil­
ling any chemicals. 

The processor processes film at a 31 inches/ 
minute rate. The compartmented solution 
tank has a volume to accommodate the proces­
sing of 400 feet of film. The solutions in the 
tank are maintained at 1300 F through the use 
of a blanket heater and a temperature control­
ler. The one solution tank and two sets of 
solution pumps supply the solution to the two 
rapid film processors, one for each of the two 
channels. 

Analog System 

General Description 

The analog system, which controls the scan, 
display, and record CRT's, scan detection, and 
position-pencil operation, is shown in Figure 
1-10. As can be seen, a single set of analog 
circuits is used to control all three CRTs. 
Switching between tubes is done with relays 
and is under computer control. 

The control circuits relating to the CRTs 
perform three basic functions. The deflection­
control system precisely controls the position 
of the electron beam on the face of a given 
CRT as a result of a sequence of digital X, Y 
addresses supplied by the computer through 
the control unit. The focus control provides 
a uniform (in size), round CRT beam over the 
entire usable area of the flat-face record and 
scan CRTs. Without this control, the CRT 
beam would increase in size and become astig­
matic (oval) as the beam position moved off­
axis. A farther requirement of this control 
is to provide for four program-selectable line 
widths (CRT beam sizes) for film recording. 
The intensity control is required to maintain 
constant beam brightness in the system CR Ts, 
independently of beam size (line width) and 
beam velocity. 
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Figure 1-10. Analog System Block Diagram. 

The position-pencil control system allows the 
pencil, when in contact with the conductive 
glass screen of the GCU, to be located by the 
computer such that the CRT beam (either 
blanked or unblanked) appears at the pencil 
location. The scan detection system senses the 
light output of the scanner CRT which is mod­
ulated by the film image being scanned and 
correlates the amount of light received at a 
particular time to a position of the film image. 
There are 64 program selectable threshold 
levels representing image transmissivities 
from 0 to 100 0/0. 

The following sections describe each of these 
major control systems. 

Deflection Control 
The deflection control circuits utilized in the 

7960 System are shown in block diagram form 
in Figure 1-10. Note that the circuit config­
uration is identical for both X- and Y - deflec­
tion channels. The main elements of the X-

deflection Y - deflection control circuits are the 
12-bit, digital-to-analog converter or decoder, 
the waveform shaper, the integrating network, 
the pre-amplifier and the deflection yoke cur­
rent amplifier. Another circuit which is com­
mon to both the X and Y channels is the dis­
tortion correction system which provides de­
flection yoke current compensation to minimize 
pin-cushioning effects on the flat-face record 
and scan CR Ts. 

The decoders convert the digital addresses 
received from the computer into an analog 
signal proportional to the 12 binary-weighted 
bits. The output of the decoder is a current 
level which remains constant until a new ad­
dress is received from the computer. The out­
put then changes in a step-like manner to the 
new current level where it remains until still 
another address is received. 

The decoder output is then fed into the 
waveform shaper network which converts the 
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current steps into a voltage waveform. As 
may be recalled, the 7960 System operational 
characteristics require a so called constant­
time, end-point, vector-generation mode in 
which the CRT beam is deflected from a previ­
ous end-point address to a new end point ad­
dress in a straight line and in a constant time, 
T, regardless of the distance between the 
points. A further requirement imposed by the 
scanning system was that the beam move be­
tween the points at a rate linear with time. In 
other words, the beam would move one quarter 
of the distance between points in a time T /,4, 
half the distance in T /2, etc. In order to 
achIeve these two objectives, it is necessary to 
generate a deflection waveform in which the 
change in current or voltage from one level to 
the next takes place in a constant time T and 
at a linear rate. The shaper output, when in­
tegrated, provides such a waveform. The time 
period, T, is program selectable to be either 32 
or 256 microseconds. Restrictions on dynamic 
ranges of the circuits limit the maximum posi­
tional change in anyone cycle to 1/8 of the 
total X, Y positions in the 32-microsecond 
mode, and 14 of the total X, Y positions in the 
256-microsecond mode. The output of the in-
tegrator is then fed into a preamplifier which 
provides an impedance match with the deflec­
tion-yoke power amplifier and also converts 
the single-ended input signal into a push-pull 
output signal. 

The deflection-yoke power amplifier pro­
vides the current into a high-performance 
push-pull deflection yoke for driving the 5-
inch record and scan CRTs. The yoke was 
selected for maximum perpendicularity and 
linearity, and minimum residual magnetism 
(or hysterisis). The power amplifier drives a 
lower performance, push-pull deflection yoke 
when connected to the 17-inch display CRT. 
The maximum display area utilized is 10 inches 
square. 

The record and scan CR Ts are provided with 
optically-flat faceplates for utilization with an 
optics system. Because of the flat faceplate and 
the fact that a change in deflection current pro­
duces a proportional change in the sine of the 
deflection angle, an optical distortion known 
as pin-cushion is observed at the faceplate. 
This distortion can be explained best with the 

aid of Figure 1-11. If the face of a CRT had 
a radius of curvature equal to the distance 
from the center of the deflection coil to the 
screen, the deflection distance A would be 
proportional to the sine of the deflection angle 
and thus to the deflection current. The image 
thus produced by independent X, Y deflection 
would appear, when viewed from a distance, 
to be undi~torted as indicated by the inside 
box in the figure. 

With flat-faced CRTs, however, the deflec­
tion distance, AI, is proportional to the tangent 
of the deflection angle and thus proportional, 
non-linearly, with deflection current. The ef­
fect of this is that deflection distance increases 
somewhat faster than the current. Under 
these condtions, the X and Y deflection compo­
nents interact, producing the pin-cushion pat­
tern shown in the diagram. For the maximum 
angles of deflection utilized in the record and 
scan CR Ts, the maximum displacement error 
at a corner of the image would correspond to 
approximately +6% (proportionate distance 
between Band B 1) . To correct for this error 
and meet the requirements for positional ac­
curacy, a distortion correction circuit is uti­
lized to provide correction which can be ex­
pressed mathematically as follows: 

FLAT FACE 
CRT SCREEN 

Figure 1-11. CRT Pin-Cushion Distortion. 
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where ~ X and ~ Yare the deflection correc­
tion currents, K is a proportionality constant 
which is a function of the system geometry, 
and X and Yare the deflection currents. 

Focus Control 
The focus control system provides two sepa­

rate and concurrent functions: 

1. A dynamic control to compensate for 
beam defocussing as a function of beam 
position. 

2. A static control to generate the correct 
size of the CRT beam as determined by 
the programmed line-width selection. 

The requirement for dynamic focus compen­
sation is, like pin-cushion, caused by the op­
tically flat faceplate of the CRT. As the 
beam is deflected off-axis, the distance to the 
screen increases and, for a constant value of 
focus current, the beam defocusses. By chang­
ing the current in the focus coil, and thus the 
magnetic field, the beam can be refocussed at 
any point on the CRT screen. 

Because the CRT geometry is radially sym­
metrical, the focus error function is also radi­
ally symmetrical and mathematically approxi­
mates a parabolic function. The block diagram 
of the focus control is shown in Figure 1-10. 

The rho generator produces a signal which 
is the approximate vectorial addition of the X 
and Y deflection components referenced to the 
electrical geometric center of the CRT. The 
output of the rho generator is then fed into a 
parabola generator which provides an increas­
ingly large amount of compensating signal 
through the dynamic focus coil driver as rho 
increases (or as the beam moves toward the 
edge of the CRT screen). 

The static focus circuit produces the current 
required to provide four different spot sizes. 
It is static in the sense that for a given spot 
size, the current in the static focus coil re­
mains constant regardless of beam position. 
The smallest beam spot is the true focus con­
dition; the larger spots are obtained by de­
focussing. Each spot size provides different 
line widths for image recording of vectors. 
The line widths are provided in the ratio of 
1 :2 :4: 6 where the minimum spot size or line 

width relative to the 1.2-inch square film image 
is less than 0.001 inch. Line-width control is 
provided by relay selection under computer 
control. 

Intensity Control 
Intensity compensation is required to main­

tain constant beam brightness in the CRT's. 
Two operating conditions account for this 
requirement. 

1. Beam sweep speed. Because the vector 
time, T, is constant (either 32 or 256 
microseconds) regardless of vector 
length, the beam sweep speed or velocity 
varies. In order to maintain constant 
brightness, the CRT beam current must 
be increased proportionately with vector 
length. 

2. Line width. As line width is increased, 
the beam current is effectively spread out 
over a larger area. In order to maintain 
equal brightness over all line widths, 
beam current must be increased propor­
tionately to the increased line width. 

The requirement for intensity compensation 
applies only to the record and display CRT's: 
the record CRT to provide an even exposure of 
the film; the display CRT to provide an evenly 
illuminated display. The beam velocity range 
of the scan CRT is much more restricted and 
only the basic line width is utilized. Thus, no 
compensation is required for the scan CRT. 

Dynamic beam intensity compensation is 
accomplished by determining the status of the 
three variable quantities: 

1. Vector length (continually variable from 
zero to 14 full image size). 

2. Line width (basic, 2X basic, 4X basic, 
6X basic). 

3. Vector time (32 or 256 microseconds). 

A block diagram of the intensity control 
circuits is shown in Figure 1-10. 

The length of each vector is determined by 
sampling the X, Y deflection signals, differen­
tiating and rectifying these signals, and then 
feeding them into a rho generator. The rho 
generator produces an output signal which is 
the approximate vectorial addition of the 
change in the X and Y deflection components. 
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The output of the rho generator is thus a sig­
nal proportional to vector length or velocity. 
This signal is fed into a circuit called a line­
width multiplier. This circuit is controlled 
by the status of two digital lines from the 
computer which relate to the particular line 
width selected at any given time. The signal 
out of the line width multiplier is proportioned 
in the same ratio as the line width options 
(1 :2: 4 :6). For example, if the 4X basic line 
width is selected, the output is four times as 
great as when the basic line width is selected 
for a vector of a given length. Another input 
to this circuit is the vector time selection. The 
signal level, as described above, is further 
modified as a function of the vector time, 32 
or 256 microseconds. 

The CRT beam intensity is, for all practical 
purposes, linearily proportional to the beam 
current. The intensity control circuit changes 
grid voltage to control this beam current. How­
ever, the CRT grid voltage-to-cathode (beam) 
current transfer charactertistic is not linear. 
Therefore, it is necessary to provide a non­
linear function generator circuit which compen­
sates for the CRT charactertistic such that the 
intensity compensating signal, as derived from 
the output of the line width multiplier, pro­
vides a non-linear grid voltage signal in such 
a way as to provide the proper level of beam 
current. The final block is the intensity drive 
amplifier which is a gated amplifier controlled 
by the blank/unblank line from the computer. 

The intensity control is capable of providing 
an intensity level for film reeording that per­
mits lines of varying lengths and thicknesses 
to maintain a density tolerance of ±O.lD about 
a nominal level of 0.7D after rapid processing. 

Position Pencil Control 
The position-pencil control system allows the 

pencil, when in contact with the conductive 
glass screen of the graphic console, to be lo­
cated by the computer and a CRT beam 
(blanked or unblanked) to appear at the pencil 
location. By sampling at a rate high in com-
parison with the motion of the pencil, the po­
sition-pencil control system can maintain the 
position of the beam under the pencil, making 
it appear that the pencil traces an image on 
the CRT screen. 

The block diagram of this system is shown 
in Figure 1-10. The conductive screen is a 
piece of glass 14 inches square, coated with a 
thin transparent layer of tin oxide and placed 
directly in front of the display CRT. A voltage 
is alternately applied to the screen through the 
X, Y glass switches causing a voltage gradient 
to develop on the screen, which is oriented left 
to right (X) or top to bottom (Y). The pencil 
when in contact with the screen will thus al­
ternately detect a voltage which is proportional 
to the distance that the pencil is from the left 
side of the screen or the top of the screen. This 
voltage is fed into one side of the voltage com­
parator. The opposite side of the comparator 
is supplied with a signal alternately from the 
X and Y deflection decoder. A comparison is 
thus made at a given time of the Y position of 
the pencil and the Y position of the CRT beam 
or the X position of the pencil and the X po­
sition of the CRT beam. The output of the 
comparator is two digital lines to the computer 
which indicate that the pencil coincides with 
the CRT beam, is to the right or left (for X) 
or above or below (for Y) the CRT beam, or 
that the pencil is not touching the conductive 
screen. 

Programs have been written which use the 
interpretation of the digital output of the com­
parator to direct the CRT beam to coincide 
with the location of the pencil to accomplish 
pencil tracking. 

Scan Control 
The scan operation is initiated by an un­

blanked (visible) beam deflection, or scan vec­
tor, written on the scan CRT screen under 
program control. Light produced by the sweep­
ing beam is sensed by photomultiplier tubes 
PMT 1 and PMT 2 (see Figure 1-10). PMT 1 
receives light directly from the CRT screen. 
Consequently, PMT 1 receives light whenever 
the beam is sweeping. PMT 2 receives light 
from the CRT screen through the film image. 
Thus, PMT 2 receives light only when the beam 
sweeps through the clear areas of the film. 

The object of writing a scan vector is to in­
tercept the lines on the film image as the beam 
sweeps. Thus, assuming that the film image 
is composed of black lines on a clear back­
ground (positive mode), the beam light sensed 
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by PMT 2 will be momentarily interrupted 
when the sweeping beam intercepts each line. 
Assuming that the film image is composed of 
clear lines on a black background (negative 
mode), PMT 2 will sense light momentarily 
when the sweeping beam intercepts the clear 
lines. 

However, the PMT 2 output depends on the 
relationships of beam speed, beam spot diam­
eter, and width of the intercepted line (Figure 
1-12). Section A shows positive-mode scan­
ning, in which the line width is greater than 
the beam-spot diameter. In this case, when the 
beam intercepts the line, PMT 2 senses total 
darkness and, accordingly, produces a maxi­
mum amplitude level. Section B shows the same 
beam spot intercepting a line whose width is 
smaller than the beam diameter. In this case, 
PMT 2 does not sense total darkness but a de­
gree of light dimming called gray level. The 
PMT 2 output then reflects this gray level with 
a signal of proportional amplitude. Sections C 
and D illustrate negative mode scanning where 
line width is greater and smaller than beam 
spot diameter. 

In practical operation, the most common oc­
currence is that interceptions with lines of 
average width produce different gray levels. 
The PMT 2 signal indicates a gradual transi­
tion from light to dark and dark to light. This 
corresponds to the gradual dimming of the 
beam in either transition. 
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Figure 1-12. Scan Signal Generation. 
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Since line width is sensed by PMT 2 in terms 
of varying gray levels, a search is required to 
make sure that all interceptions, or meaningful 
levels, are accounted for in the scan process. 
This search is done by comparing the signal 
level with a reference level which can be varied 
by predetermined values. Figure 1-13 illus­
trates this comparison with examples of typical 
vector scan operations. In this figure it is as­
sumed that the positive and negative versions 
of the same image are being scanned and that 
the sweeping beam makes two line intercep­
tions. 

Section A of the figure shows that the ref­
erence level, which lasts for the length of the 
scan vector, can be set to anyone of 64 thresh­
old levels by computer program. 

Section B shows (1) the superimposed signal 
and reference levels as they are placed for 
comparison at the differential amplifier (Fig­
ure 1-10) and (2) the threshold levels which 
are lowered until they cross the higher level 
signal. Thereafter, the search process requires 
an additional scan operation with a lower ref­
erence threshold to cross the lower-level signal. 

Section C indicates the output signal trans­
ferred to the control unit to indicate a strike 
in positive-mode scanning. 

Sections D and E indicate the search for sig­
nal levels in the negative mode in which the 
program raises the threshold until it crosses 
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Figure 1-13. Scan Output Generation. 
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the higher-level signal; an additional scan op­
eration with a higher reference threshold is 
required to cross the lower-level signal. 

In the section on deflection control, it was 
stated that a requirement of the deflection sig­
nal was that it be linear with time. The reason 
for this is that the strike or output data from 
the scanner is sampled at 16 equal intervals 
during one vector time. Thus, in the 32 micro­
second mode, the scan output is sampled and 
stored every 2 microseconds; in the 256 micro­
second mode, the output is sampled every 16 
microseconds. By making the deflection signal, 
and therefore the scan vector, linear with time, 
the time segment during which an output was 
sensed from the scanner can be correlated to 
beam position. This is extremely useful in 
either one of two ways. It provides the equiva­
lent of 16 separate vector scans in one scan 
vector time period thereby increasing the effec­
tive scan rate by 16, or it can be considered to 
increase the resolution capability of the scanner 
for a scan vector of a given length by a factor 
of 16. The example shown in Figure 1-14 
illustrates this point. A scan vector is gen­
erated which traverses from point A to point B, 
intercepting four lines on the film image. If 
the scan output was sampled only once per scan 
vector, the only information which would be 
retrieved would be that a line or lines were 
located somewhere between points A and B. 
By sampling 16 times during the generation of 
the single scan vector, not only was it deter­
mined that there were four lines but the loca­
tions of the lines relative to points A and B 
can be computed to within one part in sixteen 
of the distance between the points. 

The maximum length of the scan vector (and 
therefore the CRT beam velocity) is restricted 
by the band width of the scan deflection circuits 
which are in turn restricted in order to mini­
mize noise. The resolution of the scanner is 
primarily a function of CRT spot size. The 
scanner can resolve lines 0.0005 of an inch 
thick separated by 0.0015 of an inch relative 
to the 1.2-inch-square film image. 

Cathode-Ray and Photomultiplier Tubes 
The CRT's utilized for scanning and record­

ing are identical except for their phosphors. 
Each is a 5-inch, round, high-resolution CRT 
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Figure 1-14. Scan Output Time Sampling. 

with an optically flat faceplate. Both the de­
flection and focus is magnetic. Nominal spot 
size at the CRT screen is 0.001 inch. 

The scan CRT employs a P16 phosphor which 
was selected because of its ultra-fast light­
decay characteristic. It has a spectral energy 
distribution which peaks around 3800 A (violet 
and near UV). The scan lens is color-compen­
sated for this spectrum and the scan detection 
photomultipliers employ an S11 photo cathode 
which is quite sensitive to the P16 spectrum. 

The record CRT employs a P11 phosphor 
which was selected because of its high light­
output capability, which is required for expos­
ing film .. It has a spectral distribution which 
peaks around 4600 A (blue) and is considered 
medium fast relative to its decay characteristic. 

The display CRT is a 17-inch, rectangular 
CRT with a curved faceplate and requires mag­
netic focus and deflection. The nominal spot 
size is 0.020 inch and the P19 phosphor peaks 
around 5900 A (orange). This phosphor was 
selected for its long persistance characteristic. 
The usable display area is 10 inches square. 
The focus control is not connected to the dis­
play CRT. Because of the larger spot size and 
the curved faceplate, a permanent magnet focus 
was determined to be adequate. 
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PART II OPERATIONAL EXPERIENCE 
INTRODUCTION TO PART II 

The specifications developed by General 
Motors Research for new man-machine graphi­
cal communication hardware evolved from ex­
perience with early GMR Laboratory equip­
ment and from projected requirements of a 
designer in a computerized design process. The 
designer, unconcerned with the hardware speci­
fications outlined in part I of this paper, enters 
the computer room with a drawing or sketch of 
standard drawing quality as input to the design 
process. While in the computer room, he uses 
the graphic console and the computer as tools 
for rapidly developing, modifying, and review­
ing his design. When he leaves, he expects to 
take with him (without delay) a roll of paper 
documenting his computer-aided design. 

The remainder of this paper evaluates the 
degree to which the hardware has approached 
the requirements of a designer in the process 
of design. In addition, some programming 
techniques for improving the effectiveness of 
the hardware by testing and calibration are 
described. 

THE GRAPHIC CONSOLE AS A 
MAN-MACHINE INTERFACE 

Continued use of the graphic console by a 
large number of people has led to some con­
clusions regarding the equipment as a tool in 
a design environment. 

The CRT and pencil have proven to be a 
highly successful man-machine interface in 
spite of the small screen size (10" x 10"). Ex­
cept for a period of two months when a lower 
persistance phosphor tube was tested in the 
unit, there have been no serious operator com­
plaints directed toward use of the display tube. 
The lower persistance phosphor caused a highly 
objectionable flicker when large amounts of 
data were displayed. The operator antagonism 
toward this flicker was sufficiently severe in 
some cases to keep the individual from the 
equipment. 

The position-indicating pencil has been found 
to be functionally very suitable. One reason 
for this is the positive action-reaction; that is, 

the program is alerted whenever the pencil 
touches the screen. Contrast this action with 
a light pen which must be placed close to a 
specific area of interest and requires in addi­
tion some type of manual switch to alert the 
program. Another advantage of the pencil 
compared to a light pen is that pencil position 
can be determined in milliseconds when the 
pencil is pointing at a void portion of the image 
area. This quick position location is essential 
in an on-line problem solving environment. 
Users of the pencil must be able to quickly lo­
cate in real dimensions any point of the dis­
play area. With a light pen it is necessary for 
the user either to wait for a searching opera­
tion or to point at part of a display and then 
track the pen to an area of interest. 

The speed and positive action characteristics 
make the pencil a comfortable tool in an alpha­
numeric display-and-correct mode in which the 
user points to a character of the display and 
uses the alphanumeric keyboard for correction. 
The user of the pencil need only touch the 
screen in the general vicinity of a particular 
character and the program can determine 
which character is to be replaced. Users have 
adapted very rapidly to using the pencil as a 
pointer. 

One disadvantage of a position-indicating 
pencil when compared to a light pen is that the 
pencil does not establish a positive reference 
to a particular line of the displayed composite 
line image. It is necessary to compare pencil 
position with the position of each of the dis­
played lines to determine at which line the pen­
cil is pointing. 

From these experiences with the use of the 
pencil, we have learned that the functional 
characteristics of a device for pen-pencil man­
machine communication should include modes 
such that: 

1. The control program is alerted each and 
every time the pencil touches the display 
surface. 

2. The control program is able to determine 
within milliseconds the position of the 
pencil on the screen independently of the 
presence or absence of any display. 
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3. The control program is able to establish 
a positive identification by the pencil of 
a particular line of a displayed image. 

The use of a man-computer pen or pencil for 
the input of graphic data is an interesting topic 
in itself. When analyzing the tracking mode, 
however, it is difficult to separate the charac­
teristics of the hardware, the programming and 
the application. While the pencil or a light pen 
could be used for entering images consisting 
of connected straight lines, a highly sophisti­
cated program would be required to track and 
accurately digitize drawings of curves which 
are connected to form an image. In the GMR 
DAC-I System, precision graphic data input is 
entered through the paper input facility of the 
image processor. 

The program status lights and control keys 
have also proven to be excellent both for the 
programmers and for the man at the console. 
The alphanumeric keyboard, on the other hand, 
has been an object of much discussion from 
which the following controversial points have 
arisen: 

1. The keyboard should be a standard type­
writer keyboard to take advantage of the 
speed of those who know how to type. 

2. The typist-designer intersection is small; 
therefore, -use a keyboard that is arranged 
in some order to minimize learning. 

3. The typewriter should be installed imme­
diately in front of the display tube to 
maximize display feedback of a typed 
message. 

4. The space in front of the display tube 
should be reserved as a work area for 
listings, drawings, note pads, etc. 

5. The typewriter would be of great value 
for long message input. 

6. No long messages should be entered at 
the graphic console. 

This type of discussion can be and has been 
carried out to great lengths by human factors 
people. Our experience has shown that an 
alphanumeric keyboard is difficult to cope with 
and not a natural device for man-machine com­
munication. Until a pencil entry device accom­
panied by character recognition is available, 
however, the keyboard must remain an im­
portant part of the man-machine interface. 

EVALUATION OF THE 
IMAGE PROCESSOR 

The graphic console provides the user with 
the facility for a dynamic display of compara­
tively low accuracy and repeatability. The 
voltage pencil is also dynamic in its functional 
capabilities and not intended to be used for the 
entry of precision graphic data. The image 
processor on the other hand is expected to pro­
vide the more static man-machine graphic com­
munication with higher precision input and 
output. 

When establishing criteria for the evaluation 
of image processing equipment, it is essential 
that the criteria be defined in terms that give 
an overall evaluation of the unit, encompassing 
electronic circuits, optics and photography. The 
resolution of the CRT as measured by the 
shrunken raster method, for instance, is of 
little interest to the user of an image recorder. 
For Design Augmented by Computers the user 
wants to know, first of all, the line width and 
resolution as measured on the paper of the 
hardcopy output from the recorder. If he must 
supply his own hard copy machine, the user 
wants the specifications as measured on the 
processed photographic film. From the user's 
standpoint, all specifications must be based 
upon the re&ponse of the unit in the finaL out­
put state- and the specifications must be'meas­
urable at that final output state. 

What-follows is an important subset of 
image processing evaluation criteria and pro­
grams resulting from daily use of the image 
processor since early 1963. The criteria are 
specified in a manner that allows rapid evalua­
tion whenever possible. The programs are in­
tended to provide versatility for the evaluation 
of the equipment over a wide range of condi­
tions and requirements. 

Accuracy 
The user of image processing equipment for 

Design Augmented by Computers wants to 
know the accuracy of the positioning of a point 
on the output image when referred to any other 
point on the image. He wishes to measure with 
a rule the distance between two points and 
know his confidence limits. Accuracy to the 
user is then defined as the maximum error in 
the distance between any two points on an 
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image. It is measured by recording a pattern 
of vectors with known spacings. The distance 
between vector endpoints is measured on hard 
copy if provided, on the' film image with an 
opticalcompax;a'tor, or on the film image using 
the' image scanner. The maximum error en­
countered in measuring the distance between 
any two' points is the accuracy characteristic of 
the unit. With a little ~xperience, the ,~ser 
learns the particular pattern and vector, end­
points that demonstrate t~e maximum error. 

Figure 2-6 shows the accuracy errors of vari­
ous points (referred to th~ ,center point) on the 
scanIler image magnified by a constant factor. 
Note 'that although the accuracy figure is:stated 
in te.rms of, per cent ,or image size, the error 
measured is an absolute value that includes 
pIncushion error (distortion corrected) and all 
other electronic, photographic and optical er­
rors. Note also that this method of measuring 
accuracy results in a figure nominally twice 
that of those techniques that measure accuracy 
as the error of one point referred to an origin. 
This method does, however, yield a value of ac­
curacy such as a designer would measure with 
his rule. 

Users of the equipment are not completely 
satisfied with the accuracy (approximately 
17c) resulting from uncalibrated scanning in­
put and output recordings in spite of the fact 
that the equipment represents an advanced 
state of the art. Calibrated input and output 
accurate to 0.2 % barely meets the requirements 
of static man-machine communication. 

Stability and Repeatability 
To the user of DAC-I image processing 

equipment, stability means freedom from drift 
of analog components including power supplies 
and deft.ection circuitry. This specification is 
important since it is essential in maintaining 
constant raster shape and size on a recorder 
and scanner CRT. Accuracy can be improved 
by calibration procedures, if and only if the 
hardware stability is such that the calibration 
runs can be spaced at practical intervals of 
time. A practical interval of time might be ap­
proximately one hour unless some form of auto­
matic calibration is provided. 

Repeatability is the degree of capability of 
the hardware to exactly duplicate an output 

condition after an intervening number of ran­
dom input conditions. Other definitions of re­
peatability 'which are dependent on repeating 
a sequence of inputs are of little or no value 
to the users of image processing equipment. 

Imperfect vector en d poi n trepeatability 
shows up dramatically in circles (see Figure 
2-1) which do not close properly and at inter­
sections of a number of lines which are all- sup­
posed to.pass through the same point. Another 
example of repeatability error is the case where 
two or more lines are spaced close together. 
The lines may touch or even cross if the re­
peatability is poor. Although this type of error 
may be aesthetically less troublesome than poor 
repeatability at intersections and at closing 
points of circles, it would be important if a user 
were trying to evaluate positions of edges of 
parts which, are to fit together. 

It has been observed that it is the natural 
tendency of the human eye to notice the worst 
case of repeatability on recorded output even 
if all the remainder of the drawing represents 
high-quality output in terms of repeatability 
and accuracy. The width of the lines affects 
the aesthetic appearance of the output. The 
observer immediately spots repeatability errors 
at the junction of thin lines while the same 
errors with thicker lines are overlooked. Since 
thin lines are normally more desirable on re­
corded output, some compromise is frequently 
required. 

Figure 2-1. Circle Pattern for Demonstrating 
Repeatability. 
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The pattern in Figure 2-1 has proven to be 
excellent in showing the limit of the recorder 
repeatability for quick approximations. The 
errors in the closing of the circles can be ob­
served in terms of line widths and then con­
verted to per cent of image size. The maximum 
repeatability error for the circles, for instance, 
might be approximated at one line width. 

Repeatability is also an important factor in 
scanning operations. In line tracking, repeata­
bility is particularly important when input lines 
have small changes in curvature ·and the po­
sitions of inflection points are important. Re­
peatability errors also put a limit on the effec­
tiveness of calibrating for improved accuracy. 

Experience has shown that the effective re­
peatability of the scanner can be improved by 
repeated scanning at a given region and then 
averaging the results of these several scans. 
However, this does not eliminate repeatability 
errors, but merely reduces the magnitude of 
the errors when using the scanner. 

Line Width and Intensity 

Recorder line width must be defined in terms 
of measurements on micro-densitometer record­
ings from the output film. The width of the 
line is arbitrarily defined as the width of the 
line at the mean light transmission level vrhere 
the mean is the average of the film background 
light transmission and the transmission at the 
peak of the line. Use of the microdensitometer 
gives a numerical measurement of the line 
width independent of human· observation. Line 
intensity of recorder output film is defined as 
the optical density of a line at the center point. 

Variations in the optical density and line 
width are very noticeable to users of the image 
processor recorder. Line density and thickness 
variations with vector length frequently result 
in short vectors having a greater density than 
the longer vectors. This is particularly objec­
tionable in areas of a drawing where informa­
tion in the form of sharply curved lines is con­
centrated. In this case,' sharply curved lines re­
quire many short vectors with a corresponding 
high density and loss of fine detail. In addition, 
small alphabetic characters, normally readable, 
may become illegible when line width and in­
tensity are out of adjustment for short vectors. 
Variations in line density and width with vec-

tor direction and position has also proven to be 
very noticeable to the equipment users. Even 
if drawings are made accurately with only 
small repeatability errors, poorly controlled 
line widths and peak densities will make the 
recorded output look poor. 

The pattern of Figure 2-2 was generated by 
a program that has proven excellent in testing 
for the conditions mentioned above. The po­
sition, direction, and lengths of the vectors 
were selected at the graphic console to show 
how uniform the line widths and intensities are 
over a wide range of these parameters. 

Film Processing Time 
It has been observed that any time an opera­

tor has nothing to do, or no drawings or dis­
plays to review, a forced delay of one minute 
or even half a minute becomes annoying. Even 
though the rapid film processor develops, fixes, 
rinses and dries film at a rate of approximately 
one frame every three seconds, a minimum of 
25 seconds is required to process the first frame 
plus three seconds for each additional frame. 

Whenever practical, the graphic console op­
erator should be given a choice of other func­
tions to perform while film is being processed 
for the best man-machine interaction, at least 
until film processing speeds increase by another 
order of magnitude or some other more rapid 

Figure 2-2. Intensity Control Pattern for Demonstrat­
ing Line Intensity and Width Conditions. 



382 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

form of static image documentation is avail­
able. 

Scanner Sensitivity 

The sensitivity of the scanner is defined by 
the thinnest line the scanner can consistently 
detect and the range of thresholds for this de­
tection. Typically, the scanner, using the paper 
input facility, can consistently detect lines .01" 
wide (on the 22 x 22 inch paper) over a range 
of three thresholds. 

A considerably more complex algorithm can 
be used to define the sensitivity of the scanner 
over a range of line and background densities. 
This is essential for determining which photo­
graphic images can be expected to be scanned. 
A simple definition and measuring technique is 
necessary, however, for determining the hard­
ware sensitivity. 

Figure 2-3 shows what is displayed on the 
graphic console within two minutes after the 
start of the sensitivity test. This display dem­
onstrates to the user that lines nominally 9.8 
raster units wide (referred to the 0-4095 raster 
unit image) can be detected over a range of 
17. thresholds. It further points out the line 
thickness that one may expect at each of the 
threshold levels. It is now standard practice 
to test the equipment daily using test programs 
which are highly application oriented and 

which can analyze the equipment and display 
the results for immediate review by the mainte­
nance engineers or by users of the equipment. 

TEST PROGRAMS 

I t is no small task to define the exact per­
formance status of electronic systems which 
are comprised only of digital components. It is 
still harder to define the status of electrome­
chanical units. In the first instance, it is the 
complexity of the system that causes the dif­
ficulty even though the system operates at a 
discrete level for performance evaluation. In 
the second case, the mechanical positioning in­
volved may result in a series of discrete levels 
that must be evaluated. Defining the perform­
ance level of an analog-digital-mechanical sys­
tem such as the image processor is still more 
difficult because of the continuous range of the 
operational status which is biased by the dis­
crete digital-mechanical levels. Test programs 
which are understood and used by botl~_ the 
maintenance people and the operators of the 
equipment have proven essential in obtaining 
the maximum performance from the equipment 
for the operator and computer time involved. 

Hardware test programs for the DAC-I sys­
tem have been written primarily for the scan­
ner and the recorder. The recorder programs 
basically provide a variety of test patterns to 

Figure 2-3. Scan Sensitivity Test Program Display. 
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show recorder repeatability, accuracy, line in­
tensity, width and smoothness. The patterns 
are selected to demonstrate dramatically each 
characteristic to be tested. This frequently al­
lows preliminary evaluation at the projection 
station. Detailed evaluation is made with test 
instruments when necessary. Test programs 
for the scanner include the program for line 
sensitivity described earlier, line resolution, 
threshold characteristics and scanner and re­
corder accuracy and repeatability. 

With a man-machine console, test programs 
should include the following features: 

1. rapid measurements 
2. rapid editing of the measured data so 

that only a small amount of important 
information will be displayed 

3. rapid display of results 
4. options to record results on film 
5. pictorial rather than numeric display of 

measurements when requested 
6. options for conventional printout 
7. facilities to easily change and display pro­

gram parameters. 

Permanent records of test program results 
are kept to monitor and signal when a long­
term decrease in hardware performance should 
be corrected. These records also aid in the 
evaluation of changes in the hardware. 

Sometimes adjustments or changes are made 
that result in a temporary improvement in the 
quality of the hardware. The test program re­
sults, when analyzed over a period of time, 
show if the change corrected a problem o~ 
merely adjusted around it temporarily. To il­
lustrate some of these desirable characteristics 
of test programs, we will outline as an example 
the main features of the calibration test pro­
gram for scanner and recorder accuracy. 

The calibration test program uses the scan­
ner to measure the nonlinearities of both the 
scanner and recorder caused by electronic and 
optical effects. The magnitudes and positions 
of these non-linearities are displayed for imme­
diate review and stored for later calibration of 
both scanner input data and output recordings. 

The reference for linearity and size measure­
ments is a metal plate with grid lines inked 

on its surface. The locations of all the inter­
sections have been previously stored in the 
computer. The grid is exposed onto film through 
the paper input station, processed, and moved 
to the scan station. 

Before executing a complete scan of the grid, 
a preliminary scan for the four-corner crosses 
and the center cross is made. (See Figure 2-4) 
This allows the operator to check the image 
size and the optical alignment of the system and 
insures that the entire image to be scanned is 
aligned optically and electronically within the 
scan raster. 

Figure 2-5 shows the type of alphanumeric 
information displayed after scanning every grid 
intersection and comparing the scanned iter­
section locations to the reference values. Here 
a large amount of data has been condensed to 
a few numbers giving the most pertinent in­
formation about the raster size and linearity of 
the raster. This reduces the question of ac­
ceptability of the machine to a matter of com­
paring the numbers on the graphic console to 
figures which are previously defined to be ac­
ceptable. 

For diagnostic purposes, the information 
shown in Figure 2-6 is most useful. The errors 
associated with each point are magnified by a 
factor and added to the reference points to 
produce an exaggerated representation of the 
non-linearity and size of the raster (see Figure 
2-6. This graphic presentation shows the non­
linearity of the raster size and shape. A nu­
merical figure for scanner repeatability is dis­
played by the calibration program if repeated 
scans of the grid pattern are executed. 

Experience has shown that test programs 
such as the calibration program have been able 
to define scanning status before actual digitiz­
ing begins and have maximized the usefulness 
of the scanner operation. Programs like the 
calibration program are also valuable in sep­
arating hardware deficiencies from errors in 
new programs; that is, if new programs fail 
but the test programs run normally, then it is 
likely that the new programs are either in 
error or expecting too much from the analog 
hardware. 

The calibration program illustrated above 
has resulted in improved scanning and record-
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Figure 2-4. Corner and Center Crosses on Scan Program. 

ing to the extent of nearly one order of magni­
tude. The hardware has proven itself suffici­
ently stable to allow a significant improvement 
in scanner accuracy by a calibration procedure 
which uses the error data measured by the test 
program. 

The recorded output can also be calibrated to 
show a significant improvement in accuracy. 
The scanner is used to scan recorded output 
and the errors of the recorder raster relative 
to the scanner raster are then modified by the 

scanner errors and stored for calibration by 
recording programs. Two of the most impor­
tant values of these GM test programs are that 
they provide a good overall test of the system 
and they are oriented to evaluating the user's 
requirements. 

SUMMARY 

The IBM 7960 Special Image Processing Sys­
tem was designed and built by IBM to speci­
fications provided by the General Motors Re-

Figure 2-5. Scanner Accuracy and Raster Size. 
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Figure 2-6. Accuracy Errors Multiplied by a Constant. 

search Laboratories. The system is the man­
machine and image processing hardware for 
the GM Research DAC-I system. 

The design shows how the functional require­
ments for an image processing system were im­
plemented to achieve a new type of computer 
input-output system. The components were 
chosen for characteristics that ·were compatible 
with digital computer speed and accuracy. 
Technologies normally foreign to computer 
technology were successfully integrated by 
careful consideration of the interface between 
components and the effect of each component 
on the total system performance. Some of the 
features of the new hardware system such as 
the high resolution, the excellent accuracy and 
the rapidly processed film for pictorial input 
and output have been extensions of the state of 
their respective arts. These features have also 
indicated the necessary quality and speed for 
a graphical machine to interact with a man in 
the iterations of a design cycle. 

The hardware has proven to be valuable as 
a laboratory tool for the analysis of equipment 
required in an online computer aided design 
facility. 

The use of image processing equipment in a 
computing facility has also pointed out some of 
its interesting operational characteristics. The 

digital program-analog response characteristic 
of the hardware makes system testing and 
status documentation a necessary part of op­
erational procedures. In addition, program­
ming techniques that improve the apparent per­
formance of the hardware must be used. Man­
machine programs such as the calibration pro­
gram described in this paper have proven to 
be a solution to these requirements. 
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INPUT/OUTPUT SOFTWARE CAPABILITY FOR A 

MAN-MACHINE COMUNICATION AND IMAGE 

PROCESSING SYSTEM 

Thomas R. Allen and James E. Foote 
Research Laboratories. General Motors Corporation, Warren, Michigan 

INTRODUCTION 

Consistent with the design objectives of the 
General Motors Research Laboratories DAC-I 
(Design Augmented by Computers) project,t 
the IBM 7960 Special Image Processing System 
has· extensive input/output (I/O) capabili­
ties.3 ,4 In order to facilitate the programmed 
control of this new hardware, the NOMAD and 
MAYBE programming languages were devel­
oped.2 However, while these languages provided 
the programmer with an effective . means of 
controlling the new hardware, they offered 
little assistance in meeting the hardware data 
format requirements. The programmer still 
would have had to convert his output informa­
tion from his own internal format tb the output 
format required by the hardware. Similarly, 
all input from the hardware would have had to 
be converted by the programmer back to a form 
suitable for his own use. Moreover, these con­
version processes are typically very involved 
and complicated. In short, the programmer was 
still not in a position to make easy, efficient, 
and flexible use of the I/O capabilities of the 
new hardware system. Thus, the need to pro­
vide a layer of general purpose I/O software 
between the programmer and the hardware was 
very apparent. 

The effort to develop a general purpose I/O 
software capability resulted in a hierarchy of 
utility routines. At the lowest level of this 
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hierarchy is a set of very basic utility codes. 
These include numeric-to-BCD (binary coded 
alphanumeric information) conversion rou­
tines, BCD-to-vectors character generation 
routines,5 simple display and recording routines, 
and basic film train operation codes, all of 
which permit the programmer, if he so desires, 
to operate very close to the basic hardware 
without having to understand ali of the intrica­
cies of the hardware's operation. Each of these 
basic codes represents an implementation of 
only a very small facet of the total I/O capa­
bility but, as such, serves as a building block 
for subsequent level codes in the hierarchy. 
These higher level I/O utility codes are pro­
gressively more inclusive in their total I/O 
capabilities and, at the same time, relieve the 
user of the task of dealing with the hardware 
on its own terms. 

This effort to develop an I/O software capa­
bility was not designed to culminate in one 
single all-inclusive routine. Rather, the aim 
was to produce a set of sophisticated, general 
purpose, problem oriented subroutines and 
source languages statements, each of which 
would serve as a powerful tool in the utilization 
of the various I/O capabilities of the new hard­
ware. The body of this paper describes five 
representative utility subroutines, three source 
language I/O statements, and some typical ex­
amples of their application. 
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UTILITY SUBROUTINES 

This section describes five different tasks and 
the I/O utility subroutines which were devel­
oped to meet their requirements. The basic 
problem associated with all of these tasks is 
that of requesting various types of information 
from the graphic console operator. Hence, the 
emphasis is on the implementation of the vari­
ous input devices associated with the graphic 
console .. The graphic console di~play CRT 
(cathode ray tube) is used to indicate what 
type of information is required. 

Alphanumeric Input 
Subroutines names, variable names, titles fOl' 

recorded film output, etc. constitute one type of 
information frequently required from the 
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graphic console operator. This information is 
most conveniently handled by the programmer 
in the form of BCD character strings. Thus, the 
task here was to provide a facility for request­
ing and accepting these strings. Two input de­
vices are appropriate: the alphanumeric key­
board and the card reader (see Figure 1). 

In addition to the primary requirement that 
the I/O. subroutine for this task be simple for 

. the programmer to use, two other requirements 
were felt to be important. First, there was the 
need to give the graphic console operator imme­
diate feedback which would permit him to 
verify that each character has been entered 
correctly. Concomitant with this was the need 
to provide the operator with a means of cor­
recting erroneously entered characters. 
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Figure 1. The 7960 Alphanumeric Keyboard and Card Reader. 



The subroutine RINSE (Request for INfor­
mation SubroutinE) was developed for this 
task. To use this subroutine, the programmer 
specifies three items of information: (1) the 
symbolic name (i.e., location in core) of an 
array which contains the request message in 
BCD format, (2) the maximum number of BCD 
characters which the operator is allowed to en­
ter, and (3) the symbolic name of an array in 
which to store these characters. Figure 2 shows 
a typical set of source language statements for 
utilizing the RINSE subroutine. The DIMEN­
sIoN declaration is used to reserve space for 
an array at compile time. The VECTOR 
VALUES declaration is used to preset an array 
(Le., vector) at compile time. The EXECU-
TIVE statement generates a call to a subrou­
tine. 

In Figure 3 the request message in the ex­
ample above is shown as it would appear on the 
display CRT upon the execution of RINSE. 

Assume that the graphic console operator 
wishes to enter the subroutine name: ABC. At 
this point, the operator can either type in the 
subroutine name at the alphanumeric keyboard 
or insert a card in the card reader. If he elects 
to type in the name, each character will be 
added, one at a time, to the display. If he in­
serts a card in the card reader, characters will 
be added to the display sequentially as they are 
read from the card. The console operator can 
intermix these two modes of input. Figure 4 
shows the display as it would appear after the 
subroutine name has been entered. 

The operator can delete the last character in 
the string by depressing the BACKSPACE key 
or delete the entire string by depressing the 
RESTART key (see Figure 1). He may then 
enter more characters. In this manner, errone­
ous characters may be corrected. Once the in­
put is satisfactory, the operator depresses the 
END key, the display is terminated and the 
BCD character string is passed back to the 
calling program. 

Figure 2. Source Language Statements for the RINSE 
Subroutine. 
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Figure 3. RINSE Subroutine Display. 

Numeric Input 
Another type of information which the pro­

grammer may require from the graphic console 
operator is numeric data. The task here is one 
of providing a facility for initializing and/or 
modifying data variables. Two subroutines 
were developed to meet this requirement. The 
difference between these two routines stems 
from the hvo basically different 'ways in which 
data variables can be defined: as elements of an 
array or as a set of distinct variables vlhich 
may be widely scattered throughout memory. 
In the first case, each variable is referenced by 
giving the name of the data array and the sub­
script of the particular item. In the second case, 
each variable has its own unique name. 

Figure 4. RINSE Subroutine Display. 
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In addition to the three task requirements 
mentioned in connection with the RINSE sub­
routine (i.e., ease of use, visual feedback to 
permit verification, and an error correction pro­
cedure) there was the additional requirement 
that the operator be· able to enter numeric data 
in either floating point, integer or octal mode. 
For this task, the only input device which has 
been implemented is the alphanumeric key­
board. 

The subroutine SETDA (SET up Data Ar­
ray) permits the inspection and modification of 
items in a data array. To use SETDA, the pro­
grammer specifies four items of information 
(see Figure 5) : (1) the BCD name of the data 
array, (2) the length of the data array, (3) the 
symbolic name (i.e., location in core) of a sec­
ond array which defines the mode (integer, 
floating point or octal) of each item in the data 
array, and (4) the symbolic name of the data 
array. If each item in the data array has the 
same mode, the mode need only be specified 
once for the whole array. 

Figure 6 shows the display which will be gen­
erated upon execution of SETDA, as indicated 
in Figure 5. 

At this point, the operator can modify the 
value of the current item, step the display to 
the next item in the data array, define the sub­
script of any item in the data array which he 
wishes to see displayed next, or terminate the 
subroutine. 

The operator enters a new value for the cur­
rent data item by using the alphanumeric key­
board. The visual feedback and error correction 
procedures are identical to those described for 
the RINSE subroutine. Figure 7 shows how 
the display would appear during this process. 
The operator can cause the new value of 27 to 
be stored in DATA (0) by depressing the END 
key. 

V~~TOR VALUE~ NA~E = ~CATAII 
VECTOR VALUFS DATIII :: 2.3.-1.77K 

!:':xrCUT':::_ SFT[)A. (NAME .~hfJ,ODE .DATII I ) 

Figure 5. Source Language Statements for SETDA 
Subroutine. 

Figure 6. SETDA Subroutine Display. 

If the operator tries to store a number of the 
wrong mode, the display changes to that shown 
in Figure 8. 

If the operator wishes to step the display 
(Figure 6) to the next item in the data array, 
he depresses the alphanumeric key labeled"," 
and the upper portion of the display changes 
appropriately. If, on the other hand, the opera­
tor wishes to "move" the display directly to any 
item in the data array, he first depresses the 
"=" key. The display then changes to that 
shown in Figure 9 and the operator enters the 
subscript of the desired item. 

If the operator tries to enter a subscript 
which is too large, the display changes to that 
shown in Figure 10. 

Control is returned to the calling program 
when the operator depresses the END key from 
the display indicated by Figure 6. 

The second subroutine (SETPAR) developed 
to facilitate numeric input permits the inspec­
tion and modification of a set of distinct data 
variables. The programmer uses this subrou­
tine in essentially the same manner as SETDA. 
However, the format in which the current 
status of the data variables is displayed was 
altered in an attempt to gain insight and ex­
perience in the presentation of information. The 
information display technique used by the 
SETDA subroutine can be characterized as the 
"player-piano" approach: the data items appear 
as if they were listed sequentially on a long 
strip of paper which is being moved back and 
forth past a one-item viewer under the opera-



Figure 7. SETDA Subroutine Display. 

tor's control. SETP AR uses a "page" approach 
as the information display technique. This tech­
nique treats the data variables as if they were 
listed, up to 16 to a page, in a loose-leaf note­
book. As each "page" is presented to the 
graphic console operator, he has the options of 
modifying the values of any data items listed 
on that page, turning to the next "page", or 
"closing the book" (Le., terminating the sub­
routine) . 

Figure 11 shows a typical "page" display. 

If the operator wishes to change the value of 
any data variable in the displayed list, he uses 

TH[ CURRENT ITEM IS 

DATA1 ( 0) 

I TS CURRENT VALUE IS 

2 

I T8 M9DE IS 

-------------------

ILLEGAL M90[, TRY AGA IN 

. Figure 8. SETDA Subroutine Display. 
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ENTER VALUE SF 
NEW SUSSeR I PT 

Figure 9. SETDA Subroutine Display. 

the alphanumeric keys labeled" t " and" t " to 
move the pointer to the desired data item and 
then enters the new value of this item using 
the alphanumeric keys exactly as in the SETDA 
subroutine. To "turn the page" the operator 
depresses the "," key and to terminate the sub­
routine he hits the END key. 

Positional Data Input 
Since the GM Research Laboratories DAC-I 

system was developed specifically to investigate 
the field of graphic data processing, it was 
necessary to provide a capability for presenting 
the graphic console operator with a display of 
graphic information and receiving positional 
input from him relative to this display. The 
position indicating pencil provided the basic 
hard,vare capability necessary to meet this 
need. The requirements for this task were: (1) 
to display the graphic information specified by 
the calling program, (2) to determine the posi­
tion of the pencil relative to this display, and 
(3) to return this position to the calling pro-
gram when the pencil was removed from the 
screen . 

Figure 10. SETDA Subroutine Display. 
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DATAl 12 I 
DATA2 1 I 
CATA3 3.14159 F 
DATA4 = 1 a F 
DATAS =212223242526 K 
DATAS =000000010000 K 
DATA7 41 I 
DATA8 0 F 
DATA9 =000000000000 K 
DATA10=OOOOOOOOOOOO K 
DATA11= 0 F 
O!\TA12= 0 I 
DATA\3= 0 F 
DATA14= 0 I 
D~TAi5=000000000000 K 
D~TA18=OOOOOOOOOOOO K ----

--~----------------

~\~ :., KEY 18 lURN PAGE. 
I, c..ND KEY WHEN 08NE. 

Figure 11. SETPAR Subroutine Display. 

Because of the very general nature of graphic 
information, no attempt was made to assist the 
programmer in formating his display. To in­
crease the flexibility of the I/O utility subrou­
tine designed for this task (PEN2) an option 
was added which allows the graphic console 
operator to terminate the display by depressing 
either an alphanumeric key or a program con­
trol button. In any case, however, the calling 
program is fully informed as to the condition 
which terminated the display. 

Figure 12 shows the source language state­
ment necessary to execute PEN2. The 2nd and 
3rd arguments define the location and size of 
the array containing the graphical information. 
The 4th argument describes the condition \vhich 
terminated the display. The 1st argument pro­
vides information pertaining to the pencil. 

Upon execution of PEN2, a display of the 
specified information begins. At this point, the 
graphic console operator can depress an alpha-

FXFCUTE PEN2.cPEN,ARRAY,SIZE,RETURN) 

Figure 12. Soul'ce Language Statements for PEN2 
Subroutine. 

numeric key, a program control button, or bring 
the position indicating pencil into contact with 
the display CRT. If a key or button is de­
pressed, the display is immediately terminated 
and control passes back to the calling program. 
If the pencil is touched to the screen, a small 
cross appears superimposed on the display. This 
cross defines the position of the pencil relative 
to the display and provides the operator with 
visual feedback. The visual feedback is particu­
larly important here because of severe parallax 
problems. If the pencil is moved across the 
screen, the cross will follow. When the pencil 
leaves the screen, the display is terminated and 
the last location of the cross is returned to the 
calling program. Figure 13 shows the pencil 
being used to point to a region on a grid. 

This subroutine has proven to be very flexible 
and easy to use, resulting in a wide variety of 
applications. One such application of PEN2 
was in the development of a higher level I/O 
utility subroutine permitting the entry of de­
cision type information. 

Decision Information Input 
The task associated with the entry of decision 

information is to present the graphic console 
operator with a set of possible actions available 
to the controlling program and to allow him to 
select an ordered subset of these actions. 

The I/O subroutine CHOICE was developed 
for this task and requires three items of infor­
mation from the calling program: (1) the num­
ber of alternatives to be presented, (2) the 
symbolic name (i.e., location in core) of an 

Figure 13. Positional Input Via the PEN2 Subroutine. 



array containing the' BCD messages describing 
the alternatives, and (3) the symbolic name of 
an array provided for the list of selected ,al-
ternatives (see Figure 14). " 

The execution of this subroutine begins with 
a display of the alternatives, as shown in Fig­
ure 15. 

The operator may now select his first alterna­
tive by pointing to the appropriate field with 
the voltage pencil and then removing th~ pencil 
from the screen. Immediate visual verification 
of the choice is provided by the digit 1 at the 
right hand side of the selected field as shown 
in Figure 16. . 

The operator proceeds in this manner to com­
plete his, selection of the desired alternatives. 
When he is done, he selects the field labeled 
"DONE" and control is returned to the calling 
program.' If the operator makes a mistake or 
cha.nges his mind, he can "erase" his last selec­
tion by selecting the field labeled BACKSPACE. 

SOURCE LANGUAGE STATEMENTS 

In the first section of this paper, five sub­
routines were described which are representa­
tive of a class of subroutines whose primary 
objective is to facilitate the on-line input of 
various types of information. In the following 
section, we describe three source language 
statements which provide the programmer with 
the capability of generating various types of 
on-line output in an easy, efficient, and flexible 
manner. In the development of these state­
ments, an effort was made to conform (insofar 
as possible) to' the precedents established by the 
normal I/O source statements appearing in the 
NOMAD language. It was felt that, in so do­
ing, the resulting statements would be much 
easier for the programmer to use. 

Display Format Statement 
"DISPLAY FORMAT" was designed to per­

mit the programmer to use the graphic console 

EXECUTE CHOICE.(ALT~RS.5.SFLFCT) 

Figure 14. Source Language Statement for CHOICE 
Subroutine. 
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THIS SPACE IS 
ALLeTED T9 THE 
FIRST ALTERNATIVE 
----------------------
TH I S SPACE IS 
ALL8TED T9 THE 
SEC9ND ALTERNATIVE 
----------------------
THIS SPACE IS 
ALL8TED T9· THE 
THIRD ALTERNATIVE 
----------------------
THIS SPACE is 
ALL8TED T9 THE 
F8RTH ALTERNATiVE 
----------------------
THIS SPACE IS 
ALL8TED T8 THE 
FIFTH ALTERNATIVE 

--------------------------

BACK SPACE 

Figure 15. CHOICE Subroutine Display. 

display CRT in ,llluch the same way as the on­
line printer was used in "the good old days." 
The implementation of this "on-line print" 
capability provides the programmer with a very 
convenient· way of presenting a wide variety 
of information to the graphic console operator. 

The maximum amount of information which 
can be displayed by DISPLAY FORMAT (i.e., 
its unit record) is 480 characters. These 480 
available character positions are in the form 
of 20 lines on the CRT with 24 character posi­
tions per line. 

THIS SPACE IS 
AlLeTED T9 THE 
FIRST ALTERNATIVE 
----------------------
TH I S SPACE IS 
ALL9TED T9 THE 
SEC9ND ALTERNATIVE 
----------------------
THIS SPACE IS 
ALL9TED T9 THE 
THIRD ALTERNATIVE 
----------------------
THIS SPACE IS 
ALL6TED T9 THE 
F8RTH ALTERNATIVE 
----------------------
THIS SPACE IS 
ALL6TED T6 THE 
FIFTH ALTERNATIVE 

--------------------------

BACK SPACE 

Figure 16. CHOICE Subroutine Display. 



394 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

The DISPLAY FORMAT statement has a 
list and a format associated with it. The list 
gives the values and items to be displayed and 
the format gives the display pattern to be used. 
The format is composed of a sequence of for­
mat specifications of the form CWo The char­
acter C is the control character and defines the 
type of operation or conversion to be per­
formed. In general, 1,0 refers to the number of 
character positions associated with the opera­
tion defined by C. If, in any format specifica­
tion, the field width 1,0 is zero, that format speci­
fication and its associated list item (if any) 
are ignored. 

There are three types of format specifications 
available for the conversion of numeric data. 
Octal and decimal integers are generated by 
using the Kw and Iw specifications respectively. 
The F'lO specification provides for floating point 
variables which will be displayed as either float­
ing point decimals (e.g., .2E-3) or fixed point 
decimals (e.g., .0002) depending on which form 
produces the fewest characters for display. 

There are two types of format specifications 
available ,foT,the conversion of BCD informa­
tion. The A 10 specification is identical with 
that used in other NOMAD I/O statements. In 
particular, one word ·(six . characters) will be 
picked up from the list and right justified or 
truncated on the right, depending on whether 
w > 6 or w < 6. The Hw specification differs 
from ordinary I/O statement usage in that the 
Hollerith information is specified in the list 
rather than in the format. 

The specification X 1,0 provides 1,0 blanks in the 
display. The specification /1,0 results in a down­
space of 1,0 lines. An automatic downs pace of 
one line results when the number of characters 
on a line reaches 24. The specification Pw (1,0 

has no particular significance in this case un­
less it is 0) resets the current character posi­
tion to the first character position of the first 
line. This specification has proven very useful 
when putting out columns of information which 
comes from several different arrays in memory. 

The specification Rw causes the succeeding 
portion of the format to be repeated, if neces­
sary, until the list is exhausted (1,0, again, has 
no particular significance unless it is 0). If the 
specification Rw does not appear anywhere in 

the format, the entire format will be repeated 
until the list is exhausted. 

The form of the "DISPLAY FORMAT" 
statement and a sample format is shown in 
Figure 17. 

Perhaps the most radical departure of the 
DISPLAY FORMAT statement from standard 
NOMAD I/O statements involves the use of its 
second "argument" (i.e., the item called 1NOUT 
in Figure 17) . 

INOUT will, in general, be the first cell of a 
short array in which the program using D 1S­
PLAY FORMAT can: 

a) specify the status light configuration dur­
ing and upon termination of the display, 

b) specify the input devices which the 
graphic console operator will be permitted 
to use in terminating the display. 

c) receive a description of the condition 
which caused the termination of the dis­
play. 

The graphic console display shown in Figure 
18 corresponds to the DISPLAY FORMAT 
statement of Figure 17. 

Because of its flexibility and ease of use, the 
DISPLAY FORMAT statement has been a 
valuable aid in the development of a cooperative 
man-machine problem-solving system. 

Record Format Statement 
The RECORD FORMAT statement provides 

a means of producing hard copy alphanumeric 
output through the use of the recording feature 
of the image processor. The form of the REC­
ORD FORMAT statement is identical to that 
of DISPLAY FORMAT (i.e., RECORD FOR­
MAT FMT, INOUT, Ll, L2, L3, ... ). RECORD 
FORMA T recognizes all of the format specifica-

VECTOR VALUES LJ = $C~O~S LOCATIONS$ 

VECTOR VALUES X = $X$ 

VFC':TOR VALIIFc:. V = $V$ 

VECTOR VALUES LEVEL = $LEVEL$ 

VECTQQ VALUES FMT = $(X5.H15./1.X3.HM.X4.F6./1. 
1 X7.Hl.XS.Hl.X3.HS.R5./1.X5.14.X2..14.X4.12)$ 

DISPLAY FORMAT FMT.INOUT.Ll.DATE.TIME.X.V,LEVEL. 
1 DATA (1 1 ... DATA(\51 

Figure 17. Source Language Statements for DISPLAY 
FORMAT. 



CROSS LOCA T IONS 
06/24/54 20 17 . 4 

X Y LEVEL 
205 , 79 I I 

]955 215 I I 
189 J943 I I 

]9JJ J950 f I 
2083 2055 t 5 
Figure 18. Application of DISPLAY FORMAT. 

tions and conventions used by DISPLAY FOR­
MAT. 

The unit record for RECORD FORMAT is 
12,000 characters per film frame. These 12,000 
available character positions are in the form of 
100 lines of 120 character positions each. 

With RECORD FORMAT, INOUT is a single 
cell and is used by the calling program to 
specify the desired film train operations asso­
ciated with the recording. Appropriate bytes in 
INOUT define which film train is to be used, 
how many frames are to be advanced before 
and after the recording is performed, and when 
developing of the film frame is to occur (if at 
all) . 

RECORD FORMAT enables the programmer 
to use the image processor as he would use an 
off line printer with the added advantage that 
his turnaround time is measured in minutes 
rather than hours. The output can be developed 
immediately and moved to the project station 
of the image processor for on-the-spot review 
and then placed on an aperture card for hard 
copy reproduction. The hard copy output is 
very similar to that produced by an IBM 1403 
printer. 

Generate Format Statement 
The DISPLAY FORMAT and RECORD 

FORMAT statements enable the programmer 
to easily produce alphanumeric output. How­
ever, it is frequently necessary to produce either 
displays or recordings which contain a combi­
nation of grap,hic data and alphanumeric char­
acters of different sizes (see Figure 19). In 
addition, it is desirable to have the capability 
of altering a small part of a display without 
having to regenerate the whole display. The 
value of such a capability is best illustrated in 

INPUT/OUTPUT SOFTWARE CAPABILITY 395 

the operation of the CHOICE subroutine (see 
Figures 15 and 16). The GENERATE FOR­
MAT statement was specifically designed to 
meet these needs. 

With respect to formats, input lists, and 
statement form (i.e., GENERATE FORMAT 
FMT, INOUT, Ll, L2, L3, ... ), GENERATE 
FORMAT is identical to the previous two state­
ments. However, instead of producing output 
directly (as is the case with DISPLAY FOR­
MAT and RECORD FORMAT), GENERATE 
FORMAT provides the programmer with the 
array of CRT coordinates needed to produce a 
display of the alphanumeric information. In 
addition, GENERATE FORMAT enables the 
programmer to specify character size and line 
spacing (i.e., the user can define his own unit 
record) . 

By executing GENERATE FORMAT several 
times with different unit record specifications 
and combining the resultant arrays of CRT co­
ordinates with an array of coordinates repre­
senting graphic data, the programmer can, 
through the use of a basic display or recording 
subroutine, produce output of the type shown in 
Figure 19. 

{The special reatures or GENERATE FOR­
MAT were utilized in the I/O utility subrou­
tines SETDA, SETP AR, and CHOICE to 
quickly and efficiently produce sequences of dis­
plays in which only portions of the basic dis­
play are altered. For instance, Figure 16 can 

Figure 19. Application of GENERATE FORMAT. 
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be produced from Figure 15 simply by adding 
the three coordinate pairs necessary to generate 
the character 1 to the large coordinate array 
for the basic display. 

The DISPLAY FORMAT and RECORD 
FORMAT statements provide the programmer 
with an easy and efficient method of utilizing 
the output capabilities of the 7960 system. The 
GENERATE FORMAT statement rounds 'out 
the output software package by providing the 
additional flexibility needed to handle the situa­
tions described above. 

SUMMARY 

Any attempt to implement a system which 
stresses cooperative man-machine interaction 
must concern itself primarily with the problem 
of man-machine communication. Furthermore, 
the man-machine communication will typically 
take place in a wide variety of situations and 
at many levels of problem discourse. Attempts 
to define all possible communication situations 
and develop specific programs for each will lead 
to a tremendous amount of redundancy and 
duplication of effort. It is possible to avoid this 
problem by realizing that all man-machine com­
munication must pass through the I/O hard­
ware interface. Thus, by providing an exten­
sive, flexible, and powerful I/O software capa­
bility, the presence of the hardware interface 
need not concern the programmer and he can 
devote his whole attention to the more signifi­
cant aspects of man-machine communication. 
The software described in the body of this 
paper has proven to' be an immensely powerful 
tool which has enabled programmers to rapidly 
design and evaluate the wide variety of com­
munication techniques necessary to any man­
machine problem-solving system. 
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A LINE SCANNING SYSTEM CONTROLLED FROM AN 

ON-LINE CONSOLE 
Fred N. Krull and James E. Foote 

Research Laboratories, General Motors Corporation, Warren, Michigan 

INTRODUCTION 

Direct graphical input is one of the newest 
and most exciting sources of digital computer 
input. Programming techniques and hard­
ware are beginning to appear which are 
designed to automatically process graphic in­
formation. l , 2, ·3, 4 This paper describes an ex­
perimental system which has been designed to 
facilitate the digitizing of line images. The 
equipment which is used for this purpose is an 
IBM 7960 Special Image Processing System, 
consisting of graphic console, image processor, 
and a modified data channel. 7 The image proc­
essor (Figure 1) contains a programmable 
Cathode Ray Tube (CRT) scanner, a CRT re­
corder, a 35mm camera, and film processing 
equipment. 

The graphic console (Figure 2) contains de­
vices to communicate with the operator and to 
control the image processor. 

Both of these devices are tied directly to a 
computer via a modified data channel. 

The principal objective of this portion of 
DAC-I (Design Augmented by Computers) 
project 5,6,7,8 was to utilize the full capabilities 
of the image processor, graphic console, and 
digital computer to digitize a variety of line 
images to a high degree of accuracy. Program 
system objectives dictated that line widths 
.05% of image size (.01 inches on 20x20 inch 
document) must be detectable to an over-all 
system accuracy of ±.05% of image size. Thus, 
this system was designed to provide a rapid, 
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versatile, and accurate method for converting 
graphical data to digital form. While it pro­
vides only for the digitizing of lines, a natural 
outgrowth of the work will be a library of pat­
tern and character processors to be used by pro­
grammers in much the same manner as card 
and tape input/output (I/O) routines are used 
now. 

The application requirements of the DAC-I 
project dictated that one of two approaches be 
used for the analysis and processing of a two 
dimensional graphical form: 

a) Algorithms are specified which prescribe 
the rules for analyzing a graphical image. 
This approach assumes a structure for 
each characteristic image, and relies upon 
the availability of individual pattern proc­
essors to detect image components. 

b) No fixed structure is assumed for the in­
put document. Minimal restrictions are 
placed on image quality only. Emphasis 
is placed upon providing elementary 
functions which an operator may call 
upon and combine in order to process a 
complex form. All decision capability 
and selection of functions is left to the 
operator who is controlling the scanning 
device from an on-line console. 

The second approach was selected since at 
this point in the project it was not possible to 
specify the structure of the large variety of in­
put documents anticipated. We felt, for in­
stance, that the system would be used to digitize 
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Figure 1. Image Processor. 

documents ranging from mathematical graphs 
to engineering drawings. Therefore, it seemed 
advisable to concentrate our efforts on provid­
ing a reliable set of basic pattern analyzers. 
These elementary functions would then provide 
the basis for processing much more complex 
forms. 

Since the console operator now becomes an 
essential part of the scanning sequence, it was 
necessary to devote considerable effort to the 
problem of man-machine communication. De­
velopment of the system has permitted us to 
carry out a series of experiments, designed to 
discover the best interface between man and 
computer. Scanning functions have been made 
automatic when practical, but the decision capa­
bility of the human operator is still used to best 
advantage. Thus, flow diagrams for scanning 
functions in many instances contain a block in 
which the operator is controlling the selection 

of a branch or setting the value of a parameter. 
Each situation has warranted an investigation 
to answer the question: "Who can perform the 
job better-man or machine?" 

An essential part of this process was to eco­
nomically match the speed of the computer with 
the speed of man. The solution was to multi­
program a 32K digital computer being used to 
process regular compilations and executions 
under batch monitor contro!.;;' G A 16K-16K 
logical core split was made available for use by 
the on-line operation and the batch monitor 
programs *. The on-line console operation has 
millisecond access to the CPU of the computer 
on a demand basis. When use of the CPU is no 
longer required, control is returned to the batch 
monitor program. 

* This configuration has been updated to a 64K mem­
ory with a 32K-32K logical core split. 
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A dynamic storage allocation system and exe­
cution processor 6 occupy almost half of the 16K 
memory cells devoted to on-line console opera­
tion. The remainder of the core space (approx­
imately 8K) is available for use by the scanning 
system programs and data tables. The scan­
ning programs total more than 40K cells, ex­
clusive of memory data tables. Hence, the 
dynamic storage allocation scheme is utilized to 
overlay subroutines as they are required. The 
entire scanning system was written in an alge­
braic language called NOMAD and a channel 
language called MAYBE.6 

All functions are made available to the op­
erator via program control buttons on the 
graphic console. There is almost a one-to-one 
correspondence between operational capability 
and program control buttons. The organiza­
tion of this type of system is illustrated in 
schematic form in Figure 3. 

This concept allows the operator to depress a 
button and execute a wide range of functions. 
Upon completion, the system may return to 
standby and wait for the next selection, or each 
function may automatically call on other func­
tions. For example, an operator may depress 
the DISPLAY button to obtain a graphical im-

age on the graphic console CRT. Similarly, a 
scanning function may display intermediate re­
sults by logically depressing the DISPLAY but­
ton. Thus, one function may logically depress 
other program control buttons. In addition, 
while one function is being performed, it may 
be advantageous to make other functions op­
tionally available. Thus, function (B) can al­
low program control buttons (A) or (C) to be 
depressed, and subsequently signal the control 
program which option has been selected. 

The functions themselves logically fall into 
four distinct areas: Film Operations, Scanning 
Operations, Display and Review Operations, 
and Modify and Store Operations. Each area 
presented the same problem; namely, how to 
best communicate with the man in order to 
perform a specific operation. The variety of 
solutions that have been employed are discussed 
in the remainder of this paper. 

FILM OPERATIONS 

A line scanning problem will, in general, re­
quire more than.one film frame (i.e., more than 
one input document) and the user. may wish to 
use either the exposure and rapid processing 
facilities of the image processor or off-line film 

Figure 2. Graphic Console. 
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Figure 3. System Organization. 

which has been pre-exposed and mayor may 
not have been processed. During the course of 
the scanning operation, the user may at appro­
priate times wish to record current results on 
film either for purposes of verification or to 
form a permanent record of his work. 

It was therefore necessary to include in this 
line scanning system a facility for the console 
control of both of the film trains 7 in the image 
processor which is shown schematically in Fig­
ure 4. 

One film train (train B) may be used only 
for recording and reviewing output. The other 
film train (train A) may be used either for re­
cording or for exposing input documents onto 
film and scanning the resulting film images. 
Both film trains can process an exposed film 
frame in approximately 30 seconds and project 
the image onto the 22x20 inch viewing screen. 

RECORD OR 
EXPOSE STATION 

BUFFER I 

BUFFER 1 

The 22x22 inch paper input station can ac­
cept documents for exposure onto raw film in 
train A. Alternatively, pre-exposed microfilm 
may be inserted in the supply cassette. Film 
transport commands allow the film to be ad­
vanced into buffer 1, developed, and advanced 
or backspaced into buffer 2 under program 
control. 

The console operator is provided with several 
film functions which make use of these facili­
ties. An exposure processing function readies 
the paper input station to accept documents. 
The operator may then insert documents and 
make exposures by depressing an EXPOSE 
button on the side of the image processor. Each 
exposure is automatically advanced into buffer 
L A count of the number of exposures is dis­
played on the graphic console screen. When all 
exposures have been completed, the operator 

BUFFER 2 

TRAIN A 

BUFFER 2 

PROJECT 
STATION 

PROJECT OR 
SCAN STATION 

figure 4. Film Train Configuration. 
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may initiate the processing cycle. The film 
transport is programmed to develop all of the 
exposed film in buffer 1 after adding a trailer to 
the exposures, and position the first exposure at 
the scan-proj ect station. The operator may 
utilize manual controls on the image processor 
to advance or backspace frames that are in 
buffer 2 or on the take-up reel. Operational ex­
perience has shown the value of providing the 
console operator with a rapid means of prepar­
ing a film image suitable for scanning. A cer­
tain amount of flexibility and film quality is lost 
through the utilization of rapid processing, but 
this seems to be more than offset by the con­
venience of short turn-around time. 

An auxiliary film processing function is 
available if off-line film is to be used. Utiliza­
tion of pre-exposed film. allows for a wider 
variety of input quality and document sizes. 
This film is inserted in the supply cassette and 
spliced to the film in train A. When the proc­
essing is initiated, both film buffers are emptied 
(i.e., the film is pulled tight). They remain 
empty as the film passes from the supply cas­
sette, through the developer and then past the 
scan-project station. The graphic console op­
erator can monitor the operation on the projec­
tion screen. Depressing the END key on the 
alphanumeric keyboard will halt the develop­
ing. In this manner rapid processing film 1Nhich 
has been pre-exposed can be developed. Stand­
ard microfilm or rapid processing film that has 
been preprocessed is not significantly affected 
by passing through the developer during this 
operation. The use of preprocessed high con­
trast microfilm permits the scanning of mate­
rial which is of much poorer quality than can 
be accepted at the paper input station. 

During the course of 'various scan operations, 
it is frequently necessary to make a permanent 
record of the results. Selection of a recording 
function causes all current scan results to be 
recorded on film train B. The material record­
ed on film is the same as that which is shown on 
the graphic console by the DrSPLA Y function 
discussed later in the paper. After recording 
is completed, the frame will be automatically 
advanced into the first film buffer of train B. 
The developing process will be initiated auto­
matically after six recordings but can be ini­
tiated at 'any time via a FILM CONTROL func-

tion. By means of manual controls on the image 
processor, a processed frame can be centered on 
the viewing screen. By appropriate manipula­
tion of both film train projection lamp rheostats 
and positional controls (2 dimensional motion 
is possible on train B), both the scan results on 
train B and the original document on train A 
can be superimposed on the viewing screen for 
purposes of comparison. 

The user also has at his disposal the ability to 
develop or clear film which has been moved into 
any of the film buffers. Clearing the film moves 
all exposures onto the take-up reel from which 
they can be removed and mounted in aperture 
cards. One of the accessory pieces of equip­
ment available to the user is an aperture card 
printer. Thus, hard copy output is available to 
the user in a matter of minutes after he leaves 
the console. We find that this is particularly 
valuable in evaluating results and maintaining 
a record of work accomplished. 

SCAN OPERATIONS 

The unique feature of this line scanning sys­
tem is that only those elements of an image 
which are selected by the console operator will 
be scanned and digitized. The basic element of 
an image is a line segment defined as a contin­
uous curve terminated by two ends, two junc­
tions or a combination of both. Since compli­
cated images may contain many intersecting 
curves, a line will, in general, consist of several 
segments which must be added together logic­
ally. Experience has shown the j unction to be 
a far more accurate delimiter than the end of a 
curve. The normal procedure of this system 
has been, therefore, to define the end points of 
lines precisely by means of perpendicular slash 
marks. Figure 5 shows a typical document 
from which line AD is to be digitized. Line AD 
consists of segments AB, BC, and CD. A line 
may, of course, consist of only one segment. 

The requirement of digitizing selected lines 
which represent only a small fraction of the 
entire image suggested a line tracking tech­
nique. Analysis of a raster scan of the entire 
image area was deemed impractical because of 
the volume of data involved. 

The automatic line tracking procedure which 
forms the heart of this line scanning system is 
described briefly below. Figure 6 shows a typi-
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Figure 5. Sample Document. 

cal line with two points (P A and PB) that have 
been sampled. The next point is estimated to 
be P'c : a distance (~H) away from PB on the 
line defined by points P A and PB. Two "scan 
feeler vectors" (P1-P2 ) and (P3-P-l) are then 
plotted on the CRT parallel to and a distance 
(~V) away from the line (PB-P' c). ~H and ~ V 
are specified by the console operator. 

If nothing is encountered by either feeler 
vector, a scan vector (Pz-P-I) is plotted and the 
next point Pc is determined by the intersection 
of (P2-P-l) with the line as shown in Figure 7. 

The procedure is repeated until the line ends 
or one of the feeler scan vectors gets a "hit" 
indicating that either a junction has been en­
countered, or that the tracking step size (~H) 
and the feeler vector spacing (.o!l V) are not 
compatible with the curvature of the line. When 
this occurs, a block of code will be called upon 
to analyze the situation, and action will be re­
quested from the operator if necessary. 

At each point, the threshold level (detection 
sensitivity of the scanner) is adjusted within 
rigid bounds, based on results at the last point, 

P 
1 

Figure 6. Line Tracking Procedure. 

P2 

Figure 7. Line Tracking Procedure. 

to the minimum necessary for line detection. 
When a new point is obtained, the threshold 
level bounds are modified if necessary. In this 
manner, large variations in density across a 
film frame can be accommodated while still pre­
venting erroneous scanner responses due to im­
proper threshold level. The threshold level 
bounds, along with tracking step size, feeler 
vector spacing and several other scanning pa­
rameters can be modified if necessary by the 
user at the console via a CHANGE PARAM­
ETERS function. 

The automatic method of line tracking is 
utilized by the user whenever possible. If areas 
of difficulty occur, the user may request or the 
scan program will automatically generate a call 
for a raster sweep (TV scan) of the area of 
difficulty. The user may then utilize the sweep 
display on the graphic console screen for diag­
nostic purposes. 

The graphic console operator is required to 
combine those functions which will enable him 
to process a complicated image. It is assumed 
that a film frame has been centered in the scan 
gate before any scan functions are selected. A 
RESTART function readies the system to ac­
cept results from a new image. All previous 
scan results are deleted. 

A REGISTRATION function may be used to 
search for a border around the image corres­
ponding to a 20x20 inch square border on the 
input document. The main function of this 
border is to provide an easy means of supplying 
the scanning system with coordinate and scal­
ing data. The coordinates of the border are as­
sumed to be (0,0), (0,20), (20,20), (20,0) but 
can be modified by the console operator by using 
a CHANGE PARAMETERS function. If regis­
tration is successful, the border, plus lines di­
viding each side of the border into quarters, will 
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be displayed on the graphic console CRT. This 
grid aids the console operator in using the posi­
tion indicating pencil to select lines for scan­
ning. It is not necessary to register, however, 
in order to proceed with scanning since there 
are alternate methods for the system to obtain 
coordinate and scaling data. 

A SCAN A LINE function readies the sys­
tem to begin scanning the first segment of a 
new line. The user will immediately be re­
quested (via appropriate comment on the 
graphic console screen) to select by means of a 
position-indicating pencil the approximate area 
for the scanning to begin. The user may then 
point directly to an area. on the screen ( using 
the display of previous results and the regis­
tration grid as a guide, if available). Alter­
natively, the console operator may request a 
gross raster scan and display of the entire 
image. He may then select a line with the 
pencil as shown in Figure 8. 

Once a starting area has been supplied, a 
search wiJI begin for two points on the first 
segment. These points will then be used to 
initiate the automatic line tracking procedure 
which will track to both ends of the segment in 
two steps. If any difficuity is encountered dur­
ing this operation, the results up to that point 

along with an appropriate comment and a box 
indicating the region of trouble will be dis­
played. The operator must then take the proper 
action which usually begins with a TV sweep of 
the problem area. After a portion of a line has 
been scanned, an ADD A SEGMENT function 
may be used to add segments to the given line. 
Selecting this function (active only after the 
first segment of the current line has been 
scanned) readies the system to scan a segment 
adjacent to one end of the current line and add 
it to the current line. 

The user is immediately requested to indicate 
with the position-indicating pencil the approxi­
mate location and initial slope of the next seg­
ment. A search will then be initiated for a 
point on the next segment which is separated 
from the endpoint of the current line by a dis­
stance equal to the tracking step size (6H). 
This point and the endpoint will then be used 
to initiate line tracking which will proceed to 
the end of the segment. If any difficulty is en­
countered during this operation, all previous 
scan results, plus an appropriate comment and 
a box indicating the problem area, will be dis­
played. The user must then take appropriate 
action. If this entire operation is successful, 
the segment will be added logically to the cur­
rent line to form the new current line. 

Figure 8. Line Selection. 
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A TV SWEEP function allows the user to ex­
amine a localized area for diagnostic or correc­
tive purposes. This function will be initiated 
automatically whenever the tracking procedure 
encounters difficulty. The console operator may 
also use this function to investigate any data 
point along a line by selecting the point of in­
terest with the position-indicating pencil. The 
scan responses are analyzed and a display is 
generated which nominally fills the entire 
graphic console screen. This enables the user 
to observe a magnified view of a localized area 
on the image (as it appears to the scanner). 
Figure 9 shows a TV sweep display of a typi­
cal junction. The size of the sweep area is ap­
proximately .5 x .5 inches on a 20x20 inch docu­
ment. 

The "X" indicates the center of the scan 
raster. The user may adjust the threshold 
level or change the location of the scan raster 
via appropriate alphanumeric keys. The raster 
may also be moved by indicating a desired lo­
cation with the pencil. A new raster scan and 
display will then be generated. The system un­
derstands that the position-indicating pencil 
position superimposed over the TV sweep dis­
play refers to the corresponding position in 
the actual scan raster. Other appropriate sys­
tem operations may be initiated from this mode 
at any time. 

If a diagnostic study reveals that automatic 
line tracking is impractical for some reason, 
coordinate points may be stored in conjunction 

Figure 9. Junction of Two Lines. 

with the TV sweep facility. This function al­
lows. the user to add the current center of the 
scan raster as a data point and thereby move 
manually over an area of difficulty before re­
suming automatic tracking. Under extraordi­
nary circumstances (e.g., very poor film, POOl' 

document quality, or an extremely congested 
image), an entire line can be digitized in this 
manner. 

The CHANG E PARAMETERS function al­
lows the user, through a combination of multi­
ple choice and alphanumeric keyboard re­
sponses, to change many of the scan param­
eters. The value of each parameter is displayed 
on the graphic console CRT along with suitable 
descriptions (Figure 10). Through the use of 
a multiple choice sequence employing the posi­
tion-indicating pencil, the user may select a 
parameter and type in a new value for that 
parameter. This function allows the user to 
lnaterially change the performance of a subrou­
tine from the console. These parameters are 
used within the programs both as numeric 
constants and as switches for branching opera­
tions. 

DISPLAY AND REVIEW OPERATIONS 

The graphic console 10xl0 inch CRT is the 
principal medium by which the computer com­
municates with the user. Throughout the sys-

ENTER NEW VALUES 

HeRZ. eR/G/N= 0 +-
VERT. eR/GIN= 0 BeRDER SIZE = 2011 
SEGMENT AREA= 5011 
LINE AREA = 20011 
MINIMUM STEP= 25. MAXIMUM STEP= 40011 
EPS I LeN : 211 RES9LUTI8N = 2511 
SCAN RAD I US = 5011 CURRENT TL = 35. MINIMUM TL = 30. MAXIMUM TL = 40. START SWITCH: 1 • 

Figure 10. Parameter List. 
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tern, messages are continually being displayed 
on the CRT to which the user must respond. Al­
though this display is low in accuracy with re­
spect to the scanner or recorder, it is also util­
ized for the purpose . of displaying scanned 
results. A display of the scan results may be 
used to check for completeness and to monitor 
the progress of the scanner. To some degree, 
the accuracy of the scanned results may also 
be checked at the graphic console. 

As a film image is scanned, the digitized co­
ordinate points are stored in an in-memory 
table. The structure of this table is quite sim­
ple. Each element of scanned data is stored as 
a linear array, with suitable identifiers and 
pointers to the next element of data. The scan 
operations may at any point in their logical se­
quence call upon the display operation to gen­
erate a pictorial representation of the in-mem­
ory scan data. A typical display is shown in 
Figure 11. 

If an error condition has occurred during 
some previous function, the display operation 
may be so signalled. This will result in a small 
box being superimposed over the location of the 
error, plus addition of a suitable error comment 
(~; noll ... a 1') \ 
\ ..a: ~b \.4...1. """ .L ..... I • 

After the scan results appear on the graphic 
console CRT, the following review operations 
become available. 

a) Increase Scale 
b) Change Mode 
c) Identify Dimensions 
d) Identify Coordinates 

By selecting the INCREASE SCALE func­
tion, the size of the display will be doubled. 

Figure 11. Display of Scan Results. 

Figure 12. Error in Scanning. 

Any scan data which falls outside of the field 
of the CRT is deleted by appropriate program­
ming. Reselection of a display returns the scan 
results to their original scale. The CHANGE 
MODE function may be used to display all lines 
either as a continuous curve or as a series of 
crosses. The latter mode allows the user to 
ascertain the number and location of each single 
digitized point. The ability to view individual 
scanned points is essential when the scanner is 
being used to capture a minute feature of a 
line. 

If some portion of the display outside the 
field of view is desired, the pencil may be used 
to point to the edge of the field. Removing the 
pencil from the screen will cause the scanned 
data to be redisplayed with the selected point 
relocated at the center of the field of view; Fig­
ure 13 illustrates a display in which the user 
has reviewed his scanned results by centering 
the field on the end of a line and magnified the 
scale four times to examine an end condition in 
detail. 

Within the operation of the scaling and field 
centering mechanism can be found a lesson in 
man-machine interaction. A variety of func­
tions can be selected subsequent to a display. 
Typical of these is the LINE SCAN function. 
After this function is selected, the user is re­
quested (by comment on the graphic console 
screen) to use the pencil to point to a location 
on the screen. Thus, the sequence of opera­
tions was to select a function (by depressing a 
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Figure 13. Magnified Display. 

program control button) and then point. Our 
initial operational experience taught us that the 
more natural instinct was to point and then se­
lect an operation. Similar instances of man­
machine interaction being uncomfortable were 
noticed throughout the development of the sys­
tem. In most cases, the problem was rectified 
after user and programmer discussed alterna­
tive sequences of operation. Thus, many op­
erations communicate with the man in more 
than one way, thereby anticipating the variety 
of ways in which a man may respond to a given 
situation. 

While in review mode, the user is also fre­
quently concerned with the accuracy of his 
results. The system provides two means for 
reviewing the. accuracy of the scan data before 
storing the data on disk. If a square border 
has been registered from the film image 
(1.09x1.09 inches on film), all interior points 
are related to the coordinates of the corners of 
the border through the use of a four point per­
spective transformation. At the paper input 
station, the border would normally appear 
20x20 inches square. The user through the use 

of the CHANGE PARAMETERS function may 
define the coordinates of the corners of the 
border. Thus, the user may select any point 
interior to the border and receive the inch co­
ordinates of that point. The point may be se­
lected by pointing with the position-indicating 
pencil or by using linear arrows on the alpha­
numeric keyboard to vernier a pointer. 

If no border registration is available, the 
only accuracy test which can be made is to 
check the chordal distance between two points. 
For example, if the scanner were used to dig­
itize a sine wave consisting of two cycles, the 
user could measure the chordal distance in 
inches between the ends of the cycles on the 
original document. An IDENTIFY DIMEN­
sIoN function allows the user to use the pencil 
to point to two locations on a line and receive a 
display of the chordal distance between the two 
points. In this case, the program searches for 
the two points on the scanned line nearest to the 
two locations selected by the user. The pro­
gram displays the distance assuming an 18.33 
reduction ratio between document and film 
image. 

MODIFY AND STORE OPERATIONS 

The development of an elementary set of 
modify operations was a direct result of monit­
oring the use to which various users put the 
system. The most frequent request was for 
operations to delete erroneous data. Here again 
let us emphasize that the scanner and computer 
are utilized to perform the elementary opera­
tions while the user (through graphic console 
displays) retains judgment as to the correct­
ness of the results. 

A typical situation might be that the scanner 
began to digitize a scratch on the film rather 
than a line on the film image. The requirement 
for data deletion operations led to three meth­
ods for deleting data. The console operator may 
select a DELETE LAST SEGMENT function 
and cause the last element of scanned data to be 
deleted from in-memory storage. An entire line 
or a single point may be deleted by pointing to 
a location on the graphic console screen with 
the pencil and selecting the desired operation. 
In these two cases, the item of scanned data, be 
it a line or point, nearest to the selected loca­
tion is deleted from in-memory storage. 
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Another frequently requested operation was 
the ability to add intermediate points to a 
display of scan results. Because of its finite 
sampling capability, the scanner may miss a 
particularly critical point on a line. In these 
cases, the user may point at the display with 
the pencil and cause a coordinate point to be 
inserted in the scanned results at that point. A 
high degree of accuracy may be obtained by 
adding coordinates in this manner, particularly 
if the scale of the image is enlarged before any 
operation is attempted. 

After all scanning, review, and modify opera­
tions have been completed, the user can choose 
to save these results by storing them on a ran­
dom access disk file. For our purposes, each 
digitized line is assigned a unique data name 
(e.g., LN5-1-537-R) which determines its stor­
age location on disk. 7 Any other application­
oriented program may have access to this data 
by referring to the same data name. Library 
I/O subroutines are available to the program­
mer for storing and retrieving data from the 
disk. 

The function which stores data on disk pro-
vides the facility for transforming the digitized 
points to any desired coordinate system. The 
manner in which this is accomplished is for the 
user to provide the desired coordinates of two 
of the scanned points (usually the left and right 
end point). This data enables the STORE 
function to compute a linear transformation be­
tween the raster unit coordinate system of the 
scanner and the desired output coordinate sys­
tem. 

Since the STORE function requires alphanu­
meric input, we were interested in the variety 
of ways in which a man could communicate this 
data. The devices which could be made avail­
able for the transmission of alphanumeric data 
are as follows: 

a) Alphanumeric keyboard used as a type­
writer 

b) On-line card reader 
c) Scan and recognition of characters in the 

field of the image 
d) Writing with the position-indicating pen­

cil on the face of the graphic console CRT 

e) Multiple choice operations by pointing 
with the position-indicating pencil on the 
face of the graphic console CRT 

The options which are currently available 
are (a), (b), and (e). Our experience leads 
us to believe that (d) is not practical, simply 
because of the ease of using a typewriter and 
monitoring the message on the face of a CRT. 
Scanning and recognition of character sets on 
the film image is obviously very desirable. This 
work is under current development but will 
not be reported on in this paper. 

When a line or series of lines have been 
scanned, reviewed, and modified, the console 
operator may elect to save the results by 
choosing the STORE function. At this point, 
all scanned data is corrected according to a 
table of calibration data stored on disk each 
morning by maintenance personnel. The cali­
bration data gives a measure of the distortions 
in the scan raster. This data is obtained by 
scanning a high accuracy metal target. The 
calibration data may then be used to correct 
subsequent scan results. 

After correction, all extraneous coordinate 
poin~s (those lying within an epsilon of a 
straight line) are removed from the line. Re­
sultant lines are then displayed singly on the 
graphic console CRT. A typical display is 
shown in Figure 14. 

The density of points will be a function of 
line curvature. The user then has a multiple 
choice option in which he may choose to utilize 
card data, typed data, or border data for sup­
plying coordinate information relative to the 
line. 'The pencil must be used to point to one 
of the fields in order to select the appropriate 
mode of input. We have found that when 
processing a volume of information, the users 
will prepare data cards ahead of time and 
utilize this mode of alphanumeric input. If 
only one or two lines are to be processed, the 
typed input will more likely be selected. In 
this case, the STORE function leads the user 
through a series of questions and responses, 
in which he is either required to make a choice 
or type in a reply at the alphanumeric key­
board. In all cases, a message on the graphic 
console CRT instructs the user as to the next 
operation or required response. As an added 
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Figure 14. Display of Sampled Line. 

feature, the user may select the BORDER 
DAT A option, in which case the coordinates of 
all digitized points are related to the coordi­
nates of the corners of a 20x20 inch border. 
The coordinate values of the corners of the 
border are assumed to ha ve been preset by 
the CHANGE PARAMETERS function. 

After all alphanumeric information has been 
entered, a summarizing message is displayed 
on the graphic console screen. An example is 
shown in Figure 15. The console operator is 
requested to pass judgment on the quality of 
the results before they are stored on disk. 

RESULTS 

The actual performance of the equipment 
and system can best be measured by the ac­
curacy and detection capability of the scanning 
operations. For these reasons, a series of ex­
periments was conducted, aimed at determin­
ing the accuracy and detection capability of 
the device under various operating conditions. 
Figure 16 is a plot of the distribution of errors 
in scanning a vertical straight line located at 
the center of the image field. 

Figure 15. Summary Display. 

It should be noted that this figure was gen­
erated via the CRT recorder which is a fea­
ture of the image processor. Also note that 
the unit squares along the chordal length of 
the line are measured in units of 5 inches, while 
the deviations are measured in units of .05 
inches. As can be noted, the maximum devia­
tion of the data from a straight line is ± .02 
inches and there is a high frequency noise level 
of ±.005 inches. The original system objec­
tive was ± .01 inches average deviation on a 
20x20 inch document. If this test is repeated 
with no utilization of calibration correction, 
the results are as shown in Figure 17. 

Notice that while the high frequency noise 
level does not change, the maximum deviation 
or distortion is now .04 inches. 
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Figure 16. Error Distribution With Calibration. 
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CHORD DISTANCES 
IN INCREMENTS OF 5 INCHES 

Figure 17. Error Distribution Without Calibration. 

The second measure of system performance 
is the detection capability of the scanner. The 
range of threshold over which a line can be 
located is a measure ·.-of detection capability. 
Below a certain threshold level, the scanner 
can not detect any changes in the percentage 
of light transmission between background and 
lines. Above a certain threshold, the scanner 
will detect light over the entire image. This 
type of data may be plotted for a single film 
document for lines of various thickness. Fig­
ure 18 is a typical plot of minimum and maxi­
mum threshold level versus line width. 

The maximum threshold level is the noise 
level, or the point at which the photomultiplier 
will always see light. This is a fairly constant 
value over the entire film image. The mini­
mum threshold level is, of course, a function 
of line width, until such time as the line widths 
become appreciably greater than the effective 
CRT spot diameter. Various qualities of docu­
ments and various film exposures will move the 
wedge left or right and widen or close the 
wedge. For each particular digitizing applica­
tion, wedge samples may be taken to determine 
the limits of detection. Optimum operating 
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Figure 18. Detection Wedge. 

performance may be obtained from the com­
bination' of parameters which provide the 
widest wedge located furthest to the left with 
respect to line width. Extensive tests are now 
being conducted on a range of documents to 
determine these limits of detection. These test 
results will serve as a guide line for judging 
the quality of all documents. 

CONCLUSIONS 

This system can best be described as a line 
digitizer which is being used as an experiment 
in processing graphical data. It combines the 
speed and accuracy of automatic line tracking 
with the decision capability of a human oper­
ator. The system as conceived and imple­
mented has proven the feasibility of close 
man-machine interaction. While it is' not 
practical to operate the equipment and system 
with no training, users have become proficient 
in its use after only one or two hours of in­
struction. Through the use of graphic dis­
plays, it has been possible to program the 
computer to communicate with a console op­
erator in a medium which is easily understand­
able. Thus, the utilization of a human operator 
as the key system component has been very 
successtul. This has been particularly true 
when automatic line tracking is impractical 
and the user has had to intercede to assist the 
scanning. 
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I. INTRODUCTION 

During the past ten years, information proc­
essing technology has made significant advances 
in many directions. Faster, less expensive, more 
flexible hardware has been continually an-
nounced by the various computer manufadur-
ers. In the software area, the FORTRAN, 

retrieved, communicated, and processed concur­
rent with the flow of orders and materials. 

The information processing field seems to be 
moving exponentially in the direction of "real 
time" and total or highly integrated informa­
tion systems. This movement has been acceler­
ated by the introduction of larger, faster, and 

ALGOL, and COBOL languages have been de- nl0re economical mass random access memory 
veloped and improved and more efficient com- devices coupled with faster computers and bet-
pilers are now available. Applications now ter communication 'equiprrrent. These new facili-
include the complete spectrum ranging,from-'-----· ties offer the information system designer a 
free-standing analytical programs to large com- new opportunity 1) to organize his information 
plex information processing systems. files with minimum duplication and redundancy, 

Computers have been applied to business in­
formation processing problems with varying 
degrees of success. Many accounting operations 
and facets of historical record-keeping have 
been mechanized with proven time, cost, and 
accuracy benefits. Those types of business op­
erations dealin~ with planning and control (or 
command and control if you are part of a mili­
tary establishment) are receiving considerable 
attention from the mechanization standpoint. 
While many mechanization attempts have been 
made in this area, the proven successes are few. 
To some extent this can be attributed to the 
greater complexity of these classes {)f problems 
and the fact that information must be stored, 
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2) to provide a better man-machine interface 
by giving people quick access to information, 
3) to store, retrieve, and process information 
when the need arises rather than when the 
computer schedules dictate, 4) to provide a 
single data base for many applications as op­
posed to the arbitrary sequencing of single files 
for each particular application. 

Any attempt to exploit the opportunities pre­
sented by the new mass memory devices places 
a high burden on the information system de­
signers and programmers. This is true because 
it is difficult to structure and organize complex 
information relationships within the parame­
ters of the mass memory devices. It is also 
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very difficult to write computer programs to 
store, maintain, retrieve, and process the com­
plex data. To date there has been little if any 
software available to facilitate these problems. 

The General Electric Company through its 
Corporate Services has been conducting a con­
tinuing research program on the manufactur­
ing control problem since 1956. The decision 
table .and TABSOL techniques re~ulting from 
this research work were described to the in­
formation processing world iI\ 1960.1 During 
the past four years a considerable effort has 
gone into studying the information require­
ments for manufacturing control and how the 
information might be organized and processed 
more effectively by using mass memory devices. 
As a result of this work, a new approach has 
been developed-the Integrated Data Store. 

II. THE INTEGRATED DATA STORE­
A NEW APPROACH' 

The purpose of this paper is to introduce the 
Integrated Data Store, a general purpose pro­
gramming system for mass random access stor­
age devices. The particular implementation 
that will be described is now being installed at 
several General Electric sites using a GE-215 or 
GE-225 computer. The Integrated Data Store 
language and functions will be available early 
in 1965 as extensions to the COBOL compilers 
for the new GE-400 and 600 series computers. 
The principles involved, however, are com­
pletely general purpose and could be readily 
adapted to any general purpose comptlter to 
which a mass memory device can be attached. 

The Integrated Data Store has been designed 
from a user's point of view by users. Further­
more, it is a product that draws upon the inter­
est and ideas of many General Electric ·people 
with vast and diverse experience as users of 
computers in business. Particular credit is due 
Homer Carney of the New York Information 
Processing Center (GE Computer Department) 
who long served as the senior programmer on 
the project and Irv Burch and Bill Helgeson of 
the Internal Automation Operation whose 
ideas heavily influenced the current organiza­
tion of the system. Jerry Aman, Ed Dodge, Phil 
Farmer, John Gallagher, Jane Gilbane, George 
Hess, Dave Johnson, Dave Lattemore, Ron 
Pulfer, and Tom Waldron are others who have 

had a significant impact upon the specification 
or programming of the system. Many others 
have been helpful since the beginning of the 
Integrated Data Store work in 1961. 

III. INTEGRATED DATA STORE­
ADVANTAGES 

The original Integrated Data Store software 
package was ~sed in mid 1963 to make compari­
sons against conventional random access pro­
gramming techniques in systems design effort, 
programming effort; file utilization, and com­
'puter running time. The IDS compared very 
favorable on all counts. Since that time, further 
refinements have been made to the software 
package. 

Experience to date using IDS has demon­
strated the following advantages: 

1. Greater insight and understanding of in­
formation relationships. 

2. Reduced time and cost to design, program, 
an~ test comparable applications. 

3. More efficient computer processing. 
4. Better data storage unit utilization 

through redundancy elimination. 

IV. INTEGRATED DATA STORE­
ORGANIZATION 

The IDS can be described best if it is divided 
into three areas of discussion: 

a. Data Organization-Technique for Mass 
Memory 

b. Data and Procedural Language 
c. Input/Output Controller 

Data Organization refers to the establish­
ment of inter record relationships within the 
IDS. This association is achieved through the 
use of chains which provide cross reference 
linkages between records. These chains provide 
the integrated force which is implied in the 
name, "Integrated Data Store." 

Data and Procedural Language refers to the 
definition of records and their chain associa­
tions, and the procedural verbs by which these 
records are stored and retrieved. 

The Input/Output Controller refers to the 
physical manipulation of the mass random ac­
cess device and the buffering and housekeeping 
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associated with temporarily storing blocks of 
data in core memory. 

A. Data Organization. The record is the 
major unit of data organization in the Inte­
grated Data Store. 

This is a record in the GECOM (General 
Compiler) and COBOL sense. It contains a set 
of data fields which collectively describe the 
event, thing, status, or plan· that the record 
represents. The Integrated Data Store aug­
ments these records with additional fields' called 
chain fields which contain the address of other 
Integrated Data Store records. The chain fields 
point from one record to the next creating a 
serial association of records. 

This association is constructed according to 
the data definitions and the executed procedural 
commands. The chain is the record organiza­
tion technique used by the IDS for meaningful 
associations of records. 

B. Data and Procedural Language. The In­
tegrated Data Store provides its user with the 
ability and requirement to predefine his rec­
ords, their data fields, and their chain fields. 
Once these records and fields have been defined, 
the user is free to operate upon the records 
without concern for the physical aspects of in­
put or output, the lihking of records into ,chains, 
or the protec~ion of the data from erroneous 
access. 

A. RECORD CONSISTS OF 
DATA FIELDS 
CHAIN FIELDS 

DESCRIBING AN EVENT 

A THING 
PLAN 
STATUS 

Figure 1. Record Definition. 

A CHAIN CON$ISTS OF 

A SERIAL ASSOCIATION 
OF RECORDS 

Figure 2. Chain Definition. 

The user has four new commands or pro­
cedural verbs at his disposal. These verbs 
provide for the execution of the four basic 
record processing functions and are comple­
mentary to existing COBOL and FORTRAN 
procedural verbs. These are; "PUT" to store a 
new record into the file and link it into chains 
as specified in the data description, "GET" to 
retrieve a record already in the system, 
"MODIFY" to change the content of one or sev­
eral data fields with automatic relinking of 
chains, if necessary, and "DELETE" to delink 
a record from its chains and remove it from 
the file. 

C. Input/Output Controller. The Input/ 
Output Controller of the IDS controls the data 
storage device. 

It transfers data blocks in and out of core in 
response to commands to retrieve a specific 
record, to store a specific record, or to expand 
or contract a specific record. In order to mini­
mize the data storage device seek and transfer 
time, an inventory of data blocks is maintained 
in core memory. These blocks are stored in 
numerous buffers in core. The, number of buff­
ers depends on the amount of space available 
after the IDS subroutines and the problem solv­
ing routine have been loaded. The larger the 
number of data blocks stored in core, the greater 
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Input / Output Controller 

disc memory 

IDS 

Program 

data block 

core memory 

Figure 3. Input/Output Controller. 

the possibility that the one needed next will 
already be in core. To improve the probability 
of finding the block desired in core, the I/O 
Controller keeps track of the sequence of bloa 
retrieval and utilization and holds the most 
recently active data blocks in the buffers. Blocks 
which are not frequently· accessed ,are retired 
from core to make room as others are caned in. 
The I/O Controller notes which- blocks "have 
been ~?dified and writes only the modified 
blocks back to the data storage unit. The IDS 
data block manipUlation is analogous to the 
program block "page turning" of the Ferranti 
Atlas computer. 

V. DATA BLOCKS 

Looking closer at IDS data blocks, the fol­
lowing characteristics should be observed. 

They have a fixed maximum size which is an 
environmental constant. They consist of one 
or more data records which collectively repre­
sent the actual size of the block. The maximum 
number of data records is controlled by the size 

of the maximum block. Every block begins 
with a block header record. The block header 
record contains several data fields used by the 
system. One indicates the space available in 
the block for additional records, or record ex­
pansion within the block. Another indicates 
whether the block has been altered since re­
trieval. Still another is a chain field which 
indicates the address of the first record of a 
chain of records, all of which randomized to 
that block. 

VI. DATA RECORDS AND FIELDS 

The records of the IDS are fixed format, fixed 
length records in the GECOM, COBOL tradi­
tion, i.e. a specific type of record such as a pay­
roll or inventory record has a fixed length and 
format. Variability in the conventional sense 
of record length is automatically achieved 
through the IDS techniques of data structuring. 
A master record is used with a variable num­
ber of detail records. 

Records of many different types, each with dif­
fering length an<l format may be used in the 
system and may be stored within the same 

Record 0 I Record 1 

I Record 2 

I Record 5 IRecord 7 

I Record 8 

I Record 9 

Record 17 I 

Empty Space 

Figure 4. IDS Data Block. 
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Reference 

Address 

Record 
type 

Record 
length 

Figure 5. IDS Record Structure. 

block. In order that control may be maintained, 
each record has the same three fields at the 
very beginning. These fields are the reference 
code (block number and intra-block record 
number) , the record type, and the record length. 
The balance of the record consists of data and 
chain fields in the number and variety to suit 
the application requirements. Data fields may 
be defined as being in a logical mode (bits), 
signed binary numeric mode (one or two 
words) or an alphanumeric mode (characters). 
Fields may vary in size from a one bit switch 
up to many characters for a drawing and part 
number or a man's name. These fields will be 
specified by the systems designer. 

Chain fields are defined for each chain in 
which a record participates. Experience in IDS 
systems indicates that the average record is in 
only two chains, and an occasional pivotal rec­
ord in the information integration may be in 
six or eight chains. There is no upper limit on 
data or chain fields except that which is pro­
vided by the maximum block size. The average 
record in installations today has been eight to 
twelve words in total length, with an occasional 

record type in the forty to sixty word size. 
These are twenty bit, three character words. 

The reference codes in the IDS chain fields 
are not physical addresses which specify par­
ticular discs, tracks and heads. They are more 
properly described as relative addresses which 
indicate a relative position in the total environ­
ment of mass storage. Therefore, an expansion 
or contraction of the number or size of the data 
storage units does not destroy the. existing ref­
erence codes. It merely changes the mapping 
function which translates a particular reference 
code into its disc, track, and head number. 

The IDS Records are stored only once in 
the IDS. 

This has three important advantages. First, 
the additional space required for duplicate rec­
ords is eliminated, resulting in a reduction in 
the total storage capacity required. Second, the 
work of data maintenance is greatly reduced as 
there is onlyone record to retrieve and modify. 
This eliminates the possibility that one of the 
copies of a record will not be properly modified. 
As there is only one copy of a record, all users 

• Have any number of 
data fields. 

• May be . linked into any 
number of chains. 

• Are stored only once 
in the IDS 

Chain B 

Chain C 

Figure 6. IDS Record/Chain Structure. 
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have their eyes on it and incorrect information 
will be quickly spotted and corrected. Finally, 
all reports, drawn from the file, will be con­
sistent since there is only one set of facts 
(records) . 

VII. CHAINS 

The IDS chains ha ve several structural 
aspects which should be emphasized. 

Each chain has only one master record. The 
record type of the master is specified when the 
chain is defined in the data definitions. When­
ever a master record in "PUT" into the IDS, 
a chain is created which has no details in it. 
The chain field in the master record stores the 
reference code of the next record in the chain, 
which initially is the reference code of the 
master record itself. AS.i additional records, 
that are specified as details, are "PUT" into 
the file, they are linked into the chain. How­
ever, the chain always closes back on its master. 
The position in the chain of a new detail de­
pends on the chain specifications. 

• Have one master record 
and any number of details. 

• Link records together in 
an endless loop. 

• Associate related records 
in meaningful sequences. 

Figure 7. IDS Chain Structure. 

It was previously stated that a record may be 
in any number of chains. Now it is worth ex­
panding this statement to read that a record 
may serve as a master or detail in any number 
of chains. The only restraint is that no record 
may be a detail of itself directly, or through the 
interaction of several chains. 

VIII. DATA STRUCTURE SHORTHAND 

It is frequently desirable to display pictori­
ally the relationship between records. This is 
particularly important in developing an overall 
view when planning an information system. A 
special graphic technique has been developed to 
display records and their master-detail (chain) 
relationships. 

This technique uses a block shape to desig­
nate a record type and an arrow connecting two 
blocks to designate a chain. The arrow points 
from the master to the detail. This picture of 
block, arrow, block carries the following mes­
sage: 1) there are some number of records 
in the system of the master type; 2) each of 
these records is the master of a chain of the 
specified type; 3) there are some number of 
records of the detail type (0, 1, 2, 3, ... , n) in 

chain 

~ 
chain 

~ 

Figure 8. IDS Data Structure Shorthand. 
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each such chain. Using this graphic technique, 
very complex data structures may be presented 
in a condensed and understandable form. 

It is believed that the long sought informa­
tionalgebra may be developed around this nota­
tion. A new set theory is needed in which the 
master record is represented by the empty set, 
and details repr.esent the ordered members of 
the set. 

x. SAMPLE DATA STRUCTURE 
(PURCHASE ORDER) 

The information contained on a purchase 
order can furnish an example of how informa­
tion might be structured. 

Looking at a purchase order form, three 
groups of information may be seen. One group 
is concerned with information about the vendor, 
i.e. his name, address, and vendor code. Another 
group is concerned with information about the 
order, i.e. the order number, due date, mode of 
transportation, and dollar value. The third 
group is concerned with the information about 
a particular item to be purchased, i.e. its identi­
fication, description, quantity, unit price, and 

Vendor 34692 

Orderl47A 

item t 

Item 2 

item 3 I 
Order Chain 

Item Chain 

Figure 9. Purchase Order Data Structure. 

extended dollar value. Three different records 
might be designed in order to carry the in­
formation contained in these three groups. 
These three records would be a vendor record, 
order record, and item record. If a purchasing 
information system were established along 
these lines, there would be a vendor record for 
every vendor with whom the business is con­
cerned. The vendor record would be the master 
record of an order chain. There would be an 
order record for each order currently stored in 
the system. It would be a detail in an order 
chain. Each order record would, in turn, be 
the master of an item chain. This item chain 
would contain one or more item records depend­
ing on the number of items on the purchase 
order. This example contains three records and 
two chains. The vendor record is only a master. 
The order record is both a master and a detail. 
Finally, the item record is only a detail. The 
IDS Data Structure Shorthand shows all this 
with only three blocks and two arrows. Very 
complex systems with thirty or more record 
types have been clearly described using the 
IDS shorthand. 

A data description for the sample problem 
is shown in figure 10. Each record must be 
clearly defined as to the data fields which it con­
tains as well as the chains in which it partici­
pates. The appropriate IDS controls for stor­
age and chaining must also be described. 

A look at part of a network created by the 
vendor, order, and item records illustrates both 
the need for the data structure shprthand and 

Record 
Nam.e 

Field 
Name 

Record VENDORl I 
~-iel-1. VENDOR VE,~DORNO 
~!"':.:: VENDOR VENDORNA:vfE 

~:~~ ;~~~~ i ,. g~R::!TE 
e!.;. :':J= all fields in VENDOR record 

Q.am Master 'VENDOR I ORDERCHAIN I 
"-cccrd ORDER I 
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-: "_0 ORDER ORDERNO 
';- .• :j ORDER I ORDERDATE 
.:;".c. for all fields in ORDER record 
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'::>.a'~ con. troJ I ORDER . ORDERCHAIN VE.'lDORNO 
C:'ain Control ORDER ORDERCHAIN ORDERNO 
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IDS Control s Image 
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Sequenced 

I 
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~;~~ I :i~ ITEMNO Unique X(3) 
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Field ITEM 
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Chai" Detail I ITEM I ITEMCHAIN 
Chain Control ITEM ITEMCHAIN 
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MATLIDENT X(JS) 

ORDEROTY 'I 9999V9 

Prime 
ORDERNO Match I 
ITEMNO ASCending 

Figure 10. Purchase Order Data Description. 
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its power. The arrows indicate that one record 
"points" to the next record in a chain and that 
each chain "closes" onto the master record of 
the chain. Regardless of how many chains a 
record is in, the record exists in the file only 
once. It may be "pointed at" by many other 
records. 

Still another way of illustrating the data con­
tained in the sample problem is shown in figure 
12. Here the chaining is represented by the 
appropriate reference addresses. 

X. Procedural Commands 
The functional verbs PUT, GET, MODIFY, 

and DELETE, previously introduced, require 
further explanation for better understanding. 
These verbs may be used in a GECOM, COBOL, 
or FORTRAN sense. In fact, there is reason 
to wonder when they will move out of the de­
velopmental world and become part of the in­
dustry standard languages. Perhaps, a better 
phraseology would be to ask whether the indus­
try languages committees will take advantage 
of IDS to catch up with data storage units, real 
time, and command and control systems pro-

Item Chain 

Figure 11. Purchase Order Data Structure. 

VENDOR RECORD 

ORDER RECORD 

ORDER RECORD 

ITEM RECORD 

ITEM RECORD 

ITEM RECORD 

Figure 12. Purchase Order Data Structure. 

gramming. They are part of the COBOL com­
piler language for the GE-400 and 600 series 
computers now. 

The following are examples of procedural 
statements which would cause the IDS to exe­
cute certain actions. The letters in capitals are 
the required words of the IDS language. The 
lower case letters are data and procedural vari­
ables, i.e. record names, chain names, field 
names, and sentence names. 

A. Example i-PUT. "PUT vendor REC­
ORD." This command stores a new vendor rec­
ord in accordance \vith its data description. Its 
fields' values would be picked up from working 
storage and packed into the new record skele­
ton in a data block. The order chain field in the 
new record would be packed with the reference 
code of the new vendor record itself because 
there are no details at this moment and the 
next record in the order chain is the vendor 
record. 

B. Example 2-GET. "GET NEXT order 
RECORD OF order chain, OR IF vendor REC­
ORD GO TO location---a." This command 
would retrieve the next record of the order 
chain and unpack its fields into working stor-
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age. If the next record is an order record, the 
control would be transferred to the succeeding 
command. If the next record is a vendor rec­
ord, control would be transferred to the com­
mand identified by the sentence name "loca­
tiont-'a." The actual record retrieved is not 
accessible to the programmer-however, the 
contents of its data fields are unpacked and 
made available in working storage. This serves 
two purposes. First, protection is given to the 
data in the file in a father-son type sense. Sec­
ond, it means that the data from a record will 
remain in working storage until another record 
of the same type is retrieved and unpacked into 
the same working storage fields. For example, 
if an item record were first retrieved, followed 
by its order record, then the order record's 
vendor record, the fields from all three records 
would be simultaneously available in working 
storage for processing. 

C. Example 3-MODIFY. "MODIFY CUR­
RENT item RECORD, REPLACE quantity 
FIELD." This command will modify the cur­
rent item record, i.e. the last item record ac­
cessed, regardless of what has transpired since 
it was processed. I t will pack the content of the 
working storage field "quantity" into the cor­
responding data field of the record replacing 
the existing value. A modify command will 
modify one or several fields in accordance with 
those specified in the command. Fields may 
also be modified by adding or subtracting the 
contents of working storage to that of a record. 
The appropriate commands would be MODIFY 
recordname RECORD, ADD field name FIELD, 
or SUBTRACT fieldname FIELD. 

It was mentioned earlier that fields were fre­
quently used to sequence the detail records in a 
chain. These fields are called sequence control 
fields. If a sequence control field is modified, 
the detail will be automatically delinked from 
its master and relinked to it again in accord­
ance with the new value of its sequence control 
field. 

Fields are also used to control the selection 
of the master records and chains in which to 
insert detail records. These fields are called 
match control fields. If a match control field 
of a detail record is modified, the rec~rd will 
automatically be delinked from its old master. 

I ts new master will be retrieved, and the record 
linked to its new master according to the order­
ing rule specified for the chain. 

D. Example 4-DELETE. "DELETE ven­
dor RECORD, IF ERROR GO TO errort-'a." 
This command will retrieve the vendor record 
specified by the code stored in the "vendor 
code" field in working storage. If there is no 
vendor record with that specific vendor code, 
the command will respond by setting up an 
error code to specify the nature of the "fault" 
and transfer control to the command identified 
by sentence named, "errort-'a." If the vendor 
record is successfully retrieved, its deletion 
process will begin. If a vendor record is to be 
deleted, its order chain must be deleted too. 
Consequently, if a vendor record is to be de­
leted, its order chain must be searched to ascer­
tain that there are no order records in it. If 
there are order records, they must be deleted 
before the vendor record is deleted. In the 
same manner, an order record may not be de­
leted if there are any item records in its item 
chain. Therefore, all item records in an item 
chain must be deleted before the order record 
is deleted. This makes the deletion command a 
very powerful command and one to be used 
with due respect. 

Two optional features have been provided 
which aid the programmer in using the delete 
command. If the programmer anticipates that 
order records may be linked to the vendor rec­
ord (that a detail may be linked to its master) , 
he may wish to print a control report of the 
orders deleted by using the phrase "AND IF 
order RECORD PERFOR]\{ reportlinet-'l" 
with his delete command. This will cause the 
deletion process to be interrupted everytime 
an order record has been deleted. The subrou­
tine identified by the sentence name, "report­
linet-' I" will be executed. Because of the fre­
quent desire to produce some form of a control 
report on deletions, the delete command actu­
ally retrieves and unpacks, into working stor­
age, the data fields of a record prior to deleting 
it. 

The second optional feature of the DELETE 
command permits the programmer to attach 
an escape phrase. For example, the program­
mer might attach the phrase, "BUT IF order 
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RECORD GO TO statement,--a." In this case, 
the detection of an order record as a detail to 
the vendor record would immediately terminate 
the deletion command without the order record, 
its item records, or the vendor record being 
deleted. Using the DELETE command in this 
manner, the programmer need not test to deter­
mine the presence of an order record prior to 
initiating the DELETE command. He may 
boldly set out to delete a master record, and 
still escape from the deletion if there is a detail 
that he wants to protect. 

All of the commands, GET, PUT, MODIFY, 
and DELETE, permit the addition of error 
test and branch. The user is urged to use them 
so that he is immediately aware of any fault 
that occurs and the nature of that fault. A typi­
cal fault that could occur during a "PUT" is 
attempting to put a duplica.te record which is 
prohibited according to the data definitions. 

XI. RECORD RETRIEVAL SPECIFIERS 
AND RULES 

Three of the IDS macro instructions require 
that a record be retrieved so that it may be 
operated on. GET means retrieve a record and 
unpack its data fields into working storage. 
MODIFY means retrieve a record and modify 
specified fields in the record according to the 
command the the contents of working storage. 
DELETE means retrieve a record, unpack its 
data fields into working storage, delete any 
detail records, and finally, delete the specified 
record. Only the PUT command lacks the re­
trieval aspect. It means find space for a new 
record, link it into its chains, and pack its data 
fields from working storage. 

There are six different retrieval rules from 
which the programmer may choose. These rules 
may be used in conj unction with the functional 
processes; GET, MODIFY, and DELETE. Ex­
amples 2, 3, and 4 in Section X used three 
of these rules, respectively, "NEXT OF 
CHAIN," "CURRENT" and the associative re­
trieval rule which is specified by the absence 
of a record specifier adjective. These rules may 
be sub-divided into two classes. The two rules 
which are absolute in their nature, i.e. there is 
only one record that satisfies their specifica­
tions regardless of when they are executed. 
They.will be discussed first. The other four 

rules are relevant to what has transpired pre­
vious to their execution. 

A. " " specifier. The absence of a 
specifier indicates that the record to be proc­
essed is identified by the data values stored in 
the fields of working storage. The particular 
fields concerned are those fields which have 
been described in the data description of the 
specified record as the unique fields for that 
record. 

B. "DIRECT" specifier. This specifies that the 
record is to be retrieved based on the reference 
code (address) stored in the communications 
field named, "QDIRF" (DIRECT REFER­
ENCE). The programmer may store any ref­
erence code there and then retrieve the rec­
ord associated with that reference code. 

The IDS system is so designed that once the 
reference code is assigned to a record, it is 
permanent. The addition or subtraction of data 
storage units will not affect it. The modifica­
tion of the record to add or delete either data 
or chain fields or modify their content will not 
affect it. In fact, the uniqueness and perma­
nence of the reference codes make them ideal 
candidates for dual use as reference code and 
invoice number, order number, pay number, 
vendor code, customer code, dra,ving number, 
or stock number. 

C. "CURRENT" specifier. The "CUR­
RENT" record specifier instructs the system 
to reretrieve the last record of that type proc­
essed by a GET, PUT, or MODIFY command. 
If the last command executed for a given rec­
ord type were a DELETE command, the last 
record would have been deleted and it would be 
impossible to retrieve the current record of that 
type because there is none. This would create 
a "fault" and an error would be signalled. 

D. "NEXT" specifier. The "NEXT" speci­
fier is one of a set of three chain processing 
specifiers. These specifiers require that a chain 
name be appended so that the specification 
would be complete. As an example, the com­
mand below specifies that the programmer 
wishes the program to access the next item rec­
ord in the item chain: 

"GET NEXT item RECORD OF item 
CHAIN." The particular record accessed 
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clearly depends upon which record is the cur­
rent record in the item chain when the com­
mand is executed. An IDS command must have 
been executed prior to executing any of the 
chain processing commands. This prior com­
mand must have accessed a record in the de­
sired chain and therefore established the cur­
rent record in the chain. Only then does the 
phrase "NEXT RECORD OF CHAIN" have 
any meaning. 

E. "PRIOR" specifier. The "PRIOR" speci­
fier is used to specify that the chain is to be 
processed in a backward direction. This com­
mand contains the same restraint as the 
"NEXT" specifier,. that the current record of 
the chain must have been established. The abil­
ity to process a chain. backwards is optional 
and dependent upon the chain having been 
specified in the data description, as a "PRIOR" 
chain. 

F. "MASTER" specifier. The "MASTER" 
specifier directs the chain processing to proceed 
directly to the master record of the specified 
chains, accessing but ignoring all intermediate 
detail records. The optional specification of the 
~hain as a "HEADED" chain provides an addi­
tional pointer field in each detail record con­
taining the reference code of the master 
record. In the presence of this option, the 
"MASTER" specifier will proceed directly to 
the master record without accessing the inter­
mediate detail records. As with the other chain 
processing specifiers, the chain must have been 
accessed and a ·current record established, prior 
to executing a "MASTER" command. 

Alternate Retrieval. The retrieval rules 
using the record specifiers, NEXT, PRIOR, and 
DIRECT exist under conditions where the type 
of record to be retrieved cannot always be pre­
dicted. These commands, therefore, permit the 
insertion of one or more "OR IF recordname 
RECORD GO TO sentence name" phrases. The 
program logic is then able to branch to the 
specified sentence following the execution of 
the functional portion of the command in ac­
cordance with the record retrieved. The use 
of an "IF record name RECORD GO TO sen­
tence name" phrase (note the "OR" is missing) 
will cause the program logic to branch after 
retrieval, but before the execution of the func-

tional portion of the command. This permits 
the execution of the functional portion of the 
command (GET, MODIFY, or DELETE) 
when using the record specifiers DIRECT, 
NEXT or PRIOR on selected record types and 
the by-passing of the function if other types 
are retrieved. As an example, the following 
command might be used: 

"DELETE NEXT order RECORD OF order-­
CHAIN, IF vendor RECORD GO TO sen­
tence--, a." 

The repeated use of this command would delete 
successive order records which are in the order 
chain. However, when the vendor record is 
retrieved, it will not be deleted and control will 
be transferred to sentence--,a. 

The data structuring abilities of the IDS 
permit the definition of more than one detail 
record type in a chain. In the case of the 
PRIOR and NEXT OF CHAIN retrieval 
actions, unspecified record types in the chain 
will be accessed and skipped over until a record 
of a specified type is retrieved. If the chain is 
completely traversed without the retrieval of 
a specified record type, an error is signalled. 
The retrieval of an unspecified record type by 
the DIRECT specifier will cause an error to be 
signalled. 

Error Conditions. All of the commands of 
the IDS are structured with the provision for 
an error statement: As an example: 

"GET item RECORD, IF ERROR GO TO 
sentence--,b." 

If this command were attempted and had 
failed because no item record could be retrieved 
with an order' number and line number, match­
ing those in working storage, then the program 
control would be transferred to sentence--,b. 
This permits the program to test whether the 
function has been carried out successfully. If 
the command has not been successful, the error 
condition may be tested to determine the na­
ture of the fault and the appropriate action 
initiated. 

XII. HISTORY OF DEVELOPMENT 

Historically, the IDS's foundation in well 
disciplined data structure goes back to the file 
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structures developed by General Electric at 
Hanford for their 702 Report Generator and 
File Maintenance System,'2 These structures 
reached greater generality and power in the 
SHARE 9P AC system which was largely guided 
and programmed by GE Hanford and sup­
ported by The Dow Chemical Company, Union 
Carbide Company, GE Heavy Military Elec­
tronics Department and others. The delibera­
tions of the SHARE committee on The Theory 
of Information Handling3 also contributed to 
the early thinking on the Integrated Data 
Store. 

The current implementation of the Integrated 
Data Store is based on a set of free standing 
subroutines written in the General Assembly 
Program language for the GE-200 series com­
puters. The original version was prepared as 
an adjunct to GECOM. It had a compiler gen­
erator which processed data definition cards 
and IDS macro instructions and produced 
mixed GECOM and General Assembly Program 
statements which were subsequently compiled 
by'GECOM to produce an object program. The 
macro instructions were executed as generated 
in-line coding. IDS was first operated in this 
form in January, 1963, with hand compiled 
macro instructions. The application that it was 
applied to was the IDS compiler-generator 
itself which was used to generate IDS coding 
for subsequent application programs. The first­
completely generated program was a product 
materials file maintenance and explosion rou­
tine. This routine was used during the summer 
of 1963 to run comparative speed tests with 
another routine performing the identical tasks 
which had been hand coded employing conven­
tional disc programming techniques. The 
machine generated IDS program ran twice as 
fast as the comparison program and used less 
file space to store the data. 

During the Fall of 1963, the current imple­
mentation of the IDS was programmed. This 
version switched from compiled in-line coding 
to an interpretive subroutine organization with 
calling sequences. This is another step in the 
separation of the data structure from pro­
cedural logic and parallels the dictionary used 
by 9P AC which was brought together with the 
procedure at load time. The parametric ver-

sion appears to operate at about the same speed 
as the in-line coding version. 

XIII. SUMMARY 

The Integrated Data Store is an operational 
tool for programming the GE-225 with Disc 
Storage Unit. It automatically processes the 
complex file maintenance and retrieval prob­
lems presented by a data storage unit. It gives 
a high degree of file protection and through 
data structuring and redundancy elimination, 
it accomplishes considerable file compression. 
The user has the option of many storage and 
retrieval techniques. It yields efficient pro­
grams with buffered operation of the disc file. 
The requirement to structure the data before 
programming greatly reduces redesign and de­
bugging problems. IDS provides for the first 
time an effective method for describing the 
complex interrelationships of data present in 
most information systems. It further provides 
the means for efficiently processing and main­
taining these in the environment of a mass 
memory system. It moves list processing tech­
niques out of current limitations of core mem­
ory and thus makes them available for practical 
data processing. 

We challenge the national standards com­
mittees for COBOL, FORTRAN, and ALGOL 
and the designers of the "New Programming 
Language" to survey their current accomplish­
ments, which are many, and to determine 
whether the above capabilities offered by IDS 
should be added to their languages. 
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THE IBM HYPERTAPE SYSTEM 
B. E. Cunningham 

Development Lab, Data Systems Div., IBM Corp., Poughkeepsie, N.Y. 

GENERAL DESCRIPTION 

The IBM Hypertape system was designed as a 
high-speed I/O device for the IBM 7074-7080-
7090-7094 computers.* It is composed of a two­
channel control unit, the IBM 7640 (Figure 1), 
and IBM 7340 tape drives (Figure 2). Ten 
7340s can be attached to each 7640 channel. 

The 7640 is attached to a computer through a 
simplex interface consisting of 33 lines. Four 
commands can be issued from the computer to 
the 7640 across this interface-a Read, a Write, 
a Control, and a Sense. The Control command 
instructs the 7640 to perform such operations 
as Space, Backspace, Rewind, etc. The Sense 
conlnland interrogates the status of the 7640 
and 7340. It allows the computer to determine, 
for example, if the tape drive is loaded or busy, 
or what type of errors occurred in the control 
unit on the last operation- The two channels of 
the 7640 time-share a Read and a Write sec­
tion. This allows one channel to write while the 
other channel is reading. Instead of the NRZI 
method of recording, the system uses IBM's 
phase-encoding technique, * * which records a 
signal for both a one and a zero. This system is 
very reliable, since the possibility of either los­
ing a weak signal or picking up noise is greatly 
reduced. 

The tape used is O.l-mil oxide on a i-mil 
polyester base. It is one inch wide, with 1800 
feet on a reel. Written across the tape are ten 
bits ;eight are information bits, and two are 
check bits used for error correction during 

* A modified version is also offered for the IBM Sys-
tem/360 (see page ). 

** Williams Patent #2734186 
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reading. These two check bits, in conjunction 
with a signal-strength monitor, provide detec­
tion of all errors and correction of all single­
and 33 of 45 possible double-bit errors. In alpha­
numeric mode, six of the information tracks 
are utilized per character. In packed-numeric 
mode, two four-bit characters are written side 
by side across the tape, as shown in Figure 3. 
The character density is 1511/inch, and tape 
speed is 112.5 inches/sec. This results in an 
alphanumeric data rate of 170,000 characters/ 
sec, or a packed-numericadata rate of 340,000 

Figure 1. IBM 7640 Hypertape Control Unit. 
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Figure 2. IBM 7340 Hypertape Drive. 

characters/sec. Figure 4 shows a comparison 
of the reel capacity of Hyper and IBM 729 reels. 

The tape has been completely enclosed in a 
dust-resistant cartridge to eliminate as much 
contamination as possible, and to provide a 
means of automatic loading and unloading with­
out physically handling the tape. Another ad­
vantage of the cartridge is a programmable file­
protect device. A tape can be file-protected un­
der program control, but it can be "un-file-pro­
tected" only manually· 

An Automatic Cartridge Loader (ACL) is 
available as an optional feature (Figure 5). A 

HYPERTAPE PACKED 
BIT TRACKS BCD FORMAT 

CO CO CO 
C I CI C I 
0 0 8 
I 0 4 
2 B 2 
3 A I 
4 8 8 
5 4 4 
6 2 2 
7 I I 

l'igure 3. Hypertape Character Formats. 
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0 
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~ 

~ 

>-
I-
U 10 
~ 
c:( 
u 
~ 729 IV REEL~ 
lJJ DENSITY, 556 CHAR/INCH 
lJJ 
It: 0 

0000 0 0 0 0 0 
0000 0 0 0 0 0 
-101t) .... 0 0 0 0 0 

(IJ 10 .... It) 

CHARACTERS/RECORD 

Figure 4. Comparison of Character Capacities-Hyper 
and IBM 729 Reels. 

cartridge for the next job can be inserted in the 
ACL while the current cartridge is being pro­
cessed. Then, under program control, the pro­
cessed cartridge can be unloaded, and the cart­
ridge which was stored in the ACL can be 
loaded automatically, all within approximately 
40 seconds. 

The average read-write access time is 4.2 mil­
liseconds, and the average gap is 0.45 inches. 
The fast processing time of the Hypertape sys­
tem is accomplished by the high data rate, nar­
row gaps, short access times, ability to read 
backward, and a very low rerun time due to ex­
tremely reliable operation. 

THE IBM 7340 TAPE DRIVE 

A major requirement of the 7340 was high 
reliability. To help achieve this, the tape is de­
signed so that there is no physical contact with 
the oxide side of the tape during motion (Fig­
ure 6). The vacuum columns hold the tape taut 
over the single, rubber-surfaced capstan. The 
capstan can accelerate the tape to nominal ve­
locity or decelerate it to a halt in 3.0 millisec­
onds. Note that the wear of such motion oc­
curs on the Mylar side of the tape. When the 
tape passes by the read-write head, the oxide 
side of the tape rides on an air bearing and 
hence undergoes no wear. 

Once a tape is initially loaded into the dust­
resistant catridge, it is normally opened only in 



Figure 5. The 7340 Hypertape Drive with Automatic 
Cartridge Loader Option. 

the pressurized chamber of the 7340. However 
if the tape in a cartridge must be changed, the 
front of the cartridge can be removed easily by 
means of a small Allen wrench. To load a cart­
ridge into the 7340, the operator must raise the 
top cover of the 7340, and lower the cartridge 
into the cartridge receiver (Figure 7). When 
the top cover is closed, the tape reels in the cart­
ridge are moved backward to engage the reel 
hubs, the servo motors on the hubs release the 
tape from both reels, the vacuum in each column 
draws the tape into the columns, and the head 
moves into place. The load operation takes less 
than 15 seconds. After tape is loaded into the 
columns, it is backspaced a short distance; thus 
the overall effect of the unloading and later re­
loading is to position the head slightly closer to 
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the Beginning Of Tape (BOT) than it was be­
fore unloading. 

Note that tape can be loaded arid unloaded· 
without the operator's hands touching the tape. 
Also, since a cartridge contains two reels, a tape 
no longer need be rewound before it is unloaded. 
This allows off-line rewinds, or a very short 
search on-line for the last record processed be­
fore the tape was unloaded. Rewinding can oc­
cur either under program control by means of a 
Control command, or by pushing the Rewind 
button. Rewind occurs at 112.5 inches/sec 
(normal processing speed) for 10 seconds; if 
the BOT mark is not encountered, the head 
moves 1;4 inch away from the tape and a 225 
inches/sec rewind "in the columns" is initiated. 
Rewind continues at full speed until the BOT is 
sensed; this is made possible through the con­
tinuous tape control provided by the capacita­
tive sensing of the tape location in the vacuum 
column. 

As previously mentioned, each cartridge can 
be "file-protected" either under program con­
trol or manually. The control instruction "Set 
File Protect" will cause a mechanism in the 
7340 to depress a plunger on the back of a 

• 
• 
• TAPE • PHOTOCELLS 

o-c CAPACITIVE 
TAPE SENSING 

• 
• 
• 
• 
• • VACUUM • COLUMNS • • 

Figure 6. Tape Path in the 7340. 
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Figure 7. Inserting a Tape Cartridge. 

loaded cartridge; this plunger can also be de­
pressed manually. When the cartridge is file­
protected, an indicator on the back of the cart­
ridge displays the letters "FP." The cartridge 
can be "un-file-protected" only by manually re­
leasing the plunger by means of a slide-release 
mechanism (Figure 8). _ 

The Beginning Of Tape (BOT), End Of 
Tape (EOT), and End Warning Mark (EWM) 
are detected by three photosensed markers. 
Backward tape motion is halted when the BOT 
marker is sensed. The marker is about 15 feet 
from the physical beginning of tape on the take­
up reel; it consists of 12 holes occupying about 
1.5 inches along the edge of tape nearest the 
drive. Forward motion of tape is halted when 
the EOT marker is sensed, and hence tape can­
not run off the end of the reel. This marker is 
about 15 feet from the physical end of tape on 
the supply reel; it also consists of 12 holes, but 
they are located midway between the edges of 
the tape. The EWM is about 40 feet from the 
EOT marker. It consists of 23 holes occupying 
about 1.5 x 0.07 inches along the edge of tape 
nearest the operator; the holes do not interfere 
with recording of data on tape. \Vhen EWM is 
sensed on a selected drive, the end-warning-

area status indication in the IBM 7640 is avail­
able to the program. 

The Automatic Cartridge Loader (ACL) can 
be used very effectively if a number of tapes 
must be loaded at the same time for a new job. 
During the processing of the previous job, the 
operator can insert the next cartridge to be pro­
cessed in the "load storage position" (back of 
the ACL). Then, under program control, all 
the 'ij"oeessed calrtridges can,.l?~ unloaded at the 
same time and deposited in the "discharge stor­
age position" at the front of the ACL, and the 
next cartridges to be processed will be loaded in. 
The entire load operation of all the drives will 
take approximately 40 seconds, and is accom­
plished without operator intervention. 

A cartridge may also be loaded into the ACL­
equipped drive by direct operator control. The 
operator merely places the new cartridge in the 
load-storage position of the ACL, and when the 
door is closed the cartridge automatically is 
loaded into the 7340, if no other cartridge was 
in the loaded position. If a cartridge was in the 
loaded position, the operator would have to push 
the Unload button. The loaded cartridge would 
then be placed automati~;;tlly on the discharge 

Figure 8. Cartridge File-Protect Device. 



shelf at the front of the -A,CL, and the other 
cartridge would be loaded. 

SIMPLEX INTERFACE 

The simplex I/O interface is a set of lines 
which connect the 7640 to the computer. There 
are a total of 33 lines, 18 from the computer to 
the 7640, and 15 from the 7640 to the computer. 
(See Fig. 9.) Generally speaking, any sjgnal 
must be maint_ed until its :ire~ponse, is pro­
vided by the receiving unit. 

The 7640 can be operated in one of three 
modes: CE, Ready, or Diagnostic. Normally 
the 7640 is operated on-line in Ready mode, but 
for testing and repair it can be operated off-line 
in CE (Customer Engineering) mode. Diag­
nostic mode is identical to Ready mode except 
that three switches on the CE panel are oper­
able. These will be discussed later. 

Initially, the computer and 7640 are inter­
locked by the Operational Out line and the Op­
erational In line respectively. The Operational 
In line is conditioned by the 7640 if it receives 
the Operational Out line from the computer and 
it is not in CE mode. 

COMPUTER 7640 

OPERATIONAL .. 
READ 

WRITE 

CONTROL 

SENSE 

WRITE BUS (9 LINES) 

SERVICE RESPONSE 

STOP 

END RESPONSE --
ATTENTION RESPONSE 

- OPERATIONAL 

-- COMMAND RESPONSE 

READ BUS (9 LINES) 

SERVICE REQUEST 

END 

UNUSUAL END 

ATTENTION 

Figure 9. Interface Lines. 
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An operation is initiated on one of the four 
comma~d lines: Read, Write, Control, or Sense. 
Upon receipt of the command, the 7640 will an­
swer with a signal on the Command Response 
line. 

During both a Write and a Control operation, 
information is transferred from the computer 
to the 7640 via the Write Bus (9 lines). The 
7640 asks for the information by means of a 
signal on the Service Request line,and when 
the information is available on the Write Bus, 
the computer answers with a Service Response. 
The Write command is terminated by a STOP, 
and the Control command is terminated by ei­
ther a STOP or a special instruction called an 
End of Sequence (EOS). The 7640 indicates 
successfut completion of the command by send­
ing an End to the computer, or an unsuccessful 
completion by means of an Unusual End. In 
either case, the computer responds with End 
Response. The cause of an Unusual End may 
be determined by analysis of the status infor­
mation obtained by a subsequent Sense com­
mand. 

During both a Read and a Sense command, 
information is sent to the computer from the 
7640 over the Read Bus (9 lines). \Vhen the 
information is available on the Read Bus, the 
7640 sends a Service Request to the computer. 
When the information has been accepted, a 
Service Response is returned. During a Read 
operation, the transfer of information occurs 
until a STOP is received from the computer or 
the end of the record is reached. At this point 
the 7640 indicates a successful completion 
of the Read by sending an End to the 
computer or an unsuccessful completion by 
means of an Unusual End. The computer 
responds with End Response to either case. 
Since the Sense operation 'is simply a request 
for the status information of the 7640, only an 
End can occur at its completion. The 7640 will 
indicate there is status information on the Read 
Bus by means of a Service Request, and the 
computer will answer with a Service Response 
when this information has been accepted. The 
operation will be terminated when STOP oc­
curs or when 14 "bytes" of information have 
been sent to the computer. End response will 
answer the End signal. 
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WRITE OPERATION 

As previously defined, the vVrite section of 
the 7640 is time-shared between both channels. 
If a Write command occurs in Channel A, and 
then later a Write command occurs in Channel 
B, the command in Channel B will be stacked in 
the 7640 until Channel A releases the Write 
section. 

Upon receiving a Write Command, the 7640 
tests for the following two error conditions: 

1. Operator Required-indicated if the se­
lected drive is not ready; 

2. Program Check-indicated if the selected 
drive is not loaded, or if it is file-pro­
tected, busy, or at EOT. 

If either of these conditions exists, an Unusual 
End will be signaled immediately. If neither 
exists, a write Delay must bel taken before ac­
tual writing can commence. If the Write Com­
mand occurs while the tape is stationary and 
the 7340 is in Write status, a 3.1-msec delay is 
taken before writing is started. The Start spe­
cification of the 7340 is 3.0 msec. To test if the 
proper speed has been achieved, a burst of zeros 
is written in one track for a certain period of 
time; this is called the "velocity burst." The 
7340 has a two-gap head; hence, information 
written on a tape passes under the read head 
approximately 1.3 msec later. At this time the 
duration of the velocity burst is checked. If 
the tape was not up to speed when the velocity 
burst was written, the burst's duration win be 
less than expected. * A variation of approxi­
mately minus 10% is allowed before an Unusual 
End is signaled. The error is identified as a 
Track Start in the Sense Data, and the pro­
grammer has the option of rewriting the record. 

As previously stated, the stop time of the 
7340 is 3.0 msec. After the Move Tape line 
from the 7640 to the 7340 is deconditioned, 
there is a period of 300 p'sec during which the 
line could be conditioned again. This is allowed 
because of the mechanical delays in actuating 
the stop mechanism. If the Move Tape line does 
not rise again during this time interval, the 
tape must be allowed to stop completely before 
it can be told to move again. However, the 
7640 provides to the computer a 1.0-msec time 
interval, during which the computer can rein-

* Patent applied for. 

struct with another Write command and the 
tape will not stop between Writes. This is ac­
complished, in conjunction with the above-de­
scribed 300 p'sec, by holding up the Move line 
for 700 p'sec after the completion of a Write. 
Upon completion of any Write operation, an­
other Write operation is anticipated, and a 
short write delay of 2.6 msec is started. If the 
Write command does not materialize in the al­
lotted 1 msec, the tape is stopped. From the 
time the Move line is deconditioned, a 3-msec 
interlock prevents the Move line from being 
conditioned again except during the initial 300 
p.sec. Reinstruct within the 1.0 msec results in 
minimum gaps and fast access times. This is 
called a Continuous Write, for which there is 
no velocity burst since tape continued to move 
at nominal velocity. Figure 10 illustrates the 
1.0-msec Reinstruct. * 

The 7340 is in Write status if the last opera­
tion it performed ,:vas a Write operation. If a 
Write command is sent from the computer to 
the 7640, and the 7340 is not in Write status, 
a "backhitch" (reorienting of the head in rela­
tion to the previous record) must occur. This 
is because the previous operation could have 
been a Backspace or a Read, etc., and the exact 
position of the read-write head in the gap would 
be unknown. A Write without reorienting the 
head could result in a partially erased record in 
the gap. Thus, in order to erase a proper gap, 
a Write command, with the 7340 not in Write 
status, will cause the tape to backspace until 
the previous record is encountered. The tape 
will stop, and then move forward out of the 
record. Just as the read head leaves the rec­
ord, Write status will be set, and a 2.6-msec 
Write delay will be taken at full velocity. In 
addition to eliminating the partially erased re­
cord in the gap, the "backhitch" results ih a 
minimum interrecord gap. 

As previously mentioned, the Hypertape sys­
tem uses a phase-encoding type of recording 
rather than NRZI. With phase-encoding record­
ing a signal exists for both ones and zeros, with 
their differentiation depending on the phase (or 
direction) rather than on the magnetic strength 
of the recorded signal. Thus, phase encoding is 
less sensitive to noise than NRZI, and hence is 
inherently more reliable. 
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Figure 10. 1.0-msec Reinstruct (Write Operation). 

Figure 11 illustrates the phase relationship of 
a one and zero. As mentioned, the data rate of 
the 7640 is 170 kc. If the data is all-ones or 
all-zeros, this results in 340,000 flux changes/ 
sec to produce the 170,000 characters/sec. When 
data switches from a one to a zero or from a 
zero to a one, a long wavelength results. Hence, 
data consisting of alternating ones and zeros 
results in 170,000 flux changes/sec. Figure 12 
shows a series of bits for one of the ten tracks. 
Note that a long wavelength marks a change 
from a one to a zero or vice versa, rather than 
the presence or absence of a signal. 

After the velocity burst is written, or after 
a 2.6-ms Continuous Write delay is taken, a 
synchronizing burst of 40 zeros is written on all 
tracks, followed by a one in all tracks, followed 
by the data. (See the data format in Figure 
10.) After a STOP is received from 
the computer by the 7640, another all-one 
marker is written, followed by another synchro­
nizing burst of 40 zeros. Hence, the record is 
symmetrical and can be read backward or for­
ward. The synchronizing bursts are used dur­
ing reading to synchronize the read clocks and 
phase the data properly. The all-one marker 
indicates that data will follow. As previously 
described, the transfer of information from 
the computer to the 7640 over the 9-line Write 
Bus occurs on a Service Request, Service Re-

1 o 
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L 

Figure 11. IBM Phase-Encoding "1" and "0" 
Waveforms. 
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Figure 12. Waveforms for a Series of Bits. 

sponse basis. Eight of the lines are for data, 
and the ninth is a parity check. The 7640 
checks the parity of every character received on 
the Write Bus, and will call an Unusual End at 
the completion of the Write operation if incor­
rect parity is received. If the computer does 
not answer a Service Request with a Service 
Response before the next Service Request oc­
curs, an Overrun Error is called resulting in an 
Unusual End. 

In alphanumeric mode, only six of the eight 
lines contain data for each Service Response. 
In packed-numeric mode, two 4-bit characters 
are sent to the 7640 with each Service Response. 
Actually, no packing or unpacking is done in 
the 7640. It simply writes the information on 
the Write Bus on tape, along with two check 
bits. The check bits are generated during the 
Write operation according to the following two 
equations. * 

Co V 10 V 11 V 13 V 14 V Is V 17 = 1 

C1 V 10 V 1:2 V 13 V 15 V 16 = 1 

where V means Exclusive Or, 

C is a check bit, and 

I is an information bit. 

* Patent applied for. 
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The generated check bits are rechecked again 
during writing, and if they are wrong, a Code 
Check indication is stored for later sensing, and 
an Unusual End will occur at the termination of 
the Write operation. The check bits are reO'en­
erated during a Read operation and are used in 
conjunction with the amplitude of the Read 
signal to correct all single errors and most dou­
ble errors. 

During a Write operation, as the written data 
passes under the read head it is monitored by a 
Motion Integrator. If the signal amplitude of 
the envelope in anyone track drops below a 
specified level, an Envelope Check is stored in 
the 7640 to be later sensed. This error will re­
sult in an Unusual End at the termination of the 
Write operation. At this point it is recom­
mended that the programmr perform a Back­
space and an Erase over the faulty section of 
tape. The Erase is called an Erase Long Gap 
(ERG), and is a Control instruction. It will 
result in the erasure of eight inches of tape. 
Then the error record should be rewritten. 

When the EWM is sensed by the 7340 during 
a Write operation, an Exceptional condition is 
stored for sensing and an Unusual End will ter­
minate the operation. Hence the programmer 
is informed he is near the end of tape. 

READ OPERATION 

Channel A and B time-share the Read section 
in the same manner they share the Write sec­
tion. A Read command will be stacked in one 
channel if the other channel is utilizing the 
Read sectiop. When the Read section is avail­
able the 7640 checks for Operator Required and 
Program Check, as described for a Write opera­
tion. If no errors exist, the Move Tape line is 
activated to the 7340, and a 2-msec Read de­
lay is taken. After this delay, the Motion In­
tegrators start to look for a record. The ten 
tracks are divided into three different groups, 
and a signal in one track of each of the three 
groups will identify a record. The group ap­
proach was used to eliminate noise from being 
recognized as a record. As in writing, 1 msec 
is allowed by the 7640 for a Read Reinstruct 
without stopping tape. Again the Move Tape 
line is held up for 700 p'sec after recognizing 
the end of data in a record. The additional 300 

p'sec is the time during which the Move Tape 
line can be deactivated and activated again 
without affecting the stop mechanism of the 
7340. 

Clearly the optimum use is made of the Hy­
pertape system if the tape does not stop be­
tween records. 

Once a record is recognized, a variable-fre­
quency clock (VFC) in each track must be 
given time to synchronize with data. Since 
there is a signal for both a one and a zero~ the 
problem of a clock dropping out of sync during 
a long string of zeros does not exist. After ap­
proximately 25 zeros of the start burst have 
been read, the VFCs should be synchronized, 
and the phase of the signal in the detection 
circuitry must be corrected if necessary. The 
detection circuitry will be interpreting the start 
burst as either zeros or ones, since it will either 
be in or out of phase respectively. At this 
point, the data is sampled. If the data is not 
recognized as zeros, the phase is incorrect and 
has to be inverted. After this has been done, a 
search is started for the all-one marker which 
will indicate that data will follow immediately. 

One problem in reading a wide, high-density 
tape is skew in the characters across tape. This 
is handled in the 7640 by means of a six-posi­
tion skew buffer and a Read-In Counter (RIC), 
for each track, which counts the bits 1 through 
6 which have been read from tape. Pulses gen­
erated from the VFCs step the RICs midway 
between the data bits and hence act as gates 
into the skew buffer. A single Read-Out Coun­
ter (ROC) controls the reading of deskewed 
characters. When all the RICs have stepped 
ahead of the ROC, a character has been de­
skewed and can be read from the skew buffer 
into the Error Correction Register. Between 
four and five bits of skew can be handled in the 
skew buffer. Under normal operation the skew 
is less than two bits. If the skew is so great 
that the RIC overlaps the ROC, an "excessive 
skew error" is stored for sensing and an Un­
usual End is signaled at the termination of the 
Read operation. 

Once the characters have been deskewed and 
gated into the Error Correction Register, the 
check bits Co and C1 are regenerated and com­
pared with Go and C1 read from tape. 



The bits can be divided into three zones from 
the two check-bit equations: 

Zone 1 contains the bits only in the Co equa­
tion 

Zone 2 contains the bits only in the C1 equa­
tion 

Zone 3 contains the bits only in both the Co 
and C1 equations 

Hence, 

Zone 1 contains bits Co, 11, 14 , 17 
Zone 2 contains bits C1 , 12 , 15 
Zone 3 contains bits 10, 13 , 16 

An Envelope Detector in each track monitors 
the read-detector amplitude. If the signal from 
the read detector drops below a certain level in 
one track, the track is "dead tracked." This 
essentially resets that track for the rest of the 
record, since it is assumed that the VFC could 
have lost synchronization. If a parity error is 
found to occur in the zone containing the "dead 
track," the track which has been "dead tracked" 
is assumed to be in error, and the output. of 
that particular track's Error Correction Regis­
ter is inverted. Hence a zero is made a one or 
vice versa, and single-error correction is ac­
complished. 

If two tracks in the same zone are dead 
tracked, or more than two tracks are dead 
tracked, an un correctable error called an En­
velope Check is stored for sensing. This will 
result in an Unusual End at the termination of 
the Read operation. Two tracks in the same 
zone are obviously uncorrectable since the par­
ity error would be negated. However, the Co, 
C1 equations were generated such that no ad­
jacent tracks would be in the same zone. Hence, 
all adjacent double errors are correctable along 
with some nonadjacent double errors. Any 
double error that does occur is more likely to 
be an adjacent double error due to the character 
of tape defects. 

There are 45 possible combinations of double 
errors, of which 33 are correctable. When a· 
correctable double error occurs, a dead track 
exists in two different zones, with the parity 
error appearing to be in the third zone. For 
example, consider the case of a dead track in 
both 10 and L. If both bits were incorrect they 
would negate each other in equation Co,. but 
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equation C1 would appear incorrect. Hence, the 
parity error would appear to be in zone 2. 

If a parity error occurs without a corre­
sponding dead track, an uncorrectable error 
called a Code Check is stored for sensing and 
an Unusual End is signaled at the end of the 
Read operation. For both a Code Check and 
an Envelope Check, the 7640 sends the first un­
correctable character to the computer with in­
correct parity. No further characters are sent 
to the computer for the duration of the record. 
This is to prevent uncorrected characters from 
appearing like packed characters and hence 
overflowing allotted memory when unpacked. 
If the complete record is desired, HECF (Error 
Correction Off) may be programmed prior to 
the Read command. This Control instruction 
will allow uncorrectable characters to be trans­
mitted. 

Another error that can occur on a Read is 
an Overrun Error. During reading the 7640 
sends a Service Request to the computer when 
data is available on the Read Bus. A Service 

. Response from the computer indicates the in­
formation was received. If the Service Re­
sponse does not come back from the computer 
before the next Service Request is issued, an 
Overrun condition exists, and the computer 
could miss a character. The Overrun Error is 
stored for sensing later and an Unusual End is 
initiated at the termination of the Read opera­
tion. 

CONTROL OPERATIONS 

The Control command transmits instructions 
such as Backspace, Backspace File, Space, Re­
wind, Write Tape Mark, etc., to the 7640 from 
computer core storage. Each instruction is de­
fined by an 8-bit code. The instruction is as­
similated in the 7640 Instruction Register by 
means of two 4-bit bytes. The computer sends 
a Control command to the 7640, which responds 
with a Command Response. The 7640 then ob­
tains two 4-bit bytes of information from the 
computer through a Service Request, Service 
Response exchange. The instruction is decoded 
and the 7640 checks to see if the operation can 
be done. If the instruction is a Select, a third 
4-bit byte is requested to identify the drive to 
be selected. If there is an error condition, an 
Unusual End is signaled immediately to the 
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computer. If there is no error condition, the 
operation is started. Upon successful comple­
tion of the operation, the 7640 will request two 
more bytes of information, assemble them and 
decode the instruction, etc. This processing of 
a so-called "chained sequence of instructions" 
will continue until either a STOP is received 
from the computer or an End of Sequence 
(EOS) instruction is received. Either will 
cause the 7640 to terminate the Control com­
mand with an End signal. At all times any 
error condition will break the chain and an U n­
usual End will be sent to the computer. There 
are five "free-running' control operations, 
HCHC (Change Cartridge), HCCR (Change 
Cartridge and Rewind), HRUNL (Rewind and 
Unload), HFPN (file Protect ON), and HRWD 
(Rewind). These operations are initiated in 
the 7340 by a Control command, and then the 
7640 continues on to the n~xt instruction as if 
the free-running instruction had been com­
plet~d. A drive performing a free-running op­
eration is in Busy status, but the 7640 channel 
which initiated the operation is free to perform 
other instructions, internally, or on other 
drives. Additional instructions to a busy drive 
must be delayed until the drive indicates the 
completion of the free-running operation with 
an Attention signal. 

Upon receipt of an Attention pulse, the com­
puter responds with an Attention Response. All 
Attention pulses are stored in the 7640 relative 
to a specific drive address, such that the pro­
gram can sense to see which drive completed 
the free-running operation. The next operation 
(other than a Sense) done on that selected 

drive resets the stored Attention. 

A group of control instructions exists for 
diagnostic purposes only. They allow diagnostic 
functions to be performed on-line under pro­
gram control. These functions can also be per­
formed off-line by means of toggle switches on 
the Customer Engineering panel (as described 
in the following section on "Customer Engi­
neering Facilities"). 

SENSE OPERATION 
A Sense operation enables the computer to 

learn the cause of an Unusual End, the status 
of the 7340 and 7640, and which 7340 signalled 
Attention. 

A Sense command from the computer causes 
a Command Response from the 7640. Then the 
7640 gates the status condition of the 7340 and 
7640 to the computer by means of 14 four-bit 
bytes of information over the Read Bus. Again 
the transfer of information occurs on a Service 
Request, Service Response basis. The sense 
bytes contain information such as Operator Re­
quired; the selected drive address; reasons for 
a Program Check or Data Check-e. g., Select­
ed drive Busy, or a Code Check, respectively; 
'Attention pulses from drives which completed 
free-running operations; Diagnostic conditions; 
etc. 

The Sense operation is terminated either by 
a STOP signal from the computer or by the 
7640 after the 14-byte transfer is complete. 
Since the Sense operation is merely a status 
transfer, it can be terminated only by an End, 
rather than an Unusual End. 

CUSTOMER ENGINEERING (CE) 
FACILITIES 

In order to use the entire CE section of the 
7640 for off-line debugging, the Mode switch 
must be set to CE Test. However the 7640 can 
also be operated in a Diagnostic mode which 
makes some of the CE switches functional dur­
ing computer usage. 

The CE panel (Figure 13) attempts to simu­
late a computer. A three-step program loop is 
available with all four commands, Read, Write, 
Control, and Sense, and' also with HNOP (No 
Operation), HBSR (Backspace), and Read 
Backward. Switch controls govern the tape se­
lected, the number of characters/record during 
a Write, and the loop interval (the time be­
tween the termination of one command and the 
issuance of the next). The loop interval can 
vary from eight microseconds to two seconds. 

A Write command causes the information in 
the bit switches of bytes 1 through 4 to be writ­
ten on tape until the record length is satisfied, 
determined by the Characters per Record 
switch. A Read operation can then be per­
formed to check the record written. If the Read 
Compare toggle is on, the characters read from 
tape are compared bit for bit with the charac­
ters set up in the byte switches. The Stop On 
Check toggle switch will cause the loop to stop 



Figure 13. CE Panel on the 7640. 

immediately on any error, including any com­
pare error that might occur. It is also possible 
to stop at the end of an operation on all errors, 
except compare errors, by using the Stop on 
Unusual End toggle. 

For debugging purposes, a Single Cycle but­
ton and a Single Step Loop button are provided. 
The Single Cycle button is used in conjunction 
with the appropriate Single Cycle toggle switch 
to single-step through a Write, Control, or 
Sense; while the Single ·Step Loop button 
merely steps the program loop one step at a 
time, as opposed to running continuously if the 
Start button is pushed. 

A number of indicators in the 7340 are not 
reset at the start of a new operation if a switch 
called Enable Monitor Reset is on. This toggle 
prevents all normal resets from resetting these 
holdover indicators until a Monitor Reset but­
ton is pushed. This allows selected indicators 
to be monitored over a period of time. 

The error-correction circuitry can be tested 
through manipulation of a Force Envelope 
Check switch. During a Write operation this 
switch will cause groups of 16 information bits 
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to be degated from tracks selected by a rotary 
switch. Hence, during a Read operation, the 
Envelope Detectors should sense the absence of 
signal in these tracks and indicate the appro­
priate "dead track," causing the error correc­
tion and detection circuitry to be exercised. 

The Reset Start toggle switch is used to help 
debug a failing operation. Operations which 
are functioning properly are set up in steps 1 
and 2 of the program loop, and the failing op­
eration is set up in the third step. Pushing 
the Start button will cause the first two steps 
to be performed, and the failing third step will 
be attempted. After a certain time has elapsed, 
depending on the loop interval selected, a Reset 
will be initiated and the loop will step back to 
program step 1. Hence, an oscilloscope can be 
conveniently used on the failing operation, since 
it is repetitive. 

Another very powerful CE tool is the Loop 
Write to Read (LWR). It essentially gates the 
information, which is normally written on tape., 
directly from the Write section into the read­
detection circuitry. Thus the tape path is eli­
minated. Two modes associated with LWR are 
Write Clock Fast (HWCF) and Write Clock 
Slow (HWCS). These modes are selected by 
toggle switches and cause either a 10%-fast 
oscillator or a 10%-slow oscillator to be gated 
into the write clock. The functions performed 
by these toggle switches are also programma­
ble. 

If the 7640 mode switch is in the previously 
mentioned Diagnostic position, the relation be­
tween the computer and the 7640 is exactly the 
same as in Ready mode, except that the follow­
ing three toggle switches on the CE panel are 
operable: 

1. Enable Monitor Reset 
2. Stop On Check 
3. Enable Force Envelope Check 

Hence, these three switches may be used while 
running programs on the computer. 

OFF-LINE EQUIPMENT 

A low-speed, single-channel control unit, the 
7641, is available to connect into an IBM 1401, 
an IBM 1410, or an IBM 1460 computer. The 
7641 controls a drive, the 7340 Model 2, which 
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has a data rate of 34kc. There is complete com­
patibility of tapes between the 7340 Model 1 
and the 7340 Model 2. Therefore, for example, 
a job can be processed on an IBM 7094 com­
puter using 7340s, and the off -line printing can 
be handled on a 1401 or 1410 using a 7340 
Model 2. 

HYPERTAPE MODIFIED FOR 
IBM SYSTEM/360 

A version of the Hypertape system is now 
offered as I/O for the new IBM System/360. A 
slightly modified 7340, designated as the 7340 
Model 3 Tape Drive, is controlled by a single­
channel control unit, the IBM 2802, attached 
to a CPU channel through a new interface. The 
7340 Model 3 tape speed is 112.5 inches/sec, 
but the bit density has been increased to 1511 
or 3022 bits/inch. Hence the data rate is either 
170,000 or 340,000 alphanumeric characters/ 
sec, or 340,000 or 680,000 packed-numeric 
characters/sec. The desired data rate is pro­
gram-selected. The lower data rate allows in­
terchangeability with the 7340 Model 1 or 2. 
The nominal gap has been reduced to 0.38 
inches and the average access time is 3.5 msec. 

The 2802 consists of five major sections­
Read, Write, Control, Sense, and Customer En-

gineering Facilities-all of which function in a 
manner similar to those described in the 7640. 
r:che major differences are: 

1. Employment of miniature c i r cui try 
(IBM's Solid Logic Technology) ; 

2. A modified control section ~ue to the Sys­
tem/360 interface; 

3. Reduction of the Sense information to 
four bytes; 

4. No overlap of operations because of the 
single-channel design ; 

5. Increased data rate under program con­
trol. 

The 2802 Hypertape control unit can con­
trol up to eight drives. However, an optional 
sixteen-address feature enables the 2802 to 
address as many as sixteen drives when used 
with the IBM 2816 Switching Unit Model 2, 
which is available for switching 4, 8, 12, or 16 
drives to anyone of up to four 2802 units (un­
der program control) . 

The 2802 controlling 7340 Model 3 Tape 
Drives maintains the high reliability previously 
described for the' Hypertape System, while in­
creasing the data rates by a factor of two, and 
decreasing the interrecord gap and access time 
~.ppreciably . 
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SUMMARY 

The random access storage device described 
in this paper is a cartridge loaded machine 
which uses continuous magnetic tape loops for 
storage medium. Cartridges may be built to 
cover' a range of storage capacities; the one de­
scribed in this paper contains 16 loops of one 
inch wide tape, each approximately 3 feet in 
circumference. 

Storage capacity of each cartridge ranges 
from 3 million to 40 million alpha-numeric char­
acters depending on both the cartridge and the 
machine. Storage capacity in a cartridge may 
be increased with a corresponding increase in 
access time. Average random access time for 
the smallest cartridge is 168 milliseconds. 

In the interest of long tape life the loops are 
air floated and, in one machine configuration, 
are stopped when not engaged in data process­
ing. During read-write operation only the one 
selected loop is in motion; all other loops re­
main stationary until specifically addressed. 

Lateral head positioning is accomplished by 
means of a binary whiffle-tree mechanism. A 
novel head construction permits "write-wide, 
read-narrow" operation with a single read­
write gap. Information is recorded in single 
channel serial-serial format, using the self­
clocking double transition recording method. 
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Typical loading time for a cartridge is 18 
seconds. 

General Design Considerations 

The tape loop storage device was designed to 
have p'erformance characteristics comparable to 
those of some other random access devices of 
the replaceable cartridge type, such as machines 
with disk cartridges and magnetic cards. While 
the inherent performance capabilities, such as 
storage capacity and access time, of the tape 
loop approach were found to be quite similar 
to those of the other devices, there are a number 
of factors in favor of the tape loop system. 

In contrast with disks, the tape loop system 
uses a flexible substrate and thus renders the 
cartridge free of critical mechanical require­
ments, resulting in a package that is lower in 
cost and less susceptible to damage by external 
mechanical influences, such as shock and 
vibration. 

In contrast with magnetic cards, the tape 
loops are at all times under the positive mechani­
cal control of the machine, the handling of the 
medium is gentle and shock-free, all moving 
parts have small mechanical excursions, and the 
recording medium never makes contact with 
any solid matter, thus minimizing wear and con­
tamination. The inactive side of the substrate 
is in light non-slipping contact with a plastic­
coated capstan, which is the only surface the 



436 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

loop ever touches, all other points being air 
floated. The results are highly reliable opera­
tion, low maintenance cost, and long life ex­
pectancy on both machine and cartridge. 

The following paragraphs describe in some 
detail the operating principles and performance 
characteristics. The discussion will be limited 
to the minimum capacity cartridge. 

The Basic Storage Ele'ment 

A 38 inch long continuous loop of standard 
computer grade magnetic tape forms the basic 
storage element (see Figure 1). The loops are 
first cut to length and then spliced using an 
ultrasonic sealing process. Special tooling per­
mits the fabrication of loops without manual 
handling, and with mechanical handling only 
in the immediate vicinity of the seam. When 
recording on the loop, the splice area is mag­
netically sensed and avoided. Thus, the longi­
tudinal recording format.~s keyed to the splice. 

The tape is recorded serially a single channel 
at a time with a longitudinal density of 750 bits 
per inch. There are 48 tracks recorded across 
the one inch width of the tape. 

There is, as will be seen later, a plurality of 
such loops in each cartridge. 

The Individual Tape Drive Unit 

Figure 2 is a schematic illustration of the 
tape drive principle. The upper and lower turn-
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Figure 1. The Basic Storage Element. 

FIXED UPPER 
TURN-AROUND 

TAPE LOOP 

AIR,PRESSURIZED 
---CAPSTAN VACUUM BUFFER 0 

( AIR,PRE~~~~~:~D 

Figure 2. Individual Tape Drive Unit in "Drive" 
Condition. 

arounds are hollow cylinders provided with air 
holes which supply pressurized air for the air 
bearings. The tape loops turn around stationary 
cylinders called "turn-arounds." The loops are 
permanently supported by the turn-arounds and 
both are integral with the cartridge while 
everything else in the figure is part of the 
machine. 

The "two-way valve" on Figure 2 is shown 
to be evacuating buffer "A" (capstan vacuum 
buffer), causing the tape to be wrapped around 
the constantly turning capstan. The wrap and 
air pressure combined with the friction between 
the tape and the rubber coated capstan are suffi­
cient to drive the loop which, as a result of air 
lubrication, offers virtually no drag. Thus, tape 
drive is afforded by friction against the non­
coated side only. 

As mentioned above, the non-coated side of 
the tape runs over air cushions except for the 
capstan where the driving is effected. Let us 
now examine the coated side. As may be seen 
on Figure 2, the only questionable point is the 
head since there is nothing else on the coated 
side that the tape could make contact with. 
While there is no pressurized air supplied to 
this -point by the machine, the tape flies on 
air-cushion nevertheless, for the fast moving 
tape (400 inches per second) and cylindrical 
head column form a perfect foil bearing.1 ,2,3 

Thus, the pressure which provides the tape with 
an air cushion at the head is derived from aero­
dynamic effects. The flying altitude of the tape 
may be controlled by tape speed, tape tension, 
and radius of head column. However, for a 
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given set of these conditions the flying altitude 
remains remarkably stable and consistent. 

Figure 3 shows the tape drive unit with the 
valve turned to evacuate buffer B. In this con­
dition the tape is drawn away from both the 
capstan and the head and consequently remains 
stationary. This is the stand-by condition for 
any loop not in the process of data transfer. 

The Multiple Loop Cartridge 

A random access storage device using the 
single loop with its drive, as described in the 
preceding two paragraphs, would be limited to 
a rather small storage capacity. Making the 
loop longer would increase the storage capacity 
but only at the cost of increasing the access time 
in roughly the same proportion. To obtain the 
desired storage capacity and still maintain a 
reasonable access time, multiple loops must be 
used. Figure 4 shows how an array of 16 loops 
is contained in a single cartridge. Since the 
turn-arounds air-lubricate every loop, each 
loop is able to move or stand by independently. 

The shell of the cartridge keeps the loops en­
closed and protected from dust. However, owing 
to the flexible medium, the loops are far less 
sensitive to dust than random access storage 
devices using rigid media. Indeed, since the 
loops are floated, they are less critical to en­
vironmental conditions than tapes in conven­
tional tape handlers. 

While the cartridge is fully enclosed for shelf 
storage, one side may be opened when the 
cartridge is loaded into the machine. During 
operation the front plate of the machine covers 
the removed side of the cartridge with a small 

AIR BEARINGS 

2 WAY 
VALVE 

FIXED UPPER 
TURN-AROUND 

FIXED LOWER 
TURN-AROUND 

Figure 3. Tape Loop in "Stand-By" Condition. 

ENVELOPE OF --------JII 

CARTRIDGE 

8 LOOPS ON EACH ----#+----4-11 

TURN-AROUND GROUP 

16 LOOPS IN A CARTRIDGE 

Figure 4. Multiple Loop Cartridge. 

clearance to allow outward air flow from the 
pressurized turn-arounds. 

Multiple Drive Blocks 

The multiple loop cartridge requires a multi­
ple tape drive unit in the machine, i.e., a sepa­
rate drive to each loop. Figure 5 shows how 
this is arranged. Each of the two blocks has a 
single capstan long enough to cover the width 
of eight tapes. Each block has eight separate 
conlparbllents for both lower and upper vacuum 
chambers, and eight separate valves actuated 
by separate solenoids for routing the vacuum 
to the upper or lower chamber as required for 
tape driving. 

The blocks are easily removable for cleaning 
the tape path, the capstan, and the head. 

8 ASSEMBLIES 
EACH SIDE -----"---'"-

16 DRIVE BLOCKS 
TO CORRESPOND WITH 
THE 16 LOOPS IN 
THE CARTRIDGE 

Figure 5. Multiple Drive Blocks. 

MULTIPLE 
CAPSTAN 
DRIVE 
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Read-W rite Head 

A single head post, as shown on Figure 6, 
serves as read-write head for all sixteen tape 
loops. The head post contains three tracks of 
read-write head for each tape, giving twenty­
four tracks (8 X 3) per head face, a total of 
forty-eight read-write tracks. The head post is 
axially positioned to one of sixteen discrete posi­
tions, thus covering each of the forty-eight 
track positions on each tape loop. (Note: the 
reader may find the recurrence of the· number 
48 confusing. Actually, 48 being the total num­
ber of read-write tracks on the head post as 
well as the number of tracks per tape loop is 
merely a coincidence.) 

The physical configuration of head a.nd tape 
was designed to satisfy the requirements of the 
flying tape. The cone-shaped nose, as will be 
seen later, plays an important role during the 
loading of a cartridge. 

H ead Pos'l~tioningi Mechanism 

Figure 7 is a schematic illustration of the 
head positioning mechanism. Four solenoids 
with mechanical stops adjusted for equal 
strokes act as prime movers. Each actuator has 
two discrete mechanical positions, thus the com­
plete system may be regarded as a mechanical 
digital-to-analog converter having a four-bit 
binary input. The levers, called whiffle-trees, 
and linkages connect the head post with the 

8 GROUPS OF 3 HEADS 
ON EACH SIDE WRITE 
BROAD-READ NARROW 
ON A SINGLE GAP 

GROUPS OF 3 HEADS PER LOOP IN A 
IS-POSITION SYSTEM PERMIT ACCESS 
TO ALL 48 TRACKS ON EACH LOOP 

Figure 6. Read-Write Head. 

ll--

II m 

SWIVEL 
BEARING 

ACTUATOR 

Figure 7. Head Positioning Mechanism. 

actuators through backlash-free flexural spring 
pivots, thus, errors arising from bearing incon­
sistencies and wear are eliminated. 

There are other binary-input mechanical head 
positioners in existence. The following error 
analysis will point out the advantages of the 
whiffle-tree mechanism. Following the notations 
of Figure 8, the four actuators, according to 
their binary significance, are designated 1, 2, 
4, 8. The connecting levers have the lengths 
It, 12, L, and the swivel points are at fractional 
lengths kh k2' and ka, respectively. Let us first 
find the nominal arm ratios for the error-free 
case. The following four equations may be 
written: 

(1) 

where d is the required unit increment for the 
head (or track pitch on the tape), and S is the 
actuator stroke (all actuators have equal nomi-

(l-k 3 )13 k313 

'r---13 

(I-k l )1, k,ll k212 (I-k2 )12 

1---1, I---L2 

g g g 
2 8 4 

Figure 8. Illustration to the Error Analysis of the 
Whiffletree Mechanism. 
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nal strokes). By first adding the four equations, 
then successively eliminating the variables, the 
four unknowns are found to be 

S = 15d ) 
k1 = 1/3 ~ 
k2 = 1/3 ( 
ka = 1/5 ) 

(2) 

which is in agreement with the arm ratios in­
dicated on Figure 7. 

Let us examine now the effect of an error in 
the location of any of the swivel points, i.e., 
k1' k2' and ka are assumed to have values slightly 
different from those in (2). It will be shown 
that such errors may be compensated for by ad­
justing the actuator strokes. The four equations 
in (?) are the same as in (1) except that the 
strokes are generally all different and k1' k2' 
and ka are now known but slightly different 
from their ideal values. 

(3) 

The solutions for the strokes 

2d 
82 = (1 - k ) k 

1 3 

(4) 
4d 

84 = k~ (1 - k3) 

8d 
88 =-------

(1 - k 2 ) (1 - k{) 

are unique, thus the compensation is always 
possible. 

Let us examine now the effect of a small error 
in the stroke. For the purposes of the analysis 
equal nominal strokes and ideal arm ratios will 
be assumed. Modifying equation (1) for the 
present model we get 

k1ka (8 -+- 68) = d + £1 ) 
(1 - k 1 ) ka (8 -+- 6S) = 2d + £2 ~ 
k2 (1 - ka) (S -+- 6 S) = 4d + £4 ( 5) 
(1 - kz) (1 - k a) (S -+- 68) = 8d + £8) 

where 68 is the magnitude of the error in 
stroke and £I, £2, etc. are the errors in the output 
head position. For £1, £2, etc. we get 

(6) 

which means that the output error contributions 
are binary weighted fractions of the input error 
(error in actuator stroke) , the largest contribu­
tion being 8/15 or little over one half of the 
input error. Furthermore, the magnitude of the 
total error at the maximum output stroke is 

I £1 + £2 + £4 + £8 I = 

68 I ± 1 ±~:= 4 ± 8 I < .6..8 (7) 

This means that the maximum output position­
ing error can never be greater than the largest 
of the four input errors. This feature marks a 
contrast between the whiffle-tree positioner and 
the connnonly used mechanism which stacks 
segments of varying length to obtain mechani­
cal binary to analog conversion. In the latter 
system the output error is a direct algebraic 
sum of the input errors. Another advantage of 
the whiffle-tree positioner is that it permits a 
fixed mounting of the actuators. This in turn 
allows the use of ordinary solenoids, thus the 
need for hydraulic actuators is eliminated. 

Typical dynamic responses of the whiffle-tree 
positioner are shown in Figure 9. The two 
oscillograms show head position vs. time for 
minimum ~and maximum strokes, respectively. 
It may b~ seen tJ:i1tt the head is positioned to 
within .001" in 50 msec for the minimum stroke 
and 80 msec for the maximum stroke. 

Cartridge Loading 
The smooth execution of moving the loops 

into operating position, and out of the machine, 
requires certain features from the machine. 
Figure 10 shows how the conical nose of the 
head post and the retractable constraining arms 
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.001" 
per em 

20msecicm 
Figure 9. Dynamic Responses of the 

Whiffletree Position. 

act as tape deflectors during loading and un­
loading of the cartridge. Figure 11 is a photo­
graph of an experimental cartridge in pre-load­
ing position with the head post and one of the 
tape drive blocks removed for clear visibility. 

The loading and unloading involve several 
automatically cycled steps such as extruding 
and -retracting the constraining arms, turning 
air pressures on and off, etc. Total loading 
time, after the cartridge is manually inserted, is 
18 seconds. 

Packaging 

Figure 12 shows a photograph of the main 
panel with the tape drive blocks and cartridge 
carriage. Figure 13 is a photograph of the fin­
ished unit. Overall dimensions are 36" X 
25" X 53" high. 

(fri) ~lOC.T""S(41 
,,11.\ 

~~1")"'­
._~'v 

T APE DEFLECTION 
DURING LOADING 

CONICAL HEADPOST 
FOR TAPE LEAD-IN 

CONSTRAINING ARM 

Figure 10. Loading Features. 

Figure 11. Experimental Cartridge in Loading Position. 

Performance Characteristics 

The following list shows typical operating 
ranges for various machine configurations. 

Loops per cartridge up to 16 
Length of loop, inches 20 - 300 
Tape width, inches 1- 2 

Figure 12. Photograph of Front Panel with Tape 
Drive Blocks and Loading CaTriage. 
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Tape speed, IPS 
Rotation time, msec 
Head positioning time, minimum, 

msec 
Head positioning time, maximum, 

msec 
Tracks per inch 
Longitudinal density, bits per 

inch 
Information per cartridge, 

characters 
Tape loop life expectancy, num­

ber of actuations 

Conclusion 

400 - 800 
25 -750 

30-40 

70-80 
50 

750 -1000 
3 million-

40 million 

30 million 

The concept described in this paper repre­
sents the outgrowth of a long evolutionary de­
velopment of mass storage devices at Potter 
Instrument Company and elsewhere. The ex­
perimental results obtained on the first model 
and many breadboard tests indicate that tape 
loop random access storage devices offer per­
formance characteristics comparable to those 
obtained with oth~r media but have several 
advantages. 
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THE TIME·SHARING MONITOR SYSTEM 
H. A. Kinslow 

International Business Machines Corporation 
Advanced Systems Development Division 

2651 Strang Blvd., Yorktown H eights, New York 
PEekskill 7-6600 

INTRODUCTION 

The IBM Advanced Systems Development 
Division is currently operating the Time-Shared 
Monitor System (TSM), an experimental, gen­
eral-purpose, time-sharing system based on the 
IBM 7090 Data Processing System. This sys­
tem is capable of serving 24 remote users simul­
taneously. It requires a minimum of comput­
ing equipment, and gives the remotely located 
user a maximum amount of control over the 
7090 itself; and over the content of his pro­
gram files within it. 

The basic programming language of the sys­
tem is Fortran Assembly Program (FAP) sym­
bolic. (1) Th~re are no restrictions on the type 
of language capability which can be added to 
the system, or on the type of programs which 
the system will accept, compile and execute. At 
the present time the system contains a FOR= 
TRAN compiler, a time-sharing version of the 
General Purpose Systems Simulator (GPSS) ('2), 

and an interpretive sub-system called PAT 
(Personalized Array Translator) (3). 

Users' programs, and the data files which 
they operate upon, are permanently stored in 
an IBM 1301 Disk File. A user of the TSM 
system submits his program once, either from 
a remote terminal or by a batch run in the ma­
chine room. Thereafter the program is part of 
the system's memory and can be manipulated at 
will from the terminal. 

The F AP lan~uage and assembly capability 
of the system is nearly identical to that in com-
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mon use at other 7090 installations. One instruc­
tion (Load Channel-LCH) has been deleted 
from the 7090 instruction set, and some new in­
structions have been added. The added instruc­
tions allow a complete range of conversational 
capability, both between a single program and 
its terminal and among a group of programs 
associated with a group of terminals. 

THE COMPUTER SYSTEM 

Figure 1 is a schematic diagram of the hard­
ware complex in the TSM system. It is a single­
processor, single-memory 7090 system. The bulk 
storage device for programs, data files, and 
most of the TSM system itself is the 1301 Disk 
File. A 7320 Drum Storage is used as an ad­
junct to core memory for program-swapping 
purposes. Each of these units has its own 7909 
Data ChanneL There are two 7607 Data Chan­
nels for tapes and a 7281-II Data Communica­
tions Channel for terminal multiplexing. 

The 7090 CPU is equipped with three extra 
features for time-sharing purposes; relocatabil­
ity, memory protection and an interval timer. 
The relocatability feature allows all programs 
to be compiled at origin 0000 and executed in 
any available memory space. The memory pro­
tection feature sets upper and lower bounds for 
a program and prevents it from referencing 
any space outside those bounds. The interval 
timer, which can be set only by the supervisory 
program, will generate an interrupt at the end 
of any predetermined time interval. This in-
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Figure 1. TSM Computer System. 
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sures that the supervisor can examine the 
executing program at intervals of its own 
choosing. 

The memory protection feature has one ad­
ditional virtue; it traps all of the 7090 Input/ 
Output instructions before execution. This 
gives the supervisor an opportunity to monitor 
all I/O activity of the executing program. 

The 7281 Channel stores data from terminals 
directly into pre-assigned core memory buffers. 
A unit of information from a terminal is 
usually a character, although it can vary in na­
ture and number of bits according to the 
terminal transmission characteristics. Each 
character, or unit of information, is accumu­
lated by a "subchannel" in the 7281 and stored 
in a single word in the pre-assigned memory 
buffer. When the buffer is full, an interrupt is 
generated. One of the functions of the TSM 
Supervisor is to service these interrupts and 
empty or refill the buffers as needed. 

A 7281 subchannel acts as an interface be­
tween the transmission line and the computer 
memory. The muti plexor has physical space 
for 32 such subchannels, each of which can be 
thought of as an independent avenue of access 
to memory. In practice certain timing and buf-

fer-space parameters indicate that the maxi­
mum number of simultaneously active subchan­
nels should be approximately 24. Therefore 
capacity of the system is said to be 24 active 
terminals, Le., users. 

A sub channel can be designed for virtually 
any type of terminal. At the present time the 
terminals on the system are from the IBM 1050 
Data Communications System. Subchannels 
have been designed for an experimental fac­
simile printer and a cathode-ray tube device . 
The TSM supervisor has been written to be in­
dependent of the nature of the terminal. 

DATA CHANNEL RELOCATION 
AND MEMORY PROTECTION 

All of the above equipment items are either 
taken from the IBM product line or are readily 
available special features. There is one system 
hardware feature which is not standard. This 
is relocatability and memory protection in the 
7909 Data Channel for the 1301 Disk Storage 
file, and in each of the two 7607 Data Channels 
for the tape drives. These features have been 
designed and implemented by our own staff. 

Relocation and memory protection in the data 
channels serve the same purpose as their coun­
terparts in the CPU. They allow channel "pro­
grams" to be executed from any available 
space, and prevent these "programs" from ac­
cessing memory outside their boundaries. 

These features added to the data channels 
mean that a user program being time-shared 
can use tape drives and the 1301 file with a 
great deal of freedom which would not other­
wise be allowed. Without them it would be 
necessary for the TSM supervisor to either in­
terpret all I/O commands, or restrict the user 
to only certain limited command sequences. 
This would not be too great a restriction with 
respect to the 7607 Data Channels, which have 
only a limited command set to begin with. But 
it would cripple the capability of the user to ex­
ploit the potentialities of the disk file. 

Given relocation and memory protection in 
the data channels, which means that the chan­
nels themselves do a fair amount of monitoring, 
the TSM Supervisor has its hands relatively 
free to attend to other work. The net result is 
that there are virtually no restrictions placed on 



a user with respect to Input/Output program­
ming. A program being time-shared can, for 
example, process its own 1301-stored files in 
either serial or random fashion; use cylinder, 
track, or record modes; and establish its own 
data formats. 

THE PROGRAMMING SYSTEM 

The TSMProgramming System is a complete, 
integrated, real-time software complex. -It con­
tains its own self-loading and shutdown mech­
anisms, diagnostics for both programs and 
hardware, and can maintain itself and its files 
while operating. It also contains a large and 
open-ended set of tools for program construc­
tion and maintenance. Some years ago these 
tools would have been called "utility programs." 
In TSM (and in other time-sharing systems) 
they are called "service routines." 

The program components of the system can 
be categorized as follows: 

1. Auxiliary Programs 
These are the Startup and Shutdown 

functions. They are capable of automatic 
loading and initiation of the system and 
subsequent unloading and preservation of 
it. This includes saving and restoration 
of the 1301 file contents, i.e., user pro­
grams and data. The Startup and Shut­
down programs can create and maintain a 
tape which contains the system; they are 
also the basic disaster recovery mechan­
isms. 

2. The Supervisor 
The Supervisor is responsible for pro­

gram scheduling and monitoring, space 
and facility assignment, and message 
transmission. In essence its only func­
tion is to regUlate and protect the sys­
tem. It resides in lower memory at all 
times and is written in "read-only" style 
for self-checking purposes. In a very real 
sense the Supervisor can be thought of as 
an extension of the 7090 CPU to enable 
time-sharing. 

3. Service Routines 
A service routine is a system program 

which is capable of executing a command 
received from a terminal. A terminal com­
mand is usually a request for the system 
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to manipulate a user's program in some 
way; DISPLAY it, for example, or RUN 
it. The basic set of service routines in 
the TSM system is designed to allow a re­
mote terminal to be used as an operating 
console for the 7090. This set is open­
ended and has already passed through 
several evolutionary stages. All service 
routines are time-shared, and all of them 
are permanently stored in the 1301 file. 
Most of the system, in terms of number 
instructions, consists of service routines 
which are retrieved and executed on com­
mand from the terminal. They execute 
in time-shared fashion, obeying substan­
tially the same rules as user programs. 
In fact the only difference between a sys­
tem service routine and a user program is 
that a service routine can access the tables 
and directories of the system while a user 
program cannot. Service routines, in other 
words, operate in a "privileged mode." 

TIME AND SPACE SHARING 

The basic time-sharing strategy of the TSM 
System is nothing new . It is essentially the 
same method employed in the CTSS System at 
lVIIT (4) and the SDC-ARPA Time-Sharing Sys­
tem at SDC (5). Each program in the set which 
is being time-shared is allowed to execute for a 
"slice" of computer time, after which the CPU 
is turned over to the next program in line. In 
theory, each program gains access to the com­
puter often enough so that its operator at the 
terminal appears to have continuous control of 
the machine. The drum is used to store pro­
grams while they are out of memory and wait­
ing for their next slice of time. 

Figure 2 illustrates the time-sharing process. 
Programs A, B, C and D are sharing the ma­
chine. Their combined size exceeds the capacity 
of memory (24,000 words). The solid black 
areas indicate periods of time during which a 
program is being either read from the drum 
into memory, or written from memory on the 
drum. In the first time slice A is operating, 
while Band C are being read in. In the second 
time slice B is operating while A is being writ­
ten out. The diagram also illustrates the fact 
that the system is designed to "space-share" 
core memory as well as "time-share" the CPU. 
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Figure 2. Time and Space Sharing. 

The TSM supervisor, which regulates this 
process, has been designed to use all the facili­
ties of the computing system as efficiently as 
possible, while at the same time placing the ab­
solute minimum of restrictions on the user. In 
brief its functions are as follows: 

1. Scheduling of programs and transferring 
of programs to and from core memory. 

2. Assignment of core space, drum space and 
1301 file space. 

3. Monitoring and controlled execution of in­
structions trapped by the memory pro­
tection feature. This includes simulation 
of some instructions and address transla­
tion for most of the Input/Output instruc­
tions. 

4. Execution of the pseUdo-instructions 
which transfer data between programs, 
and between a given program and its ter­
minal. These are the conversational mode 
instructions. 

THE BASIC PROGRAMMING LANGUAGE 

Under the TSM system a programmer may 
ignore the fact that the machine is time-shared. 
To a professional programmer at a terminal 
the machine behaves like a normal 7090, and 
the terminal has the same kind of capability as 
the computer console. 

Writing a program to run under TSM is 
equivalent to writing a F AP program for a nor­
mal installation. The instruction set and the 
F AP assembly features are unchanged; the 
computing capabilities of the 7090 are aug­
mented, but not altered. 

Figure 3 will make sense only to readers fa­
miliar with the IBM 7090 instruction set. It is 
a list of all instructions trapped by the memory 
protection feature. All instructions are trapped 
which could do damage to tJle system. In par­
ticular these instructions are: 

1. those which control I/O units, and 
2. those which control the 7090 interrupt (or 

"trapping") system. 

The left-hand set are either simulated or 
"translated" by the supervisor, and in effect 
are executed in normal fashion. "Translation" 
means that any reference to an I/O device is 
translated from what the user thinks he is 
using to what the system has actually assigned 
for him. A reference to tape drive A4, for ex­
ample, may result in an operation on tape 
drive B2. 

The right-hand set are instructions which 
the system considers to be illegal, and which 
will stop the program. When one of these in­
structions is encountered, the user's program 
will leave the time-sharing cycle, to be pre­
served in a memory image area on the disk file. 
The user at the terminal will receive a diagnos­
tic message telling him where the program 
stopped and why. Readers of this article who 
are familiar with the IBM 7090 will note that 
the only real restriction on their programming 
is the fact that they cannot use the LCH (Load 
Channel) instruction. 

PSEUDO-INSTRUCTIONS 

By the addition of "pseudo-instructions" the 
instruction set of the 7090 has been augmented 
to provide for conversational programming and 
communication with the supervisor. These 
pseUdo-instructions are disguised forms of the 
7090 "Store and Trap" instruction. Whenever 
it is executed this instruction generates a trap 
(Le., interrupt) to the supervisor, which pro­
ceeds to decode it and execute the function 

EXECUTE STOP 
1111111111111111' 1111111111111111:11111111111111 I1111111I1II11111111111 

ENB SCH 
ETM SCD 
LTM RDS 
EFTM WRS 
ENK BSR 
LFTM BSF 
lOT REW 
RCT RUN 
ICT RCH 
TEF RSC 

STC 
TCO 
TeN 
BTT 
ETT 
RIC 
ROC 
TRC 

lRI ECTM 
lPI ESTM 
PSl lSNM 
lCH ESNT 
HTR, HPR 
DVH, FDH 

XEC -4 XEC -4 XEC 

Figure 3. 7090 Instructions Trapped by Memory 
Project. 



called for. Control returns after execution to 
the instruction following the pseudo-instruc­
tion. A programmer using these added instruc­
tions need not be aware of the fact that they 
are executed by the TSM Supervisor rather 
than the 7090 CPU. 

CONVERSATIONAL MODE 

Figure 4 illustrates the conversational capa­
bility which has been added to the instruction 
set. A program can converse with its terminal 
by means of two pseudo-instructions called Re­
ceive (RCV) and Transmit (TMT). It can also 
converse with any other program, or set of pro­
grams, using two other instructions called 
TALK and LISN. 

The RCV and TMT instructions allow a user 
to write a program which includes him in the 
feedback loop. This is a man-machine capabil­
ity which can be exploited in many ways, most 
of which are as yet untried. The TSM system's 
own service routines are constantly conversing 
with the terminal operator, either asking for 
instructions or printing out errors. 

The TALK and LISN instructions allow a 
group of programs, and consequently a group 
of terminal operators, to engage in any sort of 
multiple-person computing activity, plus obviat­
ing some otherwise sticky time-sharing prob­
lems. For example: 

1. The computer can be used as a message 
switching center. Data entered at one ter-
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Figure 4. Conversational Mode. 
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minal can be sent out to any other termi­
nal, or all terminals. 

2. A user at any terminal has direct access 
to the terminal in the machine room. 

3. Unattended "write-only" terminals ( a re­
mote printer for example) can be activ­
ated and controlled from inside the sys­
tem, and automatically shut off when not 
in use. 

4. Experiments in computer-based group 
education can be handled very flexibly. 
There can be a master program, which 
would be activated and controlled by an 
instructor, and a slave program which 
prompts and responds to a student. Mul­
tiple copies of the slave program, one for 
each student in the system, would execute 
independently, each at its own pace and 
communicating with the instructor's pro­
gram as required. 

5. Multiple-person gaming situations are a 
similar application. 

These pseudo-instructions behave like nor­
mal 7090 I/O instructions. They are requests 
for the supervisor to send a block of data to a 
terminal or to another program. With respect 
to terminals the user is not concerned with the 
fact that various buffers are filled and emptied 
periodically while a TMT command is being 
executed. This is an activity executed by the 
supervisor. 

INTER-PROGRAM COMMUNICATION 

For each subchannel on the system there are, 
as mentioned above, a set of terminal message 
buffers. These buffers are normally used as 
storage for incoming or outgoing messages dur­
ing transmission. They are also used as the 
medium of information exchange between in­
dependent time-shared programs. A TALK in­
struction causes the transfer of a block of data 
from the working space of the calling program 
to the message buffers of the called program. 
The LISN instruction allows the called program 
to read the transferred data into its own work­
ing space. It is not necessary for the two pro­
grams exchanging data to be in memory at the 
same time. 

Connections between programs are recorded 
in a "crossbar matrix" within the supervisor 
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(Figure 5). Each subchannel on the system is 
represented by a specific row and column in this 
matrix. A bit in the row of a program is a sig­
nal that some other program is trying to es­
tablish a "connection." The bit position iden­
tifies the program (i.e., subchannel). A pro­
gram may interrogate its matrix row by issuing 
a CHEK pseudo-instruction. This is the equiva­
lent of asking "Has anyone called?" 

A data transfer between two programs pro­
ceeds as follows: 

1. The calling program issues a CONN in­
struction, which sets a bit in the called 
program row. It then CHEK's and waits 
for a response. 

2. The called program CHEK's for an in­
coming call. When a bit appears in its 
row it responds by issuing a CONN in re­
turn. 

3. The calling program issues a TALK, 
which results in the data transfer and re­
sets the CONN bit in the called program 
now. 

4. The called program issues a LISN, which 
reads out its buffers and resets the CONN 
bit in the calling program row. 

Any number of independently time-sharing 
programs may exchange data in this manner. 
The net effect is that a set of programs-and 
hence a set of terminal operators--can interact 
with each other on the solution of a computing 
problem. 

In summary the TSM system does not restrict 
use of the 7090 for conventional computing pur­
poses, nor is the style of programming neces­
sarily different. A wide range of conversational 
capabilities has been added to the computer 
which enable experimentation both with new 
applications, and with new methods of handling 
traditional applications. 

Figure 5. Crossbar Matrix. 
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ADDITIONAL LANGUAGE CAPABILITY 

All of the above comments have been made 
with reference to the basic F AP programming 
language, which assumes a great deal of com­
puter knowledge on the part of the user. This 
is by no means the only language capability of 
the system. The TSM system also contains a 
FORTRAN compiler, a version of the General 
Purpose Systems Simulator, and an interpre­
tive subsystem called PAT. All of these source 
languages are acceptable as input from the ter­
minals. 

THE PAT SUBSYSTEM 

The Personalized Array Translator ( PAT) 
Programming System is a self-contained, inter­
pr.etive subsystem which operates under the 
control of TSM. A terminal operator who is 
using the PAT subsystem is, in effect, using his 
terminal in the PAT mode. All terminal activ­
ity is generated or processed by the P AT Sys­
tem, even though it must pass through TSM in 
transit. 

The PAT language is a subset of the Iverson 
language (6). It permits operations upon entire 
arays of numbers-matrices or vectors-as well 
as characters or bits. It includes relational 
statements for comparison of arrays according 
to various criteria, and statements which will 
generate arrays. This latter feature is valu­
able for obtaining argument arrays and test 
data. 

Included in the PAT subsystem are some 11 
console commands which allow a user to con­
struct, debug and execute a program in source 
language alone. 

USE AND MAINTENANCE OF THE IBM 
1301 DISK FILE 

The 1301 Disk File is the primary medium of 
storage in the TSM System. It contains all of 
the system service routines, all user programs, 
and most of the data files which user programs 
operate upon. 

Each module of the disk file has 40 disks, with 
250 concentric tracks per disk. A vertical sec­
tion of 40 tracks is a "cylinder." Each cylin­
der has a special non-data track called the for­
mat track, which controls the pattern of in-



formation. A special "Write Format" order 
allows the user to specify the number and size 
of records to be filed on all tracks of a cylinder. 
A "Write Track with Addressess" order allows 
records to be given unique identification for 
random record processing purposes. The 1301 
file is a very flexible device, and the TSM sys­
tem is designed to let a user explqit this flexi­
bility. 

The system considers the basic unit of file 
space to be the cylinder: 40 tracks, or approxi­
mately 18,000 words. A program operating un­
der TSM may have up to 150 cylinders assigned 
for its use, which can be as many as 30 separate 
data files. 

The supervisor keeps track of each cylinder 
with respect to occupancy and usage. A cylinder 
is "occupied" if it contains a data file or pro­
gram (or a section thereof). A cylinder which 
is occupied may not be assigned by the system 
for scratch purposes, and it must be saved by 
the system on each shutdown operation and re­
stored at startup time. A cylinder is "in use" 
if it has been assigned to a program for a job 
run. A cylinder in use may be either an occu­
pied cylinder (data file) or a vacant scratch 
cylinder. 

User programs cannot request the use of sys­
tem facilities. All requirements of a program 
-core space, tape drives, data files and scratch 
cylinder space-must be known to the system 
before a program can start execution. Each 
program in the file contains a set of parameters 
which are examined by service routines. The 
service routines request the supervisor to as­
sign such facilities as are needed by the pro­
gram. If these facilities are available, the 
supervisor notes them as being "in use," and 
the user program can then manipulate them 
any way it sees fit. 

The supervisor only keeps track of the status 
of a facility, not of its content. Information 
about the contents of the 500 file cylinders is re­
corded in a system. table which itself is on the 
file. This table has a three-word entry for each 
cylinder. The entry contains the six-character 
name of the file, information about the type of 
file (program, data, read-only, etc.), and the 
job code and serial number of the user. The 
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table is created and maintained by the service 
routines. 

A program or a data file may be entered into 
the system under three levels of protection. It 
can be for use by the user only, by all users 
with the same job code, or by the public in gen­
eral. It can also be file-protected, which will 
prevent either a program or the system from al­
tering it. 

Special format tracks for data cylinders may 
be written by the system at the user's request, 
or by the user's program at execution time. 
Either data files or programs may be many cyl­
inders in length. Even though the TSM system 
may scatter successive cylinders of such a file 
throughout the 1301, the user can manipulate 
them as if they were in contiguous· space. 

A single service routine called LOAD creates 
all initial files. This is a command which is 
available only to operators of the machine 
room terminal. The load program operates 
from a batch tape. From each file on the tape 
it creates a file in the disk. It operates time­
shared, which means that the system can main­
tain its files while it is operating. 

The load program will accept almost any 
form of input; source language programs (or 
subroutines), object code in either relocatable 
or absolute form, data files in either standard 
or special formats. If no format specifications 
are given, a standard one-record-per-track for­
mat is generated, otherwise the format track 
will be written as the user desires. 

A program being processed by the load pro­
gram must have various parameter cards sup­
plied with it. Among other things these param­
eter cards specify the facility requirements of 
the program (tape drives, files to be referenced, 
etc.), and its size in terms of core space. This 
information is attached to the program as it is 
written in the file. Once the program has been 
loaded these specifications may be altered at 
will from a terminal, but they are never acces­
sible by the program itself. 

In writing a· program to use cylinder-stored 
files of data, a user refers to relative cylinder 
numbers in much the same ways as he now 
uses relative tape drive numbers. The load pro­
gram must be told, for example, that as far as 
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the user is concerned, file N is on cylinders 
0000-0002. This information becomes part of 
the program parameters. The load program 
may actually store file N on a set of cyliIiders 
such as 0052, 0267 and 0138. Translation of 
file orders from the relative cylinder numbers 
supplied by the programmer to the absolute lo­
cations assigned by the load program is done 
at execution time by the TSM supervisor. 

Programs are stored in both source language 
and object form. From the terminal a user can 
manipulate either. The same is true of subrou­
tines. A user may have his own collection of 
subroutines stored away, as well as having ac­
cess to the system library. 

The terminal operator can also manipulate 
the facility assignment parameters ·,of a pro­
gram. Among other things this means that he 
can select a program for executitin' and choose, 
from among alternatives, a particular data file 
for it to operate on. 

OPERATING A TSM TERMINAL 

Operation of a TSM Terminal isa process of 
issuing a series of commands to the system. 
Each command is a short message of the form 
"OP ;OPERAND", and is executed by a unique 
service routine. 

The basic set of commands which the system 
will recognize is designed for a user who is op­
erating a machine language program. In this 
mode the terminal is a remote 7090 operating 
console. Figure 6 illustrates the functions of 
the commands in this set. The heart of the 
structure is the Terminal Core Image area. 
Each subchannel in the system has such an area 
on the 1301 file permanently assigned to it. It 
is two cylinders in size, or approximately 36,000 
words. The core image is core memory as far 
as the terminal operator is concerned. When 
his program is actually executing in the time­
shared cycle, it may at any moment be either 
on the drum or in actual core memory. When­
ever it stops executing, for any reason, it re­
turns to the image area. The image area will 
always contain the user's program as it looked 
when it stopped running, plus a complete set of 
status information with respect to the 7090 
itself. 

Figure 6. Service Routines for Program Execution and 
Control. 

A typical execution sequence in this mode of 
operation is: 

1. ID; Operator Number, Project Number. 
This signs the user on the system. 

2. SEL; Program Name. 
This identifies the program to be executed. 
The Select service routine retrieves the 
program from the 1301 file and writes it 
into the core image area. This is the 
equivalent of loading the program into 
memory. 

3. RUN 
Since the program has been identified and 
isolated for action, there is no need to 
keep repeating its name as an operand. 
The RUN service routine performs a non­
trivial function of determining the re­
quirements of the program in terms of 
core space, data files to be operated upon, 
tape reels to be mounted, special instruc­
tions to be sent to the machine room, etc. 
It then informs the TSM Supervisor that 
the program is ready, and the user's pro­
gram enters the time-sharing cycle. 

4. User Program Execution 
The user is on his own. His program is 
executing and in control of the terminal. 



It will continue to time-share until (a) 
the system detects an error, (b) a normal 
program stop is encountered, (c) he hits 
the ATTENTION button on the terminal. 
In all three cases the machine status will 
be preserved and the program will be re­
turned to the core image area. In cases 
(a) and (b) the operator will receive a 
message at the terminal which might be: 

LOCATION 0142 
PROGRAM STOP 

The operator now has a choice of actions. A 
variety of Display commands are available 
which will type out machine status conditions 
or sections of the program (or all of it), and an 
equivalent set of Enter commands which can 
be used to alter either the machine status or the 
program. These commands operate upon the 
contents of the image area, which is the equiva­
lent of patching the program. There is a SAVE 
command which will preserve the image as a 
new file for later reference, and a REPLACE 
command which will dump the image in the 
original file area. A RUN XXXXX command 
can be given, which will restart the program 
from any specified instruction. 

There is also a TRACE command which 
starts controlled execution of the user's pro­
gram. This function has several options such 
as "stop at location X," "stop on reference to 
X," "print all transfers," etc. 

In summary, the operator can manipulate his 
program with a great deal of freedom; more 
freedom, in fact, than the typical computer 
console allows. 

This is the basic set of commands for re­
mote IBM 7090 operation. There are others. 
"PROCESS" is the command which triggers 

the compiler-assembler-loader functions of the 
system (Figure 7). "UPDATE" allows a user 
to make changes to a source language file (or 
data file) in preparation for recompilation or 
reassembly. The command set is easily ex­
panded as need arises, perhaps too easily. It 
has, in fact, a Parkinsonian tendency to grow. 

One other command should be mentioned. 
"CALL; subsystem" is a request for the system 
to switch the terminal over to a specified alter­
nate mode of operation. GPSS is an alternate 
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Note: Entire process is triggered 
by "Process". Mode of 
operation is deduced from 
type of program refer­
enced. 

Figure 7. Program Assembly or Compilation. 

mode. It is a closed, interpretive subset of 
TSM with its own interdependent set of com­
mands and operating procedures. A "CALL; 
GPSS" command will in effect substitute a new 
set of commands for the basic set. The termi­
nal will thereafter operate under control of the 
GPSS subsystem. If a command is issued which 
GPSS does not recognize, the terminal will au­
tomatically revert to the basic TSM mode. 

BACKGROUND OPERATION 

A terminal operator can request that a pro­
gram be executed in the background mode. The 
background is simply a list, maintained by the 
supervisor, of jobs which are to be run as time 
permits. There is no difference between the 
handling of foreground (terminal controlled) 
and background jobs, other than the fact that 
there is no terminal associated with a back­
ground time slice. 

Some background job is always being time­
shared with the terminals. If no terminals are 
active the current background job is run con­
tinuously, and the TSM system behaves very 
much like a normal batch-processing system. If 
one terminal is active it is time-shared with the 
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current background program, with each pro­
gram using the machine 50 % of the time. 

RESPONSE TIME 

The response of the system to a command 
from a terminal is quite variable. It depends 
upon the number of programs being time­
shared at the time the command was received, 
the sizes of those programs, and the size of the 
service routine which must execute the com­
mand. When a command is received by the sys­
tem the service routine must have space as­
signed for it in memory and then it must be re­
trieved from the disk file. Retrieval time varies 
from .2 seconds to 1.8 seconds depending upon 
the size of the service routine. Space assign­
ment time is negligible if the load is light and 
memory is free. In the worst case, where 24 
active users are each running 24,000 word pro­
grams, the response time can be as much as 50 
seconds. Assuming ten active terminals, each 
controlling a 6000-word program, the average 
response time is approximately 3 seconds. 

THE SCHEDULING ALGORITHM 

The TSM Supervisor has been designed to use 
the computing equipment as efficiently as pos­
sible. It "space shares" core memory as well 
as time-sharing the CPU, and takes full advan­
tage of the fact that the data channels can op­
erate in parallel with the computer. 

The Supervisor (Figure 8) is a set of "trap 
processors" (one for each type of trap which 
the hardware system can generate) and "queue 
processors" (one for each shared facility) regu­
lated by a Sequence Control routine. A trap 
processor recognizes the fact that an I/O facil­
ity has completed an operation and is now 
available for use. A queue processor initiates 
an operation on an idle facility. 

A section of the Sequence Control Table, 
which contains the set of queues in the system, 
is pictured in Figure 9. Three system facilities 
are represented: the drum channel, drum space 
and core space. Each facility is represented by 
three words of data: 

1. A status word: if the sign is plus the 
facility is available; if minus it is busy. 
The address portion of the word indicates 

EXECUTING PROGRAM 

or 

Figure 8. The TSM System Supervisor Design. 

the location of the associated queue proc­
essor routine. 

2. The queue: each bit position of this word 
represents a specific terminal. In the ex­
ample shown the programs being time­
shared for terminals 3 and 18 are in the 
core space queue. 

3. A sequencer: this is a single bit which is 
cycled to the right to select the next pro­
gram (i.e., terminal) for use of the facil­
ity. The sequencer always sits at the posi­
tion of the last program chosen. In the 
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Figure 9. Section of the Sequence Control Table. 



core space block the sequencer has stopped 
at bit 10. The program for terminal 10 
was the most recent one to have been as­
signed core space. Terminal 18 will be 
the next one. 

All trap and queue processors exit to the Se­
quence Control routine upon completion. Se­
quence Control scans its table, looking for the 
combination of an idle facility and a non-zero 
queue. If it finds one it chooses the next pro­
gram for execution on that facility by moving 
the sequencing bit to the right, and then exits 
to the appropriate queue processor. 

The queue processor will initiate operation of 
its facility, and in so doing may move the se­
lected program to another queue. It will re­
turn to Sequence Control, which will scan the 
table again. This succession of events will con­
tinue until Sequence Control is able to make a 
complete pass through its table without finding 
an idle facility which can be put to work. Con­
trol then returns to the interrupted executing 
program. 

This design is a descendent of the control 
program system for Project Mercury (7). It 
has certain advantages: 

1. The supervisor can be and has been writ­
ten as a set or modules (trap and queue 
processors) relatively independent of one 
another. 

2. It operates "asynchronously," keeping all 
facilities of the system continuously busy 
if there is any work which can be done. 

3. It guarantees that all terminals get equal 
treatment. 

4. It is inexpensive. The sequence control 
table together with the sequence control 
program total approximately 100 words 
of space. 

SUMMARY 

The TSM System is experimental. It was 
built as a base for exploration of various ter­
minal designs, terminal-oriented applications, 
human factors considerations, and an entirely 
new mode of computing. It has not yet been in 
operation long enough to allow any firm conclu­
sions to be stated. Our experience in building 
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it has taught us a great deal about general-pur­
pose remote computing with present-day equip­
ment, but we are not yet ready to extrapolate 
this experience into future hardware design. 

Our experience in adding language capability 
to the basic system has been enlightening. Al­
most any existing 7090 compiler or interpreter 
can be made a feature of the TSM system. These 
existing programs can be added to the system 
as service routines by cutting down their size, 
so that they operate in 24,000 words of core 
memory, and revising them to operate on disk 
file data instead of tape-stored data. The most 
difficult part of this process is altering a com­
piler so that it is disk file oriented. It must 
reside in the file, get its source language from 
the file, and write its object program in the file. 
In practice even this has not turned out to be 
particularly difficult. As soon as the modifica­
tions have been made, the revised compiler can 
be added to the file of programs and debugged 
during a normal time-sharing period. 

The result of this process, however, is not 
necessarily a good compiler for time-shared op­
eration. A time-shared computer is not an or­
dinary computer, even though it can be treated 
like one. It is time-shared; which means that 
the start-to-termination time of a specific job 
must be multiplied by the average number of 
users on the system; it has conversational capa­
bility which should be used; and there is a hu­
man being at the terminal who is expecting 
some sort of response. These factors all work 
against the design of existing compilers (and 
applications!), which are usually massive, long­
running, and unsociable. The right way to add 
a language to TSM (or any other basic time­
sharing system) is to create a compiler which 
fits the time-sharing situation. This right way 
is not yet completely defined. Some of the most 
original work in this area to date has been in 
the development of remote computing languages 
based on interpreters rather than compilers, the 
IBM experimental remote FORTRAN system (8) 

being an excellent example, our own PAT sub­
system being another. 

The TSM System is more than a 7090 with 
extra gear and a special software system. It is 
a new type of computer. It is reasonably com­
patible with existing computing capability-
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which is to say that a user can ignore the time­
sharing factor and operate the system as a 7090 
if he sees fit-but it is in fact time-shared and 
conversational. Our experience in adapting 
existing software to this environment indicates 
that while it is feasible to do so, the results are 
not entirely satisfactory. The compilers and 
assemblers run slowly, use the system ineffici­
ently, and behave (as of course they were de­
signed to behave) as if there were no people 
connected with the process. 

The implications are that time-sharing, if it 
proves to be a popular, successful mode of com­
puting, will require a substantial revision of 
software technology, and an equivalent revision 
of application methods. The TSM System has 
been constructed and is being operated as a ve­
hicle for studying these implications. 
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JOSS: A DESIGNER'S VIEW OF AN EXPERIMENTAL 

ON-LINE COMPUTING SYSTEM* 
J. C. Shaw 

The RAND Corporation, Santa Monica, California 

INTRODUCTION 

The JOHNNIAC Open-Shop System (JOSS) 
is an experimental, on-line, time-shared com­
puting system 1 which has been in daily use by 
staff members of The RAND Corporation since 
January 1964.* It was designed to give the 
individual scientist or engineer an easy, direct 
way of solving his small numerical problems 
without a large investment in learning to use 
an operating system, a compiler, and debug­
ging tools, or in explaining his problems to a 
professional computer programmer and in 
checking the latter's results. The ease and 
directness of JOSS is attributable to an inter­
pretive routine in the JOHNNIAC computer 
which responds quickly to instructions ex­
pressed in a simple language and transmitted 
over telephone lines from convenient remo.te 
electric-typewriter consoles. An evaluation of 
the system has shown that in spite of severe 
constraints on speed and size of program, and 
the use of an aging machine of the vacuum­
tube era, JOSS provides a valuable service for 
computational needs which cannot be satisfied 
by conventional, closed-shop practice. 

'This paper concentrates on the numerous, 
small, hardware and software design decisions 
which have influenced the acceptance of the 
system by its intended users. Several figures, 

produced on-line, are included, providing read­
able examples of features of the JOSS lan­
guage. 

Background 
From the earliest days of construction of 

the JOHNNIAC computer, a Princeton-class 
machine built~at The RAND Corporation in 
1950-53, it has been the author's dream to 
have an economical, personal, remote com­
munication station for on-line control and 
programming of a computer. With so much to 
be learned about programming and operating 
large, general-purpose computers, it isn't sur­
prising that the additional investment in com­
munications equipment, remote stations, and 
corresponding software was postponed. 

In its early days, JOHNNIAC served well 
as a production machine. Then, because it 
has only a 4096-word core memory, a slow 
12,288-word drum, slow copy-logic for card 
I/O and printing, no tapes, and a very austere 
order code, production computing was grad­
ually shifted to more modern IBM equipment. 
Yet, the very accessibility to this unsaturated 
second machine made JOHNNIAC attractive 
as the basis for simplified programming sys­
tems for small, open-shop problems and for 
experimental work in heuristic programming, 

* Any views expressed in this paper are those of the author. They should not be interpreted as reflecting the views 
or opinions of The RAND Corporation or the official opinion or policy of any of its governmental or private re­
search sponsors. 

* An austere version of the system- saw limited use dur ing most of 1963. 
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new software systems, and hardware for better 
interaction with a computer. In November 
1960, after years of discussion of personal re­
mote consoles with T. O. Ellis, I proposed to 
the management of RAND's Computer Sci­
ences Department that JOHNNIAC be com­
mitted full time to providing a modest comput­
ing service to the open-shop via remote 
typewri ters. 

The purpose of the JOSS experiment was 
not to make JOHNNIAC machine language 
available, but rather to provide a service 
through a new, machine-independent language 
which had to be designed specifically for the 
purpose. It was to be an experiment with the 
goal of demonstrating the value of on-line ac­
cess to a computer via an appropriate lan­
guage, and was intended to contribute to a 
project with the long-range goal of a sophis­
ticated information processor. T. O. Ellis, I. 
Nehama, A. Newell, and K. W. Uncapher were 
the other participants in that project. 

In 1961-62, Ellis and M. R. Davis designed 
and directed the construction of the required 
multiple typewriter communication system ad­
junct to JOHNNIAC. The hardware was 
ready well in advance of the first version of 
the system program, and only a few select 
users were subjected to this very limited sys­
tem. Their feedback, including encouraging 
remarks on the usefulness of JOSS, helped 
shape the full version. * 

Comparison 

Other on-line, time-shared computing sys­
tems have become operational in recent 
years."2-(; All are pioneering efforts. By com­
parison, JOSS is special-purpose, even though 
it encompasses a wider class of problems than 
one might guess at first reading. Most of the 
others provide the user with access to ma­
chine language. F. J. Corbat6 has aptly de­
scribed them as open systems and JOSS as a 
closed system. In the open systems, an execu­
tive routine is prepared to help the user at the 
machine-language level or to pass control to 
one of several subsystems providing ada pta-

* We wanted to do a controlled evaluation of the sys­
tem at the time of the introduction of the full version of 
JOSS, but the new users taught others so quickly that 
we had to resort to after-the-fact questionnaires! 

tions of pre-existing programming systems. 
JOSS, however, was designed with on-line in­
teraction in mind, and resources were devoted 
to making it smooth and easy to use. The 
future lies with the open systems, but it re­
mains to be seen whether the open-system ex­
ecutive will absorb JOSS-like systems simply 
as additional subsystems, or whether JOSS­
like systems will absorb the executive func­
tion and thus serve as the user's computing 
aide and single contact with the computer. 

HARDWARE COMPONENTS OF JOSS 

Physically, JOSS consists of the JOHNNIAC 
computer, ten remote consoles, and a multiple 
typewriter communication system to mediate 
between JOHNNIAC and the consoles. 

Johnniac 

RAND, as did several universities and re­
search institutions in the early 1950s, con~ 

structed a computer (called "JOHNNIAC" for 
John von Neumann) more or less on the pat­
tern of the machine of the Institute for Ad­
vanced Study at Princeton. JOHNNIAC was 
upgraded in 1954 with the replacement of the 
original 256-word Selectron memory with a 
4096-word magnetic core memory. The word 
lenth is 40 bits. Because JOHNNIAC was 
ill-equipped to handle the message traffic re­
quired in JOSS service, a special-purpose buf­
fering system was built to process characters 
within messages and to monitor the remote 
stations. The alternative of modifying the 
main frame to handle the message traffic di­
rectly would have required a major rework of 
the JOHNNIAC control and would still have 
yielded degraded performance in JOSS service. 
Thus, JOHNNIAC remains a very primitive 
machine with no indexing, no indirect addres­
sing, no floating point, no error checking, no 
memory protect, no interrupts, no channels, 
no compare, no zero test, a miserable format of 
two single-address instructions per word, and 
a 50-ps add time. 

The JOSS system program runs about 6000 
words, the low-frequency portions residing on 
drum and overlaying each other in core when 
called in for execution. A large part of the 
JOSS system program resides permanently in 
core. It was a considerable challenge to com-
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press it sufficiently to leave room for the proc­
essing of a user's block in core. More than 
once I regretted the lack of an adequate sub­
routine linkage operation; it would have saved 
much space in this deeply hierarchical pro­
gram. 

The 12,288-word JOHNNIAC drum is di­
vided into three sections, accessed by moving 
heads at a rate not quite so fast as a modern 
disk unit unless the heads are luckily in the 
correct position. Average swap time (Le., the 
time to write one user's block of information 
out onto drum and read· a second user's block 
into core for processing) is, therefore, quite 
slow at about half a second. 

Communication System 
The multiple typewriter communication sys­

tem provides sixteen line-buffers, controls the 
states of all ten remote consoles, and registers 
signals from them. The limit is 81 consoles­
well beyond our needs and our budget. The 
JOSS system program in JOHNNIAC com­
mands block transfers between core and the 
line buffers. It also commands the communi­
cation system to enable or disable a console, 
request or relinquish control of a console, clear 
a line buffer, assign a line buffer to a console, 
or transmit a line buffer to a console. It also 
commands the communication system to re­
port any signals from consoles indicating a 
carriage return, a page ejection, or the de­
pression of one of the console control keys. 

Remote Console (Fig. 1) 
Lights and switches in a small box augment 

the IBM model 868 typewriter to indicate the 
status and to control the functions of the . local 
communication terminal electronics. The 
switches are: a POWER switch; an ON switch 
to connect the terminal to JOSS; an OFF switch 
to disconnect; a READY switch to reactivate 
the typewriter after inserting a fresh supply of 
paper; and IN switch to request control of the 
typewriter for input; and an OUT switch to 
relinquish control for output. Indicators are 
provided as follows! a POWER light; an EN­
ABLE light showing that JOSS service is 
available; a READY light showing that out­
put is acceptable at the typewriter; a red light 
to show that JOSS controls the typewriter; a 
green light to show that the user controls it; 

an IN REQUEST light to show that the user 
has depressed the IN button for control but 
JOSS hasn't yet responded; and an OUT RE­
QUEST light to inform the user that JOSS has 
an administrative message for him (such as 
"Shutting doum at 2330."). 

The READY light goes out if the paper 
supply is exhausted or if the paper jumps the 
sprockets. The user may also switch the 
READY light off any time he wants to hold up 
output momentarily. To continue with the 
output, the READY light is turned back on; no 
information is lost. The philosophy is one of 
exclusive control of the typewriter. When 
JOSS has control, the red light is on, the key­
board is locked, and the typewriter ribbon 
color is black. As JOSS turns control of the 
typewriter back to the user, the light changes 
to green, the keyboard unlocks, the ribbon color 
changes to green, and a soft gong rings. These 
visual, tactile, and audible signals leave no 
doubt as to who controls the station. 

If a remote typewriter console is to be a 
personal instrument, it must also serve as a 
simple typewriter. This consideration dic-

Figure 1. JOSS Console and Station Local Control Box. 
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tated that the console allow for off-line use and 
that the character set include all the normal 
punctuation of a typewriter. The sprockets 
and paging mechanisms restrict the stations 
from being entirely satisfactory as personal 
typewriters, because of the problem of chang­
ing paper and the excessive noise. However, 
the hard copy produced is excellent-quite ac­
ceptable for reports without further transcrip­
tion and chance for error. 

Keyboard (Fig. 2) 
The choice of character set and key positions 

for anyon-line keyboard input device isn't to 
be taken lightly, especially if one hopes to en­
courage senior technical people to use the key­
board in the direct solution of their problems. 
It is customary for these people to pay others 
to drive teletypewriters, keypunches, and even 
typewriters. For the JOSS remote typewrit­
ers, we left the comma, period, semicolon, 
colon, slash, question mark, quotes, space sign, 
dollar sign, parentheses, and hyphen in their 
customary positions. The less essential char­
acters of standard sets were sacrificed in order 
to make room for all six numerical relation 
symbols. 

To linearize numerical expressions requires 
an explicit sign for exponentiation, for which 
we chose a five-pointed, upward-pointing, 
slightly elevated asterisk in upper case (all of 
which contribute proper associations for ex­
ponentiation) . The plus, minus (hyphen), 
centered dot (for multiplication), slash (for 
division), and equals sign are all in lower case. 
Left and right brackets were included, in place 
of the upper-case comma and period, in order 

Figure 2. JOSS Typewriter Keyboard. 

to improve readability of linearized expres­
sions (otherwise, such expressions tend to be­
come cluttered with parentheses). The abso­
lute value bar also contributes somewhat to 
readability. Parentheses and brackets are in­
terchangeable in pairs for all grouping func­
tions: subexpressions, arguments for func­
tions, indices, and interval size in iteration 
expressions. 

The punctuation and capitalization rules for 
JOSS are quite conventional, but three sym­
bols are used in very special ways. The space 
sign ( #) is used as a strikeover character, 
causing a character already in the input line 
buffer to be replaced by a space. This is 
needed since, if the typed line is to reflect the 
contents of the input buffer, the space bar and 
backspace key must never enter any character 
into the buffer (although they do control posi­
tion). 'The asterisk (*) at either end of an 
instruction input line leads JOSS to ignore the 
line and thus provides a device for annotating 
one's work and for cancelling lines. (For most 
errors, however, the process of simply back­
spacing and striking over is adequate.) The 
dollar sign ($) may be used in any expression 
and carries a numerical value equal to the line 
number (from 1 to 54) of the typewriter's 
current position on the page. This value is 
updated by JOSS so the user can easily control 
format on the page. If no format is specified, 
JOSS supplies an automatic one-inch margin 
at the top and bottom of each page. 

The tab may be used to speed output typing 
by skipping instead of spacing over blank 
positions. The typing speed of ten characters 
per second, less shifting time, has not been a 
source of dissatisfaction. A key interlock, 
intended to insure that only one key at a time 
was depressed, was abandoned because of the 
frustrating effect on the user. The action of 
the keys without the interlock is admirable, but 
it is possible to hit two keys at once, super­
imposing their character codes for transmis­
sio~. This risk is more acceptable than the 
interlock but it means that JOSS must be pre­
pared to receive any 7 -bit character code~not 
just the legal ones. The keyboard lock (not 
to be confused with the now-abandoned key 
interlock) is incomplete in that it locks only 
the typing keys, and even then it can be over-
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riden. This deficiency has not been a problem 
however since, at most, the used can spoil only 
his own output by trying to use the typewriter 
out of turn. 

SOFTWARE 

JOSS services the requests of users at the 
remote consoles in such a way that the users' 
activities are logically independent of one an­
other. Up to eight of the ten stations may be 
served concurrently by time-sharing tech­
niques. In addition to administering input/ 
output and swaps of user blocks, JOSS inter­
prets and executes both direct and indirect 
(Le., stored-program) instructions couched in 
a readable and easily learned language. 

Time Sharing 
The basic JOHNNIAC computer provides no 

parallel processing. The multiple typewriter 
communication system does provide for par­
allel activity at many consoles by high-speed 
line-scanning and time-shared use of the logic 
circuits. JOSS takes advantage of this inde­
pendent parallel processing in the communica­
tion system by time sharing-Le., by switching 
its attention rapidly from one user to another 
to give adequate service to all active users. 
Each active user is represented by a block of 
information which resides on the drum, except 
when JOSS is actually processing it in core. 

First priority for JOSS' attention goes to 
the servicing of signals from the consoles: 
carriage return, page, on, off, in, out, and end­
of-transmission. JOSS looks for these signals 
in the communication system when idling, and 
between interpretive steps when executing a 
user's program. An end-of-transmission sig­
nal requires only that JOSS record that the 
line buffer is available, -and direct the trans­
mission of the next line of output to the same 
station if one is ready. JOSS then continues 
with its previous activity. A carriage re­
turn, however, like several other signals, re­
quires that JOSS break off its current activity, 
move the current user's block out to drum, 
move th.e signaling user's block into core, and, 
~nally, Interpret and act on the line of input 
Just released by the carriage return. 

Second priority is given to users who have 
given JOSS output-limited tasks which have 

been set aside until the typewriters have nearly 
caught up. Third priority is given to users 
with unfinished tasks, on which JOSS works 
for two seconds apiece in round-robin fashion. 
A user's priority changes dynamically accord­
ing to this discipline, which successfully 
exploits the parallel processing of the com­
munication system. Under a typical load, 
JOSS responds to simple requests in a fraction 
of a second and rarely in as long as three 
seconds. Users who are skilled in typing can 
maintain impressive rates of interaction with 
JOSS. 

Language 
The reader will observe that throughout 

this section on software, the term "JOSS" 
is used to refer to that single active agent at 
the computer end of the telephone line con­
necting the user's remote console. It is con­
venient to consider JOSS to be a "computing 
aide" interacting with the user by means of a 
simple language. The reader should now read 
the examples (Figs. 3a-3i) before continuing 
in this section. The examples fall short of 
being an adequate instruction manual for the 
system, but they suggest the readability of the 
language, the high degree of interaction, and 
the power of expression. 

A striking feature of the system is that the 
user commands JOSS directly in the same lan­
guage that he uses to define procedures for 
JOSS to carry out indirectly. A numeric label 
as a prefix to a step is an implied command to 
JOSS to store the step in sequence according 
to the numeric value of the label. JOSS differs 
from other on-line systems by requiring the 
user to supply his own step numbers on all 
steps of his stored program. This seems ap­
propriate, for the user always has the option 
of typing a direct command or an indirect 
step, without having to explicitly call for 
another mode to get the desired option. The 
numeric label determines whether an indirect 
step is an addition, an insertion, or a replace­
ment for another step. The step numbers 
really do pay their way. Elsewhere, the lan­
guage is very explicit. For example, it re­
quires full words, in conjunction with numer­
ical expressions, to denote steps, parts, or 
forms. This too contributes to readability. A 
step is limited to a single line, and a line is 
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U: 
J: 

U: 

J: 
U: 
J: 

Type 2+2. 
2+2 -

Set x-3. 
Type x. 

x-
Type x+2, x-2, 

x+2 -
x-2 -
2·x -
x/2 -
x*2 -

4 

3 
2·x. x/2. x*2. 
5 
1 
6 
1.5 
9 

U: TvDe Hlx-51·3+4)·2-15)·3+10. 1(30) 
~J~:-!_~[(t{~1:x~-5~1~·;3+=4~)~'~2-~15~)~.3~+~1~0~--=25~--__ ~ __________ -; 

U: Type Iqrt(3). sqrt(4). 
J: aqrt(3) • 1.73205081 

aqrt(4) • 2 

Type &qrt(-1). 
Error abon: Res.lYa ~ for aqrt. 

U: 
J: 

Set e-2.71828183. 
Type lH(1). 10g(2). log(e). 

logll. 0 
log 2 • .69314718 
log a. 1 

·U: 

J: 

Type eXI(O). exp(.5). exp(1). 
DI!(O. 1 

exp(.5· 1.64872127 
exp(l. 2.71828183 

U: 
J: 

Type dn( .5), eOI( .51, dn( .5)*2+eol( .5)*2. 
aill(.5) • .4711425539 
coa(.5) • .877582562 

aill(.5)*2+coa(.5)-2 • 1 

U: 
J: 

Type arfU:.O). arg(O.l). arl(-1.0). 4'0'1(3,3). U: 
J: arl~1.0. 0 

lirl 011. 1.57079633 
UI - 0). 3.14159265 

~ ___ ~4~.ar~I~(J~.~3~)_. ___ ~3.~14~15~9~26_5 ___________________________ ~I(~) 
Set y • 123.456. 

T~p11;I1:(),) 'tll~I!' dp(y). xp(y). 

fp)' • .456 
dp)' - 1.23456 
XP)'· 2 

~~~6~~~' !O*Ji.456 

U: 

J: 

U: 
J: 

TYJN! .SO{ -3.5). al1'(O). 111'(3.5). 
ap(-3.5) • -1 
a~(O) • 0 

ap(3.5) • 1 

U: 
J: 

U: Type aa(1.2.3). ain(1.2.3). 
J: aa(1,2.3)· 3 (3e) 
~ __ +-~.tD==(~1~,2~.~3~)_. __ ~1~ ________________________ ~ 

Delete aU. U: 

J: 

U: 

J: 

U: 

J: 

U: 

J: 

1.1 Do put 2 for boa1(1)a. 

2.1 Set c - aqrt(a*2 + b*2). 
2.2 Type a. b. c 1n fora 1. 

Fora 1: a-_ b -_ c.-_._ 
Do part 
a - 1 
a - 2 
a· 2 
a. 3 
a - 3 
a - 3 

1 for .-1(1)'). 
b· 1 c­
b - 1 c­
b - 2 c­
b. 1 c-
b - 2 c­
b - 3 c-

Type all atepa. 

1.414 
2.236 
2.828 
3.162 
3.606 
4.243 

1.1 Do part 2 for b-l(l)a. 

2.1 Set c - Iqrt(a*2 + b*2). 
2.2 r,pe,a. b. c ill fora 1. 

Type all foraa. 

rora 1: 
a - _ b. _ c - _._ 

r,pe all. 

1.1 Do part 2 for b-1(1) •• 

2.1 Set c - aqrt(a*2 + b*2). 
2.2 r,pe a. b. c ill fora 1. 

rora 1: 
• - _ b· _ c - _._ 

a· 3 

U: 

J: 

U: 

J: 

U: 

J: 
U: 

J: 

2.15 Line if fp(e)-O. 
2.2 Type a 1 b, c: In form 1 if fp(cl-O. 
type part 't. 
2.1 Set c • aqrt(a*2 + b*2). 
2.15 L1ne 1f fp(c)-o. 
2.2 Type at b. c ill fora 1 1f fp(c)-o. 
Do part 1 ,or .-1(1)15. 

• - 4 b - 3 c - 5.000 

a· 8 b. 6 c - 10.000 

a • 12 b - 5 c - 13.000 

a - 12 b· 9 c - 15.000 

a - 15 b. 8 c. 17.000 

Delete part 2. 
Type part 2. 
Error above: Ro aucb part. 
Type all values. 

a· 15 
b • 15 
c - 21.2132034 

(~) L-U_:-i __ ~_l_e_te __ a_l_l. ________________________________ ~ 

U: 

J: 

3.1 Type Xl sqrt(x). log(x). exp(x). _. 
Do step 3. for x-1.2.3.100. 

x - 1 
aqrt~x~ - 1 log X. 0 
up x - 2.71828183 

aro:s:~ : 

2 
1.41421356 

.69314718 
7.3890561 

3 
1.73205081 
1.09861229 

20.0855369 

100 
10 
4.60517019 
2.68811714·10*43 exp~xS • (3f)L-__ L-_____________________________________ ~ 

U: ~;,!. TJr x, aqrt (x). log(x). exp(x) 1n form 3. ___ ___ _e___ ........ . 
J: 

Do atep 3.1 for x • 8.50(.01)8.54(.02)8.60, 9, 9.5. 
8.50 2.915 2.1401 4.9iJ 03 
8.51 2.917 2.1412 4.964 03 
8.52 2.919 2.1424 5.014 03 
8.53 2.921 2.1436 5.064 03 
8.54 2.922 2.1448 5.115 03 
8.56 2.926 2.1471 5.219 03 
8.58 2.929 2.1494 5.324 03 
8.60 2.933 2.1518 5.432 03 
9.00 3.000 2.1972 8.103 03 
9.50 3.082 2.2513 1.336 04 (lg )IL-__ J.-____________________________________ ~ 

U: 

J/U: 

U: 
J: 
U: 

J: 

U: 

4.1 DeII80d b(1). 
4.2 Set I - a+b(1). 

Set 1-0. 

Do ~1114.f;I31-1(1)4. 
b 2 • 237 
b 3 • 411 
b 4 - 733 

'fype a. 
a· 1924 

5.1 Set b(1) - bU)/ •• 
Do part 5 for 1-1(1)4. 

Type b blil - .282224532 
b 2 - .123180873 
b 3 • .213617464 
b 4 - .380977131 

Set 1-0. 
Do acep 4.2 for 1-1(1)4. 
Type a. 

J: a - 1 
(3h)L-U_:~ __ ~ __ e_te __ ._1_l_. ________________________________ ~ 

U - Denotes inputs of the JOSS user; normally typed in green. 
J - Denotes outputs from JOSS; normally typed in black . 

L-__ ~ ____ ~~~: ____ ~l~~~~~a'~~~Q~~---~~--~--~I(~) 
FIgure 3. Samples of JOSS Language and InteractIOn. 
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~-. . - . __ .. -- set-•• l~ .-.. - - --. .- -

~ .. 
U: 6.1 TR- foXil 61. Set c:-1/SqTt(2'3. 1415926S) • 

2:~ ~ :~t 7 for t-O(b)4. Do pet 6. 

7.1 Type t. a in fOl'll 61 if fp(t/.S)aG. 
J: t Intearal 

7.2 Do part 8 far x • t+h·(.S-k). t+h·(.S+k). .00 .0000 

8.1 Set Y • c·exp(-X'*2/2). 
.SO .1915 

1.00 .3413 
8.2 Set a • a+.S·h·y. 1.SO .4332 

2.00 .4772 
rOl'll 61: 2.SO .4938 

t lDtegral 3.00 .4987 rcml 62: ~(3i) 3.SO .4998 _.- _.- 4.00 .5000 

~ Set -0. igure 3. Samples of JOSS Language and Interaction-Continued 

limited to a single step, neither being much of 
a constraint. As a result, a step number 
serves to identify not only the logical step but 
the stored string and typographical line as 
well. Arbitrarily com.plex expressions may 
be used everywhere, except as step label pre­
fixes which must be explicit decimal numerals. 
The 52 upper- and lower-case letters are the 
only identifiers to which the user can assign 
numerical values. (If pressed, he can extend 
the set by indexing letters, but indexing is 
normally used in the customary way-to 
identify elements of vectors or matrices.) 
Again, generality of expression, single-letter 
identifiers, and two sets of groupers all con­
tribute to readability. (For an experienced 
typist, readability implies writeability as well 
-text is easy, expressions take time but can be 
mastered, highly encoded implicit material is 
"":Hffinn H- \ 
UJ._U.lvUJ. lI., 

JOSS represents all numbers internally in 
scientific notation-nine decimal digits of sig­
nificance and a base-ten scale factor with an 
integer exponent in the range -99 through 
+99. JOSS presents an exact input interface, 
familiar decimal arithmetic internally, and an 
exact output interface. Addition, suhstrac­
tion, multiplication, division, and square root 
are carried out by JOSS to give true results 
rounded to nine significant decimal digits (ex-

\ 

cept on overflow which yields an error mes-
sage, or on underflow for which zero is sub­
stituted). The decimal nature of JOSS gives 
the user easy control over exact calculations 
that would require especially careful attention 
in a binary system. 

The functions in the language include a set 
of logical functions which, together with the 
numerical relations and and and or, lead to 
powerful direct expressions of conditions 
which can be attached to any step. Care has 
been taken in a basic set of elementary func­
tions to hit certain "magic" values on the nose 

and to provide reasonably full significance of 
results. The general exponential routine to 
compute a*b, for example, factors out error 
situations and the special cases of b = 0, a = 0, 
b = 1, b an integer and a an integer power of 
10, b = .5, b = - .5, and b an integer with 2:::; 
b :::; 29, before resorting to exp [b·log(a)]. 

The interpretive technique on which JOSS 
is based enables the user to edit his stored 
program freely and quickly-even when JOSS 
interrupts at the user's request or suspends 
work on a task to report an error. Inserting 
and replacing steps or forms is implicit in the 
treatment of any new line· of input. Deleting 
and typing are called for explicitly and the 
language provides "handles" at various levels 
of aggregation so the user isn't forced to do 
his editing piecemeal at the level of individual 
steps, forms, and values. Steps are organized 
into parts according to the integer parts of the 
step numbers. Parts then become units that 
can be typed or deleted, as well as natural units 
for specifying proce,dures in hierarchical fash­
ion. Values, too, may be organized into vectors 
and arrays if indexed letters are used, and the 
letters by themselves may be used to refer to 
entire arrays for purposes of typing or delet­
ing. Still higher aggregates may be typed or 
deleted by using the expressions: all steps, all 
parts., all forms, all values, and all. 

JOSS and the user take turns controlling the 
typewriter. It is critically important that the 
current status of JOSS with respect to any 
task it may have been working on be perfectly 
clear each time control is returned to the user. 
To this end, JOSS transmits error messages, 
interrupt messages, and stop messages to dis­
tinguish these states from the state of having 
just successfully completed a task. The user 
obviously does not want a message for suc­
cessful completion, because it would be so 
frequent and because it would intrude on his 
formal . output. Error messages are of two 
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types: those that report violations of language 
constraints (such as indices not within the 
permissible range of integers from 0 to 99) ; 
and malformations of expressions, steps, etc. 
The first type is infrequent and the message is 
long enough to be very explicit about the vio­
lation. The second type covers a multitude of 
situations which are easy for the human eye to 
detect, but for which a precise error message 
is extremely difficult. All these errors are re­
ported by the very brief message "Eh?". Thus, 
the user is forced to read his step to find the 
error, rather than possibly being misled by a 
message unrelated to the actual error. In 
every error situation, the user is able to pro­
ceed. Frequently he can repair an erroneous 
step or form and continue with a Go command. 
Some errors may require that the user ask 
JOSS to start over after the repair, which is 
accomplished by simply giving JOSS the same 
Do command used to initiate the task. Even 
when JOSs. has run out of space in pursuing 
the task, it stands ready to help. The user may 
ask JOSS to delete portions of the program 
which are no longer essential to getting final 
answers (such as forms or steps no longer 
needed) and to continue with a Go command, 
this time with additional space for JOSS to 
work in. 

The user need do no preplanning in compos­
ing his procedures before sitting down at the 
JOSS console, since he can depend on inter­
acting with JOSS to perfect his program. This 
ideal situation holds for the two users in 
RAND who have personal consoles. The other 
stations are public and, because of heavy usage, 
some users prefer to plan their work before 
going to the console-but it isn't necessary. 

All input to the system is free form. It is 
unreasonable to demand that certain items of 
input be typed in specified columns on the page. 
On output, however, it is important that the 
user be able to require that JOSs. type answers 
in conveniently specified forms. It is also im­
portant that JOSS choose a reasonable output 
form when the user hasn't specified one. JOSS' 
choice here is one number per line. Each num­
ber is identified by the very expression used in 
the step calling for the output. JOSS tries to 
line up equals signs and decimal points, and 
uses fixed-point notation except when the 

magnitude of the number makes this unrea­
sonable. 

For formal output, the user has the entire 
width of the line in which to specify the literal 
information and the blank fields to be filled in 
with numeric answers. Just two types of 
fields prove adequate. A string of underscores 
with an optional decim~l point indication is 
used for fixed point. A string of periods spec­
ifies a tabular form of scientific notation in 
which only the digit part and the correspond­
ing exponent part are typed with the base ten 
understood. The number of digits typed is 
determined by the length of the field, and JOSS 
rounds the answers to fit the fields. Page and 
Line steps may be used to direct JOSS in for­
matting the putput. As mentioned above, 
JOSS relieves the user of having to count out­
put lines, by maintaining the line number on 
the page as the value of the dollar sign. The 
user can, for example, call for a new page at 
line 50 (Le., "Page if $=50."). JOSS pro­
vides margins automatically, and identifies 
each page with time, date, and user's initials 
typed at the very top, where it can be clipped 
off if the page is to be incorporated into a re­
port. The saving of time and errors by elimi­
nating necessity for transcription of results is 
no small part of the system's attractiveness. 

It should now be clear that the user always 
interacts with JOSS at a reasonable language 
level, never in machine language, and that the 
suggestion to think of JOSS as a computing 
aide is entirely appropriate. In fact, except 
for machine malfunctions, no lower-level model 
of JOSS' activities can be used to explain be­
havior of the system which is not adequately 
explained in terms of the simple higher-level 
model. TIlus, there are no JOSS system ex­
perts to call in for consultations-the checked­
out user can explain every result even though 
he has no knowledge whatever of JOHNNIAC, 
the system routines comprising JOSs., or the 
representations of the entities of his program. 

Implementation 
The administration of the time-sharing as­

pects, drum slots, line buffers, states of re­
mote consoles, selection of tasks, etc., is ac­
complished by detailed but straight-forward 
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machine-language routines in JOHNNIAC. 
The priority scheme never shuts out any user 
indefinitely. It responds quickly to input sig­
nals, such as carriage return, and keeps out­
put-limited stations typing at full speed. The 
routines for interpretation, execution, and se­
quence control of the user's program, however, 
represent solutions to many new problems. 
The user's block of information initially con­
tains certain tables, storage for value assign­
ments (to 52 letters), heads of empty push­
down lists, working storage, and a list of 
available space units. 

List processing routines are used to store 
away the literal strings of characters for steps 
and forms as list structures, and to perform 
inserts, replacements, and deletes on these 
structures. Similar routines are used to build 
list structures holding numerical representa­
tions of the elements of arrays, and to perform 
inserts, replacements, and deletes on them. A 
vector, then, is represented by a list of ele­
ments, each labeled explicitly with its index. 
It need not be dense, since values are looked up 
by scanning the list for a match on the explicit 
index. Similarly, a matrix is represented by a 
list of lists of elements where the lists for the 
rows also carry explicit indices. Pushdown 
lists for operators and operands, as well as 
an auxiliary pushdown list, are used in the 
process of evaluating a numerical expression. 
The evaluation is programmed conveniently as 
a recursive routine. The most elaborate list 
structure arises in the bookkeeping JOSS must 
do to record the current step number at each 
level in a hierarchical task. Each Do causes 
JOSS to descend a level to perform the re­
quired part as a subroutine, then return and 
advance from the Do. If the Do step carries 
a for clause, then a list structure is built to 
record information essential to control of the 
iteration. This discussion is to point out that 
list processing is a cornerstone of the JOSS 
implementation.7 -!J 

But, the list processing too is strictly an in­
ternal matter to JOSS and is completely sealed 
off. The user reaps the benefits in flexibility 
and interaction at a high language level. The 
challenge was not in the list processing as such, 
but rather in the clean-up and backing off to 

the beginning of a step to report an error to 
the user. It was essential that no irreversible 
change be made in the user's block until the 
interpretation of a step could guarantee that 
the execution would proceed to completion 
without an error. This consideration had to 
be modified slightly for the Do step with a .for 
clause, but satisfactory stopping positions were 
found, even for the case where the user deletes 
a part being iterated. This attention to detail 
has paid off. It is most satisfying to watch 
open-shop users with no previous computer 
experience, and little JOSS training, extract 
themselves from errors with JOSS' help, then 
continue with their problems. 

CONCLUSION 

JOSS now has more than 100 qualified users 
among staff members at The RAND Corpora­
tion. TheIr most frequent requests have been 
for more scheduled JOSS time, for more stor­
age space, and for long-term storage of pro­
grams. * Noone complains of the speed, al­
though JOSS is slow. Everyone is enthusiastic 
about the simple language and ease of inter­
action. The distinguishing features of JOSS 
are: typewriters with an excellent touch and 
carefully selected keyboard; quick response to 
trivial requests, report-quality output; highly 
readable language; English capitalization and 
punctuation rules; exact input; familiar deci­
mal arithmetic; exact output; no declarations; 
easy editing; powerful language for small nu­
merical problems; and high-level language 
interaction at all times. 

In this designer's view, the acceptance of an 
open-shop computing system depends on the 
little things-hundreds of them! 
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1.0 INTRODUCTION 

The complexity of the tasks performed by 
computer systems has been expanding rapidly 
throughout the short history of these machines, 
but only in recent years has the basic feature of 
sequential control of operations been seriously 
violated. The large computing system of the 
future will have multiple processing capabilities 
and will be operated in a shared manner in or­
der to obtain· the potential efficiencies and ex­
pansions of application areas which are possible 
in such a system. A shared computer system 
will be heavily dependent on real time interac­
tions with people and other machines. The 
effectiveness of such expansion in the applica­
tion areas of shared systems depends upon ad­
vances in both hardward and software struc­
tures, and upon the feedback between them. In 
order to solve the language problems of such a 
system, it is not sufficient to try to find a more 
convenient language to describe conventional 
program structures. Brown 1 has indicated the 
need for a new concept of programming in the 
environment and has discussed many of the 
necessary features including the ability to leave 
sequencing control in the hands of the system. 

The concepts of consequent procedure net­
works, discussed by Schweppe and Fitzwater 2, 

provide an effective framework for considera­
tion of hardware and software design for such 
systems. Although the use of such general net-
\x/orl{ . implementation in controlling computer 
complexes would be quite effective, their full 
inlplenlentation within a given conventional 
processor becomes inefficient. The purpose of 
this paper js to discuss the application of a 
related but somewhat degenerate form of conse­
quent procedure networks inside a conventional 
computer. 

The results of this study have been used in 
the design of a shared on-line computer control 
system as described by McFarland, Fitzwater 
and Stewart 3, 4. 

1.1 Need for Consequent Procedure Networks. 
The procedures which are available in a com­

plex system must be carried out in a sequence 
which is dictated by the demands of the people 
or equipment involved and the existence of the 
necessary inputs. Since this order is deter­
mined only during execution of the procedures 
-and indeed may vary from one execution to 

* Contribution No. 1509 work was partially supported by the Ames Laboratory of the U. S. Atomic Energy 
Commission and partially by the National AeronauticE and Space Administration under grant N sG-398 to the 
Computer Science Center of the University of Maryland. 
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another-the program structure should be an 
invariant of the order of execution. Clearly 
most present languages and systems do not al­
low such flexibility. The requested procedure 
itself may interact asynchronously with the re­
questing entity as well as other entities and 
such interaction may arise from a variety of 
causes, some of which are requirements for 
competitive processes, random demands for 
data acquisition, and indeterminate processing 
times. As a result the language used to describe 
procedures should contain, neither implicitly or 
explicitly, any artificial requirements as to the 
order in which operations are to be carried out. 

Many ad-hoc system programs have been de­
signed and operated successfully within real 
time computers. These systems have usually 
been dependent on a specific design for a spe­
cific set of tasks which are known at the time 
the system is developed. An excellent example 
of this type is the multicomputer programming 
system described by Pickering, Mutschler and 
Erickson [;. In this case any structure which 
will process the specific tasks is satisfactory. 
The problem of designing a general purpose 
system for processing unspecified procedures 
for possibly unspecified users is quite different 
and is much more akin to the design of a gen­
eral purpose computer. Obviously, in such a 
system, one cannot guarantee that all of the 
unspecified requests of the un~pecified users can 
be satisfied. The goal is to design a general 
purpose system which is capable of satisfying 
a large class of such requests. Such a system 
must recognize that the structure of the proces­
ses which it must carry out is not sequential in 
nature. 

An implicit recognition of non-sequentiality 
in an on-line system may be effected by the 
technique of memory swapping as discussed by 
McCarthy, Boilen, Fredkin and Licklider 6. In 
this scheme, the currently requested programs 
are run for a short time each in sequence. The 
turnover rate is made fast enough so that the 
effect on the serviced entity is that of a some­
what slower computer. The major advantage 
of such a system is that conventional languages 
and coding structures may be used in each 
user's program. 

The major disadvantage of such a technique 
is that the consequent relationships of sub-pro-

cedures are not explicitly represented in the 
structure of the conventional language and can­
not be implicitly recognized except in rather 
special cases. As an example, the use of priority 
overlapped input-output equipment in 
FORTRAN programs cannot be expressed ex­
plicitly and is only sometimes expressed implic­
itly in the structure of the systems package. 
The programmer describing a procedure has no 
direct control over such implicit structures. If 
the only non-sequential operations to be carried 
out by the system involve simultaneous reading, 
writing and computing it is possible to provide 
implicitly for such operations and some 
FORTRAN systems do this. When the system 
is operating under a hierarchy of priorities or 
priority interrupts the implicit recognition of 
non-sequential structures lays impressive de­
mands on the system package design. These 
demands become oppressive if further, non­
standard non-sequential operations are re­
quired in describing the procedure. Because 
such structures may be peculiar to a specific 
task, implicit recognition of such general struc­
tures in the system package is neither feasible 
nor desirable. 

Although, in a specific system, the decision to 
relinquish any part of conventional language 
and systems structures must be carefully con­
sidered, the inherent awkwardness of conven­
tional system structures for general purpose 
real time systems leads to a hope for a more 
natural and effective structure which does not 
place such severe demands on the user, pro­
grammer and systems designer. 

The use of consequent procedure networks is 
an alternate and effective approach to a solution 
of the language and system structure problem. 
The introduction of non-sequentiality occurs in 
a natural and flexible manner. 

1.2 Operational Requirements. 
The computer system must satisfy the needs 

of the user, programmer and systems designer. 
There is no a priori reason for assuming that 
these needs are identical and can be represented 
in the same communication languages and tech­
niques. There is little point in re-examining 
language and systems structure unless these 
needs are re-examined and the results used in 
the language and systems study. 
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In general the user is interested in requesting 
the application of a specific procedure to a 
specific set of data to produce certain required 
responses. Although the nature of the data, 
procedure, or response may vary wi dIy, the re­
quirement that the system must accept and 
process such requests for the user is sufficient. 
The sequences of such user's requests and the 
data descriptions are the responsibility of the 
user and he must therefore be given the ability 
to define these as he sees fit. The computer sys­
tem must supply a flexible means of communica­
tion for such requests and data and a conve­
nient language in which they may be described. 
The user may also be interested in supplying a 
priority parameter to be used in scheduling. 

At the current level of discussion there is no 
implied distinction between human and non­
human users. The formal language or struc­
ture of a request for a non-human user may be 
quite different from that appropriate to a 
human user. This does not present any serious 
problems since the system must be able to ac­
cept requests in a "language" suitable for the 
using entity. Of course, not all interacting 
entities have the status of a user. Some may 
merely supply or receive information. 

The programmer has a two fold relationship 
with the computer system. First, he must define 
the operations which will perform the desired 
task in the form of a procedure. Second, he has 
the same requirements as a user while entering 
the procedure into the system and during the 
checkout process. The system must provide an 
appropriate language for the definition of a 
procedure. There is no reason to assume that 
this language should be the same as for the 
user's requirements. Because many sequencing 
operations are under the control of the user or 
the system, the language must provide sequence 
independent structures. In general, the pro­
grammer should not care who or what might 
call his program into action. The programmer 
is merely defining a procedure. The sequences 
of such procedures may be dictated by the user 
or incorporated in some encompassing proce­
dure. In addition, the execution of a procedure 
may involve external real time interaction of 
undefined sequence. 

The systems designer is responsible for the 
choice of computer hardware,. procedure lan-

guages and operating systems. The design must 
satisfy the requirements above for users and 
programmers and should be realizable in an 
efficient manner. The systems designer must 
supply translators for the various languages 
used and must supply an operating system that 
will accept requests and data. The requested 
programs must be obtained by the system, sup­
plied with actual parameters, scheduled and ex­
ecuted under system control. Because of the 
special requirements of such a system program, 
the user and programmer languages may have 
to be supplemented with a system language 
which gives to the systems programmer com­
plete access to all hardware capabilities. The 
programmer languages do not need such com­
plete access and may be designed accordingly. 

1.3 Consequent Procedure Networks. 
The requirements outlined above can be met 

in a natural manner by the use of consequent 
procedure networks. The use of procedures in 
describing a program has a long history of 
effective use. The network description of proc­
essing flow provides a natural way of introduc­
ing non-sequential structures of almost any de­
sired type. A consequent procedure network 
consists of procedures, linked into a network by 
the programmer, which are executed only when 
each recognizes the appropriate conditions for 
its execution. These conditions rather than the 
sequence of the statements define the network. 

In general form, the specifications of the in­
put data entities and the connection network of 
the procedures jnvolved is sufficient to define 
the program. The mere existence of the speci­
fied data is enough to sequence the various pro­
cedures in a network. In the general form, data 
entities will carry network identity and may 
have to be stacked in input queues. The manip­
ulation of such entities, in a conventional com­
puter, become somewhat inefficient if full 
generality must be maintained. 

The general form of consequent procedure 
networks loses many of its advantages in sim­
plicity and efficiency when implemented on a 
single computer without substantial multi­
processing capabilities. The logical complexities 
in implementing such a system on a convential 
processor are severe. A degenerate form of the 
procedure network is needed in a conventional 
computer. The general procedure in a pro-
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cedure network may represent the operation of 
a unique piece of hardware or it may represent 
a body of coding within a single computer. 
Since the first meaning above is appropriate to 
a computer complex or to a multiprocessor but 
not to a single processor we will use the second 
meaning. A procedure represented by a body 
of coding may have input queues representing 
various calls on the procedure or, for each call, 
the body of coding may be replicated as a dis­
tinct entity. For our purposes, the inherent 
simplicity of the last interpretation is a very 
promising line of approach to the introduction 
of non-sequential structures in conventional 
computers. 

We are thus lead to a dynamic tree structure 
in which branches are executed in non-sequen­
tial fashion. The non-sequential characteristics 
enter at a very fundamental level in the result­
ing language structure. 

2.0 TASK TREE STRUCTURES. 

A procedure is a description of a body of 
coding designed to operate upon its formal pa­
rameters. When the appropriate activation 
conditions are met, a task is created. The 
process of creating a task is carried out by the 
system in response to a request from an exist­
ing task which recognizes the activation condi­
tions. Although the structure of a procedure 
and of the system is unusual in this system, the 
creation of a task is essentially that of retrieval 
of a subprogram from secondary storage, allo­
cation into primary storage, and of replacement 
of formal parameters by actual parameters. 
Having created a task, the system will then 
schedule the task for execution. The comple­
tion of the task is recognized within the task 
itself and the system is requested to erase the 
task. Note that a task has only a transient 
existence while it is actually operating upon a 
specific set of actual parameters. A given pro­
cedure may be used simultaneously in several 
separate tasks since each call for the procedure 
causes the creation of a unique task. Because 
of this, recursive structures may be imple­
mented in recursive calls for procedures with 
no further considerations. 

A task tree consists of a task and its associ­
ated subtasks. Although a certain task tree 
may exist implicitly in a set of library proce-

dures, it exists explicitly only in the primary 
memory as a task and a set of subtasks which 
may in turn have subtasks. The task tree will 
grow in response to requests for subtasks and 
will shrink in response to requests for erasures 
of tasks. 

2.1 The Primary Task. 
A mechanism for the creation of task trees in 

response to a request from a user is distinct 
from the mechanism which is built into the 
system to process requests from existing tasks 
for new subtasks. The language of such a re­
quest from the user must be designed for the 
convenience of .the user. This requires a some­
what more sophisticated analysis by the com­
puter than is required to process internal re­
quests from existing tasks. In addition, the 
task tree creation process involves certain 
housekeeping which is not required for exten­
sions of an existing task tree. Consequently a 
special task, called the primary task, must exist 
as the head of all user requested task trees. 
This primary task will create a main task of a 
task tree in response to each user request. 

The services offered to the user by the pri­
luary task depend upon the requirements of a 
specific implementation. Since the primary task 
is the only place the system interacts with the 
user (as distinct from the programmer) much 
thought must be given to user language re­
quirements. Many compromises, due to local 
conditions, would be expected here. In what 
follows, only suggestions of possible features to 
be provided by the primary task are made. 

The primary task must accept a user request 
in the external user language and analyze the 
meaning of the request. The primary task will 
keep tract of current (or anticipated) hard­
ware requirements and if the current request 
cannot be satisfied because of hardware limita­
tions, it can be stacked into secondary storage 
for later response. If a priority user request 
is permitted, and cannot be satisfied because of 
hardware limitations, the primary task may re­
quest (via a global variable) a lower priority 
task to terminate its operation and lodge a re­
quest for its later continuation. The priority 
request may then be handled in a normal fa­
shion. The low priority tasks would be pro­
grammed in such a manner as to recognize the 
suspension of operation request and relinquish 
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its hardware requirements, leaving only a re­
start task in memory. 

If there are hardware facilities which are 
currently unused, the primary task will exam­
ine its pool of unprocessed user requests for 
suitable tasks. A scheduling algorithm may be 
used to prevent the more demanding requests 
from being indefinitely postponed. 

The system must be stable to transient over­
loads in the sense that it must not saturate in a 
logical blockage of processing. A transient 
overload may impair, temporarily, the reflex 
time of the system but the system must con­
tinue to work on its backlog. One form of 
logical blockage which' is quite disastrous is to 
find that none of the task trees can be com­
pleted unless a new subtask can be created and 
there is no more available core space. This 
might be handled by removing, temporarily, a 
portion of the task trees in order to finish the 
remainder. This procedure is frought with sub­
stantial complications. A simpler and more 
satisfactory procedure is to have the primary 
task monitor the current core requirements and 
reject or stack requests which could result in 
this condition. This may be done by supplying, 
with each task, a parameter which defines the 
minimum core space required for completion. 
This minimum may be much less than the max­
imum core space required for completion. This 
minimum may be much less than the maximum 
because under crowded conditions, some sub­
tasks which might be done in parallel are done 
in sequence without intervention by the user or 
programmer. 

Once the primary task has determined that 
the current request can be satisfied by the 
available hardware, a normal request of the 
system is made for the creation of a task which 
will become the main task of the task tree de­
signed to answer the request. The parameters 
for this task are provided by the user as a part 
of his original request. 

The user may wish to monitor or alter the 
progress of the program. The primary task 
will therefore accept requests for display or 
modification of the parameters of the original 
user request. Some of these parameters may be 
programmed to provide the desired informa­
tion. 

The primary task may also provide notifica­
tion t.o the user of the real time suspension or 
completion of the requested task if desired. 

2.2 Main Task. 
A main task is a task which has been created 

by a request from the primary task in response 
to a request from a user. There will be a main 
task for each user request currently being serv­
iced. The main tasks may arise from different 
users, thus providing for sharing of the system 
among users. 

The distinction between a task and a main 
task is in its position in a task tree and not in 
its procedure. Any task may be requested ex­
plicitly by the user, thus forming a main task, 
or implicitly by the user through the task tree, 
thus forming a subtask. Any procedure in the 
library may be requested as a main task or as a 
subtask as is currently required by the user. 
For example, a subtask designed to invert a 

-matrix may be called as a main task by a user 
with a specific matrix or as a subtask to a main 
task which is to solve a specific set of equations. 
This property has important consequences in 
code debugging and in real time control situa­
tions. 

2.3 Subtask. 
With the exception of priority tasks (which 

will be discussed in a later section) all tasks 
have the same structure. A simple subtask is a 
task which has no associated subtasks. A task 
which has potential substaks but does not in 
fact request their creation is not a simple 
subtask. 

A procedure body consists of a sequence of 
statements which are executed in a normal fa­
shion. One additional type of statement, a sub­
task call, is provided. A subtask call consists 
of library name, an activation parameter, and a 
list of actual parameters which provide the in­
formation to be used in a request for the crea­
tion of a subtask. The activation parameter is 
a Boolean variable. A true value of the activa­
tion parameter implies that the appropriate 
conditions for creation of the specified subtask 
do now exist, and that it is appropriate to re­
quest the creation of such a subtask. 

If, during the execution of a subtask call, the 
activator is false or if the subtask already ex-
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ists, no further action is required and the next 
statement will be executed. If, however, the 
activator is true and the subtask does not exist, 
a request for the creation of the subtask is 
lodged with the system and the next instruction 
is then executed. 

The system will subsequently request the ap­
propriate procedure from secondary storage 
and go on about its business. When the specified 
procedure is available, allocation of storage is 
made, the procedure is relocated, actual param­
eters from the call are supplied and a request 
for execution is made of the task scheduler. At 
the appropriate time, the scheduler will make 
an actual call for the task and cause its execu­
tion. 

When the system scheduler executes a task it 
does so by turning control over to the coding 
body of the task. This coding body acquires 
the references to the actual parameters and 
executes the set of sequential instructions re­
ferred to above. The process described above 
is then repeated. The set of sequential instruc­
tions act primarily as an activation scan of the 
potential subtasks. Statements to perform 
other useful operations may also be embedded 
in the activation scan. Since activation condi­
tions are changing dynamically, further activa­
tion scans must be made at later times. In the 
absence of hardware multiprocessing or associ­
ative memories for the storage of activation 
parameters, efficiency dictates that the system 
must not continually monitor changes in activa­
tion parameters. An effective and economical 
compromise is to stimulate an activation scan of 
a parent task each time one of its subtasks 
either completes or requests an activation scan 
of its parent. 

The use of an associative memory which 
would eliminate the need for scanning activa­
tors would make it possible to reduce the house­
keeping and increase the flexibility cf the 
activation concept. An alternative approach 
would have a second central processing unit 
carry out the scanning, allocation and other 
housekeeping. In the later form, queue manip­
ulation becomes feasible and the very powerful 
general concepts could be implemented ef­
fectively. 

A task is considered completed if, at the end 
of the execution of its sequential instructions, 
no subtasks are currently active. Upon comple­
tion of a task the system will make the hard­
ware components involved in that task available 
for use of other tasks and the task will cease to 
exist. 

2.4 Simple Tasks. 
If the sequence of statements in the body of a 

procedure does not contain a subtask call state­
ment, the statements will be executed sequen­
tially and the task is ended. Such a task is 
called a simple task. The use of simple tasks 
on any level of a task tree is exactly the same as 
a conventional subroutine, except for its activa­
tion and scheduling. Indeed, most conventional 
programs could be considered to be simple sub­
tasks to the conventional monitor. 

2.5 Priority Tasks. 
One of the weaknesses of conventional lan­

guages is the difficulty of describing hierarchial 
priority interrupt routines. In the present 
structure, this is accomplished by a simple task. 
There is very little reason for explicit non-se­
quential operation below the priority interrupt 
level and so the use of a simple task for priority 
routines is quite appropriate. 

A priority task differs from a simple task in 
that it has three coding bodies associated with 
it. The first coding body functions just as a 
simple task whose job it is to create an en­
trance to the second coding body which defines 
the appropriate process to follow a priority in­
terrupt. The second coding body then awaits 
one or more priority interrupts and makes its 
own decision on when its task is completed. The 
second coding body, when the task is completed, 
makes a special request to the scheduler for the 
execution of its third coding body. The reason 
for the third coding body is that a task may not 
relinquish control in the priority mode to any­
thing except the point at which the priority in­
terrupt occurred. The third coding body then 
releases control to the parent task. 

The first and third coding bodies may be used 
also for initiation and termination respectively 
of external operations associated with the in­
terrupt. 

In the normal mode of operation, the condi­
tions giving rise to an interrupt are not cre-
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ated until after the corresponding priority task 
has been requested and created. Thus the pri­
ority reflex time is not dependent on secondary 
storage or transfer rates. This does imply that 
all priority tasks must exist whenever their pri­
ority interrupts are currently expected. The 
priority tasks handle the high speed reflex re­
quirements of the system and the non-priority 
routines handle housekeeping and on-line proc­
essing. A given task may, of course, involve 
subtasks of both types. 

A very useful priority task is one which rec­
ognizes a clock pulse as its interrupt entrance 
condition. Control is given to the task in the 
priority mode and it releases control to the next 
clock priority routine in the priority mode. The 
system is responsible for recognizing the clock 
pulse interrupt and for scheduling the pending 
clock priority tasks. Such routines may be used 
to monitor control operations or for periodic 
data logging. 

2.6 Activation. 
We can associate a status with each variable. 

The status of a variable has two values, active 
or inactive. For example a matrix M with 
inactive status may be given active status when 
a particular set of values have been assigned to 
its elements. However, unless we wish to intro­
duce queues, we must not assign a new set of 
values to the matrix M until it returns to the 
inactive state. 

The activation parameter for a subtask call 
may be the state of a variable or a Boolean vari­
able derived by logical manipulations of other 
variables or states. The concept of the conse­
quent subtask call requires that a request for 
the subtask be made of the system each time the 
activator goes active. Again, in order to pre­
vent queuing, we must ignore any activator for 
a subtask which has already been requested 
until that subtask completes. This is where we 
lose the major portion of the generality of con­
sequent networks with queues. 

The activator is reset to inactive upon com­
pletion of the corresponding subtask and a new 
call is permitted if the activator should subse­
quently become active. 

The more general concept of activation re­
sults in fascinating program simplicity and in 

almost prohibitive housekeeping requirements 
in a conventional computer system. We will 
consider only the more restricted form which 
does not generate queues in this paper. Un­
fortunately, this restricts the programming use 
of activators almost to that of binary switches. 

3.0 Use of Task Trees. 
The use of non-sequential task trees has all 

of the advantages of subprogram structures 
with the added flexibility that the programmer 
need specify sequential relationships only 
where they are known. N on-sequential rela­
tionships may be controlled by the system. Be­
cause these relationships are recognized in the 
structure of the programming language, the 
programmer is relieved of the responsibility for 
them and the system is given the information it 
needs in order to handle them, thus simplifying 
the job for everyone. Storage allocation and 
scheduling may be handled by the system. The 
programmer need not care when his routine is 
to be used or where. 

3.1 Natural Description. 
The consequent structure is well suited to de­

scribe what systems do whether they be corpo­
rations, job shops or programs. Indeed, this 
type of structure could be used to describe the 
operations of a business in recognizable form 
using programming structures which have their 
counterparts in administrative structures. The 
restriction of not permitting queues is similar 
to abolishing in and out baskets in an office. 
This restriction is almost una voidable until we 
can get effective computer hardware for such 
"baskets" . 

The generalized procedure network is an ef­
fective model of the way human organizations 
operate and the degenerate form discussed here 
is a compromise which retains substantial 
power. This natural organization suggests the 
basic power and simplicity which is possible in 
such a computer system. Many of the burdens 
of organization and sequencing are assumed by 
the system. Because the language is designed 
for this, the system becomes relatively simple. 

3.2 Lang'Uage Structures. 
We will consider only the language appropri­

ate to the programmer. The language in which 
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a user would make a request is simple but quite 
dependent on local boundary conditions. The 
language used in writing the system might be 
any which offers appropriate flexibility in con­
trolling the specific computer. 

The object program structure produced by a 
source language of the type under discussion is 
substantially different from normal usage and 
is closely integrated with the operating 'system. 
The source language itself is quite similar to 
conventional languages and is easily defined. 

In FORTRAN, the addition of a subtask 
statement (similar to sub-routine) and a call 
subtask statement (similar to call) will suffice. 
Because of the demand for Boolean variables, a 
FORTRAN version permitting such variables 
should be used. The ordinary call and sub­
routine statements could be retained if desired. 
Note that, although the new language is quite 
similar to the old, the method of use of the 
language statements is quite different. 

In many respects, ALGOL forms an excellent 
vehicle for such non-sequential structures. In 
this case the procedure would be modified to 
include the activator and the subtask would re­
place both the block and the procedure concepts. 
This results in a much simpler language which 
retains the advantages ogALGOL and the pow­
er of the non-sequential structures. 

3.3 Multilevel Control and Debugging. 
Since all tasks have the same calling struc­

ture, any task may be used as a main task or as 
a subtask. For example, one might have a task 
which controls some external equipment 
through its use of various subtasks. If the 
current control program js unsatisfactory for 
some special purpose, the user may assume con­
trol on a lower level of the task tree and de­
termine his own sequencing of the more rudi­
mentary control functions. This is similar to 
the operation of a space sate lite in the "fly by 
wire" mode. 

A further advantage of this mode is in de­
bugging. A task tree may be debugged from 
the end of its branches inward by calling each 
subtask as a main task and supplying the ap­
propriate test parameters with his request. No 
special main program need be written and de­
bugged in order to test an individual procedure. 

4.0 AN EXAMPLE OF CONSEQUENT 
PROCEDURE USAGE. 

In order to give an example of the usage of 
consequential procedures it is necessary to in­
troduce a language in which to describe them. 
Although the syntax of the language used does 
not differ very much from conventional ones, 
the way in which the language is used is quite 
different and can ,best be appreciated by study 
of an example. The following casual definition 
of a language based on ALGOL may suffice for 
illustrative purposes but is certainly not a suffi­
cient definition for the use in an actual system. 
The object program structures are dependent 
on a specific computer and are not discussed 
here. More details as to a language and system 
structure on a specific computer (the SDS 910) 
are to be found in the paper by McFarland, 
Fitzwater and Stewart 4. 

4.1 Language for the Description of the Ex­
ample. 

Let a consequent procedure have the form of 
an ALGOL procedure whose main program is 
the parent task. The procedure body is a block 
and contains no further blocks. The procedure 
statement is replaced by a subtask call with the 
following syntax: 

<Subtask Call> :: == <Procedure Identifier> 
<Activator> 

«Actuator> ; <Actu­
al Parameter List» 

<Activator> :: = <Boolean Variable> 
I <State of a Variable> 

<State of a Variable> :: = r <Variable>]. 

The state of a variable (active or inactive) is a 
Boolean variable associated with each variable. 
We will place the further restriction that a sub­
task call may not be used in a compound state­
ment or in a simple or priority subtask. 

The coding body of a simple task may be 
written in a machine language code which is 
otherwise unspecified. 

Two pseudo blocks which are executed only 
once each may be included as the first and last 
statements in the body of a procedure. These 
are defined by enter" 'end or exit· . 'end with 
enter or exit replacing a begin. An enter block 
is executed only on first entrance and in a non-
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priority mode. An exit block is executed just 
prior to the subtask completion exit and is al­
ways executed in a non-priority mode. 

In order to simplify the language description 
given here, we will use descriptions of state­
ments in place of the statement when the ex­
plicit syntax for such a statement has not been 
given. Such descriptions will be placed be­
tween parenthesis to prevent confusion with 
comments. 

4.2 Description of Example. 
This example involves the control and logging 

of data from a simple ~xternal device and will 
illustrate the interactions of various priority 
and non-priority tasks. The same types of in­
teractions, although there might be no need for 
priority tasks, would occur in some data proces­
sing applications. 

Let us suppose the external device has three 
asynchronous processes. Process one sets a 
value of a variable and holds it during the re­
maining two processes. We may modify cer­
tain device parameters so as to cause the vari­
able value to assume the desired value. The 
second two processes are very similar but are 
not sequentially related. We may initiate either 
process and at a later time (signalled by an in­
terrupt) we may read in a vector of 3 values 
for each process. Computations using these 
values then produce a new setpoint for the first 
process which is set and held dynamically for 
the remaining two processes. The value of each 
setpoint is typed out and a wait, if necessary, is 
made to prevent stacking demands on the type­
writer. 

In case of failure, for any reason, to com­
plete the above cycle within a specified time 
limit, we will assume some disaster has oc­
curred, shut down the external device and re­
move the task tree from storage as an emer­
gency measure. The system will so notify the 
user. 

The operator may change the value of the 
Boolean variable QUIT to true and cause the 
task tree to finish· normally. 

4.3 Coding for Example. 

The user would request the task called 
MEASURE and supply appropriate values for 

its parameters. The meaning of the param­
eters in MEASURE is as follows 

P A, PB-define the priority interrupt en­
trance. If· an interrupt associated with 
P A occurs, the priority subtask associated 
with PA will be entered in the priority 
mode. If the subtask does not exist, it will 
be ignored. 

LIMIT-is the integral number of clock in­
terrupts which must be received before 
disaster is assumed. 

I-is a counter for clock interrupts. It may 
be reset to zero at any time. 

QUIT-is a Boolean variable which, if true, 
requests cessation of operation. 

D-is a range bound on the value of the vari­
able C. 

N A, NB-are the norms of the vectors A, B. 
A, B-are vectors whose values are obtained 

from the external device. 

C-is the value to be held in the external de­
vice by the first process. 

READY-is a dummy Boolean variable de­
noting that the setpoint has been reached. 

The enter block will establish the priority 
subtasks HOLD and TIME which will remain 
active for the duration of the control task. This 
block is executed only on first entrance to the 
task MEASURE. 

The subsequent entries to the task, MEAS­
URE, will be made at the first statement fol­
lowing the enter block. Subsequent entries will 
be made at the completion of any subtasks of 
l\iEASURE. 

The calling of the evaluate subtask will be 
considered only if its input data, N A and NB, 
are available and the last value of C has been 
logged. 

The remaining subtask calls will be made if 
during execution of the task body (an activa­
tion scan) their activators are true. The acti­
vator for a subtask will be set false at comple­
tion of that subtask. Note that the order is not 
important since any order of the remaining 
statements will produce the same results. 

Since the scheduling of the subtask calls is a 
function of currently available storage and of 
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the occurrence of the priority interrupts the 
programmer does not know how much overlap 
of subtasks will actually occur on each measure­
ment cycle. If storage is temporarily restricted, 
the subtasks would be executed one at a time in 
sequence. If the response to INPUT1 is very 
fast, NORM (A; A, NA) may be executed dur­
ing INPUT2 and while TYPE is operating. 
The system will automatically take advantage 
of such overlapping and will give the best re­
sponse, on each cycle, that is possible under the 
conditions then prevailing. 

complex MEASURE (PA, PB, D, LIMIT, 
QUIT); priority P A, PB; real D; integer 
LIMIT; Boolean QUIT; begin real N A, NB, 
C ;real array A, B [1 :3] ; 

subtask EVALUATE, HOLD, TIME, IN­
PUT 1, INPUT 2, TYPE, NORM; Boolean 
P, READY; 
integer I; 
enter C: = 0.0; [C]:=true; READY:= 

false; HOLD ([C]; C, READY, QUIT, 
I) ; TIME ([C]; LIMIT, I, QUIT) ; 

end entrance block; 
'if QUIT t1J,en go to EXIT 
if [NA] and [NB]and-[C] then P :=true 
else go to SKIP; EVALUATE (P; NA, 
NB, C, D); 

SKIP: NORM ([A]; A, NA) ; 
NORM ([B]; B, NB) ; 
INPUT1 (READY; A, PA) ; 
INPUT2 (READY; B, PB) ; 
TYPE ([C]; C); 

EXIT: end MEASURE 

The subtask HOLD is a clock priority rou­
tine. This implies that an entrance to the body 
of the subtask will be made in the priority mode 
each time a clock interrupt occurs. The enter 
and exit blocks are executed only once and in 
the non-priority mode. The variables declared 
in hold have the following meaning; 

X-is assigned the value at the external ad­
dress DIAL. 

DIAL-is an address which selects the reg­
ister in the external device holding the value 
to be assigned to X. 

ERROR-is the discrepancy between the 
setpoint and the current value of DIAL. 

The enter block initializes the mode switch 
to hold and requests an entrance on the next 
clock interrupt. This is executed in the non­
priority mode. Subsequent priority mode en­
trances are made at the first statement after 
the enter block. 

If the error is large, HOLD assumes that 
a new setpoint has been requested and READY 
is set false. When the error has been reduced 
to an acceptable value, READY is set true to 
initiate the appropriate subtask calls in the 
parent task. An activation scan of the parent 
task is requested to give the parent the oppor­
tunity to make such calls. 

The normal exit from the priority mode sec­
tion of HOLD is made by requesfing another 
clock interrupt and releasing control. 

This subtask will complete only when QUIT 
is true by requesting its removal at a later time 
in the non-priority mode and releasing control 
to the interrupted coding. The system will then 
enter the coding body and execute exit block in 
the non-priority mode. This results in a return 
to the parent task and the destruction of this 
subtask. 

clock priority HOLD (A1, A2, QUIT, I) ; 
real A1,; Boolean A2, QUIT; integer I; 

begin real X, ERROR; external address 
DIAL:=1234; 

switch MODE:=SET, HOLD; integer N; 
enter N:=2; (REQUEST CLOCK IN­
TERRUPT) end if QUIT then go to 
DONE; 

(INPUT VALUE AT DIAL AND AS­
SIGN TO X); 

ERROR:= X - A1; go to MODE [N]; 

SETC: if ABS (ERROR) < 0.01 then 
begin [A2]:= true; N:= 2; 1:= 0; 
comment this resets the time limit clock 
count; 

(REQUEST ACTIVATION SCAN OF 
PARENT) end; 

CORRECT: (INITIATE APPROPRIATE 
CORRECTIVE ACTION TO HOLD ER­
ROR AT A MINIMUM); (REQUEST 
CLOCK INTERRUPT); (RELEASE PRI­
ORITY); 
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HOLDC: if ABS (ERROR) >0.5 then begin 
[A21:== false; N:== 1 end; go to COR­
RECT; 

DONE: (REQUEST PRIORITY TASK 
EXIT); (RELEASE PRIORITY CON­
TROL); exit (SHUT DOWN HOLDING 
ACTION) end 

end hold 

The subtask TIME is a clock priority routine 
which counts clock interrupts. If the limit is 
reached emergency action is taken. This sub­
task is active during the operation of MEAS­
URE and does nothing but count unless QUIT 
is true or LIMIT is reached. If QUIT is true, 
the subtask completes in the same fashion as 
hold. If the limit is reached, something is be­
yond control and the entire device is shut down 
and a request to eliminate the entire task tree 
is made of the system. When this is accom­
plished, the system will so notify the user. 
clock priority TIME (LIMIT, I, QUIT) 

integer LIMIT, I; Boolean QUIT; 

begin 
enter I: = 0; (REQUEST CLOCK IN­
TERRupT) end; if QUIT then go to 
DONE" 
I: == I + 1; if I == LIMIT then 
begin (SHUT DOvVN EXT ERN A L 
EQUIPMENT) ; 

(REQUEST EMERGENCY ERASURE 
OF TASK TREE) ; 

DONE: (REQUEST PRIORITY TASK 
EXIT) 
end LIMIT REACHED 
else (REQUEST CLOCK INTERRUPT) ; 

(RELEASE PRIORITY CONTROL) 

end time 

The INPUT 1 and INPUT2 subtasks are iden­
tical, at least to the degree of coding appro­
priate here, and only differ in the external de­
vice addresses which are used to obtain infor­
mation. We will discuss only INPUT 1 which 
uses formal parameters corresponding to actual 
parameters which have been discussed. 

INPUTI is a priority routine whose body is 
executed only once. The enter block sets up the 
priority entrance and initiates the external 
process which will, at a later time, give the de-

sired priority interrupt, PI, which signals that 
the values of Al are ready to be read. 
priority INPUTI (AI, PI) ; 

priority PI ; real array Al ; 

begin 
enter (REQUEST P RIO R I T Y EN­
TRANCE ON PI); 

(INITIATE EXTERNAL ACT ION 
WHICH CAUSES PRIORITY INTER­
RUPT PI) 

end entrance set up; 
(INPUT EXTERNAL VALUES OF Al 
AND ASSIGN TO AI) ; 
(REQUEST PRIORITY TASK EXIT) ; 
[AI] : == true; 
(RELEASE PRIORITY) 

endINPUTI 

The· remaining subtasks, E V A L U ATE, 
NORM and TYPE, are simple non-priority 
routines that are executed only once per call 
and return control to the parent task. The 
actual parameters used in the calls have been 
discussed and there is little more to say about 
these subtasks. 

simple EVALUATE (AI, A2, A3, A4) ; 
real AI, A2, A3, A4; 
begin A3:==(Al + A2)/(Al x A2) + A3 
+0.5; 

if A3 < A4 then A3: == A4; 
[A3] :== true; [AI] :==[A2]: false 

end evaluate 

simple NORM (A, N) 
real N; real array A ; 
begin N: == (A [1] i 2 + A [2] i 2 + A [3] i 
2) i 0.5; [N]: == true 
end norm 

simple TYPE (AI) ; 
real AI; 

begin (TYPE VALUE OF AI) end type 

5.0 SYSTEM REQUIREMENTS. 

A system of the structure described may be 
operated on many levels. It might be used as 
shown in the example within a single processor 
or it might be used in such a fashion that the 
activation of a subtask calls into play a whole 
subset of a man-computer-machine complex. 
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Some of the subtasks might be performed by 
people while other people controlled the overall 
tree structure by making appropriate requests 
of the system. In a multprocessor system it is 
not necessary but it may be desirable to spe­
cialize one of the CPU to perform the allocation 
and scheduling operations. Such specialization 
could also allow queue control and the subse­
quent use of the more general activation con­
cept previously discussed. A small associative 
memory would be advantageous for storage of 
activator parameters. Indeed, this latter or­
ganization is a very intriguing way to consider 
multi-processor systems. We will, however, 
confine our subsequent remarks to a single 
processor system. 

We have implicitly considered that the single 
processor has a secondary (or multi-level) store 
which has a size sufficient to maintain total 
library control and transient data storage. We 
are not so concerned about transfer rates be­
tween primary and secondary storage so long 
as average rates are satisfactory. Critical re­
sponse loops may be closed through priority 
routines which have been installed before the 
high speed loop is initiated. 

The most significant demand on core space 
arises from currently active priority tasks 
which must occupy storage until their task is 
done in order to give short reflex times. If 
longer reflex times are suitable, a small inter­
rupt routine can activate a non-priority task to 
do the job. 

Dynamic allocation of primary storage is a 
critical factor and can easily become the most 
time consuming part of the system which other­
wise has a very low duty cycle that is optimum­
ly phased with the workload. It is still feasible 

to relocate subtasks as they are entered but it 
would be much more desirable if routines could 
run wherever they happen to be without reloca­
tion. 

The system itself requires only a small 
amount of core storage for the control program 
and tables and may itself extend into subtasks 
for auxiliary operations or extension of facili­
ties. 
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THE JET PROPULSION LABORATORY 

EPHEMERIS TAPE SYSTEM 
E. G. Orozco 

Jet Propulsion Laboratory 
Pasadena, California 

INTRODUCTION 

Predictions of the motion of celestial bodies 
can be presented in tabular form .. These tables, 
called ephemerides, list position as a function 
of time. Positions at any time point within the 
range of the table can be obtained by inter­
polation. 

Ephemerides are required in the solution of 
problems associated \:trith space exploration. The 
solution of these problems is primarily accom­
plished with the aid of digital computers. 
Ephemerides are generally tabulated on mag­
netic tape to make them acceptable for use by 
computers. 

The .Jet Propulsion Laboratory has, in the 
past, developed tape ephemerides. Figure 1 
summarizes the contents of these tapes and the 
programs used to read and interpolate the data. 
Because of increased accuracy demands, these 
tapes are no longer adequate. 

The Ephemeris Tape System was established 
solely to meet JPL's needs, but the ephemeris 
tapes generated and the program used for read­
ing and interpolating the ephemerides will be 
useful to anyone doing interplanetary trajec­
tory work. 

GENERAL SYSTEM DESCRIPTION 

The ephemeris data generated by the JPL 
Ephemeris Tape System covers the period from 
1950 to 2000. They include tabulations in 
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rectangular coordinates of position and velocity 
components of the Moon and the nine planets. 
In addition, nutations in longitude and obliquity 
are included. Modified second and fourth differ­
ences of these quantities are tabulated for pur­
poses of interpolation. 

Numerical differentiation of tabulated posi­
tions is too inaccurate for problems in which 
planetary velocities are critical. For these criti­
cal cases, planetary position and velocity are 
simultaneously obtained from a solution of the 
equations of motion for the planet. The posi­
tion and velocity components thus generated 
are mutually consistent with gravitational 
theory to high precision and are the best fit in 
the least squares sense to source posi tion 
predictions. 

No set of predicted motions now available 
can be considered final. Accordingly, the JPL 
Ephemeris Tape System is designed to permit 
the easy updating of data for any body or 
bodies. 

Positions and velocities are carried as double 
precision floating point numbers (that is, to 
about 16 decimal places). This allows for pre­
dictions more accurate than those now avail­
able to be readily assimilated into the Ephemeris 
Tape System. 

The JPL Ephemeris Tape System is designed 
to prevent degradation of the accuracy of source 
data during the data processing. The use of 
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Figure 1. 

double precision contributes toward this end. 
Intervals of tabulation were chosen so that 
interpolation yields accuracy consistent with 
tabulated values. Formal procedures for check­
ing each step of the processing are included to 
insure that the published ephemerides are free 
from error. 

An interpolation program has been written 
to read and interpolate the JPL Ephemeris 
Tapes. This program includes a number of 
useful options along with the interpolation 
capability. Coordinates referenced to any of 
the tabulated bodies as center may be obtained. 
Units may be AU's and AU's per day or Kilo­
meters and Kilometers per second for the 
planets. For the Moon, coordinates may be ob­
tained in Earth radii and Earth radii per day 
or Kilometers and Kilometers per second. Posi­
tion data only, velocity data only, or position 
and velocity data together may be obtained. 
Data for all the bodies on the tape or any 
subset of these are available as desired. Any 
date between 1950 and 2000 is available for the 
ten bodies on the tape. 

SOURCE THEORY EVALUATION 

Source position data as generated from the 
theory are kept in a source tape library. The 
data included in the current JPL Ephemeris 
Tape are the most accurate predictions of lunar 
and planetary motion available. At the present 
time the best source theory for the Moon is 
the Brown Improved Lunar Theory. The New-

comb theories are used for Mercury, for Venus 
and for the Earth-Moon barycenter, with cor­
rections to the mean elements deduced for Mer­
cury by Clemence and for Venus and the Earth­
Moon barycenter by Duncombe. The provisional 
Hansen-Clemence theory is used for Mars. For 
the outer planets, the source data are obtained 
from the numerical integration by Eckert, 
Brouwer and Clemence, ,vith corrections de­
duced by Clemence to transform the data to 
heliocentric coordinates. 

Velocities are generated by numerical differ­
entiation for the Moon, Mercury and Neptune 
and by solution of the equations of motion for 
the other planets. The solution of the equations 
of motion for each body is done by a program 
that includes a linear regression scheme that 
generates and applies differential corrections to 
the initial position and velocity until satisfac­
tory least squares fit to the source data is ob­
tained. The perturbing attractions of the other 
eight planets are computed from positions ob­
tained from the current Ephemeris Tape. The 
integration step size is chosen so as to insure 
twelve-figure accuracy in the calculated posi­
tions. The final corrected values of initial posi­
tion and velocity are used to initiate a final 
numerical integration. The position-velocity 
output tape is written during this final iteration. 

OPERATION 

The position-velocity tapes (source and 
fitted) are processed by a program which cal-
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culates the sixth order central differences of 
the data. These differences are plotted. Any 
missing point or inconsistent data cause large 
discontinuities in the plots of differences. Any 
such discontinuities cause rejection of the data. 

Accepted data tapes are processed to calcu­
late second and fourth modified differences of 
the position and velocity coordinates. A new 
tape is then written for each planet containing 
the position-velocity coordinates along with 
their associated modified differences. 

These tapes are then merged onto a JPL 
Ephemeris Tape containing data for all ten 
bodies. The data for ten bodies are buffered and 
overlapped for convenience of interpolation. 
Due to the amount of data involved, three tapes 
are required to contain the fifty year span from 
1950-2000. Figure 2 summarizes the contents 
of these tapes. 

A consistency check is made between the JPL 
Ephemeris Tapes and the data on the pertinent 
position-velocity tapes. This assures that no 
points have been lost or displaced. 

Using the modified differences to interpolate, 
a tape is written carrying the positions and 
velocities of a given body at the midpoint of its 
tabulated dates. These tapes are processed as 
source tapes and plots of sixth differences from 

8'l'BP KtIIBEII 
DlTA T!PI SIZE 07 

(DlYS) W<BDS 

JIg 0.5 612 

MEBCtJRI 2.0 180 

VEItl8 4.0 1.08 

lWl'l'B-IIXII BAlaC!II'JD 4.0 1.08 

IWI8 4.0 loS 

JUPl'l'.IIl 4.0 1.08 

SA'l.'tlRK 4.0 1.08 

UBAIIUS 4.0 1.08 

JEPmIE 4.0 1.08 

PLU'l'O 4.0 1.08 

lIUTA'lICBS 0.5 204 

these tapes are checked to insure consistency of 
the modified differences. 

DOCUMENTATION 

A document describing the data on JPL 
Ephemeris Tapes is prepared when a tape is 
ready for distribution. This document includes 
a description of the theory from which each 
body's data are generated. A statement as to 
the accuracy of the data is included for each 
body. Checks performed on the data are men­
tioned. If the data was fitted using the integra­
tion program, this is pointed out. And, finally, 
the plots used in checking the data are included 
in this document. The Stromberg Carlson 4020 
plotter is used for this purpose. An example 
is given in Figure 3. 

DISTRIBUTION 

The first JPL Ephemeris computer package 
is currently available for distribution. The dis­
tributed package includes a user's guide, an 
interpolation program, a document describing 
the tape contents and three magnetic tapes 
containing the ephemerides information. 

Distribution of these tapes is being handled 
h"T i-},.,,.,. T,.,.i- n".",,,,,,.,ln~"',..,. T ""h",,,.,,,,i-,,,,,. .. ? .. u;i-l-. i-l-.~ ""'" /JoY I.oU~ ., ~I.o .J...1. VPU.li:).lV.U .J.....ja,/JV.I. a,I.oV.I..Y vv .1.1.011 1.0111:: ~A-

ception of those involved in the Apollo project. 
Distribution for Apollo is being done directly 
by NASA. 

ICRMAl' 

General. f'ormat f'or all ~ data is double precision: 
1. X Ccaponent of' Position 
2. Second Modified Difference X Caaponent of' Position 
3. Fourth Modified Difference X Component of' Position 
4. Y Component of' Pod tion 
5. Second Modified Difference Y Component of' Position 
6. Fourth Modified Difference Y Caaponent of' Position 
7. Z Component of' Pod tion 
8. Second Modified Difference Z Component of' Position 
9. Fourth Modified Difference Z Component ot Position 

10. X Component of' Velocity 
11. Second Modified Difference X Cauponent of' Velocity 
12. Fourth Modified Difference X Component of'Velocity 
13. Y Caaponent of'Velocity 
14. Second Modified Difference Y Caaponent of'Velocity 
15. Fourth Modified Difference Y Caaponent of'Velocity 
16. Z Component of' Velocity 
17. Second Modified Dif'f'erenee Z Component of' Veloe1 ty 
lB. Fourth Modified Difference Z Component of'Velocity 

llutationa are expressed u s1Dgle precision values IIDd 
include nutation in longitude, nutation in obliquity, 
nutation rates, IIDd second IIDd f'ourth IIIOdified differences 
f'or each. 

(1) Each record eontain8 a double precision Julian date. 
(2) Each record eonta.1na a eheelt BUll of' the l.862 data lIOrda. 

Figure 2. 
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JPTRAJ 

(THE NEW JPL TRAJECTORY MONITOR) 
Nicholas S. Newhall 

Jet Propulsion Laboratory 
Pasadena, California 

INTRODUCTION 

The Jet Propulsion Laboratory of the Cali­
fornia Institute of Technology is under contract 
to the National Aeronautics and Space Admin­
istration to conduct space projects such as 
Ranger, Mariner, and Surveyor. These projects 
require an enormous amount of computer sup­
port in both trajectory design and spacecraft 
tracking. To this end, three IBM 7094 systems 
are always available, and other equipment is 
operational during a mission. 

A multitude of computer programs must be 
run for adequate mission work. These pro­
grams entail every facet of space flight-from 
preliminary conic studies to real-time orbit 
determination and midcourse maneuver-and 
represent the results of years of effort on the 
part of programmers. Each is structurally 
self-contained and operates alone on the 7094. 

In the past, trajectory design was accom­
plished by running a series of individual pro­
grams one at a time and hand-carrying the 
results between them. The mission programs 
had either to operate their links individually or 
to run them successively and share blocks of 
common data. The Laboratory needed a sys­
tem which would incorporate the execution and 
communication between (perhaps) independ­
ently written programs. A means of providing 
a flexible modification and checkout scheme was 
required. The system developed to meet these 
needs is JPTRAJ, the JPL Trajectory Monitor. 
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The use of JPTRAJ for design and mission 
work is illustrated in Section I. Through an 
example of the design of an Earth-Moon tra­
jectory, it is shown how JPTRAJ is used to 
run a single sequence of programs. Real-time 
operation demands the interruptible execution 
of many such sequences. This feature along 
with the internal operation of JPTRAJ and the 
debug capability is described in Section II. 

1. USER CONTROL OF JPTRAJ 

Much computer time at JPL is devoted to 
the design of Ranger lunar trajectories. The 
design consists of five steps on the IBM 7094: 

1. The Near-Earth Conic program selects 
analytically approximate launch time and 
burnout energy of the optimum trajectory 
(Fig. 1). 

2. The Powered Flight program simulates a 
rocket burn to compute position and 
velocity at injection (burnout) as shown 
in Fig. 2. 

3. The Space Trajectories program from this 
point integrates numerically the flight 
path to the Moon (Fig. 3). 

4. The Search program recomputes launch 
data, if the lunar impact point differs 
from the desired one~ and reruns steps 2 
and 3 until desired impact has been at­
tained (Fig. 4). 
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Figure 1. Approximate trajectory computed by 
Near Earth Conic. 

5. The TV Constraints program uses ter­
minal conditions (outlined in Fig. 5) from 
steps 3 and 4 to produce quality informa­
tion about lunar television pictures. 

The following set of figures illustrates the way 
this sequence can be set up for JPTRAJ. Rather 
than run the programs singly, mnemonic names 
for them are adopted and listed in Fig. 6 in 
the order in which they are to be executed. ' 

Input data, such as initial launch azimuth 
(direction), are needed. In Fig. 7, each pro-: 
gram name is followed by the data intended 
for it. 

The transfer of computed data from one pro­
gram to the next can be effected by the use of 
cards, as shown in Fig. 8. Symbols to the left 
of the program names may be used for refer­
ence to a specific word or line in the example. 

The data transfer ( or WANT) instructions 
are placed after the program that is to receive 
the data. They denote symbolically which pro-

Figure 2. Trajectory segments integrated by 
Powered Flight program. 

8TH 

LAUNCH 

I , 
\ 
\ ' ..... _-

Figure 3. Numerically integrated trajectory computed 
from injection conditions supplied in step 2. 

gram is to generate the data. The WANT after 
POWER may be read: "Launch time (LT) 
and energy at burnout (EBO) are needed from 
the program at symbolic location A" (NECON 
in this example). Step 4 in the example indi­
cates that POWER and SPACE will be rerun 
as often as necessary. SEARCH is the driver 
and must be reentered each time SPACE com­
pletes execution. It may be denoted symbolically 
by the GO card shown in Fig. 9. 

At this point, if compared with the five steps 
above, Fig. 9 will be seen to represent the logic 
flow. One may question the fact that when 
SEARCH first executes after NECON, it will 
attempt to read computed data from SPACE, 
which has not executed before. However, 

Figure 4. Converged trajectory resulting from 
Newton-Raphson Search. 
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SEARCH ignores any transferred data on the 
initial entry, using them only on subsequent 
entries. A more serious problem is that SPACE 
will eventually indicate that desired impact has 
been attained. The GO statement must be by­
passed so that the TV program may execute. 
Under JPTRAJ, SEARCH (and, in fact, any 

Figure 5. Phase of trajectory used for television picture 
analysis. 

NECON (NEAR EARTH 
CONIC) 

SEARCH (SEARCH) 

POWER (POWERED 
FLIGHT) 

SPACE (SPACE TRA-
JECTORIES) 

TV (LUNAR TV 
CONSTRAINTS) 

Figure 6. Mnemonic names for programs. 

NECON 
Ar. = 102.0 

SEARCH 
POWER 
SPACE 
TV 

Figure 7. Specifying input data for a program. 

A NECON 
Al=I02.0 

B SEARCH 
WANT D,EC 

C POWER 
WANT A,LT,EBO 

0 SPACE 
WANT C,R,V 

E TV 
WANT D,EC 

Figure 8. Transferring computed data between 
programs. 
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A NECON 
Ar.=I02.0 

B SEARCH 
WANT D.EC 

C POWER 
WANT A.LT.EBO 

0 SPACE 
WANT C.R.V 

GO B 
E TV 

WANT D.EC 
Figure 9. The use of a GO card to direct program 

execution. 

program) is capable of selecting a computed 
branch or transfer after execution. The symbol 
E to the :right of SEARCH in Fig. 10 means 
that the Search program will exit to the pro­
gram at location E (the TV program) when 
desired impact is reached. 

The configuration of symbols and numbers 
shown in Fig. 10 is precisely that punched on 
cards and used as input to the computer. It is 
seen to resemble a limited programming lan­
guage, treating whole programs as built-in 
functions. Such a deck of cards is called a 
source deck. Most JPTRAJ source decks will 
contain a much larger percentage of data cards, 

A NECON 
Al.-I02.0 

B SEARCH E 
WANT D. EC ( EC-END CONDITIONS) 

C POWER ( LT-LAUNCH TIME l 
WANT A. LT. EBO EBO-ENERGY AT BURNOUT I 

D SPACE 
WANT C. R.V t ~:~~Jb~~y } 

GO B 
E TV 

WANT D.EC 

Figure 10 

which were omitted here for clarity. When the 
actual cards are punched, an asterisk (*) must 
occupy column 1 of any card that is not a data 
card, and an END card (shown in Fig. 11) 
must be the terminal card of every source 
deck. 

Such is the type of input to JPTRAJ on the 
standard system input tape. This example has 
shown how a user- can create a single sequence 
of programs to execute. In the following sec­
tion, we shall see the treatment of a source 
deck by JPTRAJ, and how many such sequences 
can operate intermittently on a time-sharing 
basis during a mission. 

II. INTERNAL OPERATION OF JPTRAJ 

All programs in use by JPTRAJ reside from 
day to day in permanent storage on the disk 
file. When a program is requested in a source 
deck, it is read from the disk file into 7094 core 
storage. It is never overwritten on disk during 
execution. If it is called later, it will again be 
read in fresh from the disk file. 

JPTRAJ may be broken internally into four 
sections: 

1. Compiler 
2. Monitor 
3. Loader 
4. Debug 

* A NECON 
A~=102.0 

* 8 SEARCH E 

* WANT D.EC 

* C POWER 
* WANT A.LT.EBO 

* D SPACE 

* WANT C.R.V 

* GO 8 

* E TV 

* WANT D.EC 

* END 

Figure 11. An entire source deck. 
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Compiler and Monitor 

\Vhen a source deck is submitted as input, 
the Compiler makes two complete passes over 
it and translates it into a block of specially con­
structed words called an object string. (This 
is analogous to the operation of a standard com­
piler. The object string is merely an encoded 
form of the source deck.) The object string 
is stored in a reserved area on the disk file. At 
this point, the Compiler is no longer needed and 
will not be referenced again. The Monitor, a 
small, 640-word program, is now read from disk 
into core. I ts sole task is to interpret the ob­
ject string generated by the Compiler. By 
proper interpretation, the Monitor performs all 
reading of programs, saving and transferring 
of data, and executing of programs. It is in 
core storage at all times during execution. 
Figure 12 shows a simple flow of source deck 
processing. 

This approach was adopted in lieu of a sim­
ple card interpreter because excessive machine 
time would be required for processing a source 
deck. The number of disk accesses needed for 
such an operation would be more than twice 
that for the existing system. This method also 
is a powerful tool for real-time mission opera­
tion. A mission can be broken into three cate-
gories: orbit determination, midcourse maneu­
ver, and telemetry processing. Requirements of 
incoming data require frequent operation of the 
Data Editing program, not part of JPTRAJ. 
This demands interrupt and time-sharing capa­
bility of the three mission categories. Orbit 
determination may be in operation when inter­
rupted for data editing and then the telemetry 
section may be started. Each of these cate­
gories is represented by a JPTRAJ source deck 
naming the appropriate programs. For mission 
work the JPTRAJ Compiler may be called sev­
eral successive times, each time to compile a 

Figure 12. Source deck processing. 

separate source deck. By means of the DECK 
card shown in Fig. 13, a source deck may be 
assigned to a particular task. The resulting 
object string is stored in the correct one of sev­
eral pre-specified areas on the disk file. Then, 
when the midcourse maneuver, for instance, is 
to be performed, the associated object string is 
interpreted by the Monitor. If interrupted, in­
terpretation will resume later at the proper­
point. 

The passage of data between programs is ac­
complished during execution as follows: When 
the program generating the data has completed 
execution, the data specified on the WANT 
cards are set aside in a buffer within the Moni­
tor. Then, when the program needing the data 
is about to execute, the data are recalled from 
their "saved" area and inserted into the speci­
fied locations. The Monitor's buffer contains 225 
locations, and ample disk storage is available 
for overflow. A total of 9,000 words may be 
saved on WANT cards per source deck. 

Note that data passage between programs 
within a single source deck is completely free, 
but that there is no facility to pass data be­
tween difJ erent source decks. If programs in 
separate source decks are to share data, such 
communication must be programmed into them. 

Items on data cards are converted and saved 
within the object string itself. A GO card 
merely transfers interpretation to the appropri­
ate object string word. 

Loader 
The Compiler and Monitor are employed only 

for the execution of programs, and operate for 
real-time or production work. 

Figure 13. The DECK card and its position. 
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The remaInIng section of JPTRAJ, the 
Loader, is used for program editing and can be 
operated as a non-real-time feature only. The 
Loader enables a programmer to add new pro­
grams to disk storage, delete unwanted ones, 
and change existing versions. Any number of 
programs may be loaded simultaneously, and 

ENTRY POINTS TO SUBROUTINES REQUESTED FROM LIBRARY, 

compilations, assemblies, and binary object 
decks may be included with each program. A 
library search is performed for any requested 
subroutines not included with the submitted 
decks. Upon completion, the Loader prints a 
core storage map, as illustrated in Fig. 14, and 
writes the program on the disk file. If a source 

OEFII~E ltTTACH UPEN READD PROUT CLOSE 

THE NAME riF THIS PROGRAM IS IJPTAP I 8/01/64 

ENrRY NAME ENTRY ADO. TRANSFER VECTORS LOAl) ADO. OCTAL LENGTH DE:CIMAL LENGTH COMMON BREAK 
22331 DEFINE 22300 36616 15758 77461 

ATTACH 
OPEN 
READO 
PROUT 
CLOSE 

PROUT 61132 OUTUS 61116 02631 01439 
FGOOUT 62301 ACTIND 
PRCNV 61211 BFlG 
PROUT2 61204 RESTKA 
PROUf3 61210 REQIND 
TSU 63200 WRI TE 

PRCON 
RGGSAV 
RGGSTR 
CKIND 
CKACT 

REAOt> 61756 I IOU) 631')5 00365 00245 
READS 63760 
WR ITF:D 63763 
WRITEB 63765 
BSREC 64174 
8SFIlE 64117 
REWIND 64202 
UNLOAD 64205 
ENOFIL 64210 
SETlOW 64166 
SETHI 64171 
CUNIT ) 64336 
TAPEIO 64336 
, IOU) b434~ "NONE" 64342 00030 00024 
aUTU::. 64374 RGGSAV 64372 02320 01232 
8FlG 65227 RGGSTR 
EHoour 64760 
CKINO 66622 
CKACT 6666~ 

REQIND 66621 
ACTI"lO 66620 
RESTKA 66616 
PllCUN 66701 
PL2CUN 66702 
Pl3CON 66703 
PRCO"l 66704 
RGGSAV 66712 'NONE' 66712 00133 00091 
RGGSTR 66774 
10CS 67046 CLOCK 67045 04335 02269 
DEFINE 67047 
JOIN 67052 
ArTACH 6705':> 
CLOSE 67060 
OPEN 67063 
READ 67066 
WRtH: 67071 
COPY 61074 
REw 67071 
WEF 67102 
BSR 67105 
8SF 67110 
STASH 67113 
CLOCK 73405 "NONE' 13402 00106 00070 
MINUTE 73402 
XMIN 73402 

LOAllING ACCOMPLISHED 

UNUSED CORE LIES fRO~ 73510 THROUGH 77461, LEAVING 03752 OCTAL OR 02026 DECIMAL LOCATIONS. 

Figure 14. A typical core storage load generated by the Loader. 
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deck follows a program deck, it is executed 
after the program has been loaded, thus pro­
viding a "load-and-go" operation. 

The Loader can accept symbolic patches to in­
dividual binary object decks. Patches must im­
mediately follow the intended subroutine, and 
facility is included for increasing its length if 
necessary. The patches may be in either fixed 
or floating point decimal or in octal form. Relo­
cation will be performed if specified. Figure 15 
shows a card which will insert a TRA * + 3 at 
location 2208 within a subroutine. 

Debug 

Undoubtedly one of the most powerful fea­
tures of JPTRAJ is Debug. It offers the user 
a means of obtaining selective core snapshots in 
any mode and at any desired frequency, and 
does not decrease the amount of core storage 
provided a program. The debug cards are placed 
in a source deck much like data for the intended 
program. They do not accompany the binary 
deck, so the program need not be reloaded if 
snaps are desired. 

Debugging is done on the basis of locations 
relative to a particular subroutine. A typical 
debug card is illustrated in Fig. 16. The card 
may be interpreted from left to right to read: 
in subroutine A, place the snap at location 41. 
Print in floating point mode the contents of 
subroutine B, relative locations 155s through 
267s • This is shown schematically in Fig. 17. 
Whenever the instruction on the dotted line is 
executed by the computer, the hatched area is 
printed in floating point mode. 

The debug cards are processed by the Com­
piler, with the aid of the core storage map gen­
erated by the Loader. This map cross-references 
subroutine entry names and absolute storage 

Figure 15. A symbolic patch for a subroutine binary 
deck. 

Figure 16. A typical debug card. 

addresses. The Compiler translates the debug 
cards into part of the object string and over­
lays them in the program after it is read into 
core storage. The debug instructions are not 
put on the disk and do not affect a program's 
permanent operation. 

As many as twenty debug cards may appear 
in a source deck. The modes of snapping on 
any card include floating point and octal with 
or without instruction mnemonics. The con­
tents of the panel (all registers and indicators) 
may be included on option. 

The one restriction on the use of Debug is 
that it may be used during checkout only. The 
software necessary for real-time data process­
ing does not provide sufficient space for the 
debug machinery. 

III. CONCLUSION 

The New JPL Trajectory Monitor has proved 
to be an invaluable asset to the Laboratory's 

c 
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267 

155 

41 

Figure 17. The meaning of the debug card shown in 
Figure 16. 
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space flight operations. It has been working 
quite smoothly since the end of 1963. At the 
moment, it can operate programs written in 
Fortran II, Version 3 system only, but modi­
fication is under way to interface with the 
IBJOB programming system. Any program 
that operates under JPTRAJ may be operated 
in real-time, so JPTRAJ has, in fact, been 
JLP's only way to debug mission programs. 

It should be evident that nothing limits 
JPTRAJ to space flight programs alone. The 
designation "Trajectory Monitor" is of histori­
cal origin, and, in fact, many non-trajectory 
type programs are operational under JPTRAJ. 
Any IBM 7094 system with disk file storage 
may use JPTRAJ, and modification will be 
completed soon which will allow JPTRAJ to 
operate on a "Direct-Couple" system. 



ACE·S/C ACCEPTANCE CHECKOUT EQUIPMENT 
R. W. Lanzkron 

NASA 
Manned Spacecraft Center, Houston, Texas 

INTRODUCTION 

Since the beginning of the space age, space­
craft have increased· in complexity-progress­
ing from such relatively simple vehicles as the 
V -2 to the sophisticated Saturn, and from 
unmanned satellites to the Apollo three-man 
spacecraft. With the entry of man into the 
system, the complexity increased an order of 
magnitude. 

Two aspects of these manned systems de­
mand complexity: first, those problems involved 
in the life-support requirements for each sys­
tem and, second, the increased requirements for 
reliability and crew safety. Systems are more 
sophisticated; at least one backup and usually 
more are required. The engineer is confronted 
with the difficult task of insuring that the com­
plex system is ready for, launch and that it will 
meet mission and crew safety requirements. 

Final countdown for early missiles took about 
a day. Although countdown in some of the 
small, modern missiles has been reduced to 
one or two hours, the newer and more com­
plex spacecraft still require about a day. More­
over, to insure mission success and crew safety, 
great quantities of data must be monitored in 
real time before launch. This was not previous­
ly the case when real-time monitoring involved 
only a small percentage of the instrumentation. 

To perform checkout and monitor large num­
bers of parameters in real time, automatic 
checkout equipment had to be developed. The 
Manned Spacecraft Center had two other mo-
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tives in developing its automatic checkout 
equipment. First, due to the complex checkout 
procedure and the large booster hazard, check­
out by remote control became essential. Cur­
rent plans call for the checkout equipment to 
be located ten miles from the vehicle. (Auto­
matic checkout lends itself extremely well to 
remote control.) Second, the cost of the space 
program has to be reduced. One of the most 
expensive parts of the space program is its as­
sociated Ground Support Equipment (GSE). 
Therefore~ by standardizing the checkout equip­
ment while it is being automated, the period of 
its use can be prolonged indefinitely. This is 
one of the basic requirements placed on MSC's 
automatic checkout equipment or, as it is called, 
ACE-SIC (Acceptance Checkout Equipment). 

The ACE-SIN System has one other unique 
feature. It combines the capabilities of manual 
and automatic checkout into one system. This 
dual capability was incorporated at the request 
of the system engineers who are still not ac­
customed to completely automatic systems, and 
for whom automation is still in the learning 
process. 

II. ACE-SIC DEFINITIONS 

The ACE-SIC System is composed of two 
main parts: the Spacecraft Unique System 
(carry-on and facility equipment) and the 
Ground System (as shown in Figure 1). 

The carry-on and facility equipment is as­
sociated with the spacecraft, for example, the 
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Figure 1. ACE-S C carry-on and facility 

Command and Service ModuJ e (C & SM) or 
the Lunar Excursion Module (LEM). It con­
sists basically of (1) signal-conditioning equip­
ment which conditions signals transmitted 
from the spacecraft, commutates and digitizes 
them, and finally converts them into serial 
pulse form, and (2) the command system, which 
takes computer outputs and presents them to 
the spacecraft system. These parts are modu­
lar and, by using the building block concept, 
can be used with any spacecraft or flight ve­
hicle. Signal-conditioning is made part of the 
ACE-SIC system to minimize fly-away weight. 
The carry-on equipment is removed from the 
spacecraft 5 hours before launch so that no 
scar and tear weight associated with checkout 
is flown; thus measurements can be taken up 
to the time the spacecraft is sealed. 

The second part, the Ground System, takes 
the serialized data, decommutates it, and dis­
plays it on meters, lights, oscillographs, or al­
phanumeric displays. The Ground System also 
takes system engineering inputs and translates 
them into computer language used for com­
mand of the spacecraft. The ground station is 
the same for both C & SM checkout and LEM 
checkout. 

III. CARRY-ON AND FACILITY 
EQUIPMENT 

The carry-on equipment is divided into two 
par.ts: the Uplink (the Digital Test Command 
System), and the Downlink (the Digital Test 
Monitoring System), as shown in Figure 2. 

A. The Uplink or Digital Test Command Sys­
tem (DTCS) 

The DTCS, in turn, consists of two parts: 
internal and external to the spacecraft. The 
DTCS consists of a receiver decoder, base plates, 
and pluggable modules. The pluggable modules 
are relay and Silicon Controlled Rectifier 
(SCR) modules and Digital-to-Analog Con­
verters (DAC). The receiver decoder, the first 
portion of the system to receive data in a serial 
stream in redundant form, compares the data 
and checks for correct codes. The receiver de­
coder stops incorrect information, signals the 
Ground Stations that it has received erroneous 
data, and indicates the type of error. Informa­
tion may be incorrect because of transmission 
or because of errors in the original data sent 
to the spacecraft. 

From the receiver·decoder, the information is 
routed to the base plate, which stores the power 
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and the pluggable modules discussed above. 
Each base plate contains 4 pluggable modules. 
The systt;;m is modular; any module (relay 
module, SCR, and DAC) can be selected and 
plugged into the base plate. The receiver de­
coder can drive 32 base plates which are 
grouped into 4 groups of 8 plates each. The 
modules again verify that information received 
from the receiver decoder is correct and, by 
looking at the address, that the correct base 
plate and module have been selected. N otifica­
tion of incorrect information and the type of 
error involved is sent to the ground station, 
which may not then execute a command. Should 
there be no error, verification is sent to the 

ground station, and the System Engineer may 
then exectue the command. 

The relay module is used for turning specific 
signals to the spacecraft on or off. The SCR 
module is used for high-speed switching and 
for high current capacity. The DAC modules 
is used for changing the stream of digital data 
into an analog signal. This conversion is re­
quired, for example, in torquing a Gyro, where 
a series of digital commands are sent to the 
vehicle, converted to voltage levels, and in turn 
filtered so that the output is smoothed and 
looks like an analog sine wa ve. The system 
can transmit data in bursts at a rate of 500 k 
bits per second. The basic information is 

Figure 2. ACE-S C block diagram 
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grouped into 24-bit messages. Each message 
consists of two 12-bit redundant words, which 
are checked at the receiver decoder. It con­
tains the information needed to exercise any 
one of the modules. 

In addition to the base plate and its three 
types of modules, there is a special unit, the 
Guidance and Navigation (G & N) Buffer. 
This unit acts as a buffer between the Ground 
Digital System and the onboard G &N com­
puter. This unit is specialized in the sense 
that its output is tailored to a unique digital 
computer. The G & N buffer unit is used for 
storage verification and shift out of the G &N 
digital data. Again, data is verified at the re­
ceiver decoder and in the G & N unit to ensure 
its correctness. Additional precautions have 
been taken with this unit as the G & N is the 
heart of the system. The G & N command uses 
15 bits of the 24 for transmitting information. 
These 15 bits represent the character, its com­
plement, and the character again. The internal 
portion of the DTCS is stored under the left 
couch in the Command Module as shown in 
Figure 3 and Figure 4. The function of the 
DTCS is to exercise the systems aboard the 
Command o:Module. This part of the system is 
removed 5 hours before launch to minimize 
flight weight. The external DTCS is stored on 
the Launch Umbilical Tower (as shown in Fig­
ures 1 and 2) since its prime function is to ex­
ercise the G & N system and the servicing 

equipment. Because the G & N has to be exer­
cised until the last moment before launch, this 
unit operates through the umbilical. 

An equivalent type of equipment exists for 
the system associated with the LEM. In the 
LEM, most of the DTCS functions are available 
outside the LEM. 

B. The Digital Test Monitoring System 
(DTMS) 

The DTMS consists of the following parts: 
the signal-conditioner, the sampling unit, the 
PCM system, the flight PCM system, and the 
interleaver. Because minimizing fly-away 
checkout weight is a requirement, the signal­
conditioning package was made part of the 
carry-on equipment. Again, the package is re­
moved at T-5 hours. 

Signal-conditioning consists of converting 
analog signals from their level to a O-volt to 
5-volt level. It is also used for frequency 
count, glitch detection ( detection of unpre­
dicted spikes), phase comparison, counting, and 
other required functions. 

These signal-conditioners are modular and 
of th~ same size. They can be plugged into 
the main container in any position. If a change 
in the signal type or valve is needed, a different 
signal-conditioner can be plugged into the same 
position in the container. After these signals 
have been conditioned, they are sampled and 

Figure 3. Left hand couch 
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Figure 4. Left hand couch and DTCS 

transmitted to a PCM system, which converts 
them into a serial form. The PCM train, at 
that point, is at the rate of 51.2 k bits per sec­
ond. This information is then combined with 
the information available from the flight PCM 
which is also 51.2 k bits per second, and the 
servicing equipment PCM, also at 51.2 k bits 
per second. Note that the servicing equipment 
also has associated with it a signal-conditioning 
and PCIVI system, which are housed in siightly 
different containers; the same type of modular 
units are used inside the spacecraft. The sys­
tem used to combine the three 51.2 k-bit trains 
is called the interleaver. The interleaver is set 
up to receive four streams of inputs, each at a 
rate of 51.2 k bits per second, to a total stream 

of 204.8 k bits. The interleaver thus has a 
reserve capacity for accepting another 51.2 k 
bits per second. 

The DTMS is divided into two parts: (1) 
the signal-conditioner, the sampling unit, and 
the PCM system, which are located in the space­
craft (as shown in Figures 5 and 6), and (2) 
the interleaver, which is located in the Launch 
Umbilical Tower (as shown in Figure 1). The 
interleaver is part of the facility equipment. 

Because of its shape, the same arrangement 
generally holds true for the LEM system. The 
containers for the signal-conditioners and the 
PCM systems are slightly different, but the 
modular pluggable components are the same. 

Figure 5. Right hand couch 
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Figure 6. Right hand and DTMS 

IV. THE GROUND STATION 

A. General 
The Ground Station consists of three rooms: 

the control room, the computer room, and the 
terminal room (as shown in the artist's concep­
tions included as Figures 7, 8 and 9). 

The terminal room contains the timing sys­
tem, the ground portion of the DTCS, and the 
formatting equipment for the control room. 

The computer room contains the computers 
and associated peripheral equipment, the de­
commutator, which is used to decommutate the 
information from the interleaver, and the trans­
mission equipment for the DTCS. 

The control room contains the control con­
soles at which the systems engineers sit to con­
trol and command the spacecraft systems as 
required. 

B. Downlink 
Figure 10 shows the basic flow for the down­

link. In the figure, information from the in­
terleaver is directly recorded and at the same 
time flows into a decommutator. The system 
has two decommutators which provides re­
dundance and also allows the airborne telemetry 
to be routed through one of the decoms and 
the rest of the information (including the air­
borne telemetry) through the second decom. 
From the decommuntator, the information 

Figure 7. Control Room 
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Figure 8. Computer Room 

flows to the downlink computer, to event stor­
age and distribution units (ESDU), and to the 
control consoles. The decommutator can drive 
the ESDU, which, in turn, drives the event 
modules (Figure 16) on the control consoles. 
The decommutator also drives some 200 meter 
modules (Figure 15) and oscillographs located 
on the control consoles, thus allowing the engi­
neers to watch some of the measurements on 
meters and oscillographs as required. Decom­
mutator output presented to the downlink com­
puter is manipulated by introducing the calibra­
tion information, comparing it to prestored in­
formation, and changing the information into 
engineering units. The downlink computer 
then transmits this information to the Symbol 
Generator and Storage Unit (SGS) via the data 
transmission and verification con v e r t e r s 
(DTVC), and the digital communicator con­
trol unit (DCCD). (These are transmission 
lines and verification units for the digital data.) 

Figure 9. Terminal Facility Room 

The SGS transmits information, when re­
quested, to the Cathode Ray Tube (CRT) which 
displays the alphanumeric information for the 
ACE-C/C. 

On receipt of the coded words from the 
DCCU, the SGS decodes the 12-bit words, strips 
the data out, and stores it in memory locations 
according to received instructions and ad­
dresses. The entire content of the SGS mem­
ory is updated once per second and is scanned 
at a rate sufficient to update all alphanunieric 
displays at least 30 times per second. 

The character repertoire of the SGS enables 
all alphanumeric characters to be displayed to­
gether with a set of special symbols. The SGS 
can also cause characters to blink on the CRT 
screen when so instructed by the computer. 
This blinking indicates an out-of-tolerance con­
dition. Memory allocations in the SGS are 
sufficient to display 20 "pages" of data; a 
"page" consisting of 24 lines of 40 characters 
each, plus two 32-character lines, one at the 
top and one at the bottom of the "page." On 
demand by the System Engineer, the SGS pro­
vides the proper signals to cause the contents 
of any top half-page and any bottom half-page 
to appear on the screen of the requesting CRT. 
Any given half-page can be selected by as many 
as 20 CRT's simultaneously. 

The CRT's utilized for the Alphanumeric Dis­
play System are 10-inch electrostatically de­
flected devices. Besides controls for selecting 
the desired half-pages, the CRT module has 
controls for focusing, brightness, horizontal and 
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vertical centering, and an on/off switch. Any 
given half-page display contains 12 lines of 
identified data in decimal numbers and engi­
neering units. In addition, a single top (or 
bottom) line identifies the page. The CRT 
module, by a special means, can indicate other 
pages that have information in them that is 
out of tolerance. Thus, the display portion of 
the display console consists of event lights 
driven by the ESDU, the meters and oscillo­
graphs driven directly by the decommutator, 
and alphanumeric displays driven by the com­
puter. 

C. The Uplink 

Figure 11 shows the basic flow for the uplink 
(or command link). The uplink starts with the 
systems engineers who have the option to exer­
cise R-START, C-START, and K-START. As 
shown in Figure 12, an R-START module con­
sists of four function switches and an execute 
(XEQ) switch; Figure 12A shows the R­
START panel configuration. Each function 
switch is a backlighted, split-window, pushbut­
ton switch. The two halves of the window are 
independently illuminated. Successively press­
ing a giv~n switch will cause its lower half to 
alternately illuminate and extinguish. The 
upper half is illuminated or extinguished under 
program control by uplink verification as dis­
cussed earlier. The execute switch is an inde­
pendently backlighted, split-legend (XEQ/ 
SEAL), pushbutton switch. The XEQ portion 
is illuminated when the switch is depressed. 
The XEQ portion is extinguished, and the 
SEAL portion illuminated and extinguished, 
under computer control. 

Sp.cecro/t .... 
.,.ecroft 
vicinity 

I I 

The Systems Engineer sets the desired status 
of each of the four relays (at the spacecraft) 
controlled by the R-START module by setting 
the condition of the lower half of each function 
switch; illuminated for a latch command and 
extinguished for an unlatch command. 

Execution of the selected commands is initi­
ated by depressing the XEQ switch. This il­
luminated the XEQ portion of the switch. When 
an uplink verification is received, indicating de­
livery of the command message, the XEQ por­
tion will extinguish, and the upper halves of 
the function switches will illuminate in con­
formity with the lower halves. 

Normally, the data transfer will be so rapid 
that the XEQ light will appear to remain ex­
tinguished. However, status identity of the 
upper and lower half of each function switch 
indicates receipt of the uplink verification. It 
should be noted that the uplink verification only 
confirms proper delivery of the command mes­
sage; it does not confirm actual relay latching 
or unlatching. The Systems Engineer will now 
observe the proper event display meter module 
or oscillograph to obtain downlink verification 
of the relay status. 

The SEAL portion of the execute switch il­
luminates to indicate that the computer has 
SEALed this particular R-ST ART module, 
which prevents it from initiating commands. 
Extinction of the SEAL light indicates that 
the computer has released the SEAL, thus re­
turning the module to normal operation. The 
computer will SEAL an R-START module 
when command transmission difficulty is ex-

A raw lito 

ACE·iC ........ 
,tetien 

Figure 10. ACE-S C downlink 
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·Cue Compute< 
complex 

Figure 11. ACE-S C uplink (DTSC) 

perienced or when under program control, re­
quired by a particular test procedure. 

A C-START module panel (see Figure 13) 
presents ten 12-position rotary s e Ie c tor 
switches, each having an associated relay dis­
play, an execute (XEQ) switch, and an XEQ 
verify light. 

The 12 positions of each selector switch are 
identified by the 10 decimal digits, 0 through 9, 
and the two signs (+) and (-). The readout 
display above each selector switch indicates the 
switch setting by displaying the appropriate 
decimal digit or sign. The execute switch is an 
independently backlighted, split-legend (XEQ/ 
SEAL), pushbutton switch. The XEQ portion 

Figure 12. R-START MODULE 
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Figure 12a. R-START PANEL CONFIGURATION 

is illuminated when the switch is depressed and 
extinguished, under program control, by the 
computer following delivery of the command 
message. Module SEAL is not presently ap­
plicable to the C-START, but the SEAL por­
tion of the execute switch has been provided 
for possible future use. 

The execute verify light is illuminated when 
a valid execute signal is sensed, and remains il­
luminated for 1 to 1lj2 seconds. 

The Systems Engineer sets up the desired 
input command to the computer by appropri­
ately positioning each of the ten selector 
switches. Execution of the selected command 
is initiated by depressing the XEQ switch. This 
illuminates the XEQ portion of the switch. The 
next action will be illumination of the XEQ 
verify light and extinction of the XEQ light 
switch. Normally, the process is so rapid that 
the XEQ switch light will appear to remain ex­
tinguished; hence, the extended illumination of 
the XEQ verify light provides the Systems En­
gineer with an observable indication of valid 
execution. 

The K-START module panel (shown in Fig­
ure 14) consists of a pushbutton keyboard, six 
tape control switches, a tape input display, 
three status displays, and a bank of 24 Apollo 
Guidance Computer (AGC) event displays. 

The keyboard contains 18 pus h but ton 
switches, as shown in Figure 14, for manual 
insertion of binary-coded command messages 
to the AGC. The associated perforated tape 
reader, used for automatic insertion of com­
mand messages, is controlled by six backlighted, 
pushbutton switches. Four of the switches 

, ~ 

; = ~ 
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Figure 13. C-START MODULE PANEL 

have split legends. Successive depressions of 
any of these will alternately illuminate one­
half and extinguish the other. 

The tape input display consists of a row of 
eight lights, which represent the eight digit 
positions of a single perforated tape character. 
This permits the Systems Engineer to visually 
read a tape character. The illumination of a 
given light indicates the presence of a binary 
one (perforation) at that digit position. No 
illumination indicates a zero. The three status 
displays operate in both manual and automatic 
modes as follows: 

XEQ/SEAL: Upon depression of a keyboard 
pushbutton or read-in from the tape, the 
XEQ will light, thus indicating an execute re­
quest. Receipt of an uplink verification will 
extinguish XEQ and illuminate SEAL. No 
commands can be inserted while the module 
is SEALed. Receipt of a downlink reply will 

result in release of the SEAL and extinction 
of the SEAL display. 

VERIFY: This is a display only. Its illumi­
nation signifies that the downlink reply com­
pared correctly with the character trans­
mitted via the uplink. 

NON VERIF Y : This is a combination display 
and pushbutton switch. Its illumination sig­
nifies that the downlink reply did not com­
pare correctly with the character transmitted 
via the uplink. In the automatic mode, this 

ODD 
DOD 
ODD 
D c:J c:J 
DOD 
DOD 
DOD 
DOD 

00000000 

KEY ER" 
RLSE R5T 

Figure 14. K-START MODULE PANEL 
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Figure 15. METER MODULE 

condition will prevent character entry from 
the tape. Depression of the NONVERIFL 
switch will extinguish its light and permit 
a new attempt at command insertion. 

The AGe displays provide the Systems Engi­
neer a convenient indication of 24 discrete 
events within the Apollo Guidance Computer. 

When any of the START modules are de­
pressed, the scanning mechanism checks on the 
R-STARTS, C-STARTS, and K-STARTS. The 
scanning device, called the Communication Unit 
Executor (CUE) notifies the uplink computer 
as soon as it notices an R-START, C-START, 

Figure 16. EVENT MODULE 

or K-START. The uplink computer checks the 
CUE before accepting the information. The 
CUE compares the address, located in the 
START module, with what it thinks has been 
exorcized and transferred. If the comparison 
is affinl1ative, the information is transmitted 
to the computers, which interprets the codes 
indicated by the" R-START, C-START, or K­
START, and transmits the information to the 
spacecraft where the DTCS described earlier 
checks it and exercises the spacecraft accord­
ingly. The system can interpret some 1200 
measurements in the downlink and some 200 
in the uplink .area. 

SUMMARY 

The main features of the system are as fol­
lows: 

1. Rapid checkout 
2. Use of the flight telemetry and carry-on 

concept. The carry-on equipment for 
checkout measurements does not penalize 
the fly-away weight. 

3. Capability to operate manually as well as 
automatically at close-by or lO-mile re­
mote positions. 

4. Use of the same equipment for checking 
out both the C & SM and the LEM at both 
the- factory and the launch site. 
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5. Modularity and digital building blocks to 
achieve turnaround of about 30 minutes. 
This allows hook-up to any spacecraft on 
30 minutes' notice, assuming that the 
carry-on equipment is in position. 

6. Factory connection of carry-on equipment 
and removal at T -5 hours (except for 
weight and balance). This minimizes 
connecting and disconnecting the space­
craft cabling. 

7. Restriction of the total number of cables 
through the vehicle hatch to two, each 
containing three co-axes, thus allowing 
undisturbed ingress and egress to the 
spacecraft. (Two cables in Apollo com­
pare to about two dozens in Mercury. 

The system is quite versatile-so versatile, 
in fact, that the vehicle on which it is to be ex­
ercised does not have to be defined until late 
in the design. 

Selecting the signal-conditioners and the 
modules associated with the base plates, and 
mounting the name plates associated with the 

control consoles are the only time-limiting ac­
tions. Once the system engineers have estab­
lished a general configuration of the control 
room the SGS, the decommutator, and the com­
puters are programmable. Thus, after hard­
ware definition, the only problem remaining is 
to define the digital programs or the software 
associated with the system. But these can be 
phased in as soon as the test people and the 
system engineers have decided the test detail. 
Preliminary specification shows that the hard­
ware design and preliminary software require 
something on the order of 8 to 10 months, 
whereas the final software (because the pre­
liminary subroutines and executive routines 
have been perpared) can be completed within 
two or three months. 

The first system is operational at North 
American's plant in Downey, California. Fol­
low-on stations will be located at the Grum­
man Aircraft Engineering Corporation, Beth­
page, L.I., New York; the Manned Spacecraft 
Center, Houston, Texas; and the Kennedy 
Space Center, Cape Kennedy, Florida. 
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INTRODUCTION 

This paper describes the IBM Space Guid~ 
ance Center's part in the Saturn V Program 
and the digital computer and data adapter 
being developed for the Saturn V booster. This 
work is being performed under contract to 
NASA under direction of the Marshall Space 
Flight Center, Huntsville, Alabama. 

The computer and data adapter are located 
in the Saturn V Instrument Unit and integrated 
into the total guidance system of the booster 
(Figure 1). The computer interfaces only with 
the data adapter, which in turn presents the 
interface to the rest of the system. Basically, 
during boost guidance, the computer evaluates 
in-flight changes in booster speed and position 
derived from an inertial platform and develops 
signals to control the rocket engines so as to 
keep the booster on course. The data adapter 
takes analog inputs from sensors and converts 
them to digital form for the computer; it also 
takes the computer digital outputs, converts 
some of them to analog form, and sends cor­
rections to the appropriate controls. 

MODES OF OPERATION 

The system operates in four basic modes 
(Figure 2): (1) Pre-launch Check-out; (2) 
Boost Guidance; (3) Orbital Check-out; and 
(4) Lunar Trajectory Injection. 

501 

During the Pre-launch Check-out mode, a 
test program is loaded into the computer to 
ensure that all guidance system interfaces op­
erate properly prior to flight. The program 
includes a computer self-test, complete mission 
simulation, and a system test, among others. 

In the Boost Guidance mode, which starts at 
lift-off and lasts until the final booster stage 
burns out, the computer navigates and steers 
the booster, computing stage cutoff. During 
this initial phase of operation it receives data 
on booster speed and attitude through the data 
adapter. The computer processes these data 
and, through the data adapter, controls the 

I I TELEt.£TRY INTER AND 
GROUND RADIO COMPUTER INTRA 
CONTROL COMMAND INTERFACE VEHICLE 
COMPUTER CHANNEL UNIT COMMUNICATION 

1 I 

I I I I 

DIGITAL DATA 
COMPUTER ADAPTER 

I ~ 
POWER INERTIAL FLIGHT 

SOURCE PLATFORM CONTROL 
COMPUTER 

Figure 1. Saturn V Guidance System. 
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PRE-LAUNCH CHECKOUT 

• PROGRAM CHECK 
• COEFFICI ENT LOAD 

BOOST GUIDANCE 

• STEERING COMMANDS 
• ENGINE CONTROL 

ORBITAL CHECKOUT 

• INSTRUMENT UNIT CHECKOUT 

LUNAR TRAJECTORY INJECTION 

• STEERING COMMANDS 
• ENGINE CONTROL 

Figure 2. Saturn V Mission. 

direction of thrust of the gimbaled rocket en­
gines to keep the vehicle on the desired course. 

When the vehicle is in orbit about the earth, 
the computer checks out the propulsion sys­
tem, the mid-course guidance and control sys­
tem, and other related Instrument Unit systems 
and sends the test results to the ground for 
analysis. If all tests are satisfactory, the Lunar 
Trajectory Injection mode is initiated. 

The Lunar Trajectory Injection mode fol­
lows the same sequence as the Boost Guidance 
mode in that the computer navigates, controls 
vehicle steering, controls booster cut-off, and 
directs booster separation. 

EQUIPMENT ORGANIZATION AND 
CHARACTERISTICS 

Microminiature packaging technology and 
redundant logical configurations are used in the 
computer and data adapter to meet the strin­
gent weight and reliability requirements of the 
Saturn V Program. Whereas the Saturn I 
launch vehicle guidance system was developed 
from a previously proved military system to 
playa limited role on early space booster mis­
sions, the Saturn V equipment must have much 
greater sophistication to function with greatly 
increased reliability over a much longer opera­
tional span in a more demanding environment 
(Figure 3). Thus, the Saturn V computer and 
data adapter share new electronic and mechani­
cal design features that provide significantly 
greater capabilities than are found in the 

SATUf{N I SATURN V 

NUMBER OF COMPONENTS 12.000 80.000 

WEIGHT - LBS. 210 253 

VOLUME - CU. FT. 3.9 5.5 

POWER - WATTS 540 438 

OPERATIONS ~ITY-OPS/SEC 3.2.00 9,600 

STORAGE CAPACITY - BITS 100,000 46OPOO 

RELIABILITY - MEAN TIME BETWEEN 750 45,000 
FAILURE IN HOURS 

Figure 3. Equipment Comparisons. 

Saturn I spaceborne computer system, includ­
ing: 

(1) A speed approximately three times 
greater than is found in either the 
Saturn I or IBM's commercial 1401 
system. 

(2) A modular memory that can be expanded 
to 920,000 bits for later Saturn V mis­
sions by simply plugging in additional 
memory modules. 

(3) Seven times the number of components 
with only a slight increase in weight and 
volume. 

( 4) A reliability increase of more than 6000 
percent. 

COMPUTER 

The Saturn V computer is serially organized 
and operates at a rate of 512 kilobits per second 
(Figure 4). Using two's complement arith­
metic, it multiplies four bits at a time and 
divides two bits at a time. Glass delay lines 

TYPE Gp, STORED PROGRAM, SERIAL, FIXED POINT. BINARY 
CLOCK 512 KILOBITS PER SECOND 
SPEED ADD-SUBTRACT. MULTIPLY-DIVIDE SIMUL114NEOUSLY: 

ADD - 82 "SEC, 26 BIT 
MULTIPLY - 328 "SEC, 24 BIT 
DIVIDE - 656 "SEC, 24 BIT 

STORAGE 16,384 28- BIT WORDS, EXPANDABLE 

RELIABILITY 0.99 GOAL FOR 250 HOURS 

WEIGHT 
VOLUME 
POWER 

77 LBS. 
22 CU. FT. 
131 WATTS 

Figure 4. Digital Computer Characteristics. 
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are used for internal registers to improve reli­
ability. AND-OR-INVERT logic, operated in 
saturated and cut-off modes, is employed in 
both the computer and data adapter. Four 
clock pulses per bit are employed, with 6-volt 
clock signals applied to AND resistors; this 
arrangement permits inverter loads to be time­
shared and obviates the need for an AND diode 
for each clocked AND. 

Each instruction is comprised of a four-bit 
operation code and a nine-bit operand address; 
the nine-bit address allows 512 locations to be 
directly addressed. The memory is divided 
into sectors of 256 words, and contains a resid­
ual memory for 256 common data words. The 
nine-bit address specifies a location in either 
the previously selected sector (data sector 
latches) or in the residual memory. 

Instructions are addressed from an eight-bit 
instruction counter augmented by a four-bit 
instruction sector register (Figure 5). Instruc­
tion memory sector selection is changed by spe­
cial instructions, but sector size is sufficiently 
large that this is not a frequent operation. 

Data words consist of 26 bits (25 magnitude 
bits plus sign). Instruction words consist of 
13 bits and two instructions are stored in each 

INTERRUPT 

memory data word. Hence, instructions are 
described as being stored in syllable 0 or sylla­
ble 1 of a memory word. Two additional bits 
are used in the memory for parity checking 
each of the two syllables. 

The computer is programmed by means of 
single-address instructions. Each instruction 
specifies an operation and an operand address. 
Instructions are addressed sequentially from 
the memory under control of the instruction 
counter. Each time the instruction counter is 
used, it is advanced one increment to develop 
the address of the next instruction. After the 
instruction is read from the memory and its 
parity checked, the operation code is sent from 
the transfer register to the operation code 
register, a static register that stores the opera­
tion code for the duration of the execution 
cycle. 

The operand address portion of the instruc­
tionis transferred in parallel (nine bits) from 
the transfer register to the memory address 
register. The transfer register is then cleared. 

If the operation code requires reading the 
memory, the contents of the operand address 
are read, 14 bits at a time (including parity), 
frVin the nlemory into the buffer register where 

MEMORY 

MOD t MEMORY 

MOD 2 MEMORY 

1711-----+ MEM NO OP 

ADDER­
SUBTR 
MULTI­

~--"'DIV 

ACCUMULATOR-INSTR CNTR 
MULTIPLICAND -DIVISOR 

MULTIPLIER - QUOTIENT 
PRODUCT -REMAINDER 

DELAY LINE NO. t 

SYLLABLE t 
SYLLABLE 2 

ACCUMULATOR-INSTR CNTR 
MULTIPLY-DIVIDE TIMING 

PRODUCT - QUOTIENT SYNC 

DELAY LINE NO.2 

Figure 5. Digital Computer Block Diagram. 
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a parity check is made. Data bits are then sent 
in parallel to the transfer register. This in­
formation is then serially transferred to the 
arithmetic section of the computer. If the op­
eration code is a store (STO), the contents of 
the accumulator are transferred serially into 
the transfer register and stored in two 14-bit 
bytes. A parity bit is generated for each byte. 

Upon completion of the arithmetic operation, 
the contents of the instruction counter are 
transferred serially into the transfer register. 
This information is then transferred in parallel 
(just as the operand address had previously 
been transferred) into the memory address 
register. The transfer register is then cleared 
and the next instruction is read, thus complet­
ing one computer cycle. 

The data word is read from the memory 
address specified by the memory address regis­
ter and from the sector specified by the sector 
register. Data from the memory go directly to 
the arithmetic section of the computer where 
they are operated on as directed by the opera­
tion code. 

The arithmetic section contains an add-sub­
tract element, a multiply-divide element, and 
storage registers for the operands. Registers 
are required for the accumulator, product, 
quotient, multiplicand, multiplier, positive re­
mainder, and negative remainder. The add­
subtract and the mUltiply-divide elements op­
erate independently of each other, so they can 
be programmed to operate concurrently (Le., 
the add-subtract element can perform several 
short operations while the multiply-divide ele­
ment is in operation). 

No dividend register is shown in Figure 5 
because it is considered to be the first re­
mainder. The divisor is read from the accumu­
lator during the first cycle time and can be 
regenerated from the two remainders on sub­
sequent cycles. Both multiply and divide re­
quire more time for execution than the rest of 
the computer operations. A special counter is 
used to keep track of the mUltiply-divide prog­
ress and stop the operation when it is com­
pleted. The product-quotient (PQ) register can 
be addressed from the operand address of any 
instruction. The answer will remain in the 
PQ register until another multiply-divide is 
initiated. 

CLA CLEAR AND ADD CDS CHANGE DATA 
LOCATION 

ADD ADD EXECUTE MODIFIED 
SUBTRACT 

EXM 
SUB INST. 

MPY MULTIPLY (CON- STO STORE 
CURRENT) 

MPH MULTIPLY (NON- HOP CHANGE REGISTER 

CONCURRENT) 
CONTENTS 

DIV DIVIDE TNZ TRANSFER NON-ZERO 

RSU REVERSE SUBTRACT TRA UNCONDITIONAL 
TRANSFER 

AND LOGICAL AND 
TMI TRANSFER ON MINUS 

XOR EXCLUSIVE OR 
PIO PROCESS INPUT / 

SHF SHIFT OUTPUT 

Figure 6. Operation Codes. 

Two multiply instructions (Figure 6) are 
used in the computer. MPY requires that one­
word-time operations be performed in the 
adder unit during the multiplication operation 
because the instruction counter advances each 
word time. Thus, simultaneous MPY and one­
word-time operations are carried out. When 
the program is multiply-limited, and a sufficient 
number of useful one-word operations cannot 
be found in the portion of the flow diagram 
being executed, the MPH instruction is used. 
This instruction inhibits the advance of the 
instruction counter and no new instructions 
are read from the memory until the operation 
is completed. 

Since only partial addresses for instructions 
and data are provided in the instruction counter 
and the data address of the instruction word, 
a HOP instruction permits transfer to various 
sections of the memory; static registers pro­
vide the additional address bits required. An 
Execute Modified Instruction (EXM) opera­
tion permits the execution of selected instruc­
tions from memory after they have been modi­
fied by the contents of the instruction word. 

The computer communicates with the data 
adapter through use of the Process Input-Out­
put (PIO) instruction, which transfers data 
words from the data adapter to the accumula­
tor or from the accumulator or memory to the 
data adapter. 

The computer processes accelerometer and 
gimbal angle information and computes atti­
tude corrections 25 times each second. The 
slower major loop, which contains navigation 
and other computations, is performed once or 
twice each second. 
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A program assembler and a mission simula­
tor are being developed as part of a software 
package. Laboratory check-out and accept­
ance test programs are also being prepared. 
IBM is using special simulators to perform de­
lay simulation on detailed logical designs, to 
compute the reliability of redundant and duplex 
logical organizations using Monte Carlo tech­
niques, and to simulate the effects of component 
malfunctions. Operational flight programs for 
Saturn V missions are being prepared by IBM 
under a separate contract. 

DATA ADAPTER 

The data adapter provides input-output com­
munication with telemetry equipment, ground 
launch computer, and discrete inputs and out­
puts (Figure 7). It stores interrupt signals 
and buffers real-time, accelerometer data moni­
toring, and other counting signals. Angular 
information from two-speed resolvers is read 
in through a crossover detector system (Figure 
8) . Resolver outputs are passed through RC 
networks and the zero crossover of the phase­
shifted sine wave outputs is detected by preci­
sion crossover detectors. A high-speed binary 
counter converts this time interval into a 
binary number. Analog voltage outputs are 
provided through a resistive ladder network 
and suitable capacitor sample-and-hold circuits. 

A significant feature of the data adapter de­
sign is the use of glass ultrasonic delay lines 
to store digital information required by the 

CLOCK 
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AID CONVERTER 

DELAY LINES 

POWER SUPPLIES 

RELIABILITY 
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Figure 7. Data Adapter Characteristics. 
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Figure 8. Data Adapter Block Diagram. 

computer. Four-megacycle lines are used and 
four channels of information are multiplexed 
into each line. 

A set of redundant delay lines is divided into 
three 14-bit phase times, providing 12 syllables 
of storage in each line. This set is used to 
store: (1) interrupt signals until the interrupts 
are acted upon by the computer, with one of the 
syllables being reserved to prohibit multiple 
computer interrupts from the same external 
interrupt pulse; (2) interrupt signals which 
are inhibited by the computer. The set also: 
(1) times the activation of the switch selector 
used to control the vehicle staging; (2) times 
the interval between processing of minor loop 
platform attitude inputs; and (3) stores real 
time as it is accumulated from an oscillator 
input. 
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TIMING 

COMPUTER DATA CONTROL 
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GROUND CHECKOUT 
COMPUTER 

TELEMETRY 
ADDRESS 
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Figure 9. Data Adapter Blork Diagram (Cont.). 
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A non-redundant delay line is used to buffer 
non-mission-critical telemetry information to 
the ground (Figure 9). The PCM telemetry 
system will monitor digital data from the 
computer/data adapter system at a constant 
rate of 240 forty-bit words per second. Ap­
proximately 100 of these words will be direct 
outputs from the computer to the telemetry. 
The remaining 140 words will be supplied by 
the Digital Output Monitor (DOM). This data 
adapter system serves two purposes: (1) it 
allows the telemetry channel to be used with 
maximum efficiency without burdening the 
computer program with intricate timing prob­
lems, and (2) provides a means of monitoring 
the digital data entering and leaving the data 
adapter at a point close to the interface. 

The information that is sent to telemetry 
via the DOM is derived from computer input­
output operations. Since these operations occur 
at widely varying rates, the DOM provides a 
buffering capability to optimize data flow. 
Input-output operations that occur too fre­
quently and convey too little information are 
ignored by the DOM. 

RELIABILITY 

Very high reliability is required of the 
Saturn V digital computer and data adapter­
the design goal for each unit is 0.99 for a 250-
hour mission. Conventional techniques for 
achieving ultra-high reliability include (Figure 
10) high reliability parts, conservative design 
practices (simplicity and wide tolerances), 100-
percent screening of parts and assemblies, 
thorough qualification of parts and manufac­
turing processes, and detailed laboratory analy­
sis and corrective action for all "failed" items. 
Over and above these conventional require­
ments, the equipment has been designed to 
continue accurate operation, even after a tran-

CONSERVATIVE DESIGN 
REDUNDANCY 
COMPONENT SCREENING 
IN-PROCESS INSPECTION 
SYSTEM ENVIRONMENTAL ACCEPTANCE 

Figure 10. Approaches to Reliability. 

Figure 11. Triple Modular Redundancy (TMR). 

sient or catastrophic failure, through the use of 
redundant elements. 

The redundancy approach employed by IBM 
in the computer logic is "Triple Modular Re­
dundancy" (TMR) , which realizes a 20-fold 
increase in reliability with only 3 % times more 
components than a non-redundant system. (1,2,3,4) 

Figure 11 shows part of the Saturn V logic 
divided into sections called modules, (M). Each 
module is identical, receiving the same problem 
at the same time. The outputs of the three 
modules are transmitted to another circuit 
called a "majority rule voter" circuit (V), 
which checks the inputs to see whether they 
agree. If one input differs from the other two, 
it is disregarded, so a component failure will 
not cause a system malfunction. 

A third circuit, called a disagreement detec­
tor (DD), monitors system performance by sig­
nalling the ground equipment whenever voter 
inputs are not all identical. Computer logic 
is divided into seven modules, each with an 
average of 10 voted outputs. Disagreement 
detector outputs are OR'ed together such that 
malfunctions can be isolated to one, two, or 
three replaceable subassemblies. 

The memory in the Saturn V computer uses 
conventional toroidal cores in a unique self­
correcting duplex system. The memory consists 
of up to eight identical 4096-word memory 
modules that may be operated in simplex for 
increased storage capability or in duplex pairs 
for high reliability. The basic computer pro­
gram can be loaded into the instruction and 
constants sectors of the memory at electronic 
speeds on the ground or just prior to launch. 



SATURN V LAUNCH VEHICLE DIGITAL COMPUTER AND DATA ADAPTER 507 

Thereafter, the information content of con­
stants and data can be electrically altered but 
only under control of the computer program. 

The self-correcting duplex system uses an 
odd parity bit for malfunction indication and 
correction. In conjunction with the parity bit, 
error-detection circuitry also monitors memory 
drive current. Unlike conventional toroid 
random-access memories, the self-correcting 
extension of the basic duplex approach permits 
correct information to be regenerated after 
transients or intermittent failures. 

Figure 12 is a simplified block diagram of 
the computer memory system. The basic con­
figuration consists of a pair of memories pro­
viding storage for 8,192 fourteen-bit memory 
words for duplex operation, or 16,384 fourteen­
bit memory words for simplex operation. Each 
of the simplex memories includes independent 
peripheral instrumentation consisting of tim­
ing, control, address drivers, inhibit drivers, 
sense amplifiers, error-detection circuitry, and 
input/output connections to facilitate failure 
isolation. 

The computer functions, which are separate 
for each simplex memory, consist of synchroniz­
ing gates which provide the serial data rate 
of 512 kilobits per second. This data rate is 
required by the computer to generate a "start 
memory unit" command at 128 kilobits per 
second. These gates also provide the selection 
of multiple simplex memory units for storage 
flexibility and permit partial or total duplex 
operation throughout the mission profile to ex­
tend the mean-time-before-failure for long mis-

FROM 
COMPUTER 

TO 
COMPUTER 

FROM 
COMPUTER 

Figure 12. Duplex Memory Flow Diagram. 

sion times. Each of the simplex units can op­
erat~ independently of the others or in a duplex 
manner. The memory modules are divided into 
two groups: one group consisting of even num­
bered modules ( 0-6) and the other consisting 
of odd numbered modules (1-7). The buffer 
register associated with each group is set by 
the selected modules. 

For duplex operation, as shown in Figure 12, 
each memory is controlled by independent buf­
fer registers when both memories are operating 
without failure. Both memories are simultane­
ously read and updated, 14 bits in parallel. A 
single cycle is required for reading instructions 
(13 bits plus 1 parity bit per instruction word). 
Two memory cycles are required for reading 
and updating data (26 bits plus 2 parity bits). 
The parallel outputs of the memory buffer 
registers are serialized at a 512-kilobit rate by 
the memory transfer register under control of 
the memory select logic. Initially, only one 
buffer register output is used, but both buffer 
register outputs are simultaneously parity 
checked. When an error is detected in the 
memory being used, operation immediately 
transfers to the other memory. Both memories 
are then regenerated by the buffer register of 
the "good" memory, thus correcting transient 
errors. After the parity-checking and error­
detection circuits have verified that the errone­
ous memory has been corrected, each memory 
is again controlled by its own buffer register. 
Operation is· not transferred to the previously 
erroneous memory until the "good" memory 
develops its first ~rror. Consequently, instan­
taneous switching from one memory output to 
another permits uninterrupted computer opera­
tion until simultaneous failures at the same 
storage location in both memories cause com­
plete system failure. 

The data adapter uses duplex and redundant­
component circuits in conjunction with TMR 
logic to meet its reliability goals. 

The data adapter logic is divided into four 
parts for the purpose of reliability computa­
tion. The analog-to-digital converter section 
employs coarse and fine resolver windings in a 
two-speed system for duplex operation. The fine 
inputs are selected by the computer for use 
unless the error indicator circuits that monitor 
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signal levels indicate a failure; then the coarse 
input will be used, with degraded system 
accuracy. The selected input is fed to duplexed 
logic sections that can be tested against each 
other and for output reasonableness. Here the 
computational capability of the computer can 
insert test problems into the duplex logic of 
the data adapter to determine which half is 
operating properly. 

Duplex digital-to-analog ladder converters 
are used for outputs to the control computer. 
One of the duplex channels is selected to derive 
the output voltages, and this output is com­
pared with a reference channel. Any significant 
difference causes the other duplex channel to be 
switched in. 

TMR logic is used in conventional buffer 
registers that store discrete information and 
provide communication with telemetry and the 
ground control computer. Where TMR outputs 
must be used to develop a single highly reliable 
output signal, redundant-component voter / 
driver circuits are used in the final stage. 

To ensure that failures in the power sup­
plies, which are located in the data adapter and 
supply pQwer to that unit and to the computer, 
do not cause system failure, duplexing is used 
(Figure 13). Pulse-width-modulated dc-to-dc 
converters provide high power conversion effi­
ciency. Feedback amplifiers sense any varia­
tions in the average value of the output voltage, 

~~------------~~~-~ 

Figure 13. Duplex Power Supply. 

and the error signal is used to control the 
power inverter pulse width. Duplexed feedback 
amplifiers are employed and the supplies them­
selves are duplexed. Either supply can pro­
vide the full current required for that supply 
voltage. 

Table I compares the reliability of the re­
dundant and non-redundant portions of the 
computer and data adapter and shows the dra­
matic results obtained when TMR techniques 
are used in the control and arithmetic logic of 
the computer. In applications where the logic 
could be divided into modular parts and made 
duplex, it would be difficult to determine which 
duplex part was operating correctly. TMR, 
with majority rule voters re-establishing the 
correctness of module outputs at critical points, 
overcomes this difficulty and makes malfunction 
correction automatic. 

The improvement in memory reliability de­
rived from duplexing is not as great as in other 
duplex logic applications because all possible 
memory failures cannot be detected by the 
checking circuits. As shown in Table I, over­
all computer reliability in the redundant con­
figuration is gated by the memory system. 

TABLE 1. EQUIPMENT RELIABILITY 
FOR 250 HOURS 

N on-Redundant Redundant 

Digital Computer 

0.973 TMR Logic 
Duplex Memory 
Unit 
Equivalent Mean 

Time to 

0.969 
0.943 

0.9992 
0.9980 
0.9972 

Failure 4,250 Hrs. 89,500 Hrs. 

Duplex I/O 
Duplex Logic 
TMR Logic 
Duplex Power 

Supply 
Unit 

Data Adapter 

0.988 
0.994 
0.979 

0.995 
0.957 

Equivalent Mean 
Time to 

0.9982 
0.99995 
0.9997 

0.99999 
0.9978 

Failure 5,680 Hrs. 113,000 Hrs. 
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The mean-time-to-system-failure (MTF) 
shown in Table I for a non-redundant equiva­
lent computer was computed assuming the con­
ventional exponential (constant failure rate) 
case. 

MICROMINIATURE PACKAGING 

To implement redundancy and still meet 
NASA's weight and volume requirements, IBM 
chose a microminiature design approach (5) 

proven feasible in 1960 with a small-scale com­
puter. Since 1961, the technology has been sub­
jected to environmental, life, and experimental 
system tests. These tests have enabled IBM to 
accumulate over 20,000,000 test hours on cir­
cuit modules and over 1,000,000 on multilayer 
interconnection boards. 

The first simplex engineering model of the 
Saturn V computer was delivered on 28 April 
of this year; it was used to confirm and verify 
the basic design of the computer. The first 
qualification model is scheduled for delivery on 
12 February 1965 and the first production com­
puter on 26 March. 

The basic building block of the Saturn V 
system is the Unit Logic Device (ULD), a 
microminiature circuit package. Each of the 
54 different types of ULD's contains up to 14 
components including transistors, diodes, and 
resistors. Ninety percent of the Saturn V 
equipment is based on ULD technology, and 
8918 ULD's are used in each Saturn V com­
puter and data adapter. 

The manufacture of a ULD starts "\vith a 
0.3 X 0.3 inch alumina substrate upon which 
conductive land patterns are silk-screened on 
the top surface and resistors on the bottom 
(Figure 14). Conductive patterns and resistors 
are fired at high temperature to drive off the 
carrier and ensure adhesion to the substrate. 
Semiconductors, in the form of 0.025 X 0.025 
inch chips of silicon (each comprising either 
one transistor or two diodes) are reflow soldered 
to the ULD. Copper balls are used for contacts 
between the chips and the conductive patterns 
(Figure 15). 

Screened edge connections provide conduc­
tive lines between the top and bottom surfaces 
of the ULD. Metal "S" -clips are soldered around 

Figure 14. Unit Logic Device (ULD). 

the edges of the ULD for greater reliability and 
to provide a means of connection to the printed 
circuit board that interconnects the ULD's. 

Each ULD has been designed so the parame­
ters of its components may be measured during 
production operations. This procedure ensures 
that component tolerances assumed for initial 
circuit design are met and that end-of-life toler­
ances will not be exceeded. Thus, when the 
values of each parameter are known, circuit 
design ground rules can be adjusted to permit 
greater fan-in and fan-out than when the cir­
cuit. is tested as a whole and individual com­
ponent values are not known. 

The ULD's are interconnected by a MIB, or 
multilayer interconnection board (Figure 16). 
A 12-layer, 2.5 by 3-inch board can accommo­
date 35 ULD circuits. MIB's are laid out to 
provide a 5 X 7 matrix of ULD locations. Sig­
nal, power, and ground layers are contained 
within the MIB and interconnected with plated­
through holes. Tabs printed on the top surface 

Figure 15. ULD Semiconductor Chips. 
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Figure 16. Multilayer Interconnection Board (MIB). 

of the MIB permit reflow soldering of the 
ULD's to the MIB. Two beams of infrared are 
focused on the pre-tinned ULD connection clips 
to solder the ULD's to the MIB, affording both 
an electrical path and a mechanical bond. 

Eighteen test points are available on each 
MIB; connections between MIB's bonded to 
each side of a page are provided with through­
pins. A conductive pattern on the end of each 
MIB is soldered to a 98-pin connector. The 
page MIB's containing the ULD's are, in turn, 
bonded to a metal frame that draws heat away 
from the components and protects the circuits 
from vibration and mechanical shock (Figure 
17). 

The resultant page assembly contains up to 
35 ULD's on each side. The page can also 
house various other types of circuits, including 
glass delay lines, circuit modules for precision 
analog circuits, or decoupling capacitors 
(Figures 18, 19, and 20). There are 150 ULD 
pages in the Saturn V- computer and data 

Figure 17. ULD Page. 

Figure 18. Delay Line Page. 

adapter, each with an average of 500 com­
ponents. Each page is tested over a 10°C to 
100°C temperature range during production. 

Maintenance performed at the Marshall Space 
Flight Center or Cape Kennedy includes re­
moval and replacement of individual pages. 
ULD's can be replaced at the factory or depot. 
A 98-pin miniature connector plugs into a back 
panel for page-to-page interconnections. Heat 
is conducted out of the page through mag­
nesium-lithium ears fastened to the machine 
structure with screws. 

In the Saturn V equipment, pages are inter­
connected through multilayer printed circuit 
back panels bonded to a metal support plate 
(Figure 21). Layers are interconnected by 
2000 plated-through holes. Each back panel, 
containing 12 layers of circuits, is subjected to 
100 percent inspection of each of the 2000 con­
nections. Each of the back panel subassemblies 
is called a channel, and there are five channels 
in each Saturn V computer (three identical 

Figure 19. Circuit Module Page. 
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Figure 20. Capacitor Page. 

TMR logic channels and two channels contain­
ing voter and memory input-output registers). 

The memory plane is the basic element of the 
Saturn V memory (Figure 22). Each plane 
accommodates some 8,200 toroid cores approxi­
mately 0.030 inch in diameter. Memory planes 
are individually tested using automatic plane 
test equipment before further assembly~ The 
memory array is comprised of 14 horizontally 
stacked planes (Figure 23). It has a capacity 
of 4,096 twenty-eight-bit words or 115,000 bits 
of memory. Memory planes are unencapsulated 
and are separated by molded silicone rubber 
foam pads that protect the cores from vibration 
stresses. 

A complete ulemory module combines the 
array and the electronics. From one to eight of 
these modules can be employed in the Saturn V 
system; present memory requirements call for 
four of these modules, each weighing 4.7 
pounds and using 7.5 watts of power. 

Figure 21. Multilayer Back Panel. 

Figure 22. Memory Core Plane. 

Electronic memory panels contain address, 
inhibit, and sense circuits to permit reading 
and writing as well as addressing. The five 
panels in the system are fabricated separately 
from the memory for ease in packaging 
memory-related electronics. 

STRUCTURAL DESIGN 

Magnesium-lithium alloy LA 141 was selected 
for use in the computer and data adapter struc­
tures because it is the most efficient material 
from a stiffness-to-weight standpoint (short of 
beryllium) and because of its good vibration 
damping characteristics. (6) Beryllium was not 
selected because of anticipated problems in fab­
rication. LA 141 provides minimum weight, and 
it minimizes the transmission of mechanical 
vibration between the unit structural mounting 
pads and the electronic subassemblies within 
the structure. Unit stress and physical proper­
ties of LA 141 are compared to those of other 
magnesium and aluminum alloys in Table II, 

Figure 23. Memory Array. 
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TABLE II. COMPARISON OF VARIOUS STRUCTURAL MATERIALS 

Properties Material 

Aluminum Aluminum Mag.-Lith. Magnesium 
Al 1100-0 Al 2024-T3 LA 141 AZ31B-O 

Tensile Strength (Ksi) 
Yield Strength (Ksi) 
Compressive Strength (Ksi) 
Elongation % in 2" 
Modulus of Elasticity (106 psi) 
Density (lbs./in3) 
Specific Heat at 212°F 

(BTU /lb/oF) 
Thermal Exp. Coef. 

(68-212°F, 10-6 in/in/oF) 
Thermal Conductivity 

(BTU/ft2/hr/oF /ft) 

11.0 
3.5 
4.0 

30.0 
10.0 

0.098 
0.214 

13.1 

128 

below. Magnesium-lithium is only half the 
weight of aluminum and three quarters of the 
weight of magnesium. Tensile strength more 
than meets the requirements for this applica­
tion. 

The c~oice of magnesium-lithium necessi­
tated a thorough investigation of the effects of 
humidity and salt atmosphere environments on 
the material, as well as the effects of liquid 
coolant. A fluoride-anodize surface treatment, 
coated with a sprayed coat of Laminar X500 
(a polyurethane), was specified to protect all 
exterior surfaces. 

Evaluation of the effects of the liquid coolant 
(methanol and distilled water) on the mag­
nesium-lithium indicated that the corrosion 
rate of untreated material did not exceed 0.006 
inch/surface/year as long as there are no other 
materials in contact with the magnesium­
lithium that would form a galvanic couple (i.e., 
material less positive on the galvanic scale). 

To effect an RFI seal between the unit struc­
tures and their covers, EZ33A welding rod is 
used on the flanged areas of the structure. The 
iridite finish used provides adequate protection 
to inhibit LA-141 oxidation in the presence of 
nitrogen and moisture. After oxidation, the 
LA 141 becomes non-conductive. 

Cold plate mounting and integral liquid cool­
ing were compared in terms of their effects 

68.0 21.0 36.0 
51.0 17.0 19.0 
42.0 17.0 13.0 
12-15 25-30 18 
10.5 6.5 6.5 
0.100 0.0487 0.064 
0.23 0.35 0.25 

12.6 21 15 

71 25 44 

on installed weight and reliability. It was 
found that the installed weight of the system 
could be reduced by approximately 20 pounds, 
and the unit component temperatures reduced 
an average of approximately 18°F (with the 
accompanying increase in reliability) by em­
ploying integral liquid cooling. Thus, integral 
liquid cooling passages were incorporated in 
the structure designs (Figure 24). 

The incorporation of integral liquid coolant 
passages in the structure and the need for suffi­
cient material on each side of the coolant 
passages to assure meeting leak rate require­
ments at a burst pressure of 100 psia dictated 
the use of relatively heavy structural sections 
in the page attachment an.d outside walls of 
the structure. Taking advantage of the page 

Figure 24. Gun-Drilled Coolant Passages. 



SATURN V LAUNCH VEHICLE DIGITAL COMPUTER AND DATA ADAPTER 513 

attachment coolant wall sections, slots are in­
corporated at each page location in the struc­
ture design to guide the pages into their elec­
trical connector receptacles on the interconnec­
tion back panels. This feature eliminates the 
need for additional brackets to guide the pages. 

The above design considerations lead IBM 
to select a machined billet to fabricate the de­
sired structure configuration. A structural 
weldment was avoided because of anticipated 
problems and fixture complexity inherent in 
controlling dimensions throughout the welding, 
stress relieving, and machining processes. 

The computer structure, as shown in Figure 
25, is rough machined from a cast billet, the 
cooling passages in the page mounting walls 
are drilled using a technique developed for the 
drilling of rifle barrels, and final machining is 
accomplished on a tape-controlled milling ma­
chine. Mockups of the computer and data 
adapter structures are shown in Figures 26 
and 27. -

THERMAL DESIGN 

The inlet liquid coolant (60%-40% methanol­
water by weight) temperature is between 55°F 
and 65,oF with a total flow rate of 5.5 pounds/ 
minute; 2.2 pounds/minute to the computer and 
3.3 pounds/minute to the data adapter. The 
electrical heat dissipation of the computer is 
131 watts and the maximum dissipation of the 
data adapter is 343 watts with discretes "on." 

Tests were conducted on several cooling 
passage configurations, including finned and 
drilled passages. The configuration selected 
has five drilled 3/16-inch diameter holes in each 

Figure 25. Computer Structure. 

Figure 26. Computer Mock-Up. 

computer channel and one 5/16-inch diameter 
hole in each data adapter channel. 

Heat transfer analyses within the units were 
analyzed using an IBM 7090 three-dimensional 
heat-transfer program. (7) This program uses a 
numerical approach with rectangular nodes to 
mathematically represent all solid portions of 
the unit. The nodal description includes both 
physical and thermal properties and a defini­
tion of the boundary condition on each face. 
The node faces or boundaries can be defined 
to have any combination of common heat­
transfer processes, such as conduction, radia­
tion, and convection. 

The thermal design ground rules for the logic 
electronics were as follows: 

Max. transistor junction 
temperature-

Max. j unction to junction 
6.T on a page-

Max. page-to-page 6. T (in a 
simplex channel)- 50°C 

Figure 27. Data Adapter Mock-Up. 
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The following additional ground rules were 
imposed on the memory array and power supply 
electronics: 

Max. allowable memory array 
temperature- 70°C 

Max. allowable memory array 
~T- 5°C 

Max. allowable power supply 
power transistor surface 
temperature- 85°C 

Max. allowable power supply 
diode surface temperature- 120°C 

Max. allowable power supply 
transformer temperature- 110°C 

Initial IBM 7090 computer analysis of the 
structure indicated that the following maxi­

, mum temperatures and/or temperature gradi­
ents could be expected: 

Max. logic transistor 
junction temperature-

Max. junction-to-junction 
~Tonapage-

Max. page-to-page ~T 
(in a simplex channel)-

Max. memory array tem-
perature-

Computer Data 
Adapter 

70°C 45°C 

7'oC 7°C 

11°C 10°C 

39°C 
Max. memory array ~ T 1°C 
Max. power transistor 

temperature- 100°C 
Max. power diode tem-

perature- 56°C 
Max. transformer tem-

perature- 66°C 

To verify temperature gradients used in the 
thermal analysis across thermal interfaces 

within the units, and to establish mounting­
bolt torques and surface finishes to maintain 
predictable temperature gradients at these in­
terfaces, thermal-vacuum tests were conducted 
on the major unit subassembly mockups. 

VIBRATION TESTING 

A computer structure was fabricated from 
final machining drawings and assembled with 
dummy subassemblies to simulate final unit 
weight and center of gravity. This mock-up 
computer was instrumented with accelero­
meters to monitor vibration response at the 
various subassembly mounting points on the 
structure. The unit was subjected to a 5g RMS 
sinusoidal vibration environment (2g RMS 
above acceptance vibration level) and a 0.057 
ft / cps random vibration environment (qualifi­
cation level environment) with both inputs ap­
plied along all three orthogonal axes over a 
frequency range of 20 to 2000 cps. 

The maximum vibration transmissibility 
measured at three points on the four-memory 
structure with a 5g RMS input is shown in 
Table III below. 

LABORATORY TEST EQUIPMENT 

IBM is developing special-purpose laboratory 
test equipment to perform system-level test 
functions. This equipment, termed It ASTEC", 
(Figure 28) will contain 125,000 component 
parts. Equipment will be located at the IBM 
Space Guidance Center, Marshall Space Flight 
Center, and Cape Kennedy. The ASTEC is 
used to test the computer and data adapter and 
for computer operational program check-out. 
It simulates the portion of the Instrument 
Unit that interfaces with the data adapter. 

TABLE III MAXIMUM MEASURED VIBRATION TRANSMISSIBILITIES 

Direction Input Natural Memory Mounting Middle Middle 
(g RMS) Frequency Plate at Center of Center of End of 

(cps) Four Memories Structure Structure 

Missile Flight 5 235 2.25 5.6 2.35 

Perpendicular To 
Missile Circumference 5 192 8.06 6.2 2~27 

Parallel to 
Missile Circumference 5 500 1.0 1.83 1.43 
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DATA ADAPTER IITE..,ACE COOLING STAND TEST STAND 
TESTER 

PAPER TAPE READER 

PROGRAMMABLE TEST 
CONTROLLER 

Figure 28. Computer/Data Adapter Laboratory Test Equipment (ASTEC). 

ASTEC contains a programmable test con­
troller (PTC), with an 8000;...word magnetic 
core memory. To record test results and mini­
mize human error, a 600-line-per-minute 
printer is used. All of the equipment employs 
the same Standard Module System (SMS) 
electronic packaging techniques used in many 
types of IBM commercial equipment. 

The ASTEC can test the computer and data 
adapter separately or as a system. It displays 
significant register results and has a "history 
file" in delay line storage for analysis of inter­
mittent malfunctions. Disagreement detector 
outputs are also displayed. The front panels 
contain controls for power, channel and module 
switching, single-step program and data adapter 
control, interrupt features, tape reader for 
memory loading, and a digital plotter. 

The ASTEC may be used for program check­
out, static testing, or dynamic testing of· the 
prime equipment under environmental test 
conditions. 

Test stands, for mounting the computer and 
data adapter undergoing test contain a refrig­
erator and a heating unit for maintaining 
proper coolant temperature. 

The PTC programs will control the testing 
of the flight equipment while it is undergoing 
vibration and other environmental tests. Ana­
log and digital test signals are applied to equip­
ment interface lines under program control, 
and responses are evaluated by the ASTEC by 
comparing flight equipment outputs with com­
puted or pre-stored values. . Significant com-

puter and data adapter registers are brought 
out as test points to facilitate testing. 

When the data adapter is tested alone the 
ASTEC will excite inputs and interrogate out­
puts to test all logic within the unit. Address­
ing of registers as well as data paths are 
tested. In testing the computer, diagnostic and 
test programs are run on the computer in con­
junction with PTC programs. Computer self­
test programs are designed to exercise the 
great majority of diodes in the logic to locate 
intermittent and catastrophic failures under 
actual environmentai conditions. 

The ASTEC contains provisions for operat­
ing the computer and data adapter in single­
step mode, permitting the execution of one 
program step at a time. Flight operational 
program check-out is thus facilitated. 

The ASTEC is so designed that it may be 
divided into two parts for use in debugging and 
testing the computer and data adapter sepa­
rately in factory operations. Program economy 
has been achieved by providing common factory 
and field test equipment. 

The computer and data adapter will be used 
in simulation facilities at the Marshall Space 
Flight Center to simulate operation of various 
parts of the instrument unit. The ASTEC, 
with its inherent programmable capability, may 
be connected to the data adapter to simulate 
equipment not actually a part of the simula­
tion experiment. This will provide a very 
flexible facility for verification of system de­
sign prior to installation into the Saturn V 
launch vehicle. 
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THE 4102-5 SPACE TRACK PROGRAM 
E. T. Garner and J. Oseas 

Radio Corporation of America 
Moorestown, New Jersey 

SPACE TRACK MISSION 

There are five functions which the SPAce 
Track SEnsor Computer (SPASEC) real time 
program performs as part of an effective satel­
lite surveillance system. It locates new satel­
lites soon after launching; keeps up to date 
records of known satellite orbits; provides posi­
tional data of high accuracy for use by other 
systems; provides information on object size, 
shape and stability; indicates orbital change. 
The radar associated with this system can oper­
ate in both a surveillance mode to provide data 
on orbiting objects passing through the volume 
scanned or in a tracking mode to provide more 
accurate orbital data on observed objects. The 
computer program senses, identifies and dis­
criminates among the objects penetrating the 
surveillance volume and then. gathers the re­
quired data. This information then undergoes 
evaluation and the results are forwarded to 
the Spacetrack Center for additional analysis 
and correlation. 

The mission of the satellite surveillance sys­
tem is to identify and acquire track or scan 
data on the satellites. Care is exercised in the 
gathering of data so that the minimum amount 
of information is collected that will satisfy the 
requirements of the particular satellite obser­
vation. This insures that the radar will be 
available to gather information on other ob­
jects and that redundant information will not 
be transmitted. The information leaves the 
computer as smoothed radar observations in 
the form of time, range, azimuth, elevation, 
range rate and identification of the satellite, if 
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known. This information is tralismitted over 
Teletype lines to the Spacetrack Center. 

In addition to the real time aspects of the 
mission the site must produce its own schedule 
of what it is able to see (penetration listings). 
The site is furnished with orbital elements by 
the Spacetrack Center on all known satellites. 
This list of known satellites is constantly being 
updated by means of Teletype messages. A list 
of desired observations (priority list) is also 
furnished by the Center. 

Figure 1 shows the Operational System Or­
ganization. The Operations Director has the 
responsibility of coordinating the data require­
ments with the detailed problems of site opera­
tion. Missions are planned based on new infor-:­
mation requests, object priority, number of 
expected sightings, and probability of detec­
tion. Changes in an object's status are entered 
into the computer using simple mnemonic codes 
and decimal numbers. Changes or additions to 
the satellite file received over the Teletype lines 
are automatically entered into the computer 
ephemeris file and written on the master tape. 
The expected satellite penetrations are com­
puted periodically and a hard copy is produced. 
This allows an operational check against the 
master plan based on the most current infor­
mation at all times. 

The plan is executed by the· Tracking Radar 
Control Console (TRCC) operator who exer­
cises gross manual control over the radar sys­
tem directing the radar to scan the select~d 
sector. Under these manual constraints thesys-
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2. AUTOMATIC IDf .... TlFICATION 
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REQUIREMENTS 

OPERATIONS· DIRECTOR 
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2.ENGAGEMENT 

TECHNIQUE 

SIGNATURE 
ANALYSIS 

REOUIREMENTS 

Figure 1. Operational System Organization. 

tern is automatic and is controlled by the 
4102-8 computer. 

The raw data collected by the radar system 
is processed and filtered by the computer. Data 
identification, data quality and data consistency 
checks are performed by the computer. The 
program directs the radar in the gathering of 
additional information and returns it to the 
surveillance mode of operation when it is satis­
fied that no more useful data can be collected. 
The TRCC operator then executes the next 
phase of the plan. 

The data flow in the operational program is 
as follows (see Figure 2). As the radar scans 
its assigned region of space, parameters of ob­
jects detected by the radar are stored in the 
computer. These reports are compared on a 
scan to scan to scan basis and are said to asso­
ciate if they might reasonably be expected to 
have come from a single object. The associated 
reports are combined and smoothed into an 
approximation of target position and velocity 
called a Q-point. When the program deter­
mines that no additional useful scan data is 
available an attempt is made to identify the 
object. Recognitio!l is made by comparing the 
Q-point with predicted radar far penetrations 
of known satellites. The orbital elements of 
known satellites are stored in the computer 
memory. Radar fan penetration or S-points are 
computed in advance based on the radar scan 

coverage and are stored in time ordered se­
quence. When a Q-point is identified its pa­
rameters are transmitted to the Central Data 
and Cataloging Center via the Teletype link. 
If no positive identification can be made the 
Q-point is then subjected to discrimination 
tests to determine if this object is a satellite. 
Q-points failing discrimination are discarded. 
Those which pass are tentatively identified as 
uncorrelated objects and are tracked. 

Identified objects are tracked based upon 
either priority assignment or upon data valid­
ity tests. All objects to be tracked are com­
pared and the one with the highest track pri­
ority is designated. The program directs the 
radar to the expected target position and con­
tinually up-dates this position until the radar 
"I k" 1 oc s on or can no onger be expected to 
acquire the object. If there are no more track 
requests, the system returns to scan. After 
"lock-on," an automatic radar hardware func­
tion, the radar sends track reports to the com­
puter which are smoothed to form Q-polnts. 
The first of these is subjected to the same iden­
tification tests as the scan Q-point in order to 
insure proper identification. This orbital infor­
mation is transmitted back to the Space Track 
Center. The number of data points transmitted 
and the length of track are dependent upon 
the priority of the track mission and the limits 
of the system. 



4102-S SYSTEM 

4102-8 Computer 

The 4102-S is the most recent addition to 
the 4100 series built by RCA, Van Nuys, Cali­
fornia. The RCA 4102-S is a 16-level, 30-bit 
word length, parallel, binary, 2's complement, 
fixed point, fractional, interrupt I/O, stored 
program computer. The computer has 16 pro:' 
gram counters and 96 full length index regis­
ters. An add instruction requires 19.2 micro­
seconds and a multiply 75.5 microseconds. 

The prime requirements for the SP ASEC 
system demanded that the computer be reliable, 
binary, economical, and capable of communicat­
ing ,with the radar system in real-time. The 
RcA 4102-S met the real-time requirements 
with interrupt I/O as opposed to interleave 
I/O. 

With the interrupt processing method used, 
a section of coincident current memory (CCM) 
is set aside and designated as "executive stor­
age." This area is used by hardware to store 
the program counters and the index registers. 
There is an internal 15-bit register known as 
the "flag register" which is examined each time 
an instruction is executed. If a higher priority 
level flag is set the program counter for the 
higher level is accessed and a new instruction 
sequence is begun. When a level is through 
operating it may erase its own flag (suicide). 

TELETYPE 
INPUT 

4102-S J ~ 

SATELLITE 
LIBRARY 
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All levels may set any bit in the "flag register" 
but the bit may be cleared only by the level 
associated with the flag. With these set and 
reset commands programs and external devices 
can intercommunicate. 

Interrupt processing uses the hardware level 
control to accomplish input/output while tying 
up main frame only a small portion of the time. 
Each command and I/O instruction suicides 
and the particular I/O device will set the pri­
ority flag when it is ready to accept or transmit 
more data. This allows the program to proceed 
normally, processing data and being inter­
rupted when I/O devices need servicing. 

Economies in computer hardware were 
achieved by the interrupt processing method, 
by fixing point logic and medium speed cir­
cuitry. Effective computer utilization was real­
ized through the use of a simple assembly lan­
guage and fixed point coding. 

4102-8 Configuration 

In the 4102-S both program units and hard­
ware devices have been assigned priorities. The 
level assignment is shown in Figure 3. The 
hardware devices· are fixed priorities and are 
arbitrarily assigned according to the maximum 
allowable time lag between request and service 
of the device. Hence the faster, "more impatient 
devices have higher priorities. Input/Output 
devices are associated with the first ten priori-

I RADAR SYSTEM I- I I 
t 

DATA SMOOTHING 

PENETRATION COMPARATOR a TELETYPE 
OUTPUT 

(S-POINTS) DISCRIMINATOR 

t 
I DISCARD 

I 
REQUEST I TRACK 

Figure 2. SPASEC Data Flow. 
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Figure 3. SP ASEC Level Assignment. 

ties; arithmetic overflow occupies the eleventh 
priority and program units occupy the next five 
priorities. The configuration is shown in Fig­
ure 4. 

The real time interface is the computer's con­
nection with the real world. Through this in­
terface the computer receives information on 
radar returns in the form of digital signals 
representjng range, azimuth, elevation, doppler 
and time. Radar system information messages 
are also given to the computer through this 
link. The computer can direct the radar to 
release or to acquire a target. The communi­
cations are more complex than this but the end 
results are as stated. 

There are two magnetic tape drives, 7330's, 
which are used in low density only. The data 
rate of these units is 7.2 KC character rate. In 
order to match the IBM tape format a blank 
character is appended to or deleted from each 
word transmitted between the 4102-8 and the 
tape units. This results in a data transfer rate 
of 833 microseconds per word. The tape units 
are used for fast program load and historical 
recording. 

The line printer is an Analex 41000, capable 
of printing 1,000 lines per minute. The printer 
has a 64-character selection and a 120-charac­
ter line. There is a punched vertical format 
control tape to allow program control of the 
output. The printer is used to provide a hard 
copy of the penetrations of the surveillance 
sphere. 

A model 28 Teletype is connected to the com­
puter through a special interface which can 
recognize sequences of Teletype characters as 
a request to start or end a message. The inter­
face may operate in three input modes mean­
ingful to the program: Automatic, in which 
case the information is made available to the 
computer directly from the tape punch heads; 
Program control-the program attempts to 
read the accumulated store of paper tape; read­
ing of each Teletype message is initiated by the 
computer; Manual, the reading of the accumu­
lated store of paper tape is initiated by ena­
bling manual mode which must be reenabled for 
each succeeding Teletype message. The inter­
face has two alternatives for Teletype output: 
Automatic--data generated by the computer is 
transmitted from the punch heads automati­
cally to the 8pacetrack Center and a back up 
paper tape is produced. Manual-the computer 
produces a punched paper tape which is trans­
mitted later manually. All Teletype output mes­
sages are printed on the Teletype line printer. 

The Flexowriter is a standard 2 case, 5-bit 
Baudaut code machine with read, write and 
punch capabilities. The 4102-8 hardware gen­
erated load program selects the Flexowriter, so 
initially the Flexowriter paper tape reader is 
used to load a bootstrap program which will 
load the operational program from a mag­
netic tape unit. After initial loading the Flexo­
writer reader is used to enter control messages 
to the program. The Flexowriter typewriter is 
used to print direction messages to the opera-



tor, equipment status messages and smoothed 
radar data. 

PHILOSOPHY OF PROGRAM DESIGN 

SPASEC was conceived to be a single pur­
pose computer system as opposed to a general 
purpose system. Its task was to fulfill the Space 
Track mission twenty-four hours a day, seven 
days a week. 

Throughout the design, coding and develop­
ment phases of the program, particular atten­
tion was given to relieving operating personnel 
of responsibility for determining detailed sys­
tem action and response. This design concept 
which stresses completely automatic operation 
is coupled with additional features to allow 
manual direction and/or intervention. The 
blending of operational flexibility and auto­
matic control has made this system adept at 
gathering data for general and special purpose 
missions. This has allowed an operation which 
has significantly reduced the number of techni­
cal specialists necessary to conduct the most 
complicated assignments. 

The SP ASEC program is segmented and 
planned in such a way that the operation can 
continue ,yith reduced capability. If the Flexo= 
writer is inoperable the Teletype will be di­
rected automatically to perfornl the Flexo­
writer output function in addition to its own. 
If as much as half of core memory is inoperable 

MAGNETIC 
TAPE 
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the program continues relocated into the good 
half. In this case the satellite identification 
feature is lost. If the program is destroyed by 
a transient signal or intermittent error the pro­
gram is quickly reloaded from magnetic tape. 

The logic of the program and the system 
assumes that any changes in operating mode 
due to manual intervention are correct unless 
such changes are of such a nature as to physi­
cally damage the radar. If any procedure is 
unexpected the program will notify the oper­
ating personnel of such change by specific 
English reference to what has occurred (e.g., 
TRACK DENIED, RADAR INOP(erable), 
TRACK MODE). System malfunction is deter­
mined quickly and operator intervention is con­
firmed. 

It was realized that with time, as additional 
operational requirements become known, pro­
gram changes would be required. The actual 
requirements for changes which are being im­
plemented attest to the validity of this concept. 
Based on this, features were incorporated into 
the program to facilitate modification, debug­
ging and historical recall. 

Historical recording is closely allied to the 
debug features within the SP ASEC program. 
These features are used for program mainte­
nance, system and hardware debugging as well 
as special studies. Access is allowed to the pro-
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Figure 4. 4102-S System Configuration. 
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gram and its data in real time or off .. ,Iine modes 
of operation. 

PROGRAM ORGANIZATION 

Initialization 

The 4102-S is paper tape oriented, which for 
small programs is not unwieldy. For the 
SP ASEC program a bootstrap procedure is 
used. The program is assembled on another 
computer with card I/O and brought to the 
4102-S on a low density binary tape. This mag­
netic tape is then loaded under control of a 
small paper tape program loaded through the 
Flexowriter. 

An integral part of the SP ASEC program 
is the ephemeris file, a file which is constantly 
being changed. In order to reflect this change 
a new program tape is written during initiali­
zation and is positioned to receive changes to 
the ephemeris file. Each day a new tape is 
generated which is used for input on the next 
day. To enhance the reliability needed for an 
operational system, the program can be quickly 
reloaded· from the next-days. master without 
destroying any of the above capability. 

Real Time Data Handling 

The interrupt cycle occupies the highest pro­
gram-priority (see Figure 5), that is, program­
priority as opposed to the priorities assigned 
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to the hardware devices. The duty of the in­
terrupt cycle program is to act as an executive 
routine and clearing house for other sections 
of the program that communicate with the real 
time interface or are concerned with real time. 
The rationale for this is that the communica­
tion with the real time interface must be done 
at certain times within the radar pulse interval 
and to avoid confusion it was advisable to have 
one section of program control the data flow. 
This section must be executed periodically, 
hence the high priority level. The interrupt 
cycle is activated as a program once per radar 
pulse interval, therefore, it is well suited to 
update timers and in general furnish the pro­
gram with a pulse. Periodic entry to lower 
priority levels is effected through this pro­
gram. 

Since the radar system can be in track or 
scan but not both, data processing is performed 
on the same level by two mutually exclusive 
programs. The scan portion of the program 
looks at returns from two complete scans and 
attempts to associate the various returns. The 
data that the scan program has access to con­
sists of "end of scans" (EOS) and scan re­
ports. When reports from two consecutive 
scans are believed to be from the same object 
they "associate." Association of reports is not 
attempted until a configuration of the type de­
scribed in Figure 6 is attained. The only items 
of interest are the reports between EOS#K 
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Figure 5. SP ASEC Program Organization. 



and EOS# (K +2). The reports between 
EOS#K and EOS# (K + 1) are reports that 
represent data on an object for one scan and 
reports that represent smoothed data of more 
than one scan. The data between EOS# (K + 1) 
and EOS# (K +2) represent current reports 
which mayor may not associate with data be­
tween EOS#K and EOS#(K+1). When it is 
determined that there is no data to update a 
previously smoothed data report, the cumula-

Table I. 

Program Communication 

Flag 

(1) Magnetic Tape I/O. 

(2) Magnetic Tape I/O. 

(3) Real Time. Interrupt. 

(4) start Message Output' 

(5) Compare Datal 

(6) File Error Message! 

(7) File Error Message! 

(8) File Error Messagel 

(9) FUe Error Messagel 

(10) File Error Messagel 

(ll) start Penetration Calculationsl 

(12) Cycle Through I/O Devicesl 

(13) Check For Data To CompareJ 

(14) Smooth Datal 

(15) Printer Control 

(16) Teletype Input Control 

(17) Teletype Output Control 

(18) Flexowri ter Input Control 

(19) Flexowrl ter output Control 
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tive information on this object is given to a 
track decision routine for further action (see 
Figure 7). 

Smoothed scan reports (scan Q-points) are 
developed from weighted radar parameters 
(range, doppler, azimuth, elevation, time and 
credences). Additional parameters are devel­
oped from this base data such that a final scan 
Q-point contains range, range rate, range ac­
celeration, azimuth, azimuth rate, elevation, 
elevation rate, time and an accuracy index. 
Q-points generated from scan data and initial 
track Q-points are compared with the ephem­
eris file (S-points) by the comparator program. 
The results of the comparison test yield one of 
the following results: fine, passed comparison 
within close time and position tolerances; 
coarse, passed comparison within broad time 
and position tolerances; coarse, tentatively 
identified with more than one object; uncorre­
lated, object unidentified. 

Uncorrelated object Q-points are processed 
through discrimination tests which are de­
signed to determine if the object is a satellite. 
These tests are based upon energy considera­
tions and are designed to eliminate meteors, 
the moon and noise. Q-points which pass these 
tests are placed on a tracker waiting line and 
are tagged uncorrelated. Those which fail are 
discarded as being of no interest. 

Each object on the tracker waiting line has 
associated with it a track priority. This pri­
ority is a function of the object identification, 
data age, and probability of detection. The pro­
gram selects the object with the highest track­
ing priority and attempts to track for a period 
of time based ppon the track criteria. 

To automatically track an obj ect the program 
directs the radar to a point along the object's 
path slightly ahead of the object. This desig­
nation message is transmitted to the radar sys­
tem through the real time interface causing 
the radar antenna to be directed to a point in 
space. For a short period of time the object's 
path can be described as a second order curve 
in each of the radar's parameters. The six 
Q-point parameters are used to find values for 
the second derivatives of range, azimuth and 
elevation. 
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The designation point is current time plus a 
half second and is valid for one second. If the 
object is not detected, a new designation point 
is computed. This procedure may continue for 
thirty seconds. If the object is detected, the 
radar automatically "locks-on" to the object 
and the track is begun. 

Track data is smoothed using unweighted 
arithmetic means with least squares fits to 
develop the rates. The final track Q-point con­
tains range, range rate, azimuth, azimuth rate, 
elevation, elevation rate, average angular cre­
dences and orbital elements consisting of incli­
nation, period, semi-major axis, eccentricity 
and right ascension. The track Q-point pres­
ently is developed from 10 seconds of radar 
data. 

A "cast out" routine was developed to limit 
the transmitted data to representative portions 
of the track. At termination of track this rou­
tine produces 3 Q-points if a short track and 
10 if a long track. In the case of a long track 
the Q-points will be as equally spaced as pos­
sible throughout the entire time interval. The 
track program examines the reports and will 
terminate the track if the radar antenna should 
attempt to enter unavailable regions in the 
sphere of surveillance. For a short track the 
program terminates when three track Q-points 
have been developed. 

Penetration Computations 
The S-point file is generated from the set of 

current orbital elements contained in computer 
memory. Satellite elements, radar site coordi­
nates, radar sector, and time period of interest 
are used to compute predictions. Non-penetrat­
ing satellites are quickly rejected from con­
sideration based on tests of the satellite's in­
clination and time of horizon passage. 

There are five types of penetration schedules 
available to the operations director to preplan 
missions. The five penetration requests are: 
1, penetrations for all objects ordered by time; 
2, penetrations for all objects ordered by satel­
lite number in increasing order; 3, penetrations 
for a priority class of objects ordered by time; 
4, penetrations for a priority class of objects 
ordered by satellite number; 5, look angles, a 
series of penetrations of a single object sepa­
rated in time between two elevations. 

When operating in real time, penetrations 
(S-points) are automatically generated for all 
azimuths at a specified elevation and filed for 
use by the comparator program. The file al­
ways contains one penetration interval, nor­
mally 40 minutes ahead of the current time. 
When S-points become more than six minutes 
old, they are automatically deleted. This allows 
continuous operation with no loss of S-point 



storage. The S-points are printed after the 
computations for an entire interval are com­
pleted. When a print request is received in 
real time, the real time S-points are deleted and 
the print request is honored. Upon completion 
of that printing, the real time S-points are au­
tomatically regenerated and printed. 

I/O Control 
The prime considerations in the design of the 

I/O control program were ease of use and 
movement of data at the; acceptance rate of 
each device. The input/output control routine 
communicates with each of the following I/O 
devices, magnetic tape units, Flexowriter, 
Teletype and line printer. This master control 
routine is responsible for scheduling each of 
these devices based on availability, speed of 
operation and message priority. For output the 
user program notifies the I/O routine through 
a calling sequence which specifies the I/O de­
vice, the address of the data and the type of 
message. . -From the point of view of the user 
program the data is considered transmitted to 
the output device after the calling sequence has 
been executed. In reality the request is stacked 
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I I LIBRARY REPORTS 
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~ COMPUTATIONS 
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LINE MATCH 
PRINTER 
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REAL TIME ...... TRACK a DIRECT f-4-
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TELETYPE ~ a ID FOR ~ COMPARISON 
TRANSMISSION WITH S- POINT 
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and will be processed when the device is avail­
able. 

For input the entire transfer of information 
is automatic and no processing is done on any 
message until the transfer is complete. The 
message is identified, converted and delivered 
to the responsible routine. This is accomplished 
by flagging the proper sub-program and giving 
the location of the data. Movement of large 
blocks of data is eliminated through use of sim­
ple list techniques. Only references to data are 
communicated between sub-programs. 

Real time I/O is treated similarly but inde­
pendently of the main I/O control program to 
assure minimum response time. 

Data Manipulation Techniques 
Data handling in this program makes use 

of simple list structures, e.g., chained lists, and 
key buffers referencing lists. Nearly all sec­
tions of the program work with chained lists. 

In our application list structures have served 
several purposes. Lists are used to give items 
an effective consecutive order, regardless of 

H i 
REAL TIME I LINK 

~ 1ST Q- POINT ~N~ 
COLLECT 

Q-POlNTS FOR ~ TELETYPE 
ON THIS OBJECT TRANSMISSION 

JYES 

~~ TRACK 
~ - YES 

OATA 

t NO 
SATELLITE 

SATELLITE 
SET UP FOR LONG 

REAL TIME 
~ TRACK a DIRECT ~ DISCRIMINATION 

RADAR TO TRACK 
LINK 

t NON - SATELLITE 

RECORD a 
DISCARD 
Q-POINT 

SET UP FOR 
NO SHORT TRACK 

~ 
REAL TIME - a DIRECT RADAR LINK 

TO TRACK 

Figure 7. Detailed Data Flow in the SPASEC Program. 
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core location. They allow access to a large 
amount of data through a single reference. 
Lists are a convenient way to have several pro­
grams use common storage. They are time sav­
ing when large blocks of data are to be trans­
ferred among programs. Lists save storage 
when several routines of high peak storage re­
quirement, at staggered times, can use a com­
mon storage. Instead of having to assign stor­
age for the worst case for each of the pro­
grams, memory is assigned on the basis of the 
overall requirements. 

It should be noted that it is not necessary to 
achieve sophistication in list structures to make 
use of them. List structures can be pro­
grammed in varying degrees of complexity 
tailor-made for the particular program. In 
programming for the Space Track mission, list 
processing was found to be efficient in terms of 
space and time and was a convenient way to 
visualize data transfers. 

SYSTEM GROWTH 

As with any experimental system certain 
growth can be expected in the hardware con­
figuration and in the sophistication and diversi­
fication of the programming effort. This ex­
pansion may be divided into two categories: 
that which is presently being implemented and 
future planning. Present implementation in­
cludes transmission of pointing data in real 
time to a narrow beam, short range radar in 
Baltimore, Maryland. A high-speed (2400-
bits/sec.) data link will provide communica­
tions. This service may be expanded in the 
future to provide similar data to other sites. 
Push button input for control of program op­
tions is under development. This will allow 
operations faster response to requests. Pro­
gram changes are being installed to allow auto­
matic recognition of radar coverage changes 
and to recompute S-points based on this new 
sector. 

Plans for future improvement and growth 
include: additional storage for system enhance­
ment; card reader/punch; displays. This addi­
tional storage would allow an expanded ephem­
eris file when the known satellite population 
becomes much larger than the present 400 ob­
jects, and would be used to store different pro­
duction programs which would time share with 
the operational program. A card reader and 
punch would allow a desirable re-orientation 
of our present paper tape system. A displays 
facility with computer control of a slide pro­
j ector would allow a concise picture and quick 
human identification in most cases. 

CONCLUSION 

The 4102-S SPASEC program has proved 
itself to be a flexible and reliable satellite sur­
veillance program. Working as part of the 
Moorestown Space Track facility it has demon­
strated its ability to identify satellites and 
direct the radar system in the collection, reduc­
tion and forwarding of data. The use of this 
program has enhanced the operations of the 
Space Track mission and made this site one of 
the network's more important members. 
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INTRODUCTION 

The physical processes which exist are, for 
the most part, controllable. In order for man 
to exert control over these processes, however, 
it is necessary for him to design a system to 
suitably perform this task. Such a design 
requires a characterization of the process to be 
controlled. 

Often the characterization of a process can 
be determined from the physical principles 
involved in the process behavior. This has been 
true for most of the control systems designed 
in the past. As man seeks to control more 
complicated processes, however, it is found that 
either many processes are extremely difficult 
to physically characterize, or that the charac­
terization is too complicated to use in the 
determination of a suitable control system. For 
a complex process of high order with several 
nonlinearities, there is no procedure which can 
accurately obtain all the process parameters. 
Fortunately, however, there is no reason for 
obtaining all the process parameters and all 
the nonlinear functionalities. 

The basic question of process identification 
is cause and effect. For a given cause, what is 
the effect? For example, in order to control 
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human response, it is not required that the 
complex nerve and brain structure be known. 
The only practical method would be to observe 
a series of causes and effects, and from this 
data infer the proper cause to produce a 
desired effect. Not only is this procedure prac­
tical, but it is adaptive as well. If the cause­
effect relationship changes, the observer is 
made aware of this fact. Parameter tracking 
for a structure as complex as a human being 
would be· absurd. I t is equally as absurd to 
track the parameters of a tenth order nonlinear 
process. 

For these reasons, a relatively simple and 
straightforward method of relating process 
inputs and outputs is necessary. This method 
shQuld be suitable for nonlinear, as well as 
linear, processes. Furthermore, the process 
characterization should adaptively follow proc­
ess changes due to such things as changes in 
environment. Since special test signals result 
in a disturbance of the process outputs, they 
should not be required to characterize the 
process. 

It should be noted that for control purposes 
one is interested in determining an input to 
produce a desired output. It is important to 
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realize this does not mean it is necessary to 
determine the process transfer function or 
describing function, or differential equations, 
etc. In fact, some of the above mentioned types 
of characterizations are not applicable to many 
processes of interest. 

This paper is concerned with those processes 
which have a two-level switched input and finite 
settling time. The importance of the switched 
two-level process has its foundation in the 
utilization of predictive control as a practical 
solution to least time optimization problems.1

-
9 

Chestnut et al. indicate significant applications 
for predictive control in space navigation and 
rendezvous missions, aircraft landing problems, 
and the control of chemical plants.4 The process 
identification concepts presented in this paper 
are ideally suited for predictive control appli­
cations. 

THEORY OF THE MODEL 

The hybrid computer model was designed for 
predictive-adaptive control systems. The model 
has a switched two-level input signal, which 
for convenience will be called the zero and one 
levels. The only a priori knowledge of the 
process which is required is an estimate of the 
settling time of the process, and the fact that 
this settling time be finite. The requirement of 
an estimate of the settling time of the process 
is needed to provide rapid identification of the 
process. This requirement can be removed, and 
the model can be made to adapt to the settling 
time of the process. However, even though the 
process may be nonlinear and only the input­
output operating record is available, it is rea­
sonable to assume that the range of the settling 
time of the process is known. 

The theoretical basis for the model is the 
work of Wiener and Bose. The classic theorem 
of Wiener10 states that any nonlinear system 
which has finite settling time can be character­
ized by a multiple output linear system which 
characterizes the input past, followed by a zero 
memory nonlinear system. 

The multiple output linear system used by 
this model is an n-1 stage shift register. If the 
binary input is fed into this shift register, the 
n outputs (including the present input) will 
approximate the input history for the past 

(n-1)T time units, where T represents the time 
interval between shift pulses. 

The zero memory nonlinear system performs 
a nonlinear transformation of the n outputs of 
the shift register into the output of the model. 
Thus, the model can be viewed as a sequential 
machine with 2n states, where the states are 
defined by the n outputs of the shift register. 
The output of the model is a function of the 
present state of the model. An example of this 
is shown in Figure 1. This sequential machine 
has four states, the states of the machine being 
defined by the past two inputs to the device. 
The output of this device is a function of the 
present state Si. If the state Si is defined as a 
switching function, being one when the device 
is in state i and zero otherwise, then the output 
of this sequential machine can be written as 

,3 

Z(t) = ~ Ki Si (t) (1) 
i = 0 

Z (t) = model output 

Extrapolating this simple model to a sequen­
tial machine with 2n states, then 

:!n - 1 

Z(t) = ~ Ki Sj (t) (2) 
i = (I 

The model output Z (t) is equal to Ki when 
the model is in state Si. Since the machine can 
be in only one state at any given instant in 
time, only one term of the summation of Eq. 2 
is non-zero at any given time. 

If the true output of the process is y (t), 
then it is desirable that the Ki be adjusted 
such that the mean square error between the 
true output y (t) and the model output Z (t) 

OUTPUT=K1 

Figure 1. Sequential Model. 
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be minimized. The following function must 
then be minimized, the bar indicating an infi­
nite time average. 

E = (y(t) - Z(t»2 = (y(t) ~Ki Si (t»2 
i 

(3) 

Taking the derivative with respect to a dummy 
term Kj3 

oE 

oKj3 - 2(y(t) - ~Ki Si(t» (-Sj3(t» (4) 
i 

Since the states are disjoint in time, the product 
of the switching function~ Si (t) Sj3(t) is zero 
except when i = f3. Since the switching func­
tion Sj3 (t) is either zero or one, the product 
Sj3(t) Sj3(t) is equal to Sj3(t). Therefore, 

~ = (-2) (y(t) Sj3(t) - Kj3 Sj3(t» (5) 
aKj3 

If Eq. 5 is set equal to zero, then the coefficient 
Kj3 is found to be 

y (t) Sj3 (t) 
Kj3= __ 

Sj3(t) 
(6) 

The coefficient Kj3 can be interpreted as 
representing the average value of the true out­
put y (t) when the sequential model is in state 
Sj3. If the process is slowly time-varying, then 
Kj3 should be a function of time, such that the 
model follows the time variations of the process 
with minimum mean square error. 

For control purposes it is desirable that the 
model have the capability of predicting future 
values of the process output from the knowledge 
of the present state of the model. This capabil­
ity can be expressed as follows, 

Z(t) = ~K~ +kT Sj3(t) z y(t + kT) (7) 

(:3 

where kT represents the prediction time. The 

superscript t + kT indicates that K~ + kT is the 
predicted value of the process output kT units 
in the future. Following the same procedure as 

used to find Kj3, the coefficient K~ + kT is found 
to be 

K; + kT = y(t +~ Sf3(t) (8) 

Sj3(t) 

Since it is impossible to know the future out­
put of the process unless the future input is 
known, the best that can be done is to assume 
stationarity in both the process parameters and 
the input statistics. 

Under these assumptions, the coefficient 
t + kT 

Kj3 can be expressed as 

K; + kT = y(t) Sj3(t - kT) (9) 

Sj3(t - kT) 

This expression for the prediction coefficient 
can be implemented with a shift register of 
n + k - 1 stages. The prediction coefficient is 
obtained by associating the present average 
process output with the state corresponding 
to the last n outputs of the shift register (taps 
k through k + n - 1). When that state next 
appears at the first n outputs of the shift 
register (taps 0 through n - 1) the model 
remembers what the average value of the 
subsequent output was when that sequence 
appeared previously, and predicts this value 
for the future model output. Essentially, this 
prediction is the conditional mean of y (t + kT) 
given the particular state Sj3 (t). The implemen­
tation is shown in Figure 2. The average value 
of the present output can be used as the identi­
fication coefficient Ka associated with state Sa, 

or as the prediction coefficient K~ + 5T associated 
with state Sj3. 

The preceding discussion describes the basic 
theory of the identification procedure. Since 
the purpose of this paper is to describe the 
hybrid computer which was designed from this 
basic viewpoint, the theoretical details of model 
error, identification time, etc., are omitted. 
These points are adequately discussed in Ref­
erence 11. 

For the purposes of this paper, it is sufficient 
to state that if the minimum mean square error 
of identification is given by E min, then the 
average value of the additional mean square 
error introduced by having only a finite input­
output operating record is given by 11M E mi1u 
where M is the number of times each state has 
occurred. Thus, the additional MSE due to a 
finite operating record is no more than 11M 
E min, if each sequence occurs at least M times 
in the record. Consequently, the mean square 
error caused by having each state appear only 
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Figure 2. General System Diagram. 

once is at most twice the minimum mean 
square error. 

Since the minimum mean square error can 
be made extremely small by increasing the 
~engt~ of the shift register (increasing n), the 
IdentIfication using this technique should be 
quite good. 

Before passing to the discussion of the design 
of the process identifier, there are two points 
of practical interest. The first point is that 
although there are 2n possible states which may 
occur in the theoretical model, practical con­
siderations will limit the number of states that 
the actual model will experience. For a practical 
control system, the input will probably not 
switch n times during the process settling time. 
Some studiesll

-
12 on a ten tap system have 

shown that it is reasonable to expect that no 
more than 200 different states will occur 
although the specific states which do occur ar~ 
not known. This important observation reduces 
the required memory capacity considerably. 
The second point is that knowledge of the proc­
ess input in the immediate past is generally of 
more importance in determining the present 
process output than inputs which occurred 
some time in the past. Therefore, it is advisable 
to have the capability of tapering the outputs 
of the shift register. That is, spacing the first 
few shift register outputs closer timewise than 

the last few shift register outputs. This is 
accomplished by increasing both the length of 
the shift register and the shifting frequency by 
a multiple of two. A typical example of taper­
ing is shown in Figure 3. 

COMPUTER DESIGN 

The basic components of the hybrid computer 
are the input shift register, the main memory, 
analog-to-digital and digital-to-analog convert­
ers, and an analog weighting and averaging 
~ection. See Figure 4. The input shift register 
IS used to store the present input sequence to 
the process. The main memory is a converted 
IBM 650 magnetic drum, and is used to store 
the past input sequences Sa, the associated 
coefficients K a , and a weighting number which 
indicates the number of times that a particular 
sequence has occurred. The analog section is 
used to find the average process output over 
the time that a particular sequence appears. 
This average value is combined with the appro­
priate coefficient K(3 and weighting number to 
form the new coefficient K(3. The analog-to­
digital and digital-to-analog converters provide 
the required interface between the analog and 
digital portions of the computer. 

The input shift register, used to form a tem­
pora~y storage for the binary process input, 
consIsts of 20 flip-flops. The shifting frequency 
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Figure 3. Tap Arrangement. 

8 
7T 

I 
I 
9 
9T 

(input clock) is determined by the settling 
time of the process being observed. The input 
and input past are taken from the shift register 
at 10 points (via a patch board), and these 10 
points are used to form an address ("predict" 
address). The drum memory is searched for a 
coincident address, and if one is found the in­
formation and weighting number associated 
with that address are placed in registers. A 
digital-to-analog conversion is performed on 
the information, and this analog signal is com-
bined with the process output in a ratio deter-
mined by the weighting number. An analog-to­
digital converter produces the binary equivalent 
of the analog signal formed by the weighted 
combination mentioned above. If the weight­
ing number has not reached a preset limit, it 
is increased by one, and both the new weighting 
number and the information from the analog-­
to-digital converter are placed in memory at the 
coincident address. Each memory location con­
tains 10 address bits (the sequence Sa), 6 
information bits (the coefficient K a ), 4 weight­
ing number bits (the number of times Sa has 
appeared), and a check bit which indicates 
unused memory locations. 

If the outputs of the 10 taps form an address 
which has not been observed before, the ma­
chine analog output and the process output are 
combined in a 0: 1 ratio and the weighting 
number is set equal to 1. The information from 
the analog-to-digital converter, the weighting 
number, and the new address are all placed in 
memory at a previously unused position. 

A second group of 10 points is taken from 
the shift register (via the patch board) to form 
the model output address ("identify" address). 
A second coincidence circuit searches the drum 
for this address, and if coincidence occurs the 
information associated with the model output 
address is placed in a second register. The 
digital-to-analog conversion of the information 
in this register is used as the model output. 
The weighting number associated with this 
information is not used at this time. 

If the "predict" and "identify" addresses are 
taken from the same 10 taps of the shift regis­
ter, the model output will identify the process 
observed. If the "identify" address is taken 
from a group of ten taps which are of the same 
configuration as the 10 taps of the "predict" 
address, but located closer to the start of the 
shift register, the model output will predict the 
process observed. 

The analog section of the model consists of 
four operational amplifiers. Two of these opera­
tional amplifiers are used for the output of the 
digital-to-analog converters. One amplifier is 
used to perform the averaging of the process 
output over the time interval T, and one ampli­
fier is used to perform both the weighting of 
the present process output with the stored coeffi­
cients and the sample and hold function re­
quired for the analog-to-digital converter. 

The process averager is an integrator which 
is sampled and reset to zero once each cycle. If 
the time between input clock pulses is T, then 
the average of the input voltage over one cycle 

T 

is: eam". = ~ f einput dt. The equation of the 

integrator (assuming zero initial conditions) 

T 

is: eoutput = - _1_ f einput dt. Therefore, RC is 
RC 

set equal to T. The reset time of the integrator 
(1 millisecond) is negligible compared with the 
values of T to be used (of the order of 0.4 
second) . 

The two digital-to-analog -converter blocks 
marked DAC in Figure 4 serve to connect an 
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AVERAGE 

Figure 4. Detailed System Block Diagram. 

input reference voltage to the input of an opera­
tional amplifier through a variety of resistances. 
These networks are arranged such that when 
they are connected to the input of an opera­
tional amplifier with a 10,000 ohm feedback 
resistor, the amplifier output will vary from 0 to 
10 volts in 64 steps corresponding to the 64 
possible binary numbers in the digital-to-analog 
converter register. Note that a 5 volt bias sig­
nal is added to each DAC amplifier input to 
change the 0 to 10 volt output to a ± 5 volt 
output. This will cause the binary number 32 
in the DAC register to be equivalent to an 
analog output of zero volts. 

The two digital-to-analog converters have op­
posite polarities. The DAC No. 2 unit which 
produces the model output is connected for a 
positive or "correct-polarity" output. The DAC 
No.1 unit produces an "inverted-polarity" out­
put. Since the process output has also been 
inverted (by the process averager), these two 
signals are weighted and added directly. The 
sample-and-hold amplifier will invert the 
weighted sum, causing a "correct-polarity" sig­
nal to enter the analog-to-digital converter. 

The weighting unit is a resistor and reed 
relay network controlled by digital logic. This 
network is designed such that when it is con­
nected to an amplifier with 10,000 ohms feed­
back resistance, the output of the amplifier will 

be e + Xe' where e is the signal from the proc-
1 + X 

ess averager, e' is the signal from the DAC 
No.1 amplifier, and X has integer values from 
o to 15 depending on the binary number in the 
weighting register. 

The amplifier which is used to perform the 
weighted addition also performs a sample-and­
hold function. The 0.1 microfarad feedback 
capacitor will cause the circuit to remain at a 
given voltage when the "hold" relay is opened. 
This is necessary in order to present a constant 
voltage to the analog-to-digital converter cir­
cuit during conversion. Note that a 5 volt bias 
is added to the input of this amplifier to con­
vert the ±5 volt inputs to the 0 to 10 volt out­
put which is presented to the analog-to-digital 
converter. The analog-to-digital converter uses 
the 0 to 10 volt analog input to produce a 6 bit 
binary output. Again it should be noted that 
because of the bias employed, the binary output 
number 32 actually represents a zero volt signal. 

The memory element of this computer is a 
modified IBM 650 magnetic drum memory. The 
modification has been such that instead of the 
one head per track formerly used, there are 
42 tracks available with three heads per track. 
The three heads on the modified tracks are used 
for read, bias, and write. 

The method of recording used is non-return­
to-zero. The bias head continually records a 
"zero" on a given track, and the write head 
then records a "one" over the "zero" if it is on, 
or allows the zero to remain if it is off. The 
read head detects changes between the "one" 
and "zero" states as positive and negative 
pulses, which are used to set a flip-flop to either 
the "one" or "zero" state, corresponding to the 
information recorded on the drum. The mem­
ory is of the circulating type in that the infor­
mation must be read and rewritten each time 
the drum makes one revolution. 

Only 22 of the tracks on the drum are used 
in the machine (the drum originally contained 
over 200 tracks; the modification reduced this 



A HYBRID COMPUTER FOR ADAPTIVE NONLINEAR PROCESS IDENTIFICATION 533 

number to around 140, with 42 of these being 
accessible from three different heads). Twenty­
one of the 42 three-head tracks are used for 
information storage, and a timing track is used 
to generate clock pulses at a 125 Kilocycle rate 
(this pulse rate is divided in the timing logic, 
so the machine clock frequency is 62.5 Kilo­
cycles) . 

It takes approximately 3.85 milliseconds for 
information to pass from a position under the 
write head to a position under the read head. 
Both the clock frequency and the time necessary 
for the drum to complete one cycle (from write 
head to read head) depend on the drive motor 
speed (nominally 12,500 rpm) and will vary 
somewhat, but one cycle will always contain 
240 clock pulses-one clock pulse for each stor­
age location. 

Each word in the memory is stored in three 
parts, which are available at consecutive ma­
chine clock times. First there is a check bit 
(bit 21) which indicates the presence of a word 
on the drum as opposed to an unused memory 
position. Following the check bit by one bit­
time is the address (bits 1 through 10) which 
represents a particular shift register pattern 
(as observed via the patch board). One bit~time 
later the information (bits 11 through 16) and 

the weighting (bits 17 through 20) are avail­
able. 

The front panel of the completed machine is 
shown in Figure 5. Side views of the machine 
(just prior to completion) are shown in Figures 
6 and 7. 

TESTS AND RESULTS 

In order to check the capabilities of the model, 
several test systems were programmed on a 
PACE TR-I0 analog computer. The systems 
used are shown in Figure 8. The input to all 
systems was a pseudo-random binary function 
(limits were set on the rate of input switching). 

A four channel Sanborn recorder was used 
to observe the input, the systems, and the 
model. All binary inputs were between the 
levels of -+ 10 and -10 volts throughout the 
test. Attenuators were used to reduce the sys­
tem outputs to --+-5 volts. 

Figure 9 shows the results of modeling a 

simple ~ system (system No.1). An input 
s + 1 

clock rate of 2.5 pulses per second was used, 
with a minimum of ·2r input clock pulses per 
bi:r:-ary input change. The weighting limit was 
set to 15. It can be seen that smoothing the 

• • iI, >l ... - ~ • -.. "" ...-

• ~ .. 0' ~ ~ ~. 

, ~ , ~ • j • ~ , § 

., .. ~...... ~... .. ~ 

" .. , . 

Figure 5. Front Panel of Computer. 
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Figure 6. Right Side View of Computer. 

10 
model output (through a transfer func-

s + 10 
tion) helps create a better looking output, but 
induces a slight delay in the model output. 

Figure 10 shows the result of modeling the 
more complex system formed by following the 

~ function with a nonlinear element (sys­
s + 1 
tern No.2, Figure 8). The same input conditions 
and machine limits as above were used. 

Figure 11 and Figure 12 show the use of 
prediction to compensate for the delay caused 
in the model output smoothing circuit. The 

-1 
system observed is composed of a -- func­

s + 1 
tion and a nonlinear element followed by a 

-1 
second -- function (system No.3). A 2.5 

s + 1 
pulse per second input clock was used with a 

minimum of 8 clock pulses per binary input 
change. A weighting limit of 15 was employed. 
In Figure 11 the model is identifying the sys­
tem quite well, but a rather large error is pres­
ent due to the delay in the model smoothing 
circuits. In Figure 12 a 0.8 second prediction 
is used to compensate for this delay, and the 
error in this case is much smaller than before, 
being caused primarily by fast variations in 
the system which are represented by an aver­
age value at the model output. 

Figure 13 illustrates the action of the model 

in identifying the ~ transfer function (sys-
. s+1 

tern No.1) when the input binary function is 
allowed to change every 2 input clock pulses. 
An untapered delay line, weighting limit of 15, 
and 2.5 pulse per second input clock were used 
in this test. A 0.4 second prediction is used to 

Figure 7. Left Side View of Computer. 
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MODEL 
OUTPUT 

~6 SYSTEM 

-10 +10 No.2 

-6 

SYSTEM 
No.3 

...... -------- SYSTEM 

~
6 

-10 +10 

-6 

SYSTEM OUTPUT------l 

No.1 

SYSTEM 
No.4 

ERROR 

1-----+---'----SMOOTHED MODEL OUTPUT 

Figure 8. Test Systems. 

offset the delay caused by model output 
smoothing. 

Figure 14 gives the results of modeling a 
system with a large amount of hysteresis (sys-
tern No.4, Figure 8). 
input clock is used with a minimum of 4 bits 
per binary input change. A prediction of 0.4 
second is used to compensate for smoothing 
delay. The weighting limit was set to 15. All 
of the waveforms shown in Figures 9 through 
14 were taken after a 60 to 120 second learning 
period. 

Figure 15 illustrates the use of the machine 
as an adaptive model. The system observed in 
this case was abruptly changed from system 
No.1 to system No.3. These systems differ 
not only in general output waveforms. but are 

Figure 11. No Prediction-System No.3. 

Figure 9. Identification-System No.1 
Figure 10. Identification-System No.2. 

also of opposite polarity for a given binary 
input. An input clock frequency of 2.5 pulses 
per second was used, with a minimum of 8 
bits per binary input change. A 0.4 second 
prediction was used to compensate for smooth~ 
ing delay. A weighting limit of 2 was used so 
that the model could adapt quickly to the 
changing system. Although the error does not 
reach a minimum in the short record shown, 
it is obvious that the model is adapting very 
quickly indeed to the abruptly changing system. 

SUMMARY AND CONCLUSIONS 

The concept of using a synchronous sequen~ 
tial machine to model a continuous nonlinear 
l'H"At>OC!C! <:lnnO<:ll"C! tA ho rillito llC!ofnl rrho lYI()nol 
1-'..J...v"",,,,,,,),,,),,,:;, ""'P..t-''-'CAlJ..U V'\J ,...., ....... '1.'-"L..LV'-' "-'S.J>...1'-'..L. .......... ..&...L.L"" ....... .L'-'''-'S. ......... 

which was constructed for processes which 
have a switched two-level input performed 
quite well both in the identify and the predict 
mode, This model is presently being used in 
the study of adaptive predictive nonlinear con­
trol systems, 

Clearly, the model which is used for proc~ 
esses with two-level switched inputs cannot be 
used for processes with more than a two-level 
input. This is due to the large number of co­
efficients which must be stored. However, the 
basic philosophy of matching an input pattern 

Figure 12. 2 Bit Prediction-System No.3. 
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Figure 13. Modeling-System No. 1. 

with a particular output is still valid. This 
philosophy has been successfully employed in 
a study of nonlinear process identification using 
feature detection of the input pattern.13 
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THE NEGATIVE GRADIENT METHOD EXTENDED TO THE 
COM,PUTER PROGRAMMING OF SIMULTANEOUS 

SYSTEMS OF DIFFERENTIAL AND FINITE EQUATIONS 
Albert I. Talkin 

Harry Diamond Laboratories 
Washington, D. C. 

1. INTRODUCTION 

. In programming a system of simultaneous 
nonlinear equations on an analog computer it is 
most convenient to use the equations in their 
implicit form. In addition since the equations 
are nonlinear certain partial derivatives may 
change sign resulting in computer instability 
unless the equations are programmed by the 
negative gradient method.1

,2 This paper con­
siders programming nonlinear, explicitly time 
varying trajectory problems by coupling 
togeth~:r a set of nonlinear positional equations 
and a set of nonlinear first order differential 
equations, each set being separately progra~­
med by the negative gradient method.3 The 

1 This paper draws no distinction between the terms 
"gradient method," "least squares," "steepest descent" 
or "transpose matrix method." 

2 For an interesting alternative see M. G. Bykhovski 
"Ultrastability in Electronic Computers when Realizing 
Nonlinear Equations in Implicit Form" IFAC Proceed­
ings. Moscow 1960, Vol. 2, Butterworths 1961, pp. 
1032-1038. 

3 The method described herein may be compared to 
that of Turner who considers both finite equations and 
differential equations in implicit form as "constraint" 
equations. His computer programming is done in a 
somewhat intuitive manner which does not necessarily 
guarantee stable programming. See R. M. Turner "On 
the Reduction of Error in Certain Analog Computer 
Calculations by the Use of Contraint Equations" Pro­
ceedings of the Western JCC, San Francisco, May 1960. 
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equation of· the first approximation to the 
perturbed motion is used to examine the con­
vergence of the computer program to the solu­
tion of the given mathematical system. 

1.1 Definition of the Problem 

The problem will be defined in n-dimensional 
space. Vector/matrix notation will be employed 
to reduce the labor of writing equations. The 
following definitions will be used: 

(1) position vector x == [Xl' x2 , ••• , xJ 

(2) i-th position function CPi == CPi (x, t) ; 
i = 1, ... , m, m < n 

(3) position function vector cP == [cp1' CP2' 
••• , cpm] 

( 4) velocity vector u == [u l , U2, ••• , Up.] 

(5) j-th velocity function f j == fj (u, x, t) ; 
j = m + 1, m + 2, ... , n 

(6) velocity function vector f == [fm + 1, 

fm + 2, ••• , fn] 

(7) position error vector v == [V1, v2, ••• , 

vn ] 

(8) velocity error vector a == [ax, a 2, ••• , 

an] 

(9) gradient vector V x == 

[a~: a~;···' a~J 
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( 10) gradient vector v u == 
[

0 a a ] 
au

l
' auz' ••• , oU

n 

(11) general matrix notation: A == (aij) and 
I == unity matrix 

(12) scalar or inner product of two n-dimen­
sional vectors (p, q) : 

(p, q) == Plql + Pzqz + ... Pnqn. 
(13) k,g, are arbitrary scalar quantities rep­

resenting integrator gains 

(14), t is a parameter appearing in the 
mathematical problem statement i.e. 
"mathematical time" 

(15) T is computer time 

(16) a is an arbitrary time scale factor 
O<a:::;l(t=aT) 

Using the above definitions the problem can be 
stated as follows: Given the set of independent 
equations 

cp (x, t) = 0 ( 1.1 ) 

f (u, x, t) = 0 (1.2) (1) 

dx 
u = x == - (1.3) 

dt 

program an analog computer to generate the 
unknowns x(t), u(t). Equation (1.1) repre­
sents m equations, (1.2) represents n-m equa­
tions and (1.3) represents n equations for a 
total of 2n equations in 2n unknowns Xl, x2, 
... , Xn ; Ul, U Z, ••• , Un. A full statement of the 
problem also requires that n-m of the position 
coordinates be specified as initial conditions. 
Before continuing with the analysis of such a 
system, it may be helpful to expand upon the 
above problem statement by considering some 
examples and applications in two and three 
dimensional space. 

1.2 Examples and Applications 

In this section vector notation is momentarily 
abandoned in favor of the more conventional 
x,y,z notation. Also u is eliminated from the 
equations by the substitution x = u. 

Consider the three dimensional system (2): 

CPl (x,y,z) == X Z + yZ - cZzZ = 0 
9z(X,y,z) == aX + {3y + yZ + h = 0 (2) 
fa (x,y,z,x,y,z) == XZ + yZ + ZZ - sZ = 0 
(c, a, {3, y, h, s are arbitrary constants) 

The simultaneous solution of (2) is a conic sec­
tion traced at constant speed s. In (2) the vari­
able t does not appear explicitly in 9 or f. 

Consider the two dimensional system (3) : 

91 (x,y,t) == X Z + y2 - rZ (t) = 0 
fz(x,y,x,y,t) == X Z + yZ - SZ(t) = 0 (3) 

If r(t) is constant and s(t) is a linear ramp, 
(3) represents linear frequency modulation 
without any amplitude modulation. If both r(t) 
and s (t) are constant, (3) represents an oscilla­
tor with highly stable amplitude and frequency 
characteristics. If r(t) is constant and s(t) 
dO 
dt' (3) performs trigonometric resolution.4 If 

s(t) is a constant, (3) represents a complex 
modulation scheme obeying the law (AM) X 
(FM) = constant. The modulation intelligence 
r(t) can be received by either an AM or FM 
receiver and is redundant. 

Consider the system (4): 

91 (x,y,t) == X Z + yZ - rZ (t) 0 
f2 (x,y,x,y,t) == X Z + yZ - rZ (t) SZ (t) = 0 (4) 

If in (4) both r(t) and s(t) vary independently, 
the system represents a simultaneous AM and 
FM waveform with independent messages r(t) 
and s (t) . As a final example consider the sys­
tem (5) for the simulation of planetary motion 
in two dimensions. Equation 5.2 involving 
mixed position and velocity coordinates is a 
result of the requirement that equal areas be 
swept in equal times. 

bZ(x-h)Z + a2y:! - a 2b2 = 0 
xy-yx-c=O 

II. ANALYSIS 

2.1 Partitioning the Problem 

(5.1) 
(5.2) 

(5) 

Consider first the situation in which the 
analog computer is in the "hold" or "reset" 
mode, i.e. switches Sl and S2 of Fig. 1 are open. 
In "reset" correct stationary values of x and u 
must be generated. Since cP is not a function 

4 R. M. Howe and E. G. Gilbert, "Trigonometric 
Resolution in Analog Computers by Means of M ulti­
plier Elements," IRE Transactions, Vol. EC 6, 
June 1957. 



of u, it is possible to generate x by program­
ming the equations 

CP1 (x,to) = 0, CP2 (x,to) = 0, ... , cpm (x,~) = 0 (6) 

with n-m of the coordinates of x specified as 
initial conditions. This, of course, results in a 
system of m independent equations with m un­
knowns. Since these equations are in general 
nonlinear the gradient method of programming 
is used to guarantee convergence. 

Turning now to the generation of u, the con­
dition f = 0 provides only n-m equations to be 
solved for n unknowns. To obtain the m addi­
tional equations an augmented velocity function 
vector (tf!) must be defined. In vector notation, 

tf! = dcp + f (7) 
dt 

For the rigorous interpretation of (7) the orig­
inal definitions of f and cp must be expanded to 
n-dimensions, with the first m components of f 
being identically zero, and the last n-m com­
ponents of cp being identically zero. Written 
out: 

[ 
dcp1 dc/>2 dcpm ] 

tf!== dt' dt'··· dt ' fm + 1, fm + 2, ... , fn (8) 

If in the first m coordinates of tf! the substitu­
tion of u for x is made, then 

if; = 0 (Q\ 
\V~ 

represents a system of n equations in n un­
knowns Uh u2, ... , Un. The system (9) can be 
programmed by the gradient method, and re­
quires that x developed from (6) be inserted as 
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a parameter. The conditions obtained in "reset" 
are 

cp(x,t~) = 0, tf!(u,x,to) = 0 (10) 

Equations (10) represent the partitioned sys­
tem. Note that in "reset" (n-m) of the x inte­
grators have initial conditions imposed and 
the remaining m coordinates are determined 
uniquely. In "hold" the x coordinates are no 
longer determined uniquely and there will be 
some tendency for the stationary values to be 
sensitive to perturbations of the position vector. 

2.2 Closing the Switches-(The "compute" 
mode) 

Fig. 1 is a simplified schematic illustrating 
the connections for the i-th component of x and 
u. In "reset" or "hold" the switches S1 and S2 
are open and the negative gradient program­
ming guarantees that x and u will assume sta­
tionary values as quickly as possible. It is 
reasonable to suppose that if the switches were 
closed the resulting system would produce a 
very close approximation to the desired trajec­
tory provided that the ensuing continuous 
iteration converges. 

2.3 Perturbation Analysis 

The following two assumptions are made: 

(1) The conditions cp = 0 and if! = 0 are 
approximately satisfied. 

(2) Arbitrary small instantaneous perturba­
tions 8x and 8u are imposed on the 
system. 

r.f 

.~ 

Figure 1. Simplified Computer Diagram Showing Connections for XI, UI. 
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In accordance with the gradient method, let 

v = - V x(cp,~) (11) 

a = - Vu(1/I,1/I) (12) 

From fig. 1 
dx 
- = aU +kv 
dT 

(13) 

du 
(14) -=ga 

dT 

Differentiating (13) and substituting (14) : 

(15) 

Operating on equations (13) and (15) with the 
variational operator 8: 

d (8x) 
- = a(8u) + k(8v) 
dT 

(16) 

d2 (8x) ( k d (8v) 
- = ag 8a) + -
dT2 dT 

(17) 

It is now necessary to express 8v and 8a in 
terms of 8x. Taking variations of both sides 
of (11): 

8v, = ± (-2 t a<pk a<Pk) 8xj 
j = 1 k = 1 OXi OXj 

+ j~1 ( -2 k~1 </>k a:"~x}Xj (18) 

As variations are taken starting from an as­
sumed equilibrium state cp ~ 0, the second term 
on the right in (18) vanishes. The matrix 

is positive definite for it can be factored into 
the product of a matrix by its transpose. Equa­
tion (18) then becomes 

8v = -A 8x (19) 

As cp is not a function of u, only the vari­
ation with respect to x need be considered in 
(18) . To find 8a, variations of both sides of 
(12) are taken, noting now that 8u and 8x con­
tribute to 8a: thus, 

8a, = i; (-2 i; a"'k aofk) 8u· 
j = 1 k = 1 OUi OUj J 

+ i; (-2 ± aofk a",,) 8xj 
j = 1 k = 1 OUi OXj 

(20) 

In (20) terms involving second partial deriva­
tives are absent because of the assumption that 
1/1 ~ o. 

Rewri ting (20) 

Sa = - B8u - H 8x (21) 

where 

B ,(bij ) == ( ±. 2 01/lk 01/l
k

) 
k = 1 OUi OUj 

H == (hij ) == ( i; 2 aofk a",,) 
k = 1 OUi OXj 

The matrix B is positive definite, but the matrix 
H is not so restricted. Substituting from (19) 
and (21) in (17) gives: 

d2 (8x) 
- + agB8u + agH8x + 
d,.2 

k~ (A8x) = 0 
dT 

d2 (8x) 
- + agB8u + agH8x + 
dT2 

aA d (8x) 
k- 8x + kA- = 0 

OT dT 

From (16) and (19), 
d (8x) 

a8u = kA8x +-
dT 

Substituting (24) in (23) gives: 

1~(8X) + (kA + gB) ~(8x) + 
dT2 dT 

(22) 

(23) 

(24) 

oA 
(gkBA + agH + k-) 8x = 0 (25) 

OT 

Equation (25) is the equation of the first ap­
proximation of the perturbed motion. Note that 
(I), the unity matrix, is positive definite and 
(kA + gB) is positive definite, as it is the sum 
of two positive definite matrices kA and gB. 

N ow the third term on the left in (25) can 
be written as the matrix sum 

5 Bellman, R. "Introduction to Matrix Analysis," 
McGraw-Hill Book Company, Inc., New York, N.Y., 
1960, p. 246. 



gkBA + a(gH + k aA ) (26) 
aT 

. aA aA 
noting that - = a-

aT at 

The matrix product gkBA is positive definite, 

arid the terma(gH + k ,aA ) may be considered 
at 

a perturbation term which can be made small 
by reducinga. Hence eq. (25) represents a 
stable system, all coefficient matrices being 
essentially positive definite. Bellman4 indi­
cates that this result also holds when the 
coefficient matrices are time varying as in 
this case. 

CONCLUSION 

It is now evident that the time scale factor 
a can be reduced whenever the perturbation 
term grows too large. This may be done 
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selectively so that the harder to stabilize 
segments of the trajectory are traced at a 
slower rate. It may sometimes occur that the 
required is prohibitively small, i.e., the 
solution time is exhorbitant, or perhaps 
it is required not to alter during a trajec­
tory. In this case a trade off between the 
scalar gains g and k must be made, i.e., some 
gain modulation scheme may be used to mini­
mize the sum 

gH + k aa~ while holding the product gk ~ M. 
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INTRODUCTION 

Quantizing and sampling errors have been 
examined by a number of authors. For ex­
ample, the errors have been extensively studied 
in the communication2, 6, 7 and servomecha­
nisms4, 5,11 fields of electrical engineering. Stud­
ies of these errors have also been made by 
numerical analysts,l, 3 primarily from the 
standpoint of round-off error and error propa­
gation. None of these efforts, however, has 
been specifically directed to the analysis of the 
total errors generated in a hybrid computation 
loop. In each field, different methods have been 
used and different portions of the problem 
studied; 

In the communications field, sampling and 
quantizing have been studied in connection 
with PCM signals. The major effort has been 
associated with the transmission of intelligible 
audio and visual data. Three to seven (binary) 
bits have been used for the most part, because 
this range is adequate for communications 
work. For example, when four bits (16 levels) 
are used to code the intensity of a transmitted 
television picture, good picture quality is ob­
tained, and even a fair picture is achieved with 
three-bit (8-level) transmission. 

In these applications, the percentage error as 
a function of signal amplitude is improved by 
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companding (compressing) the signal ampli­
tude prior to quantizing and expanding it upon 
conversion. The most frequently used tech­
niques are sinusoidal frequency response and 
stochastic variable frequency response. 

In the servo field, attention has been concen= 
trated on the low-bit quantizing problem (nor­
mally one to two bits) in applications which do 
not use a digital computer for control.l1 Sam­
pling is not usually used in the case of servos 
with only a few bits, and, when a digital com­
puter is used for control, slight emphasis has 
been placed upon the quantization errors. The 
techniques used in these studies have been 
those of the phase plane, state variables, sam­
pled data system theory, etc. 

In the case of numerical analysis, the statis­
tical approach has been used in conjunction 
with the Taylor series for the estimate of the 
round-off errors at each step. Primary con­
sideration has been given to open-loop multipli­
cation and addition errors. However, the pres­
ence of predictor-corrector-modifier formulae 
testifies to the existence of closed-loop error 
analyses. Frequency response techniques have 
not been used. 

A statistical approach4,5 has been used to de­
scribe the quantization errors by means of the 
errors in probability distributions resulting 
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from quantization. This approach is more re­
lated to the numerical analysis approach than 
to the others, since the harmonic content of the 
signal is not treated. 

The sampling and execution time errors in 
a hybrid loop have been studied and simulated 
on analog computers, but quantization has been 
neglected.1.3,14 

A typical hybrid computation loop consists 
of an analog computer, a digital computer, and 
conversion equipment. When this loop is viewed 
from the analog computer, the portion of the 
loop outside the analog computer can be con­
sidered to be a black box that operates on the 
signals sent to it, adds errors, and then sends 
the signals back to it, as indicated in Figure 1. 

The system state vectors, X, Y, Z, and E, are 
described by 

Z(t) = Y(t) + E(t) 
Y(t) = Y(X(t), t) 

The vector function Y (X (t), t) specifies the 
operations of the processor, and the error vec­
tor E (t) is a function of numerical computa­
tional errors and of the conversion errors. The 
errors of major interest to this paper are those 
generated by the combined conversion proc­
esses. The other errors will not be discussed 
because their consideration can easily be added. 
For example, round-off errors should be negli­
gible if computer word lengths are 20 to 24 

1 (bl MODEL 

r---------, 
I I 

BLACK BOX 

Figure 1. Hybrid Computation Loop. 

I 
I 
I 

bits, and a finite digital computer processing 
time, T, represents only a pure time delay of 
T seconds. 

What kind of signals in the hybrid loop will 
most likely be affected by the quantization and 
sampling errors? Certainly sinusoidal signals 
should have the highest probability in this re­
gard, since physical plants either have inherent 
natural frequencies, or gain them when a con­
trol loop is added. Even for nonlinear proc­
esses, the system variables can usually be de­
composed into a Fourier series. Thus, the 
choice of characterizing the "Block Box" errors 
in terms of the errors generated in response 
to a sine wave is a logical one. 

The required precision can be easily esti­
mated. Individual analog components have er­
rors on the order of 0.01 percent, and the maxi­
mum voltage is 100 volts. The maximum pre­
cision expected of the converters, therefore, 
would be 13 bits plus sign, since the error 
maximum is one-half the step size. If the maxi­
mum represents 128 volts, a 100-volt signal 
would use 12.6 bits and a I-volt signal 6 bits 
(plus sign, in both cases). In practice, the sig­
nals of concern are those whose amplitude may 
be 1 bit-or 13 bits. Thus, the full range must 
be considered. 

In what way can past research, carried on 
in the areas previously mentioned, be applied 
to the hybrid computation problem? In par­
ticular, for any specified error bound, how 
finely should the signal be quantized, how rap­
idly should it be sampled, and what trade-offs 
exist between sampling rate and the number 
of quantization levels? How does the presence 
of noise on the input signal affect the errors? 
In short, is there an optimum combination that 
can be used, or must the maximum possible 
number of levels be used with the maximum 
possible sampling rate? 

Results from each of the previously men­
tioned areas should of course be utilized. The 
work accomplished in the communications field 
appears to be most applicable because of the 
major use of harmonic analysis. Some differ­
ences should be expected, however, since the 
signal band is less important than the phase­
shift errors to the present problem. 
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QUANTIZING 

It is readily apparent from Figure 2 that 
either the sampling or the quantization can be 
thought of as occurring first. Because interest 
here is in a number output from the converter, 
the number will be the same in either case, and 
this will be true for non-uniform quantizing 
and non-uniform sampling. The digital-analog 
conversion process can be represented simply 
by some holding circuit. 

The quantizer characteristic of Figure 3 can 
readily be decomposed into the two functions 
shown in Figure 4. From Figure 4, the follow­
ing equations can be written 

Q (x) = x + e (x) (1) 

() ~ . 2~n 
e x = ~ensln--x 

n = 1 q 
(2) 

q/2 

- 2 f .. 2~n q (-l)n 
en-- (-x)sln--x=----

q q ~ n 
~~ (3) 

therefore 

q 00 (-l)n 
Q (x) = x + -;-~ n 

n=l 

. 2~n 
Sln--x 

q 
(4) 

Thus, an infinite range of "amplitude fre­
quencies" exists. The response to any specific 
input can be obtained by direct substitution into 

Equation 4. The harmonics at 2~n provide an 
q 

insight into the reason for the repeated spectra 

at intervals of 2~ in the a domain, which is 
q 

given by the statistical approach. 

AMPLITUDE 

QUANTl.M lEVELS 

~~~~I~I--~~----~---SAMprrR 

Figure 2. Sampling and Quantizing. 

Q 00 

r---r-~---'-+~---+--~--~--4-_x 

Figure 3. Quantizer. 

THE STATISTICAL APPROACH TO 
QUANTIZATION ERRORS 

The statistical approach to quantization 
errors is well described in the literature.4 , 5 

Therefore, only a few of the concepts involved 
in this method will be given here. 

The quantizer operates on the signal ampli­
tude of its input rather than on the signal 
frequency. I t is logical to characterize the· 
quantizer performance in terms of the input 
amplitude. In order to provide a general char­
acterization similar to the standard frequency 
domain characterization of time signals, the 

Figure 4. Decomposed Characteristics. 
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probability density distribution of the signal 
amplitude must be considered. The Fourier 
transform (characteristic function) of the 
probability density can then be defined in terms 
of a frequency-like variable, usually denoted 
bya. 

Using these concepts, the following results 
are obtained, where q is the quantization level. 

Let p (f(t» denote the probability density of 
the. input signal f (t) and P (a) denote the 
Fourier transform of p (f): 

1. If P (a) = 0 for lal > .::!.-., then p(f) 
q 

can be completely recovered from the 
quantized signal. 

2. If P (a) =1= 0 for lal > .::!.-., then p (f) 
q 

cannot be recovered, since erroneous sig­
nals will be introduced into the data. 

3. The quantized signal in the a domain has 
the basic Fourier transform P (a) re-

peated at intervals of 27T in similar 
q 

fashion to the frequency spectrum of a 
time-sampled signal. 

4. The quantizing error may be assumed to 
be uniformly distributed between + 1/2 q 
and -1/2 q. In this case, the mean square 
quantizing error is given by 1/12 q2. 

The expression for the quantizing error may 
readily be derived from a simple viewpoint. If 
the quantizing error (Figure 4) is considered, 
it is seen to be linear between - q/2 to + q/2 
and to be repeated along the x axis. Letting 
< > denote the expected value and assuming 
that the input amplitude probability distribu­
tion function is linear, then 

q/2 +q/:.! 

< e2 > = _ (-x) 2 dx = __ (x3 ) = _ q2 21 1 2 I 1 
q q 3 12 

-q/2 -q/2 

It should be noted that the results of this sta­
tistical approach to quantizing do not indicate 
relationships in terms of the input signal. Ref­
erence is made only to probability distribution. 

Typical signal characteristics in the time, 
probability, and a domains are given in Figure 
5. The probability distribution is "area sam-

AMPLITUDE 

" PROBABILITY TIME 

a 

Figure 5. Quantized Signal Characteristics. 

pled" by the quantizer, which is equivalent to 
a square pulse. The Fourier transform of this 

is a sin x term which, when multiplied by P(a), 
x 

gives P(a). 

SINGLE SINE-WAVE INPUT 

There are two simple reasons for concentrat­
ing attention upon a single sine-wave input to 
the quantizer: (1) the response and implica­
tions of the spectral distortion resulting from 
the quantizing action can readily be visualized, 
and (2) in many of the applications for hybrid 
computers there will exist simple natural fre­
quencies in the hybrid loop imposed by the 
problem under consideration, e.g., the short 
period response of an aircraft or missile, or its 
equivalent in a space vehicle. Many of the physi­
cal systems which warrant studying on a 
hybrid computer are of the type which have a 
small number of natural frequencies. Thus, the 
system energy will be concentrated there, rather 
than throughout a broad band· of frequencies, 
as would be the case if stochastic variables 
alone were present. An additional reason for 
concentrating attention upon single sine-wave 
input is that testing and analysis of test data 
are simplified for simple sine waves. 

The input to the quantizer that will be used is 

x (t) = A sin UI t 

SINE WAVE PROBABILITY DENSITY 

The definition of the probability distribution 
function is 

P (X) = probability that x ~ X 

Figure 6 shows the sine wave and the level X. 
AMPLITUDE 
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From Figure 6, the following can be written 

1 1. -1 X 
P(X) =-+-SIn - -A:::;X:::;A 

2 7r A 

=0 

=1 

X:::; -A 

A:::; X (5) 

The probability density is the derivative of 
Equation 5 

1 

p(X) = ,,~ J( 1- !)' IXI<A 
(6) 

=0 IXI >A 

These are plotted in Figure 7. 

It is evident that the Fourier transform of 
p (x) will not be band limited in the a domain. 

Figure 7. Sine Wave Probability Distribution and 
Probability Density. 

Thus, the quantization theorem reveals that this 
probability density cannot be recovered after 
quantization, but does not disclose what will 
be recovered. 

THE TIME DOMAIN 

Substituting into Equation 4, we have 

(t) A · t q ~ (-1) n • [27rnA. tJ y == SIn roo ,+ -:; ~ n SIn -q- SIn roo 
n = 1 

(7) 

but 

00 

sin (z sin rot) = 2 ~ J2r + 1 (z) sin (2r + 1) (l)t (8) 
r = 0 ' 

00 

(t) A · t 2q ~ y = SIn roo + - ~ 
~ (-l)n I 27rnA \ 
~ n J2r + 1 (--) sin (2r + 1) root 

7r n = 1 r=O \ q 

or rewriting slightly and interchanging sum­
mations 

y(t) = A sin ""t + ~q ~ 
1'=0 

{~ (-1)n (27rnA)} ~ 1 n J2.r + 1 -q- , sin (2r + 1) root(9) 

It can be seen, therefore, that the quantizer 
has generated all of the odd harmonics for the 
input sine wave. If the input signal did not 
have zero phase, then all the even harmoriics 
would also be genera ted since in this case there 
are terms of the form 

sin (z sin (rot + (1» = 
sin (z cos () sin rot + z sin () cos rot) 

which is equal to 

sin (a sin rot) cos (b cos rot) + 
cos (a sin rot) sin (b cos rot) 

and, for example 

cos (a sin wt) = 2 ~'J2r (a) sin 2'hut 

Because of the product terms, sums and dif­
ferences of all frequencies are generated. Since 
there are only harmonics in this signal, how­
ever, the sums and differences are again har­
monics. If two sine waves with different fre­
quencies constitute the input signal, the above 
relationships will generate all sum and differ­
ence harmonics. 

The amplitude of the harmonic terms can be 
found by expanding Equation 8 into the 
following 

00 

y(t) = ~ B21' + 1 sin (2r + 1) root 
r=O 
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Bl = A [1 + ~ ~ (-1) n J 1 (27TnA)] 
7TA n = 1 n q 

(10) 

B3 = A [~ ~ (-l)n J3 (27TnA)], etc. 
7TA n = 1 n q 

Let us assume that the argument of the Bessel 
function, 27TnAj q, is assumed to be large enough 
to permit the asymptotic expansion to be used. 

For large x 

J"., (x) ~ J ,,~Sin( x - (2r + 1) ; - ~) 
(11) 

Consider the error term in the fundamental 

In the asymptotic expansion, each successive harmonic adds - 7T to the angle. This merely 
multiplies the term by -1. The following approximation can then be used: 

00 

y(t) :::::: A (1 + e1 ) sin wot + Ae1 ~ (-1)2r + 1 sin (2r + 1) wot (13) 

This, however, does not apply to all harmonics, 
because infinite power would be required. Now, 
the recursion formula gives 

r 
J r + 1 (x) = - J r (x) - J r - 1 (x) (14) 

x 

Thus, the relationship found above 

J r + 1 (x) ,...., - J r - 1 (x) (odd values) (15) 

applies only for 
x> >r (16) 

In a conventional hybrid computer, the number 
of levels available will be on the order of 1,000 
to 10,000. Thus, the previous approximations 
should be valid for at least the first ten har­
monics for large input signals. For small input 
signals (which can still occur), the approxi­
mation cannot be used. 

It can be concluded that a very large number 
of harmonics have amplitudes of the same order 
of magnitude. Thus, a large number of terms 
in the summation are required to find the har­
monic amplitude-even for the fundamental 
component of the error. Clearly, some other 
method to find the error would be desirable. 

FOURIER SERIES EXPANSION 
An explicit approach can be used to find the 

total harmonic amplitude. The output of the 
quantizer has a Fourier series which is given by 

00 

y(t) = ~ B2r + 1 sin (2r + 1) wot 
r=O 

r=l 

But y (t) can be expanded directly in a Fourier 
series. In Figure 8, horizontal slices are used 
to characterize the quantized sine wave. The 
Fourier series can then be written directly as 

1r/2 

B" + 1 = ! f Y (0) sin (2r + 1) OdO 

B"., = ! { q {d8+ qT d8+ ql d8+ .. } 

. (2 ) 4q ~ cos (2r + 1) 0 i 
SIn r + 1 = -

7T 2r + 1 

~ {4q ~ cos (2r + 1) Oi} 
y(t) = ~ - ~ 

r = 0 7T i = 1 2r + 1 (17) 

sin (2r + 1) wot 

4q 

2q 

Figure 8. Quantized Sine Wave-Horizontal. 
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Now Therefore 

()i = sin-1 (2i - 1) ~ 
2A (18) B - 4q~ cos (2r + 1) Cin-' (2i - 1) :&-) 

2r + 1 - -:;; ~ 2r + 1 
N = A rounded to nearest integer 

q 
(19) 

and 

y(t) = ; t. [~cos [(2r + 1~:i~-'1 (2i -1) ~JJ sin (2r + 1) root (20) 

Only N terms are required (N = A/q) for the 
determination of the coefficients of the Fourier 
series. For N not too large, this is a convenient 
formula to use in practice. It would be difficult 
to compute the total output power or harmonic 
distortion. Returning to the original picture of 

the process, we this time square the output 
signal. 

It is readily seen from Figure 9 that the 
power for the output of the quantizer is given 
by 

(22) 

<y'> = q' r N' - ~ ± (2i - 1) sin-' ( i - ~) 1l 
L .. i~-i \ I .J 

(23) 

Now, the input power is given by 

(24) 

Thus, the ratio of the output power to input power of the quantizer is 

<y2> ( q)2 [. 2 ~. . (. _!) q] --, - = 2 - N,2 - - ~ (21 - 1) sln-1 1 2-
<x2> A 7r i = 1 A 

(25) 

The harmonic distortion is defined as 

= !Sum of squares of harmonics 100% 
D. F. \j Square of the fundamental X 0 

Now 

<y2> = ! ~ B2 = ~ (squares of all components) 
2~ 2r+l ~ 

r=O 
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Therefore 

D. F. = ~, J 2<y"> - B,' (26) 

where Bl is the amplitude of the fundamental 

n 

B, = 4~.~ cos sin-' (i -~) 1 (27) 

1=1 

Numerical results obtained from the preceding 
formulas are shown in Table I. 

The last column in Table I represents the 
estimated distortion factor. This was obtained 

A=q 
110% o -22% 

The amplitudes do not decay rapidly, and 
there is the tendency for alternating signs, de­
scribed by Equation 13. 

THE FREQUENCY DOMAIN 

Equation 9 can be re-written using exponen­
tials and Wo for the input frequency (replacing 

sin 0 by ~ (ej9 
- e-j9». 

2J 

(28) 

from the estimated mean squared error, 
1/12 q2, multiplied by 2 to give the sum of the 
squares. It was also assumed that Bl = l. 
Many of these results are given in Reference 7, 
but the significance of the last column was un­
known. 

It can be noted that the amplitude of the 
fundamental decreases faster than the distor­
tion factor with an increase in the number of 
levels, again indicating that more and more 
relative energy appears at the higher frequen­
cies. This effect can be examined in more 
detail by considering one level: 

-16% o 10% 9% o 

where the fact that J-m = (-1) m J m has been 
used. The Fourier transform of y (t) will then 
be given by 

8 = Dirac delta function 

where for example 

The harmonics are shown in Figure 10. 

TABLE I. QUANTIZATION HARMONICS 

,-ID.F. = 

(AJq) B1 (%) B3 (%) B5 (%) D.F. (%) 
(lOO-q ) 

y6A 

1 110 0 -22 33 40.8 
(4112)+ 96 
5 100.97 -0.82 + 0.47 7.55 8.16 

(5112)- 97 
10 100.34 3.8 4.09 
20 100.12 2 2.04 
50 100.03 0.81 0.816 
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.I 
~ 0.6 
q 

0.4 

0.2 

Figure 9. Quantized Sine Wave Power. 

It has been observed, however, that approxi­
mately the same amplitude is obtained for the 
first several harmonics. As frequency is in­
creased, the exact behavior of the amplitudes 
is not clear. Of course, they must decrease. 

It should be noted here that in a practical 
system the sharp edges shown by the error 
characteristic are realistic. Since digital proc­
esses are being used, sharp levels and changes 
are descriptive. Some uncertainty or jitter at 
the quatum jump levels will merely contribute 
additional (high-frequency) noise. It is also 
evident that since a number system is involved, 
pure delta function sampling may be assumed, 
with no attenuation as would be the case with 
finite width sampling. 

Referring to Equation 28, it can be seen 
that complete fold-overs will occur because the 
sampling theorem is not obeyed. There are 
harmonics at frequencies higher than the sam­
pling frequency. 

THE EFFECT OF SAMPLING ON THE 
HARMONIC POWER 

In Figure 11, the sampler spectrum is added 
to the quantizer output spectrum. For simplic­
ity, only the positive sampler frequencies are 
shown, and the amplitudes are not to scale. 

IFlj",1I 

CONTRIBUTIONS FRO'A +2",S 
~~~-L~------------r 

2",s 

Figure 11. Spectrum of Quantized and Sampled 
Sine Wave. 

Because energy is contained in both ··side 
bands, the reflections from - (r)s will also con­
tribute. energy to the pass band. If only: the 
contributions from -t-(r)s, -t-2(r)s are summed with 

the original, the pass band 0 < (r) <! (r)s will 
2 

have only the harmonics shown in Figure 12. 
Symmetrical side bands are present for - 1/2 
(r)s < (r) < O. By induction, it can be seen that 
all of the original harmonics are reflected into 
the band - 1/2 (r)s < (r) < 1/2 (r)s. Another ap­
proach would be to use the following argument: 

All harmonics with frequencies I (r) I < 1/2 (r)s 
are kept. Harmonics in the range 1/2 (r)s < 
I (r) I < 3/2 (r)s are reflected by the -f-(r)s sam­
pling frequencies. 

Harmonics in the range (n - 1/2) (r)s < I (r) I 
< (n + 1/2) (r)s are reflected into the band 
by the -+- n(r)s sampling frequencies. 

Thus, as long as the ratio of the sampling 
frequency to the input sinusoid frequency is 
irrational, or essentially so, the error power in 
the pass band is identical to the error power 
out of the quantizer. The error power will be 
increased at some frequencies and decreased 
at others if the ratio is rational, since then two 

IFI t'/-«-t.L.- I 
~ ~I 

B7 B5 B9 I 

I 
o I '" 

"Figure 12. Pass Band Harmonics. 
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or more harmonics will have the same fre­
quency in the pass band. 

«Bi + B j ) 2 =1= Bi 2 + Bj 2) 

If a filter is chosen which has a cut-off much 
lower than 1/2 Ws (e.g., w'), the error power 
will be reduced because some of the reflected 
frequencies will lie between w' and 1/2 Ws. In 
the previous example, if w' = 1/4 Ws, then A3J 
A9 , A13 would not be transmitted. In general, 
the only contributing harmonics will be those 
lying in the range - w' + nws < w < nws + w'. 

I t is interesting to note that (error) noise is 
introduced into the system only by the non­
linear operation of quantizing, and not by sam­
pling. It can be concluded, therefore, that the 
estimate of the quantizing RMS error (q2 /12) 
can be used as a measure of the upper bound 
to the system error so far. Furthermore, while 
all of the harmonics appear in the pass band, 
they appear at different frequencies so the 
quantizing error signal cannot be recovered 
exactly. 

If an infinite time sampling rate is used, the 
exact qua~tized signal can be recovered. Of 
course, since the output is a staircase function, 
it does not have the same probability distribu­
tion in this case as does the input signal. 

The following statement appears to be true 
for all signals: Since the probability density 
distribution cannot be negative, a band-limited 
Fourier transform for probability density can 
never be derived. 

THE EFFECT OF NOISE 
Suppose that the input signal from the ana­

log world is corrupted by noise. Let Eq be the 
quantizing error, En the noise, and f (t) the 
signal. The output of the quantizer is given by 

y(t) = f(t) + En + Eq 
with 

E. = ~ ~ .{ - ~) n sin [ 2~ n ( f (t) + En (t) )] 

(30) 

Although Eq is causally related to E1H it is 
reasonable to assume that they are statistically 

independent. Reference 4 indicates that this is 
a good assumption. What is the expected error? 

< y2 > = < (f + En + Eq) 2 > 
= < f2 > + < En2 > + < Eq2 > 

assuming that f, En, Eq are uncorrelated. Then 
the total expected error squared is 

< E:2 > = < En2 > + < Eq2 > (31) 

If either infinite sampling or a perfect filter 
(over the range - 1/2 Ws < w < 1/2 ws) is used, 
then 

< Eq2 > = (1/12) q2 

If En is restricted to frequencies less than 1/2 
ws, then 

12
q 

( 
1 2) 

< E2 > = < En2 > 1 + En2 

If the total noise is allowed to increase by as 
much as \12, then q can be as large as 

q= \112 \1< En2 > 
We then have 

q 

35mv 
139mv 

« En2 » 1/2 

10mv 
40mv 

If filtering reduces the pass band to less than 
1/2 ws , the quantizing can be even more coarse, 
since 1/12 q2 is an upper bound. This assumes 
that the input noise has been filtered to the 
same pass band. 

THE EFFECT OF THE D-A CONVERSION 

For simplicity it is assumed here that a zero­
order hold is used to provide the digital to ana­
log conversion. The treatment of higher order 
holds is similar. The process can be viewed in 
several different ways. In the frequency do­
main, the Fourier transform of the ZOH is 

given by a ~ sin X expression, where X equals 

-rr wo/ WS' Since this expression is not zero out­
side of what is termed the pass band 

( I w I < 4 ws), additional power will be con­

verted; i.e., additional to the figures that have 
been used. As has been shown, however, an 
infinite number of sidebands and reflected har­
monics must be considered. In order to sim­
plify the task, consideration will again be given 
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to the specific example, a sine· wave quantized 
to five levels, to which the sampling and the 
zero-order hold are now added. Figure 13 com­
pares the signals received from the black box, 
with and without quantizing. 

In keeping with our earlier use, error is de­
fined as 

error = output - input 

This definition in this application includes the 
effect of the phase shift caused by the ZOH. 
This large effect, which tends to obscure the 
quantizing effect, can be examined by defining 
the relative error by 

er = relative error = 

output - input x delay of ~ sec 

The output signal, therefore, can be defined in 
terms of the fundamental plus an error. Spe­
cifically, using the nomenclature of Figure 1, 
we have 

Z (t) = X ( t - ~) + e, (t) (32) 

where T is the sampling period which is large 
enough to cover the conversion and computa­
tion time. Consider the single sine 'wave input. 
We have 

Z (t) = A sin W{) (t - T/2.) + er (t) 

Another useful concept is to include the ampli­
tude error of the fundamental separately: 

Z(t) = A (1 + E 1 ) sin w~(t - T/2) + er(t) 
(33) 

FIVE-LEVEL QUANTIZATION 

t.J = 18 t.J 
S 0 

ZERO ORDER HOlD 

0.8 

0.6 

0.4 

0.2 

0.8 

0.6 

0.4 

0.2 

NO QUANTIZING 

ZOH 

.. 
z,.,o 

L...oC~-----+--="-----~~t 
---'-_.L....---'-_.L....--'-_I...--'--I...-......L.-SAMPlING 

WITH QUANTIZING 

Figure 13. Combined Errors. 

In this way, the process can be viewed as one 
which amplifies and phase shifts the input sig­
nal and then adds noise. 

The error can be evaluated by examining 
Figure 13 which indicates the output signal 
from the zero-order hold with and without 
quantizing. When the input signal is shifted 
by 1/2 T seconds, symmetric errors are ob­
tained whenever the sampling rate is an in­
tegral mUltiple of the signal frequency. With­
out quantization we have 

< er > = 0 

f 31T
IW

S ] 

sin' Wo tdt + ( sin ... t - sin 2:~), dt + - - - -
1TIWs 

(34) 

In general 

< er2 > = 2wo [f1T12WOsin2 Wo tdt + ~ "" [cos (2r + 1) 1l"Wo - cos (2r - 1) 1l"WO] 

1l" W{) ~ Ws Ws (35) 
o 

. 2 1l"
Wo + 21l" "" . 2 2r1l"Wo] SIn r- -~sIn--

Ws Ws Ws 
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When the quantizing is added to the sample and hold, similar equations are obtained. The com­
bined mean squared error is given by 

[j

7r/ooS j(2r + 1) 7r/oos ] 
< e2 > = ~o 0 sin2 wotdt + ~ sin2 (wot - nq) 

(2r - 1) 7r/oos 
(36) 

with 

sin (2r - 1) ~ < nq < sin (2r + 1) 2 

For the specific sine wave input quantized to 
five levels at a sampling rate 18 times the sine 
wave frequency, we find 

E2 = 7.1 % A ZOH only 

E2 = 8.5 % A ZOH + quantizing. 

If the estimate, Eq = q/y'12 = 5.77%A, is 
used and if it is assumed that the errors are 
statistically independent, the following error is 
obtained: 

< E2 > = < EH2 > + < Eq2 > = 9.16% 

This estimate is within 10 percent of the value 
computed. It would then appear that the two 
error sources can be viewed as being statisti­
cally independent. An error map for various 

values of the quantizing level and the sampling 
rate is given in Figure 14. It should be noted 
that as the ratio of sampling rate to signal fre­
quency is decreased, more noise power appears. 

The quantizing and the sampling and holding 
operation on the sinusoid A sin wot can thus be 
expressed as 

B sin (wot + 0) + E (t) (37) 

A more general expression may be derived for 
the errors resulting from the zero-order hold. 

1 
The parameter, A, can be defined so that -

A 
represents the number of samples per quarter 
cycle 

1 (Us 4wo ( 8) -=-orA=- 3 
A 4wo Ws 

If A is used and wot is replaced by 0, Equation 
34 becomes 

j
'/(>"/4 j'/(12 11>" _ 1 j7r>../4 (2r + 1) 

< e' > = ;: 0 sin' odO + ; 'I' _ ,A/4 (sin 0 - 1) 'do + 2/" f.! "/
4 

'" _.) (sin 0 - sin r;.\") , dO (39) 

< e' > = ;: 1'1' sin' 0 d 0 + ;: [~A + .~. (Sin2 r;A) ~A] + ; f/' -sin 0 d 0+ (~. 
o r-1 '/(12-7rA/4 1'=1 (40) 

j

7r>../4 (2r + 1) 

( 
. r7TA)' d - slnT SIn 0 0 

7r>"/4 (2r - 1) 

N ow, one of the expressions resulting from 
the integration and trigonometric identities is 
zero: 

1/>" - 1 

~ cosr7TA = 0 (41) 
r = 1 

This simply depends upon the fact that 

cos (7T - 0) = - cos " 

When evaluated, Equation 40 reduces to 

U sing the first term of the expansion gives 
for small A (large enough number of levels/ 
quarter cycle) 

1 (7TA)2 7T
2 

< e2 > ~_ _ = _A2 

3! 4 96 
(43) 
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Figure 14. The Combined Error. 

Thus, we can write 

<e2 > :::::: ~( \l27r A)2 (44) 
12 4 

(
\12

77" ) and treat -4- as a form factor, to express 

the combined error by 

< er
2 > = ~ (q2 + (1.11 A)2) (45) 

12 \ I 

The estimates of the combined error are thus 
ellipses in the A, q plane, or circles in a q, 1.11 A 
plane. These estimates are plotted in Figure 14, 
together with calculated combined errors. 

CONCLUSIONS 

The results observed lead to the following 
conciusions: 

1. The quantizer adds noise power energy to 
the system, and this energy is spread 
through a wide range. At even low 
quantization levels, it was observed that 
the energy of perhaps the first 50 har­
monics was appreciable. As the input 
signal amplitude is increased, the energy 
associated with the lower harmonics is 
reduced, and this energy appears at the 
higher and higher frequencies. 

2. Utilizing sine wave input signals is an 
effective way of obtaining error estimates 
for hybrid computation. When four or 
five bits are used in the quantization, 

numerical results can be obtained fairly 
readily. 

3. Much of the dynamic RMS error is the 
result of the linear phase lag resulting 
from the data reconstruction. If this 
phase-shift error is eliminated, the quan­
tization and the sample-hold errors are 
statistically independent. A sample and 
hold error parameter, A, equivalent to the 
quantizing step q, can then be defined so 
that the combined error is an elliptical 
function of q and A. 

4. If the noise resulting from the quantizi~g 
and data reconstruction is unacceptable, 
several alternatives are available: 
a. A band pass filter can be used to 

eliminate some of the energy at higher 
frequencies within the pass band. 

b. The quantizing levels can be increased. 
Because the RMS noise is directly pro­
portional to the quantizing level, a 
linear effect will be observed. 

c. The sampling error parameter, A, can 
be decreased by increasing the sam­
pling rate. The error is directly 
proportional to A (i.e., inversely pro­
portional to sampling rate). 

RECOIvIlVIENDATIONS 

It is recommended that this line of approach 
be used to develop general criteria for the 
performance and specification of hybrid com­
putation systems. In partiCUlar, this approach 
should be used to develop error estimates for 
first- and second-order hold systems. Test and 
analysis using the sine waves are not only fairly 
simple, but most important, are readily com­
prehensible to the using engineer. 
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REAL TIME RECOGNITION OF 

HAND-DRAWN CHARACTERS 
Waren Teitelman * 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

1.0 SUMMARY 

This paper describes a system designed to 
recognize handdrawn characters in real time. 
The central feature of the system is its use of 
the time sequence information of the input 
character. 

It. its abstract form, the system may be 
viewed as a collection of discrimination nets, 
or . filters. .t;ach net operates on the input 
character, or rather on a sequence of property 
vectors representing the encoding of the input 
character in the time domain, and produces a 
set of so-called candidate characters. The sys­
tem then utilizes reliability estimates for the 
individual nets to select the final output char­
acter. 

A program representing a particular imple­
mentation of the system has been written for 
the DEC PDP-I. The user draws the char­
acter on the face of a cathode ray tube with a 
light pen. 'The program follows the pen and 
constructs the appropriate sequence of prop­
erty vectors. The properties used are simple 
geometrical ones, and the descrimination nets 
are tree structures which store sequences of 
property values. Recognition time is of the 
order of .25 seconds, of which approximately 
.15 seconds are occupied by drum read-and­
write operations required by the small mem­
ory size (4K) of the machine. 

The user can teach the program to recognize 
his set of characters. The learning process for 
the program involves modifying individual de­
cision trees, changing the weights on each 
tree, and where necessary, introducing new de­
cision trees with their corresponding proper­
ties into the system. Because the program 
was written as an input device to a larger man­
machine system, the description of the imple­
mentation stresses the human engineering 
features. A qualitative evaluation of the sys­
tem as implemented is offered, together with 
possibilities for e~panding and generalizing 
the program. 

2.0 INTRODUCTION 
Research in pattern recognition may be 

characterized as a search for invariants. * * The 
problem is to find attributes that all instances 
of a given pattern have in common that in­
stances of other patterns do not. The particu­
lar class of invariants selected will ultimately 
determine the performance of the pattern rec­
ognition system. However, performance is 
not the sole factor influencing the choice of 
invariants. Associated with any research 
project are certain objectives and goals. In 

** A number of excellent surveys and bibliographies 
of the voluminous literature on pattern recognition are 
available.1

, 7, 9 Minsky 8 gives a general survey of the 
entire area of artificial intelligence, including pattern 
recognition. 

* Consultant, System Development Corporation, Santa Monica, California. 
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pattern recognition, achievement of these goals 
is not only a function of what the system rec­
ognizes, but also how it performs the recogni­
tion. Thus the selection of invariants may be 
more influenced by the purposes and philos­
ophy of the research than by a desire for a 
high rate of recognition. To illustrate this 
point, let us examine briefly two character 
recognition schemes which are at opposite ends 
of a spectrum with respect to the aims of ,their 
research. Both perform very well in th~t their 
recognition accuracy is high. Their basic dif­
ference in purpose and philosophy is reflected 
in two very diverse sets of invariants. These 
two schemes will provide a frame of reference 
for the research described in this paper. 

2.1 CycIops-1 

Cyclops-Pis a sophisticated character rec­
ognition program which involves hypothesis 
generation and testing in the identification 
process. The system generates a hypothesis 
concerning the nature of the input; the hypo­
thesis is tested, and if it is correct, it becomes 
the output. In the present version, the pro­
gram merely generates hypotheses in a pre­
determined, fixed order, with the major part 
of the research going into hypothesis testing. 

The hypothesis testing scheme involves a 
series of questions about characteristics of 
particular segments in the pattern, or of the 
relationships between segments, or of the pat­
tern as a whole. There are 42 characteristics, 
and they are presumably selected because they 
were the type of things noted by humans. For 
example, five characteristics used by the sys­
tem are (1) the predominance coefficient of a 
segment, (2) the straightness coefficient of a 
segment, (3) the orientation of a segment, (4) 
the number and location of inflection points of 
a segment, and (5) the number and location 
of the intersections of a segment with other 
segments. The items to be recognized by the 
program, i.e., alphabetic characters, are de­
fined in terms of these characteristics. 

The system has great generality. New char­
acters may be defined with little difficulty. 
However, a great deal of computation is nec­
essary to determine the segmentation of a 
character, and to identify intersection points, 
inflection points, etc. In operation, the system 

receives the input via a pen tracking routine 
which accepts data written on a cathode ray 
tube. The system then transforms a table of 
successive light pen locations into information 
concerning line segments that comprise the 
character. The program is thus quite large, 
and recognition time is slow. * 

2.2 The Stylator 
A scheme described by Dimond of Bell 

Labs.,2 on the other hand, is much simpler. A 
practical electronic device called the Stylator 
has been designed and constructed which per­
forms the recognition. The user is constrained 
to draw the character (a numeral) around two 
dots which define a set of bipolar coordinates 
(Fig. 1). The seven lines identified in the 
figure are actually narrow conductors con­
nected to a source of potential. When the nu­
meral is written with a stylus connected to a 
source of potential, the stylus energizes the 
conductors, which in turn cause certain flip­
flops to operate and drive the rest of the cir­
cuit to indicate the correct numeral. This can 
be done because the numerals are defined 
uniquely in terms of their set of line crossings. 
For example, the numeral '3' is defined as 
crossing lines A, B, C, D, and not crossing line 
F. (It mayor may not cross lines E and G.) 
Similarly, the numeral '7' must cross line A 
and line B, and may not cross line D or F. 
Admittedly some variations on the construc­
tion of a numeral might be conceived which 
would confuse the machine, and in some cases 
the user must be trained briefly to familiarize 
himself with the system. But this causes no 
great difficulty, and the knack of positioning 
the character and drawing it to the correct 
scale is learned readily. 

2.3 Comparison of Research Approaches 
The CycIops-1 approach to character recog­

nition reflects an attempt at constructing a 
general system. The search for invariants has 
therefore led the researchers to examine the 
way in which humans recognize characters. 
The resulting properties involve very abstract 
concepts and considerable computation is nec­
essary in determining them. However, the 
properties used are those that seem to define 

* Depending on the number of line segments between 
three and twelve seconds per character. 
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Figure 1. Bipolar Coordinates for Character 
Recognition. 

the character in the everyday sense. Cyclops-1 
recognizes an 'A' because it is an 'A.' The 
power in this approach is reflected in the abil­
ity Cyclops has demonstrated to perform scene 
analysis: the system can analyze complex 
visual inputs consisting of an arbitrary num­
ber of characters present simultaneously, 
where the characters may be of different size 
and orientations, may overlap or be inside of 
one another, or may be superimposed on arbi­
trary backgrounds consisting of meaningless 
lines or· spots or geometric shapes. This is 
something that is beyond the range of most 
character recognition schemes, although hu­
nlans do it fairly well. 

In the Stylator scheme, the emphasis is on 
fast and efficient recognition. The set of in­
variants for the numerals '0' through '9' is 
specified as a collection of line crossings only 
because this is simple and fortunately unique. 
Note however that the user could merely touch 
his stylus to the correct lines, without even 
drawing the character, and have the Stylator 
recognize it. On the other hand, one could 
easily construct numerals that most humans 
would recognize correctly but that would con­
fuse the Stylator. Essentially all the Stylator 
does is map a set of 128 (27) possible inputs 
onto a set of ten possible outputs. To the ex­
tent that this correlates with correct character 
recognition, the device performs well. Its as­
sets are its speed and efficiency. 

While the author feels that the type of re­
serach embodied in the Cyclops project will 
be more productive in the long run, the aims 
of the research reported here are closer to 

those of the Stylator project. The research 
began with an attempt at developing a fast and 
practical character recognition program to use 
as input to a larger system. The central theme 
was to try to use the information of the time 
sequence of events in constructing the char­
acter to establish a simple class of invariants. 
Since a more flexible scheme than that of Dia­
mond was desired, a simple and rigid definition 
of alphabetic characters such as the sort uti­
lized by the Stylator would not suffice. As in 
the work described by Kuhl, * the properties of 
the program reflected the "true nature" of the 
character more closely than that of the Styla­
tor, but were not as general as those used by 
Cyclops. 

As the research proceeded, certain generali­
zations suggested themselves, and where these 
did not conflict drastically with the rate of rec­
ognition, nor make implementation difficult, 
they were included in the program. The sys­
tem presented here arose as the logical ab­
straction and generalization of the program, 
rather than the other way around. 

3.0 THE SYSTEM 

3.1 Definitions and Notations 
Since the system will treat characters as 

events in time, a distinction is made between a 
"form" and a "figure." A figure will be taken 
to mean a drawing· on a piece of paper or on 
a cathode ray tube, in other words, a picture 
of a symbol. A form will be considered the 
sequence of events that produce the drawing, 
in other words, the figure with its time se­
quence. A character refers to the symbol that 
either the figure or the form denotes. Thus, 
this scheme operates on forms to produce char­
acters, as opposed to more conventional 
schemes that operate on figures to produce 
characters. 

* Kuhl's interest is in finding a convenient way of 
separating classes of letters.4 He makes use of invar­
iants such as the number of free ends of the character, 
the presence or absence of sharp angles, etc. Since an 
'A' can be drawn without any sharp angles, and one can 
construct a ligitimate 'B' with two free ends, the "defi­
nition" of a character according to his scheme may not 
coincide with that used by a human, although his in­
variants are more suggestive of the characters than the 
invariants used by Dimond for the Stylator. 
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The sequence of events that comprise a form 
is denoted by F (t) . This notation is meant to 
suggest the sequence of events in the time 
interval (O,t). * A property vector is associ­
ated with each form F (t). This vector is 
denoted by 7r (t), and also changes with time. 
It may be thought of as describing what is 
happening at the present instant. Presumably 
it contains information of use to the recogni­
tion function, although it could also indicate 
some other function-e.g., the phase of the 
moon or the body temperature of the user. In 
the implementation of the system, 7r (t) reflects 
the position of the pen at time t. 

The system operates on the sequence of 
property vectors that represent the sequence 
of events in the construction of the form. Each 
component of the property vector corresponds 
to a separate property, with the jth component 
of 7r (t) ----'7Tj (t) -corresponding to the jth prop­
erty, Pj' These properties apply to character­
istics of the form. 7rj (t) is a three-valued 
function which informs the system whether 
or not the form has property Pj' 7rj (t) ==1 is 
interpreted to mean that the form has property 
P j at time t. "7Tj (t) ==0 means that the form 
does not have property Pj. The third value, 
7rj (t) ==w indicates that the property is not ap­
plicable to the form at time t. This last value 
serves to break up the sequence of property 
values into sub-sequences. In the program, 
the individual properties indicate whether or 
not the pen is in a given region, and these sub­
sequences of values correspond to strokes of 
the pen. 

3.2 Input to the System 

As indicated, the system operates on a se­
quence of property vectors representing the 
encoding of the input character in the time do­
main. The particular encoding will depend on 
exactly what properties are being used by the 
system, but all encodings are constructed in 
the same fashion. They are merely the se ... 
quence of all property vectors attained by the 
form from time t == 0 until the form is com­
pleted. In other w.ords, the first vector in the 
sequence informs the system what properties 
are present, not present, or inapplicable at 

* For convenience, assume all forms begin at time 
t = o. 

time t = 0; thereafter, whenever the property 
vector of the form changes, the new vector is 
added to the encoding sequence. The sequence 
is thus normalized in time in that there is no 
information on when the form had a certain 
property v~tor or how long it maintained the 
same vector. The length of the sequence is 
thus a function of how often the properties 
vary in the course of constructing the form, 
and not how quickly or how slowly the form 
was constructed. * * 

3.3 The Recognition Process 
Each property has a discrimination net as­

sociated with it. The discrimination net filters 
out all but those characters that have similar 
forms. S.imilarity is defined for a particular 
discrimination net as having the same sequence 
of property values. Thus, for each property 
Pj, the corresponding sequence of property 
values of 7rj is extracted from the complete 
sequence of property vectors. This sequence 
is usually considerably shorter th~m the en­
tire sequence of property vectors, because the 
encoding contains all changes of all properties, 
not only the changes in "7Tj. The discrimination 
net then selects as its set of candidate char­
acters all those characters whose sequence of 
7rj values are identical to the sequence of 7Tj 

values for the input form. 

The particular properties used affect the per­
formance of the system tremendously. If many 
characters have the same sequence of property 
values, then the decision problem will be al­
most as difficult after the discrimination nets 
have operated as before. On the other hand, 
if the sequence of property values is long and 
complicated, then the chance that it will be 
duplicated exactly is small, and either the sys­
tem will have to be provided with an extremely 
large dictionary of property value sequences 
or else the discrimination nets will not pass 
any characters into their candidate set. In one 
case, the defining criteria are too lax, allowing 
many characters to have the same definition, 
and in the other they are too stringent, re-

** There could conceivably be properties that reflected 
the length of time required to construct the form. For 
example, '1Tk = 1 if form is completed in less than time 
tu, etc. But there is nothing in the encoding sequence 
that explicitly represents the passage of time other than 
the changing property vectors. 
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quiring the user to construct his character 
with great precision and consistency. 

The final decision procedure that operates on 
the sets of candidate characters reflects an at­
tempt to recover from either of the above two 
possibilities. The concept employed here is 
parallel processing. It has been observed in 
many pattern recognition projects that a re­
liable decision may be possible even where in­
dividual tests are poor, provided each test 
contributes some different fractional bit of 
information. In our case, this is done by hav­
ing the presence of a character in a candidate 
set suggest that the character might be the 
correct one and, correspondingly, having the 
absence of a character in the candidate set 
prejudice the system against it. This is done 
by weighting the characters with a reliability* 
estimate for each net, and selecting the char­
acter with the highest score. In the case where 
all nets are equally reliable, this amounts to 
selecting the character that appears in the 
plurality of candidate sets. In the implemented 
version of the system, a small, basic set of 
properties is used, all of which have reliability 
estimates of the same order of magnitude. Ad­
ditional properties, with lower estimates are , 
considered in the decision only when the basic 
weights are nearly equal. 

To summarize, the system receives a se­
quence of vectors which represent the chang­
ing characteristics of the input form. The 
components of each vector are three-valued 
functions which indicate whether or not the 
form had a particular property at the time the 
vector was computed, although information on 
when this occurred is not included with the in­
put sequence. 

For each property, the sequence of property 
values attained by the component of the vector 
corresponding to that property is extracted 
from the entire sequence of property vectors. 
A discrimination net retrieves all characters 
that have forms with the same sequence of 
property values. This set of characters is 
called the candidate set. The system then 
selects a character from among all of the va­
rious candidate sets by weighting each char-

* Reliable in the nontechnical sense, meaning valid or 
trustworthy. 

acter in proportion to the reliability of the dis­
crimination nets that suggested it, i.e., 
proportional to the reliability of the particular 
property. 

4.0 THE PROGRAM 

4.1 The Property Vector 
If one is asked to visualize a character as a 

sequence of events in real time, the picture that 
comes to mind is that of a pen tracing a course 
over a piece of paper. Similarly the properties 
first experimented with here were simple geo­
metrical properties that merely reflected the 
position of the pen at time t. These were 
found to be suitable, and more sophisticated 
properties involving pen velocity, angle of line 
segment, curvature, etc., were not needed. 

Although characters may be drawn to dif­
ferent scales and orientation, let us assume 
that we have a character normalized and have 
superimposed it on a rectangle. We will con­
sider this rectangle to be divided into various, 
possibly overlapping regions. Each region 
corresponds to a property. A form is said to 
have the property P j , and 7Tj = 1, if the posi­
tion of the pen at time t lies in region R j • If 
the pen is not in region R j , then the figure does 
not have this property, and 7Tj = O. When the 
pen is not touching the page, 7Tj = w, in this 
case for all j. 'Thus, the property vector 
roughly determines the position of the pen at 
time t, and the sequence of property vectors 
will trace out the page ot the pen as it com­
pletes a form. Fig. 2 depicts a four-property 
scheme, and Table I gives the sequences of 
property vectors for the two different 'E's 
shown in Fig. 3. 

These four properties were first considered 
because of a desire to divide the character into 
a left third, center third, and right third, and 
similarly, upper, lower, and middle third. They 
are obviously redundant as there are 16 possi­
ble property vectors corresponding to only 
nine subregions of the rectangle. However, 
they were powerful enough to enable the 
author to construct a unique definition of all 
English uppercase letters as the author drew 
them, with the exception of 'U' and 'V.' While 
the system allows the user to define his own 
properties-which for the purposes of the pro-
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Table I. Sequence of Property Vectors for Two Different 'E's (See Figure 3). 

TTl TT2 TT3 TT4 

1 1 1 1 

1 1 0 1 

1 1 0 0 

0 1 0 0 

0 0 0 0 

W W W W 

1 1 0 1 

0 1 0 1 

0 0 0 1 

w w w w 

1 1 1 1 

0 1 1 1 

0 0 1 1 

w w w w 

Type 1 

gram means defining his own regions-it was 
decided that the program, and the user, should 
start with a useful, basic set of properties. 
These four properties were selected as a nu­
cleus for the set of properties used by the pro­
gram, and the sequences of property vectors of 
Table I would be the actual input to the recog­
nition portion of the program. 

4.2 The Discrimination Net 
Since the operation of the individual dis­

crimination net is essentially one of retrieval, 
one possible representation for the net would 
be a simple table. The program would then 
merely look up the sequence of property 

TTl TT2 TT3 114 

0 1 1 1 

o· 1 0 1 

1 1 0 1 

1 1 0 0 

0 1 0 0 

0 0 0 0 

w w w w 

1 1 0 1 

0 1 0 1 

0 0 0 1 

w w (1) w 

0 1 1 1 

0 0 1 1 

w w w w 

Type 2 

values in the table and retrieve any and all 
characters associated with that sequence. How­
ever, from a standpoint of conservation of both 
computer time and storage, this would be very 
inefficient. In addition, since we would like to 
have the system learn by adding new forms to 
its repertoire, we would have to cope with the 
problem of variable-length tables as well as 
variable-length entries. (We do not know, a 
priori, how long a given sequence of property 
values will be, nor how many characters will 
ha ve this sequence in their forms.) Some type 
of list structure is called for. 

The structure adopted is the binary tree. 
This is a special type of list structure consist-
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[] 
~.~ 'r~ ~ ... 
~ ... .. 
~.~ ~ ... .. .. 
~.~ ~ --

Rec10n 3 

Figure 2. A Four Property Scheme. 

ing of a collection of nodes and branches. Each 
node is connected to one and only one node 
n'h"n", ~ .... 'hn n "~n",.lo 'h .... onroh Q;nroo tho T\1"ll_ 
GJJVYC; ~.., UJ Q, .;:U·.I..I.6.&~ ..., .... ~.L.&.'"' ... .I.. ""-' ... .1..1.,,'"' "'.&..&" J:''&''' 

gram operates on changes in the property 
value, and there are three possible values for 
any property, only two branches are needed at 
a node to represent a sequence of values; hence 
the tree is a binary tree. Fig. 4 illustrates a 
binary tree which has stored the sequences of 
property values for PI (Fig. 2). The algorithm 
used to construct the tree is that the value 1 
is always to the left of the value 0, and the 
value 0 is always to the left of the value (I). The 
set of candidate characters at a node is actu­
ally a list appended to that node. In Fig. 4, 
the set of candidate characters has been placed 
adjacent to its corresponding node. 

If we return to the two types of 'E's (Fig. 3 
and Table I), we can follow the operation of 
the discrimination net. First, the appropriate 
sequence of property values must be extracted 
from the sequence of property vectors. This 
process is illustrated in Table II. For the first 
type of 'E', the program then descends the tree 
and arrives at the node whose candidate set 
consists of the two characters 'E' and 'A.' This 
would therefore be the output of the net. 

Figure 3. Two Different 'E's (See Table I) . 

For the second 'E,' the program arrives at 
the node marked with an asterisk and con­

. cludes that no character has a form with this 
sequence of property values for PI; the candi­
date set will therefore be empty. 

4.3 Training the Program 
The process of training the program in­

volves modifying and augmenting not only the 
individual discrimination nets, but also the 
reliability estimates associated with these nets, 
and occasionally even creating new nets. The 
program begins with the four basic discrimina-

Figure 4. A Binary Tree for Property Pl. 
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Table II. Sequence of Property Values for Two Different 'E's. 
The sequence of property values for each individual property was extracted from the sequence 
of property vectors in Table 1. Note that the sequences for 71"2, 71"3, and 71"4 are identical. 

TTl TT2 TT3 TI4 

1 1 1 1 

0 0 0 0 

W W W W 

1 1 0 1 

0 0 W w 

w w 1 1 

1 1 w w 

0 0 

W W 

Type 1 

tion nets corresponding to the four properties 
discussed earlier. No sequences of property 
values are stored in any of the nets, and each 
net is given an initial success number of one. 
It is this success number which will reflect the 
reliability of the net. 

4.3.1 Modifying the Tree 
The user draws a form and the sequence of 

property vectors is delivered to the program. 
Since there are no forms stored in the nets, 
an candidate sets are empty and the program 
is unable to guess a character. The user then 
informs the program what the character was, 
and the correct sequence of property values 
is stored on each tree along with the name of 
the character. 

As the process continues, the trees grow 
more complex, but the procedure of growing 
new branches and/or adding new characters 
to candidate sets remains the same. Thus, in 
Fig. 4, when preseiled with the type-2 'E,' the 
program would add on the additional branches 
(1, 0, w, 0, w) at the node marked with an as­
terisk and place a candidate set consisting of 
the single character 'E' at the last node. 

TIl Tr2 TT3 TT4 

0 1 1 1 

1 0 0 0 

0 W W w 

w 1 0 1 

1 0 w w 

0 w 1 1 

w 1 w w 

0 0 

W w 

Type 2 

After the program has been in operation for 
some time, correct decisions may be made even 
though some candidate sets do not include the 
right character. Similarly, a wrong guess may 
be made even though some candidate sets do 
include the correct character. In both cases, 
one or more trees do not contain the sequence 
of property values for the input form. If the 
program is still in training, these sequences are 
added to the corresponding trees. This means 
that the next time the program is presented 
with the same form, not only will the correct 
decision be made, but the correct character will 
be in each candidate set, i.e., the "vote" will be 
unanimous. 

4.3.2 Success Numbers-A Reliability Esti­
mate 

The whole point of the training is not to 
provide the program with all possible form it 
may encounter, but to give it enough experi­
ence so that, even on unfamiliar forms, some of 
the trees may be able to make guesses, though 
others may generate empty candidate sets. The 
weighting attached to the candidate sets of 
each tree reflects the reliability of that tree as 
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demonstrated during the training period. This 
is done by incrementing (by one) the success 
number of a tree every time its candidate set 
contains the correct character. Similarly, the 
success number is decreased (by one) each 
time the candidate set does not contain the 
correct character. Thus trees that suggest 
correct characters often are given more weight 
than those that do not. For the four basic 
properties, the success numbers usually remain 
about the same. However if the user tends to 
be more consistent with respect to the vertical 
dimensions of his character and varies on his 
horizontal dimensions, this would be reflected 
in the larger success numbers for property P 3 

and P 4 (Fig. 2). 

4.3.3 Generating New Properties 

Although the four basic properties enable 
the program to achieve quite a high level of 
discrimination, they are not foolproof. Suppose 
in the course of its training, the program were 
taught the character 'Z' (shown in Fig. 5a and 
Table III). Later, when confronted with the 
form in Fig. 5b the program correctly identi­
fies it as a 'Z.' Moreover, it is sure that it is 
a 'Z.' In other words, every tree suggested a 
'Z.' The only difficulty is that a human would 
recognize this form as denoting the character 
H) , .... Telling the program that this form de-
notes a '2' does not sove the problem. It would 
merely result in the program identifying sub­
sequent 'Z's as '2's. The two characters are 
identical within the limits of discrimination 
of the program. 

At this juncture there are only two possibil­
ities. Either the user must relent and draw 
one or the other form differently, e.g., cross 

- .......... 

\ 

/ 
) 

/ -

Figure 5. Two Forms Identical Within the Limits of 
Discrimination of the Program (See Table III). 

the 'Z," or he must extend the discrimination 
of the program. The latter course is prefer­
able and, for the case of this program, easily 
achieved. 

Observing that the difference between the 
two forms lies in the fact that a 'Z' enters the 
upper right hand corner, and a '2' does not, we 
communicate this fact to the program by ac­
tivating a new region R5 , and a corresponding 
property V5 • When the program has added this 
new discrimination net· to its collection of 
existing nets, it has the necessary discrimina­
tion to distinguish between these forms (Fig. 
6 and Table IV). 

There are implications in this procedure be­
yond the ability to distinguish between two 
similar characters. First, the new tree is 
started out with a success number of one. The 
other trees, by virtue of their training, have 
built up larger success numbers. Consequently, 
the new tree will have an effect only in those 
decision where there is a tie vote from the 
other trees. In other words, it will only be 
called upon to discriminate when it is needed. 
For those sequences that the four original 
trees have been trained to handle, the new tree 
will not be used. 

The second implication is that the new tree 
can eventually outweigh the old trees if it 
proves to be more reliable. As the new tree 
participates in more correct decisions its 
success number grows. If the user has gen­
erated a very effective property, then this new 
tree can assume a position of dominance in the 
decision procedure. The user is protected, how­
ever, if he has generated a poor property. This 
will be reflected in its low success number, and 
it will only be used when there is no other way 

Figure 6. Generating a New Tree (See Table IV). 
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Table III. Sequences of Property Vectors and Values for Figure 5. 

TTl TT2 TT3 TT4 TT TT2 TT3 TT4 1 

1 1 1 1 1 1 1 1 

0 1 1 1 0 0 0 0 

0 0 1 1 1 1 w w 

0 1 1 1 0 0 

0 1 0 1 w U) 

1 1 0 1 

1 1 0 0 

0 1 0 0 

0 0 0 0 

w w w w 

TT vectors TT
j 

values 

to make a decision. Thus, the generation of 
new trees proves to be a very powerful heuris­
tic. It enables the clever user to create an 
extremely powerful character recognizer, and 
does not penalize the novice, since his new 
properties can be evaluated in light of the 
program's experience with him. 

4.4 The Program in Operation 
The program operates in the following way. 

The user draws a form within a rectangle of 
light displayed on the scope; an input routine 
converts this form to a sequence of property 
vectors. The particular properties used, as 
mentioned above, indicate the position of the 
pen. Hysteresis regions in those areas where 
properties change have the effect of eliminat­
ing the sharp line of demarcation between two 
regions. 

When the user has completed a form and 
signals to the program, a recognition routine 
is brought into memory. This routine operates 
on the property sequence computed by the in-

TTl TT2 TT3 TT4 TTl TT2 TT3 TT4 

1 1 1 1 1 1 1 1 

0 1 1 1 0 0 0 0 

0 0 1 1 1 1 w U) 

0 0 0 1 0 0 

0 1 0 1 w w 

0 1 0 0 

1 1 0 0 

0 1 0 0 

0 0 0 0 

w w w W 

TT vectors TT J values 

put routine. It retrieves the candidate sets 
from the trees, and makes a guess as to the 
identity of the character that was drawn, using 
the success number technique discussed above. 
When in training mode, it uses the feedback 
information to grow new branches and add 
characters where necessary, and to modify the 
success number of existing trees. 

4.4.1 The Input Routine 
When the program is in operation, a rectan­

gle of light can be seen flickering on the cath­
ode ray tube. This is a 48 x 64 raster of points 
within which the user must draw his forms. * 
Associated with each point in the 'raster is a 
property vector. As the user draws on the 
scope, the pen is tracked by the program. The 

* The user could be allowed to draw his form any­
where on the scope face. However, this would entail 
saving the entire form and normalizing it after it had 
been completed, which would be costly in space and 
time. By limiting the drawing to the rectangle, the 
property vectors can be computed while the form is be­
ing drawn. 
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property vector for the point in the center of 
the pen's field is retrieved from the raster table 
by the input routine. If the property vector 
differs from the last vector in the sequence, it 
is appended to the sequence. When the user 
lifts the pen from the scope, the property vec­
tor (w, w, w, (f) is added to the sequence. This 
process continues until the user signals he has 
completed a form. The 7r vector sequence is 
then passed to the recognition routine. 

Because of the nature of the properties used 
by the program, it might be possible to com­
P¥te the property vector directly rather than 
store a three-thousand word table. There are 
two reasons why this is not done. First, table 
lookup is much faster than computing the 
property vector. This speed is important while 
tracking the pen. A long computation might 

allow the pen to travel far enough that the 
program would "lose it." This, in turn, would 
mean that the program would have to display 
the entire raster to find the pen. This can be 
annoying to the user. In addition, the pro­
gram would interpret this as meaning that the 
pen had left the face of the scope, and add (w, 
w, w, (f) to the property vector sequence. 

The second reason for looking up the prop­
erty vector rather than computing it lies in the 
generality of the lookup procedure. Since each 
point has its own property vector, the regions 
are not restricted to a portion of the rectangle 
lying to one side of a straight line, as in the 
basic set of propertIes. The regions need not 
even be connected. Although the regions used 
for the basic set are simple, there is no reason 
why more general regions should not prove 

Table IV. Sequences of Property Vectors and Values after Adding New Property (See Figure 6). 

TTl TT2 "3 TT4 TT5 TTl TT2 TT3 114 Tr5 TTl TT2 TT3 TT4 TT5 TTl TT2 113 TT4 115 

1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 

0 1 1 1 0 0 0 0 0 1 0 1 1 1. 0 0 0 0 0 ID 

0 0 1 1 0 1 1 Q) Q) 0 0 0 1 1 0 , , 
W W ... ... 

0 0 1 1 1 0 0 W 0 0 0 1 0 0 0 

0 o· 1 1 0 w w 0 1 0 1 0 w w 

0 1 1 1 0 0 1 0 0 0 

0 1 0 1 0 1 1 0 0 0 

1 1 0 1 0 0 1 0 0 0 

1 1 0 0 0 0 0 0 0 0 

0 1 0 0 0 W W W W W 

0 0 0 0 0 

CD CD W W W 

1T vectors 1Tj values 1T vectors 1Tj values 
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useful for certain types of characters. In fact, 
it is this table lookup that permits the genera­
tion of new properties (Fig. 6). This is done 
by the simple expedient of pointing the light 
pen at the corresponding region of the rectan­
gle as it is displayed. The program then stores 
the correct values for the new property (one 
for points inside the region, zero for points 
outside) in the 48 x 64 property vector table. 
From then on, the program will act as though 
the new property were one of the basic set. 

4.4.2 Hysteresis Areas 
As mentioned above, when certain generali­

zations suggested themselves, and they were 
not difficult to implement and did not detract 
from recognition efficiency, these were carried 
out by the investigator. One such modifica­
tion consists of a hysteresis area that lies be­
tween R j (the region corresponding to P j) and 
its complement. In this hysteresis area, no 
changes in the property P j can occur. In other 
words, if the pen enters the hysteresis area 
from the region where 77"j = 1, even if it crosses 
the line between the region and its comple­
ment, 77"j remains equal to one until the pen 
leaves the hysteresis area. Similarly if the 
pen enters the area from the region where 
77"j = 0, '7Tj remains zero as long as the pen is in 
the hysteresis area. Thus, the hysteresis area 
acts as a buffer between two regions of the 
rectangle. 

The effect of the hysteresis is to standardize 
certain forms. In Fig. 7 and Table V, a form 
denoting the character 'e' is shown, with and 
without hysteresis areas. Without hysteresis 
property vector sequences for this form prob­
ably would not agree with that of another form 

Figure 7. Use of Hysteresis Areas (See Table V) 

denoting,the same character. This is because 
slight variations in the path of the pen would 
result in an entirely different sequence. Some­
times the property vector sequence would re­
cord more than one crossing of certain boun­
daries, and other times no crossings. Con­
sequently, the program would find it difficult 
to learn this character. With the hysteresis 
area, a certain amount of "slop" can be toler­
ated regardless of the position of the form. 

In the program, the width of these hysteresis 
areas is set at five ponts (the raster is 48 
points wide and 64 points high). The hystere­
sis areas are drawn approximately to scale in 
Fig. 7. 

4.4.3 Binary Trees and the Recognition 
Routine 

For each j, the recognition routine extracts a 
sequence of '7Tj values from the sequence of 
property vectors. The program descends T j, 
and retrieves the candidate set. It then forms 
the union of all of the candidate sets. Each 
candidate is credited with the success number 
of the trees that suggested it, and the candi­
date with the highest score is chosen by the 
decision procedure. 

When the program is in training mode, the 
recognition routine indicates its guess and 
waits for feedback. If the correct character is 
in the candidate set of Tj, the jth ·tree, the 
success number of that tree is incremented. 
Otherwise, the success number is decremented, 
and the correct character is stored at the ter­
minal node for the '7Tj sequence, new branches 
being grown where necessary. 

The implementation of this process involves 
extensive use of list structure; the binary tree 
and the candidate set are each represented as 
a list of nodes. In addition, there is also a free 
storage list which contains all available space. 

The nodes of the binary tree consist of three 
pointers. One pointer points to the node at 
the end of the left-hand branch, and another 
pointer points to the node at the end of the 
right-hand branch. The third pointer points 
to the list of characters (the candidate set) 
stored at the node. The nodes of the candidate 
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Table V. Property Vectors with and without Hysteresis (See Figure 7). 

TTl TT2 TT3 TT4 

1 1 0 1 

0 1 0 1 

0 1 0 0 

0 1 0 1 

0 0 0 1 

0 1 0 1. 

1 1 0 1 

1 1 0 0 

0 1 0 0 

0 0 0 0 

W W W W 

.... 4 ............... .,+ ", ... re+c. ... c.C!-t C! w. v.u.V\,4U ... " ... uv",vw.w 

set consist of the name of a character, repre­
sented as a nine-bit binary code, and a pointer 
to the next node of the list. The end of a list 
is indicated by a special symbol, called the null 
symbol instead of a pointer. Fig. 8 dep"icts 
such a structure. 0 represents the null symbol 
in the figure. 

When the program must add a node to the 
binary tree or the candidate set, it obtains the 
necessary cells from the free storage list and 
constructs the node. The node is then tied into 
the list structure at the appropriate place by 
changing a null symbol to the address of the 
new node. 

4.4.4 Human Engineering Considerations 
The program under discussion was originally 

designed to serve as a subroutine for a larger 
system. As such, its only function was to 
allow a user to input information to the larger 

TIl TT2 TT3 TT4 

1 1 0 1 

0 1 0 1 

1 1 0 1 

1 1 0 0 

0 1 0 0 

w w w w 

with hysteresis 

system:,.by means of the cathode ray tube, and 
to do this in a way that seemed convenient and 
natural to him. Since the system must deal 
with users who would be complete strangers 
not only to this program, but also to the entire 
field of computers, a great deal of thought has 
gone into the design of the "physical appear­
ance" of the program. This section describes 
and illustrates by means of photographs, etc., 
exactly how the user interacts with the pro­
gram. 

One of the first problems encountered con­
cerned the many options the program offered. 
These would be of no value if the onus of re­
membering what these options were and how 
they were to be selected fell on the user. The 
solution adopted is the use of a control panel. 
This panel may be called at any time by means 
of a small light button displayed in the upper 
right-hand corner of the screen. When called, 
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Pree Storage 

Figure 8. Internal Representation of Data Structure 0 
represents the Null Symbol. 

the panel displays all the options (Fig. 9). The 
user can select an option simply by pointing 
the light pen at the corresponding light button. 
The button lights up and the appropriate ac­
tion is taken. When the panel is no longer 
needed, it may be dismissed by pointing the 
light pen at the appropriate button. This pro­
cedure has been found to be quite acceptable 
and intuitive to persons unfamiliar with the 
program. 

Unless the user has previously prepared a 
set of trees, the first step in using the program 
is to place it in training mode (the program is 
usually operated in hysteresis mode). The 
user then proceeds to train the program to his 
style of handwriting. He does this by drawing 
the character on the raster, and signaling the 
program to recognize it (Fig. 10). The pro­
gram displays its guess in the upper left-hand 
corner of the screen, while displaying the two­
dimensional projection of the form in the cen­
ter of the screen (Fig. 11), and waits for 
feedback. 

e 
• 
• 

Ente~ T~alnlnq Mode 
Lea·.·e Tralnlng Mode 
Enter Hysteresls Mode 
L.ae ~rste~eslS Mode 
E~ase Trees 

S.t Up Raste~ 
G.n.~at. ~.w Tree 

Panch Off 

Rpad In 
Generate Ne~ Charact~r 

EXlt f~o" APr.US 

DIsmISS po.n.l 

Figure 9. The Control Panel. 
The control panel is' called to display the various options 
of the program. The user selects an option by pointing 
at the corresponding light button, which then lights up. 
Note that the program is currently not in training 
mode and not in hysteresis mode. 

If the program has guessed correctly, the 
user signals approval with the light pen. If the 
program is wrong, or could not make a guess, 
the user signals disapproval, and the pro­
gram's alphabet is displayed so that the user 
can indicate the correct character (Fig. 12). 
This process continues until the user is satis­
fied with the program's proficiency (Fig. 13). 
He may then take the program out of training 
mode and write characters on the raster. When 
the program is asked to recognize each char­
acter, it inserts its guess ('?' if no guess) in 
the input string of characters at the pointer 
(Fig. 13). The user may move the pointer so 
that he can insert (or delete) characters at any 
point of his input string. If the program evi­
dences weakness or certain characters, the user 
can return to training mode. These processes 
continue until the input string is exactly what 
the user wishes to communicate to the larger 
program, and the user then exits from the 
character recognizer. If the user wishes to 
retain what he has taught the program for 

Figure 10. Drawing a Character. 
The user has just completed drawing the form which 
denotes the character 'A.' If this is acceptable, he 
signals to the program to recognize it. If not, he may 
erase the entire form and start over. Note the light 
button situated in the upper right hand corner of the 
screen for calling the control panel. Note also the 
lighter hysteresis areas in the raster (Figure 7). 
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Figure 11. Indicating a Guess. 
The program has been asked to identify the form whose 
projection is displayed in the center of the screen. 
The'?' indicates that it was unable to make a guess. 
Since the program is in training mode, the user will 
presumably tell it that the form denotes the char­
acter 'A.' 

future use, he may request a tape of the trees 
and property table through the control panel. 
The trees and property table can then be read 
into the program via the control panel the next 
time the user wishes to use the program, thus 
avoiding the training process. 

Although the character set basic to the pro­
gram is a large one, it is quite possible that a 
particular user may need some special-purpose 
character or set of characters. These char­
acters may be generated and are assigned nine­
bit codes. They are subsequently treated ex­
actly like the original characters. Fig. 14 
shows a user generating a '2;.' 

One other valuable option is the ability to 
generate new trees, which may also be done 
via the control panel. Fig. 15 shows the gen­
eration of a new tree needed to distinguish 
between 'U' and 'V.' The user has merely 
shaded in the corners of the raster. Upon 
signalling his approval, the program will 
modify the property vectors in the 48 x 64 
table to indicate the new region. When the 
user calls for the PUNCH option at the end 

RBCDEFGHIJ'_' 

NOPOPSTUIJ>< 7 

obcoefqtllJY." 

r 0 p q I" 5 t u. ht I' :: 

123 .. 567830 

Figure 12. Feedback. 

The user has indicated disapproval, and will now com­
municate the correct character to the program by point­
ing at it with the light pen. The character set displayed 
is only part of the basic alphabet of the program; 
there are more "pages" of symbols. In addition, the 
user can generate new characters (Figure 14). 

Figure 13. Correct Identification. 
The program has guessed that the form denotes the 
character 'E.' The character displayed is underlined to 
indicate that the program is sure, i.e., all trees voted 
for 'E.' Below the character is the input string. The 
next character will be inserted at the pointer. 

of a training run, all new trees are punched 
along with the modified property table. 

The other options on the control panel are 
the "Enter Hysteresis Mode," "Leave Hystere­
sis Mode," "Erase," and "Set Up Raster.' The 
first two of these are exactly what they sug­
gest. In hysteresis mode, the program uses 
the hysteresis areas; otherwise not. The erase 
feature enables the user to erase all of the four 
original trees, destroy any new trees, and cause 
the property table to revert to its original 
form. The erase feature is used when new 
trees are read in with the READ option, or 
the qser may call it if he wishes to start over 
and train the program differently. The set up 
raster option is used to determine the size and 
position of the raster. This allows individuals 
to write as large or as small as they please, 
and also enables them to position the raster 
anywhere on the scope. 

Figure 14. Generating a New Character. 
The user has found a need for a character not offered 
by the program. He is generating a new character by 
pointing at the points that will make up the character. 
The partially formed character is displayed in the 
upper center of the screen between "actual" and "size." 
When satisfied, he indicates approval and the new 
character is added to the program's alphabet. The 
Russian and Hebrew alphabets used (Figures 16 and 
17) were generated in this fashion. 
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Figure 15. Generating a New Tree. 

The user is generating a new tree to extend the dis­
crimination of the program. This particular tree might 
be useful in distinguishing between 'U' and 'V.' When 
the user approves, the property table will be modified 
accordingly. 

5.0 DISCUSSION 

The usual criterion applied to evaluating a 
pattern recognition program is its rate of rec­
ognition. With the program presented above, 
this is not too meaningful. Mermelstein and 
Eden,6 who have also experimented with uSing 
the time sequence information in their system, 
report that their recognition depends on the 
"correspondence between the script of test 
samples and that of the ensemble on which the 
manchine's representation of handwriting is 
based." That is certainly true here. By the 
nature of the program's training, if it were 
presented with a form encountered before, it 
would recognize it correctly 100 percent of the 
time. If it were presented with a form similar 
to one previously encountered, its recognition 
accuracy would depend on how similar this 
form was, and the measure of similarity would 
have to be circularly defined in terms of the 
program's properties. In particular, a form 
that looked identical to the human eye with 
another form might be very different as far as 
the program was concerned. This is especially 
true if the number of separate strokes of the 
pen used were not the same. 

Essentially the only things that can be said 
about a program of this type relate to its con­
venience arid usefulness. The program has 
been taught to recognize, on separate occa­
sions, Russian characters (Fig. 16), Hebrew 
characters (Fig. 17), Greek characters, upper­
and lower-case English characters, and a large 
collection of mathematical symbols (Fig. 18). 
It has been used by many different people, and 
the combination of control panel and punch­
out and read-in features make it at the very 
least enjoyable to operate. With a little ex­
perience, after the user becomes accustomed to 
the idiosyncracies of the light pen, and trains 
the program in the variations of his hand-

Figure 16. Recognizing Russian. 
The program has been trained to recognize capital 
Russian letters, and an appropriate character set has 
been generated. The figure shows the program in op-
aration. The letters in the input string displayed '''lere 
recognized correctly by the program. 

writing (surprisingly many people are not 
aware of the fact that they vary their style 
of handwriting from sample to sample), the 
resulting man-machine system becomes quite 
effective. Again no quantitative results can 
be offered here other than observations on use 
of the program by a considerable number of 
individuals. 

The results seem to indicate that the use of 
the time sequence is a powerful tool in pat­
tern recognition. I t enables a program using 
fairly simple properties to achieve a high rate 
of recognition. One way to improve the pro­
gram might be to include more sophisticated 
properties other than the position of the pen. 
An immediate improvement would be to in­
clude a property that detected sharp corners 
by noticing changes in the velocity of the pen. 
Other properties might note curvature or 
angle. Developing a language that described a 
wide class of properties would generalize the 
program even further. The user would then 
be able to communicate subtle differences in 
forms by means of fairly abstract concepts. 

The final goal of this type of approach would 
be to have the system generate new properties 
to help distinguish between similar forms 
without user intervention.10 One possible way 

Figure 17. Recognizing Hebrew. 
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Figure 18. Recognizing Mathematics. 

of doing this would be to give the program a 
large pool of potentially useful properties and 
have the program select those applicable. 

Another extension of the program's applica­
bility lies in relaxing the real time restriction. 
If line tracing is used on input characters, the 
program could recover a canonical time se­
quence from a figure. This would allow these 
techniques to be applied to recognizing printed 
characters. 

Similarly, if a technique were used similar 
to Freeman's 3 to encode the character as it 
was being drawn, the normalization problem 
might also be avoided. This would allow the 
user complete freedom of the scope. In this 
case, the system would begin to rival the type­
writer for convenience, and would make com­
puters very accessible to any and all potential 
users. 
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A COMPUTER PROGRAM WHICH "UNDERSTANDS"* 
Bertram Raphael 

University of California, Berkeley, California 

I. INTRODUCTION 

This paper describes a computer program 
which demonstrates one approach to building 
an "intelligent" machine. The computer system 
called SIR-Semantic Information Retriever­
exhibits some humanlike conversational be­
havior and appears to have certain cognitive 
abilities. The conversation presented in Figure 
1 between a person (identified by "*** .") and 
SIR illustrates some of the system's capabili­
ties. 

"Understanding" is difficult to define. A 
basic assumption here is that understanding 
can be demonstrated by dialogue; i.e., a com­
puter should be considered able to "understand" 
if it can remember what it is told, answer ques­
tions, and make other responses which a human 
observer considers reasonable. 

In order to make "reasonable" responses the 
computer must not only be able to echo, upon 
request, facts it has been given; it must be able 
to select (from a large store) facts which are 
relevant to a particular question, and must be 
able to recognize the logical implications of 
those facts. One way to satisfy these require­
ments is to utilize a suitable internal repre­
sentation, a "model", for stored information. 

This paper describes SIR, a prototype of a 
general-purpose "understanding" machine. SIR 
demonstrates how conversational and deductive 
abilities can be obtained through use of a model 

which can represent semantic content from a 
variety of subject areas. 

II. QUESTION-ANSWERING SYSTEMS 

Several computer programs have previously 
been written whose behaviors are somewhat 
similar to that of SIR. The following are among 
the best-known existing systems: 

1. "Baseball: An Automatic Question-An­
swerer".l This system draws answers to 
a wide range of English questions from a 
predetermined, fixed, hierarchical data 
structure. 

2. Phillips' "Question-Answering Routine".2 
This early example of a question-an­
swerer contains the important feature 
that its corpus of data is automatically 
extended with each new input sentence. 
However, the answering process involves 
a statement-by-statement search of the 
entire corpus. 

3. "SYNTHEX".3 The SYNTHEX approach 
is to find answers in an indexed natural 
language text by means of grammatical 
dependencies. The ability of the system 
can be improved only by increasing the 
complexity of the associated grammar. 

4. Lindsay's "Semantic Analyzing Ma­
chine".4 Lindsay takes advantage of spe­
cial properties of a particular semantic 
relationship by using a form of "family 
tree" as the internal computer model for 

• The work reported herein was supported in part by the MIT Computation Center and, in part, by Project MAC, 
an MIT r.esearch program sponsored by the Advanced Research Projects Agency, Department of Defense, under 
Office of Naval Research Contract Number Nonr-4102(01). This report is based on a doctoral thesis for the MIT 
Mathematics Department, June, 1964. 
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...... E:VEMY 80Y IS A PERSON) 

II UNIlERSUNDI 

...... A FINGER IS PART Of " HAND) 

II UNDERSTAND I 

,.... EACH PERSON HAS TWO HANDS) 

ITHE ABUVE SENTtNCE IS AMBIC;UUUS •• PLEASE Rt-PHRASE IT I 

,.... THERE ARc TWO HANDS ON fA(;H PERSONI 

II_STANOI 

..... HOII HAPlY F INC;US DOES JOHN HAVE Q I 

ITHt MOVt SE~TEPI(;E IS AMBIC;UOUS •• BUT I ASSUME IHASI MEANS IHAS AS PARTSII 
II DON'T 1(11011 llHETHU FIN(;U IS PART OF JOHNI 

t.... .J~ IS A BOY) 

II UHOERSTANDI 

,.... HOW MANY fiNGERS DOES JOttN HAVE QJ 

: ~:W A::~ :~:::C;t~\::I~':.'US •• BUI I ASSUME (HASI MEA~S IHAS AS PARTSII 

(.... EVERY HAND HAS 5 FLNGERS) 

ITH.!: ABOVE SENTENCE IS AIItIIGOOUS •• HuT I ASSUME IHASI MEANS IhAS AS ~'RTSII 
II UNDERSTAND I 

HOW HANY F I NC;US DOES JOliN HAVE g I 

I THE ABU~E SEPlnNCE IS AMBI(;lJOUS •• BUT I ASSUHt IHASI HEANS IHAS A~ ~ARTSII 
IJHt APlSIlER IS 101 

(.... HOW "ANY AutOlWlJILES DOES JOhN HAVE Q) 

IJHE ABOVE SENTENCt IS AM~I(;UOUS •• PUASE RE-PIiRASE ITI 

I.... WHO IS PRESIDENT OF IHE UNJlEO STAns gJ 

ISTATEMENT fORM NOT RE(;U(;NllEDI 

I.... THE 80Y IS JUSI TO THE LEfT Of THE TAbLE I 

";028~O IS A TABLEI 
II UNDERSTANOI 

THt LAMP I S JUST TO IHE LEFT Of THE I ABLE I 

'10028U IS A LA .... 
IIHE ASOVE STATEMENT IS IMPOSSISUI 

I·... IHE TABLE IS TO ThE RI(;HT uF THE (;HAlkl 

I(;02h2 IS A (;HAIRI 
II UNUERSTANDI 

(.... WHAT IS THE Itt:LATlVE POSITIUN LF A Pt::RSON Q) 

(flit: LEFT-TU-IUGHf OROEIl. IS AS FOLLUWS. 
ICHAI" I80Y TABUII 

Figure 1. Sample Conversation. 

kinship information. Of course, this 
"tree" model is not a good representation 
for other kinds of relationships. 

5. Darlington's translation to s y m b 0 1 i C 

logic.5 This program shows how certain 
English problems can be translated into 
logical terms and attacked by formal 
methods. As with Lindsay's system, the 
approach used here has limited applica­
bility. 

6. Bennett's computer program for word re­
lations.6 This'system, in which words are 
related by means of the English formats 
in which they appear, extracts and stores 
semantic information in a limited and 
somewhat awkward way. 

7. Bobrow's "STUDENT"/ This new sys­
tem deals with linguistic problems which 
arise while analyzing those English state­
ments which describe mathematical re­
lationships. The program translates 
"word problems" directly into algebraic 
expressions. 

Each of the above systems has certain in­
teresting features; some of which have in­
fluenced the design of SIR. The goal of the 
present work, however, has been to find and 
demonstrate a question-answering mechanism 
which is highly automatic, widely applicable, 
and reasonably efficient; one which overcomes 
many of the limitations of the above systems. 
An appropriate model is the key to this mecha­
nism. 

III. THE SIR MODEL 

The SIR model is the collection of data which 
SIR subprograms may refer to in the course of 
question-answering. It is a "semantic" model 
in two senses: 1) The information stored in the 
model is intended to approximate the linguistic 
"semantic content" or "meaning" of English 
text; 2) The structure of the model is derived 
from the "semantic" model structures of mathe­
maticallogic. 

Many linguists and logicians have considered 
problems of "semantics" and offered definitions 
of "meaning".8,9,10,11,12,13 Few of these discus-
sions are sufficiently concrete to be suitable for 
computer implementation. However, the idea 
of representing meaning by word associations, 
suggested by several previous authors, has been 
adapted as the basis of the SIR model. The 
resulting word-association structure of the 
model is general enough to be useful in a wide 
variety of subject areas; yet, the stored in­
formation is specific enough to provide con­
venient accessibility of relevant facts and, 
therefore, efficient question-answering. 

STRUCTURE OF THE MODEL 

The SIR model is structured by means of 
property-lists (sometimes called description­
lists). A property-list is a sequence of pairs of 
elements, and the entire list is associated with 
a particular object. The first element of each 
pair is an attribute applicable to a class of ob-
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jects, and the second element of the .pair is the 
value of that attribute for the object described. 

If an English statement asserts that rela­
tion R holds between objects or classes named 
x and y, or equivalently, that the word "x" is 
associated with the word "y" in a manner 
specified by the word "R", then this relation­
ship is represented in the SIR model by attrib­
ute-value pairs placed on the property-lists of 
both x and y. Each attribute specifies a rela­
tion, and the value paired with the attribute 
(the value of the attribute) indicates which 
other objects are related to the described object 
by means of the specified relation, i.e., which 
other words are associated with the described 
word in the way specified by the attribute word. 

Since, in general, relations are not sym­
metric, relation R must be factored into two 
relations Rl and R2 so that, if R holds between 
x and y, one can say that y stands in relation 
Rl to x and x stands in the inverse relation 
R2toy. 

For example, consider the sentence, "Every 
boy is a person." SIR takes this sentence to 
mean that a set-inclusion relation holds between 
"BOY" and "PERSON". The factor relations 
Ri and R2 are "SUPERSET" and HSUBSET", 
respectively. The fact specified by the above 
sentence can be represented in the model by the 
attribute-value pair "(SUPERSET, PER­
SON)" on the property-list of "BOY", and the 
pair "(SUBSET, BOY)" on the property-list 
of "PERSON". 

An attribute can only appear once on a given 
property-list. However, the value of an attrib­
ute may be a list containing several object 
names. For added flexibility, elements of these 
value lists may themselves be in property-list 
format so that they can hold descriptive infor­
mation as well as object-names. The first item 
on such sub-property-lists is the flag "PLIST" 
which indicates that a property-list follows. 

For example, after the system learns that "A 
person has two hands" and "A finger is part 
of a person", the property-list of "PERSON" 
would contain the attribute-value pair: 
(SUBPART, «PLIST (NAME, HAND) 
(NUMBER, 2» (PLIST (NAME, FIN­
GER»» These general links are the principal 
mechanism for structuring the model. 

IV. NATURAL LANGUAGE INPUT 

The language which is most convenient to the 
users of SIR is natural English; therefore, the 
input and response languages of the SIR sys­
tem should be reasonably close to natural Eng­
lish. Since its internal information representa­
tion is a relational model, SIR is faced with the 
difficult problem of extracting word associa­
tions from natural language. 

The work reported in this paper is concerned 
with the ability of a computer to utilize rela­
tional information in order to produce intelli­
gent behavior. The linguistic problem of 
transforming natural language into a usable 
predicate form is only of peripheral interest 
here. The following outlines a superficial but 
adequate method for solving this linguistic 
problem in the present context. Reference 14 

contains further details of this method. 

SIR recognizes only a small number of sen­
tence forms, each of which corresponds to a 
particular relation. The input language is de­
fined by a list of formats. Each format is a 
string of constants and variables, and an ap­
plicability test is associated with each variable. 
An input sentence is recognized if it is matched 
by the constants in some format, and if its sub­
strings corresponding to each variable in that 
format satisfy the corresponding tests. Special 
functions associated with each format then ex­
tract appropriate word associations from rec­
ognized sentences, and perform the desired 
storage or retrieval operations in the model. 

For example, the sentence, "Every boy is a 
person", is recognized by the format, "x is y". 
Applicability tests check that the substrings 
corresponding to x and y are each two words 
long, the first of which is a member of the set 
{ a, an, every, any, each }. The associated 
function then creates set-inclusion links be­
tween "BOY" and "PERSON" in the model. 

Some formats do not uniquely determine 
word relations. As an example of how such 
ambiguity may be treated, SIR considers the 
verb "to have" as meaning either "to have at­
tached as parts" or "to own", e.g., "John has 
ten fingers" vs. "John has three automobiles". 
The function associated with the format "x has 
n y" must resolve this sernantic ambiguity be­
fore it can operate on the model. The ambiguity 



580 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

is resolved, as described in Section V, on the 
basis of word-associations in the model which 
were created because of previous, unambiguous 
input sentences. 

SIR always makes reports of its actions. The 
conversation of Figure 1 was produced by an 
abbreviated-response mode in which only di­
rectly relevant responses were printed. Altern­
atively, the system can provide a running com­
mentary of its activities. Although less read a-

1THi: NEXT SEN fENCE IS. • I 
(EVERY BOY IS A PERSIIi'II 

UHE fllolCTiON USED IS. .1 
serR-~ElEtT 
I(GENERlt • 8(JYI IGENER" • PERSONII 
UHE otEPLY •• 1 
UHi: SUB-FUNCJlON USED IS •• 1 
SHR 
IBOY PERSOHI 
(ns REPLY • .1 
II UNDERS UNO rHi: SUPERSEJ RELAlI ON BElWEEN PE"SO>l AND BOY! 
II UNDERSTAND THi: SU6SET RELAJlQN BeTWEEN BOY AND PEMSD"I 

(HII: NEXT SENTENC!: IS •• 1 
(A fiNGER IS PART Of A HANOI 

"HE fUNCTION USED IS •• 1 
PARTR-SHECT 
IIGENERIC • flNGERI (GENERIC. HANOII 
ITHE REPLY • • I 
1Tttt: SUB-fUNCTION USED IS •• 1 
PARTR 
IflNGER HANOI 

(ITS ~EPLY •• 1 
II UNDERSTAND THE SUBPART-OF-EACH RELATION BEr~(EN FINGER AND HANOI 
II UNDERSUND THE SUPI:RPART-Of-EACH R~LATlIIi'I aETWE~N HAND ANO FINGERI 

ITHE NEXT SENTENtE IS. .1 
lEACH PERSON HAS TWU HANDS I 

ITHE FUN(; TlON USED 15 • • I 
HASN-9.ESOL VE 
112 • HANOI (IOtNER" • PERSONII 
1THi: ltEPLY •• 1 
UHE ABOVE SENTENCE IS AMBIGUOUS •• PLUSE RE-PHRASE I II 

((HE .. EXT SENJENtE IS •• 1 
ITHERE ARE TWO HANDS UN EACH PERSON I 

ITHE FUNCTION USED IS. .1 
PARTRN-SELEC T 
IIIOtNER" • PERSON I (2 • HANDII 
ITHE REPLY • .1 
II UNDERSTAND THE SUP~R~AMT-OF-EACH RELATION tlETWEEN PERSON AND HANOI 
II REALIZE THi: NUMBER RELATION BETWEEN 2 ANO (PLIST NAME PERSOIIII 
II UNDERSIAND rHi: SUBPART-OF-EACH RELATlIIi'I IIUoiEEN HANO 1."0 PERSUNI 
II REAUlE lHE _IIER RELATlIIi'I BUIIEE .. 2 AND IPLISI NAME HANDII 

UHE NEXT SENTENCE IS. • I 
IHOW MANY flllGERS OOES ~OHN HAVE QI 

UHE FUNCTION USED IS. .1 
HAYE-RESOl YE 
IfJNIOtR IUNlQUE • ~OHMII 
ITHi: REPLY •• 1 
ITHE ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUME IHASI MfANS (HAS AS PARISI I 
(I VUN<>T KNOW WHETHi:R FINGER IS PART OF ~HNI • 

UHi: !tEXT SENTENCE IS •• 1 
I~OHN IS A BOYI 

UHE FUNCTION USED IS •• 1 
SETR-SELEt T 
II UN I QUE • ~OHNI IGENERIC • BOYII 
UHE REPLY • • I 
UHi: SUB-FUNCTION USED IS •• 1 
SETMS 
I~OHN BOYI 
IITS REPLY • .1 
II UNDER STANO THE ELEMENTS RELATION BElIIEEN JOHN AND BOrl 
II UNDERSTAND rHE MEMIIER RELATIUN IIElWUN 8(Jy AND ~OHNI 

UHE NEXT SENTENtE IS. .1 
IHOW MANY fiNGERS OOES ~OHI! HAVE QI 

UHE FUNCTION USED IS •• 1 
HAVE-RESOlYE 
If-INGER IUNlQUE • ~OHMII 

UIIt: REPLY •• 1 
ITHE ABOVE Sf"TENCt IS AMBIGUOUS •• Bur I ASSUME IHASI MEANS IHAS AS PARTSII 
II KNOW THE SUPERPART-Of-EACH ItELAUON BETWEEN HAND AND FINGERI 
(11t01i "ANY FINGER PER HAND 011 

IIHE NEXT SENrENCE IS. • I 
lEVEllY HAND HAS S FINGERSI 

UHE FUNCIION USED IS •• I 
HASlt-RESOLVE 
liS • FINGERI "ENERIC • HANOII 
ITHE REPLY • • I 
IIHE ABOYE SENUNCE IS AIIBIGUUUS •• BUT I ASSUME IHASI MUllS IHAS AS PARTSII 

ble, this full-response mode was a significant 
debugging aid. Figure 2 shows the dialogue of 
Figure 1 in that mode. 

V. THE SIR PROGRAM 

SIR is programmed in the LISP language,15 
a list-processing computer language 16 well 
suited for model building and searching proce­
dures. The operation of the program is de­
scribed in detail in 14. Here we we shall observe 

II KNOll THE SUPERPART-Of-EACH IIELATION BETWEEN HAND A.~D FINGER I 
II REALIZE THE NUMdER RELAIION IIETWEEN 5 AND IPLIST NAM~ HANDII 
II KNOW THE SUBPART-OF-EACH RELATION BEH.EEN FINGER AND HANOI 
II REALIZE THE _BER RELATION BErIlEEN 5 AND IPLIST NAME flNGERl1 

UHE NEXT SENTENCE IS'. • I 
IHOW MANY FINIOERS DOES ~OHN HAVE QI 

!THE FUNCTION USED IS. .1 
HAYE-RESOlVE 
IFINIOtR IUNIQUE • ~OHNII 
!THE REPLY • .1 
ITHE ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUNt IHASI MEANS IHAS AS PARTSII 
II KNOW THE SUPERPART-OF-EACH RELATION BET WEE,. HAND AND FINGERI 
II KNOW THE SUPERPAIIT-OF-EACH REUTlIIi'I BETWEEN PERSON AND HANOI 
ITHE ANSWER IS 101 

UIIE NEXT SENTENCE IS. .1 
IHOW MANY AUTONOllllES DOES ~OHN HAVE QI 

!THE FUNCTION USED IS •• 1 
HAVE-RESOlVE 
IAUTOMOBILE IUNIQUE • ~OHNI 1 
!THE REPLY • .1 
!THE AIIOVE SENTENCE IS AMBIGUOUS •• PLEASE RE-PHRASE IT I 

ITHE NEXT SENTENCE IS. .1 
IIItIO IS PRESIDENT OF THE UNIlED STATES QI 

ISTATEMENT FORM NOT IlEtoGNllEDI 

ITHE NEXT SENTENCE IS. .1 
If HE 8QY IS ",UST TO THE LEFT Of THE TABLEI 

!THE FUNCTlO .. USED IS •• 1 
JlUGHT-SELECT 
IISPEtlfIC • TABLEI ISPECIFIC • BOYII 
ITHE REPl Y • .1 
If HE SUIl-FUNCTlON USED IS •• 1 
~IGHT 
!TABLE 1I0YI 
IllS REPLY • .1 
16021140 IS a TABLE! 

(I IIIIOERSTAND ntE ELEMENTS RELATION BEIIIEE .. G02B40 ANO TAIILEI 
II IIIIOERSTAND THE MEMBER IlELAlION BETWEEN TABLE ANO G028401 
CI REAL IZE THE ~IGHT RELATION BETWEEN TAlJLE AND' BOY I 
II REALIZE rIlE ~LEfI RELATION BETWEEN BOY AND TABLEI 

ITHE NEXT SENrENCE IS. .1 
ITIIE lAIIP IS JUS T TO THE LEFT OF THE T ABLEI 

!THE FUNCTION USED IS •• 1 
JRlGHT-SfLECT 
IISPECIFIC • "'BLEI ISPECIFIC • LAMPII 
!TIlE REPlY •• 1 
!THE SOlI-FUNCTION USED IS • .1 
~RIGHT 
!TABLE LAIIPI 
IITS REPLY •• 1 
(602141 IS A lAIIPI 
II UNIIERSTANO THE ELEMENTS RELATION BETWEEN G021141 aND LAMP I 
II UNDERSTAND THE HEIlBER RELATION BETWEEN LAMP &110 GD211411 
(THE AlOft STATENEIIT IS IMPOSSIBLEI 

!THE NEill SENTENCE IS. .1 
ITHE TABLE IS TO THE RIGHT OF THE CHAIRI 

ITHE FUNCTION USED IS. • I 
RIGHT-S.ECECT 
IISPECIFIC • TABLEI ISPECIFIC • CHAIRII 
ITHE REPLY •• 1 
IlIIE SUB-fUNCTION USED IS •• 1 
RIGHT 
(TABLE tHAIRI 
(ITS REPLY • .1 
16021142 IS A CHAIRI 
II UNOERSrAND THE ELEMENTS RELATION BETWEEN 602142 ANO CHAIRI 
II UNDERSTAND THE MEMBER RELATION IIElWEEN CHAIR AND 60211421 
II UNDERSTAND THE UGHT RELATION BUWEEIil TABLE aND CHAIRI 
II UNDERSTAND THE LEFT RELaTION BETIIEEN CHAIR AND TA8LEI 

trllE NEXT SENTENCE IS •• 1 
I_T IS rItE RELATIVE POSITION Of A PERSON 01 

trHE FUNCTION USED IS •• 1 
lOC-SELKT 
IlGENERIC • PERSON II 
trHE REPLY •• 1 
!THE SUB-FUNCTION USED IS • .1 
LOCATEC 
I PERSON I 
Ins REPLY •• 1 
!THE LEFT-TG-RU.HI ORDER IS AS FOlLOWS I 
ICHAIR IIOY TABLEII 

Figure 2. Sample Conversation in Full-Response Mode. 
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the system's behavior by means of annotated 
examples. 

Each part of Figure 3 is a conversation be­
tween a person and SIR designed to illustrate 
SIR's ability to "understand" a different rela­
tion or group of relations. Each part starts 
with a "clean" memory, i.e., an empty modei 
and no knowledge of vocabulary except for for­
mat constants. The following notes, keyed to 
Figure 3, should help clarify some of the re­
sponses: 

aL The response, "I UNDERSTAND", in­
dicates that some desired link has been 
created or discovered in the model. 

a2. "IS" and "IS AN EXAMPLE OF" are 
equivalent formats in this context. 

a3. In general, question-answering routines 
in SIR can perform all necessary logical 
deductions. "Q" should be read as a 
question mark. 

a4. The program responds "SOMETIMES" 
to the question, "Is an x a y 1" if it can 
deduce, from existing linkages, that y is 
a subclass of x. 

a5. "~nsufficient Information" is the most 
common report of failure. The present 
system does not handle deductions from 
negative premises, e.g., "Every boy is not 
a girl." 

bL Absence of an indefinite article indicates 
that MAX is an individual aIld, there­
fore, is an element, rather than subclass, 
of IBM-7094. 

b2. "THE BOY" requires the existence of a 
unique element of the class "BOY". SIR 
assigns "G" names to anonymous indi­
viduals. 

b3. "THE BOY" is assumed to be G02840. 
b4. JOHN and G02840 may be different 

boys, making "THE BOY" ambiguous. 
cL Two words are linked by the attribute 

"EQUIV" if they are different names 
for the same object. Deduction proce­
dures must allow for possible equiva­
lences. 

dL In these cases attributes on the prop­
erty -list of the name of a set may de­
scribe properties of every element of the 
set, rather than of the set as a whole. 
The hyphens in "P AIR-OF ..,RED-SUS-

PENDERS" are necessary to avoid con­
fusing the format recognition scheme. 

d2. Each question-answering program may 
check for certain special cases before at­
tempting standard deduction procedures. 

eL "Specific" information appears on the 
property-lists of individuals rather than 
of sets. Deduction procedures must use 
both geneFal and specific information. 

flo See dl. 
f2. See d2. 
f3. The system discovers that a NOSTRIL is 

part of a PERSON, and then answers 
the question, "Is a living-creature a per­
son 1" 

hI. In this and future sentences, the system 
reports that the sentence form is am­
biguous (because "have" may mean 
either "have as parts" or "O\vn"), but it 
has been able to make a "reasonable" 
assumption about the intended meaning 
and is proceeding from there. (See de­
scription of Figure 4b.) In this case, 
"How many" cannot be answered unless 
a part-whole relationship can be estab­
lished first. 

h2. "NUMBER" is an attribute which is 
placed on sub-property-lists associated 
with part-whole relationships. 

h3. Here a "NUMBER" attribute is missing 
along the chain of links which estab­
lished the part-whole relationship. 

iL "JUST ... " requires adjacency. 
i2. In this section new links are created 

only if they are consistent with already 
"k...Ylo·wn" facts. 

i3. A "WHERE" question requests location 
information obtainable from direct links 
only. 

i4. "WHAT IS THE POSITION" requests 
the construction of a linear ordering of 
objects, as far as available linkage in­
formation permits. Inner parentheses in 
the order list indicate adjacent objects. 

SPECIAL FEATURES 

Figure 4 illustrates three special features of 
the SIR system. 

a) Exception principle: General information 
about "all the elements" of a set is con-
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•. 'SET ·INClUSlON 

2 

4 

c. EQUIVALENCE 

11;0280\0 IS A MANt 
t I UNDERSTAND' 

IS A .... EY " KE'fPUNCH-OPEilATOA 'II 

5 IINSUfflCIeNT UlfORMA1'1UN' 

2 

3 

b. SET·MEMBERSHIP 

THE &In" IS lUI N'T-STUDENT' 

lG0284Q IS A BOT) 
U UND£U, AND I 

IS THE BOY " BRIGHT-PUSCIIiII 'II 

IS THE NAN " DOPE GJ 

II"SUFFICIIENT J NFOfU'AT ION I 

IS THE """ A DOPE In 

... ltH fiWrII •• 1&02840 "'"11 

IS THE lOY A· BAIGtlJ-I'UStJN 'II 

4 IWtICH BOY •• 11;021MO .JOHN) I 

d. OWNERSHIP. GENERAL 

DOES A PAIR-Of-RED-SUSPENOEas UWII A ".U-Of-RED-SUSPENOEI15 loll 

2 (NO •• TMET ME TI'I£ 5&.o:a 

DOES A OOCTDft 0lIl" .. PA.R-(Jf-UD-SUS'tf'lOERS WI 

IIN~~fICIENT .NFOUIIoT.OfiII 

DOES .. FUlECHIEF '*t.I A PAlil-Of-.tED-SUSPE;ND£R5 Q) 

e. OWNERSHIP. SPECiRC 

ALfAEO (MIS .. LOG-LOtr-DEc.nUGI 

DOE$ o\LfAED ow. A SLIDE-«ULE IiII 

EVEA' EllGlNEEAl1lKi-5TUDEfrlT OIIIfiIS A SlIDE-aULE) 

DOES VEA'" laIN A SLIDE-atA.1: QI 

DUES ... ENfi,INEOJNW-STWEMI OWN THE LDf,O-LDG-Dt;ClIMI' QJ 

IAlMO 15 A LQG.-LI5-DEt"A"1 
(INS~FltIE.I IIIIfOUATlO'" 

DOES AN EN&INEEUNG-SfUDEN' OWN THE: LDG-LDG-DECITU& 01 

f. PART·WHOLE. GENERAL 

A NOSTRIL IS A .. ART OF A NOSE) 

II UHOERSUrtDJ 

.. PART·WHOLE. SPECIFIC 

ACitTISPARTOFTHEPOP-ll 

1("028400 IS A POP-li 
II UNDEtlSUNOI 

IS A NOSTRil PAttI Of A PlluFfSSOR !oI) 

IS .It. NOSE: PART Of A NDSE loll 

2 INO. PART "fAItS PROPt-R SUBPAltrJ 

APERSONISALIYJ..,-CRUTUltEJ ItIUNDE.ST~J 

:::-. IS" SCREEN 'AU OF SA" QI 

3 t •••• IS A NOSTRIL 'AtU OF ... LIVING-GREATUtU: QI 

IS" LlvING-CMUTURE PAllT Of A NOSe·'H 

INO • NDSi. IS SOMUIMlES PART Of lIV'MO-CIlEATUAti 

EVERY tOFfEE-HDUSE-CUSTDNea IS A IUTNIIO 

i. LEFT· TO·RIGHT POSITION 

'HE THfPttCItE IS JUST TO THE RIGHT OF THE ~kl 
I&02M01S.fELtP~J 

'''02841 IS A IOOKI 
(l UftOEASJANI)) 

HIE JELEPH(ftC IS .JUST '0 nlE LEFr OF TKE PADI 

1~28U IS.to PADI 
II UNDERSTAND} 

IS THf. ""0 ,JUST TO iHE il.1~T uF THE aoor. Itit~ 

IS THE aooK TO THE LEFT Of THE PAD 'II 

UtE PAD 15 TU THE alGHT Of THE TElE'PMDNE' 

IHE '100 IS 10 fHE LEFT Of fHf TEUPMt.INEJ 

2 "HI:: AeOn SUJ(:IIIfNT 15 "IPOSSIILEI 

3 

THE ASH-T .... Y is TO lHE LEFT OfJHf. BOUlt) 

1&o2M3 IS A ASH-TRAYI 
el UtmE.SrANOI 

THit P(NCll IS TO TH£ LEFT OF THE PADI 

:~O=A~~':':'~NCIl.I 

rHE PAPfR IS TO THE alGtU OF THE TELEPHONEI 

:;O~::.!:~~'PERI 

WHEAE IS THE PAD Ql 

(.lUST TO THE RIQlT OF THE TELEPHONE I 
ISOMEwHEilE TO THE at'"' OF THE FOUONING •• ,'ENeILIt 

IIIH4T 15 'HIF POSITION OF THE PAD OJ 

4 :!:"~:::-!='";:L~~ J:,!~ ::~~~SJ 
ITO fU"THfM SPECifY Tfit POSITIONS ,"au MUST INDltAfE ,utEIII.£ THE PENCIL IS WIIH RESpteT TO THE ASH-TU't) 

WUT IS THE POSITlClril OF THE PAU 01 

UHE UfT-To-IIGHT Ul:0E1t I S AS fOLLtiiS I 
(PENCIL CASH-TRAY BOOK tELEPHONE PAD) PAPEA. 

"'UST 10 'HE LEfT Of THE PADI 
IJUST TD THE R'GHT OF THE aDOKl 
(SOMEIllHERE 10 THE LlEFT OF THE fOLLOWING •• IPU'EKIJ 

Figure 3. Selected Conversations. 
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a. EXCEPTION PRINCIPLE 

I.... THERE ARE 5 FINGERS ON EVERY HAND) 

II UNDERST AND) 

,.... THERE ARE TWO HANDS ON A PERSON) 

II UNDERSTAND) 

I.... A BOY IS A PERSON) 

II UNDERS TANO) 

I.... TOM IS A BDYI 

(I UNDERSTAND I 

I.... DICI( IS A BOYI 

II UNDERSTAND I 

,.... HARRY IS A IJDY) 

II UNDERSTAND) 

I.... TOM HAS NINE FINGERS) 

I THE ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUME IHASI MEANS IHAS AS PARTS)) 
II UNDERSTAND) 

DICK HAS ONE HAND I 

ITHE ABOVE SENTENC/, IS AMBIGUOUS •• BUT I ASSUME IHAS) MEANS IHAS AS PARTSII 
II UNDERSTAND) 

' ••• 0 HOW MANY FINGERS' DOES TOM HAVE Q I 

UHE ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUME IHAS) MEANS IHAS AS PARTS)) 
ITHE ANSIiER IS 9) 

,.... HOW MANY fiNGERS DOES DICI( HAVE Q) 

IIHE ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUME IHASI MEANS (HAS AS PARTS)) 
!THE ANSIiER IS 5) 

1 .. · .... HOW MANY FINGERS DOES HARRY HAVE Q) 

I·~E': ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUME IHAS) MEANS IHAS AS PARTS)) 
;fIHE ANSWER IS 10) 

, .... HOW MAtoIY FINGERS DOES JOE HAVE QI 

IIHE ABOVE SENTENCE IS AMB-lGUOUS •• BUT I ASSUME IHASI MEANS IHAS AS PARTS II 
(( DON·T KNOW WHETHER fiNGER IS PART OF JOEl 

b. RESOLVING AMBIGUITIES 

I.... JOHN IS A PERSON) 

II UNDERS TAND) 

I.... DICI( IS A PERSOtol) 

I~ UNDERSTAND) 

i.... A CHAIN IS PART Of ... BICYCLEI 

II UNDERSTAND) 

I.... THE POIIER-SAW HAS A CHAIN) 

If HE ABOYE SENTENCE IS AMBIGUOUS •• Bur I ASSUME IHAS) MEANS IHAS AS PARTS)! 
IG028.0 IS' A POIIER-SAW) 
II UNDERSTAND) 

c.... JOHN OIiNS A CHAIN) 

II UNDERSTAND) 

,.... DICK HAS A CHAIN) 

ITHE ABOVE SENUNCE IS AM81GUOUS •• BUT I ASSUME IHAS) "EANS 10WIIISli 
II UNDERSTANO) 

I.... THE CUCKOO-CLOCK HAS A CHAINI 

ITHf ABOVE SENTENCE IS AMBIGUOUS •• PLEASE RE-PHRASE IT) 

c. STREAMUNING UNKAGES 

,.... JOHN IS A PERSON I 

II UNDERSTAND) 

,.... .10 ... IS A TEt_ANI 

(I UNOERSJ ANOI 

I.... JOHN IS A BOY) 

II UNDERSTAIID) 

I··.. JOHN I S A STIIOENTI 

II UNDERSTAND) 

JOHN I S A BR I GHT -PERSON I 

II UNDERSTAHO) 

EVERY BOY IS A PERSOII) 

II UNDERSTAND) 

, .... EVERY TECH-MAN IS A PERSON' 

II UNDERSTAND) 

I..... EVERY TEC_AN IS A BRIGHT-PERSON) 

II UNDERSTAND! 

c ..... EVERY TECH-MAN ·IS· A STIIOENTI 

11 UNDERS TAND) 

I.... EVERY IIRIGHT-PERSON IS A PERSON) 

II .UNDERSTAND) 

I.... EVERY STUDENT IS A BRIGHT-PERSQI!! 

II UNDERSTAND) 

( ••• = EYERY STUDENT !S A PERSOM! 

II UNDERSTAND) 

END OF EVALQUOTE. VALUE IS •• 
IND MORE INPUT SENTENCES) 

FUNCflON EVALQUOTE HAS BEEN ENTERED. ARGUMENTS •• 
STREAMLINE 
I JOHN) 

II /-ORGET THE MEMBER-ELEMENTS RELATIONS BETWEEN PERSON AND JOHN! 
II fORGET THE MEMBER-ELEMENTS RELATIONS BETllffN STUOENT AND JOHN) 
II FORGET THE MEMBER-ELEMENTS RELATIONS BETIIEEN BRIGHT-PERSON AND JOHN) 
II FORGET THE SET-INCLUSION RELATION BETIlfEN PERSON ANO TECH-MAN) 
(( fORGET THE SET-'INtLUSION RELATION BETWEEN 8RIGIH-PERSOO -tM!l !!:Cl!-!I£Ml 
II FORGET THE SET-INCI.USION RELATION BETIlfEN PERSON AND STUDE"ITI 

END OF EVALQUOTE, Value .IS •• 
NIL 

Figure 4. Special Features. 
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sidered to apply to particular elements 
only in the absence of more specific in­
formation about those elements. Thus, 
it is not necessarily contradictory to learn 
that "Mammals are land animals"; and, 
yet, "A whale is a mammal which always 
lives in water." In the program, this idea 
is implemented by always referring for 
desired information to the property-list of 
the individual concerned before looking at 
the descriptions of sets to which the in­
dividual belongs. 
True "understanding" is frequently char­
acterized as an ability to reason appro­
priately with facts which appear contra­
dictory or par ado x i c a I-an ability 
generally considered to be beyond formal 
logical procedures. Here, on the other 
hand, we see that a simple algorithm used 
in conjunction with the SIR model is suf­
ficient to produce reasonable, human-like 
conversational behavior in just such a 
paradoxical situation. 

b) Resolving ambiguities: The criteria used 
by the program to decide whether "has" 
in the format "x has y" should be inter­
preted "has as parts" or "owns" are the 
following: 

Let P be the proposition, "either y is 
known to be part of something, or y is an 
element of some set whose elements are 
known to be parts of something." 
Let N be the proposition, Heither y is 
known to be owned by something, or 11 is 
an element of some set whose elements are 
known to be owned by something." 

1) If P /\ .-.; N, assume "has" means 
Hhas as parts." 

2) If .-.; P /\ N, assume "has" means 
"owns." 

3) If .-.; P /\ .-.; N, give up and ask for 
re-phrasing. 

Let P' be the proposition, 
( u) [[[y is known to be part of u]V[y 
[y is an element of some set whose ele­
ments are known to be parts of the ele­
ments of u]] /\ ( w) [[UewVU cw] /\ 
[XewVXCW]]] . 

Let N' be the proposition, 
( u) [[ [y is known to be owned by u] V 
[y is an element of some set whose ele­
ment are known to be owned by the ele­
ments of u]] /\ ( w) [[UewVUCW] /\ 
[XewVXCW]]] . 

4) If P' /\ .-.; N', assume Hhas" means 
"has as parts." 

5) If.-.; P' /\ .-.; N', assume "has" means 
"owns." 

6) Otherwise, glve up and ask for re-
phrasing. 

These criteria are simple, yet they are 
sufficient to enable the program to make 
quite reasonable decisions about the in­
tended purpose in various sentences of the 
ambiguous word "has". Of course, the 
program can be fooled into making mis­
takes; e.g., in case the sentence, "Dick ha~ 
a chain", had been presented before the 
sentence " John owns a chain", in the 
above dialogue. However, a human being 
exposed to a new word in a similar situa­
tion would make a similar error. The 
point here is that it is feasible to auto­
matically resolved ambiguities in sentence 
meaning by referring to the descriptions 
of the words in the sentence--descrip­
tions which can automatically be created 
through proper prior exposure to unam­
biguous sentences. 

c) Streamlining linkages: All question­
answering (model-searching) functions 
which involve references to set-inclusion 
or set-membership relations must "know" 
about the basic properties of those rela­
tions; i.e., those functions must have built 
into them the ability to apply theorems 
like 

xCy /\ ycz = xcz 
aeX /\ xCy = aey; 

and 

otherwise, the functions would not be able 
to make full use of the usually limited in­
formation available in the form of ex­
plicit links. On the other hand, since the 
functions involved will be "aware" of 
these theorems, then the set of questions 
which can be answered is independent of 
the presence or absence of explicit links 
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which provide the information to the 
right of the "=", provided the informa­
tion to the left of the H =" is available. 
The "STREAMLINE" operation starts 
with the object x which is its argument, 
and considers all objects linked to x, di­
rectly or indirectly, through set-inclusion 
or set-membership. All explicit links 
among these objects which can also be de­
duced by use of the above-known theor­
ems are deleted. A response of the form 
"(I FORGET THE SET-INCLUSION 
RELATION BETWEEN y and z)" in­
dicates that whatever links were created 
by some sentence of a form similar to 
"(EVERY z IS A y)" are being deleted, 
and the space they occupied is being made 
available for other use. 

VI. EXTENSIONS OF SIR 

Four major obstacles prevent the immediate 
expansion of a SIR-like system into a large, 
practical question-answering system: input 
language, memory size, search time, and sub­
program interaction. 

SIR's· input language consists of sentences 
which match a number of simple formats. For 
convenient use, a more general system should 
accept a larger subset of natural English. Vari­
ous research groups are studying this difficult 
problem of translating from English into a 
formal language.5 ,17,18 The research effort de­
scribed here concentrates, instead, on the repre­
sentation and retrieval problems which will re­
main after the input language has been for­
malized. 

The immediate reason for terminating the 
current project was the lack of computer 
. memory for additional programs and data. 
However, at that point problems involving 
search time and subprogram interaction had 
also become significant. Progress in sol ving 
these latter problems is necessary so that we 
may be ready to use profitably the larger, bet­
ter organized memories which will undoubtedly 
become available before long. 

In SIR, the time required to search for t.he 
~istence of particular relational links in the 
model increases rapidly with both the number 
of individual elements which can be linked and 

the number of different relations which can do 
the linking. Of course, this exponential growth 
of tree structured search space is a familiar 
phenomenon in theorem proving, game playing, 
and other problem solving areas. General tree 
searching heuristics such as partitioning a tree 
into non-intersecting branches, searching for a 
path simultaneously from two endpoints toward 
an unknown common point, and generating in­
termediate "stepping stones" to use in a long 
search, must be further developed for applica­
tion to the SIR model. 

The most basic obstacle to enlarging SIR is 
the problem of subprogram interaction. The 
present system contains a separate subprogram 
for performing each different information re­
trieval task. This diffuse program structure 
was convenient during the early development 
of the system because it facilitated modifying 
component programs to experiment with dif­
ferent model structures and different search 
and deduction schemes. However, each new re­
lation added to such a system may affect the 
question answering procedures associated with 
those relations already included. Since these 
procedures are buried in various subprograms, 
the addition of the subprograms associated 
with the new relation frequently necessitates 
program changes throughout the system. Be­
cause of these "interactions," the resulting pro­
gram becomes more awkward and more difficult 
to generalize as its size increases. Future 
versions of semantic question answering sys­
tems must avoid this increasingly complex pro­
gram organization. One solution might be based 
on a proposed "formalized" question answerer, 
outlined below and described in more detail in 
reference 14, which increases the question an­
swering power as well as simplifies the pro­
gram structure of the system. 

A FORMALIZED QUESTION ANSWERER 

The formalized question answerer consists 
of the following components: 

1. a formal system whose sentences corre­
spond in a well defined way to "yes or no" 
questions; and a theorem-proving pro­
gram which can determine whether well­
formed sentences are "true," i.e., whether 
the corresponding questions should be 
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answered "yes," on the basis of informa­
tion in the model. 

2. a model similar to the SIR model but con­
taining, in addition to links relating ob­
jects, axioms and deduction rules of the 
formal system for the use of the theorem 
proving program. 

3. a programming language for specifying 
question-answering procedures which are 
more complex than truth-testing. 

The formal system has the same structure as 
the first order predicate calculus except that 
the domain of all quantifiers is the set of objects 
described in the model. Since this set is finite, 
the system is logically equivalent to the propo­
sitional calculus. The basic predicates of the 
formal system can be initially just those which 
are needed, along with quantifiers and senten­
tial connectives, to express any question which 
the SIR system is capable of answering. It 
can be shown 14 that only a few basic predicates 
are needed to enable the formal system to ex­
press a great many questions. Also many inter­
actions between predicates, which created pro­
gramming difficulties in SIR, are automatically 
represented by the structure of the sentences in 
the formal system. 

The formal system is decideable;· therefore 
a program could be written which would an­
swer any well-defined question on the basis of 
axioms and facts in the model. However, since 
the model might be large, such a program 
might be quite slow. On the other hand, a 
heuristic program could be written which would 
attempt to answer questions only on the basis 
of the most relevant data, where "most rele­
vant" is defined in terms of the structure of the 
model. Such a program could conceivably be as 
efficient as the special purpose question an­
swering subprograms of SIR. 

The model in the formalized question an­
swerer is the same as the SIR model except for­
containing an additional class of data. The de­
scribed objects in this model can be names of 
real objects or classes of objects, or names of 
basic predicates in the formal system. The 
property list of a predicate contains all axioms 
or special deductive procedures associated with 
that predicate. The theorem proving program 
would have to perform in accordance with this 

data in the model. Thus lhe user could "tell" 
the system how to change its question answer­
ing procedures, whenever such changes were 
desired, simply by changing the content of the 
model. 

A theorem proving program can only an­
swer "yes or no" questions. However, some of 
the questions which SIR can answer require the 
system to perform more elaborate information 
retrieval tasks. The power of a general purpose 
symbol manipulation computer language such 
as LISP 15 must be available for specifying 
these computational procedures since new ques­
tion types may require, in the answering pro­
cess, unanticipated kinds of data manipulation. 
However, these procedures should be made as 
easy to write and to understand as possible. In 
particular, the full power of the theorem prov­
ing program should be available within the pro­
cedure specification language. 

For example, suppose the theorem prover is 
represented by the LISP function "theorem 
[x] ," whose value is TRUE if x is a sentence 
in the formal system corresponding to a ques­
tion whose answer is "yes," and FALSE other­
wise. Then suppose that in the course of the 
procedure for answering the question, "what is 
the relative position of x?" it is determined 
that y is to the right of x and also that a z is to 
the right of x. The procedure could then con-
tain the statement, if 
theorem [( a) [aeZ !\right[a ;x] !\right[y ;a]]] 
then go[A] else go[B] where 
A and B are appropriate further instructions 
in the procedure. The procedure writer need 
not consider how to answer the question, "is a 
z between x and y?" for the theorem function, 
i.e., the theorem proving program, will do that 
for him. 

Space does not permit a more detailed de­
scription of the proposed formalized question 
answerer. However, it should now be clear that 
such a system has all the question answering 
ability of SIR and accepts a much larger class 
of questions. More important, new relations 
can be added to the formalized system and the 
axioms of its proof procedure can be modified 
without any significant reprogramming, thus 
overcoming the "subprogram interaction" ob­
stacle to the expansion of SIR. 
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VII. CONCLUSIONS 

THE MODEL 

The power of SIR's question answering sub­
programs is due primarily to the flexible prop­
erty-list structure of the model. 

SIR is not unique in permitting facts to be 
automatically added to or excised from the 
system. Several existing computer systems, 
e.g., airline reservation systems, permit dy­
namic fact storage and retrieval. However, the 
existing systems generally depend upon the use 
of a fixed, unique representation for the infor­
mation involved. A response generally is de­
termined by the explicit presence of absence 
of a particular item of data. 

In SIR, on the other hand, although the 
model is general enough to contain a wide class 
of data, it is organized so that subprograms 
may search it for any facts from which an ap­
propriate answer may be deduced. Because of 
the way the deduction subprograms use the 
model, a fact may be represented in many dif­
ferent equally effective ways. E.g., the system 
"knows" that the statement, "a finger is part of 
John" is true if (a) there is an explicit part­
whole link from FINGER to JOHN; or if (b) 
there are links by means of which the retrieval 
programs can deduce that a finger is part of a 
person, and John is a person; or if (c) there are 
links by means of which the retrieval programs 
can deduce that a finger is part of a hand, and 
a hand is part of John; etc. Thus the use of 
this model facilitates question answering even 
in the absence of complete, explicit data. In 
addition, the system can automatically trans­
late from one representation to another having 
some advantages. E.g., the "streamline" opera­
tion described in Section V reduces storage 
space requirements by removing redundancy in 
the representation, without necessitating any 
changes in the operation of the system. 

VALUE OF PROGRAM MING 

Many of the results and conclusions written 
after the development of a large computer pro­
gram such as SIR frequently appear as if they 
could have been established without the tedious 
effort of programming. This is rarely true, and 
in fact, new systems which are described as 
complete "except for the programming" usually 

require fundamental modifications if and when 
they are translated into operating programs. 
The reasons for the importance of actually 
writing the program include the following: 

(a) Without a program it is difficult to tell 
whether the specifications for a system 
are really complete and consistent. The 
process of building an operating system 
makes one aware of major problems 
which might otherwise remain un­
noticed. 

(b) Programming not only turns up fallacies 
in the specifications for a system, but 
also usually suggests ways for avoiding 
them and improving the system. A com­
pleted "debugged" programmed system 
usually turns out to be a compromise 
between the system as it was originally 
specified, a simpler system which was 
more feasible to actually construct, and 
a more elaborate system whose new fea­
tures were thought of during program­
ming. This resulting system is fre­
quently as useful as and certainly more 
reliable than the originally specified sys­
tem, and in addition it may suggest the 
design of even more advanced systems. 
\Vith SIR, for example, methods for im­
plementing the "exception principle" 
and the resolution of ambiguities arose 
from the design of the basic question 
answerer, and the specifications for the 
formalized system of Section VI were 
based largely on properties of the final, 
working SIR system. 

( c) The programming process frequently 
turns up insights which might not other­
wise be discovered. 

(d) Finally, the resulting program provides 
at the same time a demonstration of the 
feasibility of the ideas upon which it is 
based, a measure of the practicality of 
the system in terms of time and space 
requirements, and an experimental de­
vice for testing variations in the original 
specifications. 

NEXT STEPS 

The present SIR system, and its formalized 
version discussed in Section VI, are proposed 
as first steps toward a true "understanding" 
machine. Further steps will involve developing 
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better means by which a computer system can 
add to its store of "knowledge" and can "in_ 
telligently" select relevant data from that store 
to use in particular problem solving tasks. 
These goals are embodied in the "advice taker" 
problem/9 which is that of designing a machine 
whose operation is controlled by "advising" it, 
in a suitable English-like language, of desired 
procedures or results. 

One type of "advice taker" is a program 
which can do any of a particular class of prob­
lems, such as writing other computer programs, 
in accordance with simple instructions. Simon 20 

is working on such a program-writing program 
which accepts a broad range of descriptive 
English sentences as its input. 

SIR represents a different approach. Instead 
of developing various special purpose advice 
takers, we attempt to build a single, general 
program which can do any task provided that 
program is properly controlled by information 
in its model. "Giving advice" then requires only 
the process of inserting control information 
into the model. In a sense, this program is 
simply an interpreter of information provided 
in the easily changeable model. 

The SIR model provides its programs with 
information about the truth of particular rela­
tions between specific objects. The model in the 
formalized system of Section VI also provides 
the "theorem proving program" with axioms 
which describe properties of relations and in­
teractions between relations. A next generaliza­
tion would involve adding to the model infor­
mation which specifies and controls theorem 
proving and model searching procedures for 
the program. 

Ultimately the "intelligent" machine will 
have to be able to abstract from the informa­
tion in its model, "realize" the necessity for 
additional action, and create the necessary in­
structions for itself. The design of such an 
"artificial intelligence" awaits the development 
of automatic concept formation and inductive 
inference systems as well as the generaliza­
tions of SIR described above. 
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A QUESTION -ANSWERING SYSTEM FOR HIGH 

SCHOOL ALGEBRA WORD PROBLEMS* 
Daniel G. Bobrow 

Massachusetts Institute of Technology, Cambridge, Massachusetts 

I. INTRODUCTION 

The aim of the research reported here was 
to discover methods for building computer pro­
grams which can understand and communicate 
with people in a non-trivial subset of English. 
A computer program understands a subset of 
English if it accepts input sentences which are 
members of this subset, and answers questions 
based on information contained in the input. 
We describe in this paper a semantic theory of 
discourse, and utiiize a first approximation to 
the analytical portion of this theory in the 
STUDENT question-answering system, a pro­
gram which understands a subset of English in 
the sense defined above. 

The STUDENT system, programmed in 
METEOR 1 and LISP 2, accepts as input high 
school algebra word problems expressed within 
a restricted but comfortable subset of English. 
For example, STUDENT will accept the follow­
ing problem statement: 

"The price of a radio is $69.70. If this price 
is 15 percent less than the marked price, find 
the marked price. : 

After some computation STUDENT will re­
spond: 

"The marked price is 82 dollars." 

If needed, STUDENT has access to a store of 
"global" information not specific to anyone 
problem, and can retrieve relevant facts and 
equations from this store of information. For 
example, when solving the problem: 

"If 1 span equals 9 inches, and 1 fathom 
equals 6 feet, how many spans equals 1 
fathom ?" 

STUDENT retrieves and uses the fact that 1 
foot equals 12 inches, and prints the answer: 

"1 fathom is 8 spans." 

STUDENT is embedded in the M.LT. Project 
MAC time-sharing system·3

• Therefore, as a 
last resort, when it can not solve a problem, 
STUDENT requests and can obtain immediate 
help from the questioner. 

A number of other English language ques­
tion-answering systems have been constructed; 
the most closely related work was that of 
Green 4, Lindsay 5, and Raphael 6. A critical 
analysis of this related work and criteria fQr 
evaluating a question-answering system may be 
found in the author's thesis *. Simmons 7 gives 
a descriptive survey of systems which answer 
English questions. 

* The work reported here was supported in part by the M.LT. Computation Center, in part by the M.LT. 
Research Laboratory of Electronics, and in part by Project MAC, an M.LT. research program sponsored by 
the Advanced Research Projects Agency, Department of Defense, under ONR Contract Number Nonr-

* We shall not mention it again, but the reader who wants more extensive background material or a more detailed 
exposition of ideas given throughout this paper should refer to the thesis. 
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There are a number of reasons why I chose 
the context of algebra story problems in which 
to embed an English language question-answer­
ing system. First, we know a good type of data 
structure in which to store information needed 
to answer questions in this context, namely, 
algebraic equations. There exist well known 
algorithms for deducing information implicit in 
the equations, that is, values for particular 
variables which satisfy the set of equations. 

In addition, I felt that there was a manage­
able subset of English in which many types of 
algebra story problems were expressible. A 
large number of these story problems are avail­
able in first year high school text books, and I 
have transcribed some of them into STU­
DENT's input English. Since this question­
answering task is one performed by humans, 
and since the entire process from input to solu­
tion of the equations was programmed, we can 
obtain a measure of comparison between the 
performance of STUDENT and of a human on 
the same problems. In fact, this program on an 
IBM 7094, answers most questions that it can 
handle as fast as or faster than humans trying 
the same problem. In judging this comparison, 
one should remember the base speed of the 
IBM 7094, which can perform over one hun­
dred thousand additions per second. 

II. SEMANTIC GENERATION AND ANAL­
YSIS OF DISCOURSE 

The purpose of this section is to put the tech­
niques of analysis embedded in the STUDENT 
program into a wider context, and indicate how 
they would fit into a more general language 
processing system. . We will describe a theory 
of semantic generation and analysis of dis­
course. STUDENT can then be considered a 
first approximation to a computer implementa­
tion of the analytic portion of the theory, with 
certain restrictions on the interpretation of a 
discourse to be analyzed. It will be evident f:rom 
the theory why analysis is so greatly simplified 
by the imposed restrictions. 

A. Language as Communication 

Language is an encoding used for communi­
cation between a speaker and a listener ( or 
writer and reader). To transmit an "idea", the 

speaker must first encode it in a message, as a 
string in the transmission language. In order 
to understand this message, a listener must de­
code it and extract its meaning. The coding of 
a particular message, M, is a function of both 
its global context and local context. The global 
context of a message is the background knowl­
edge of the speaker and the listener, including 
some knowledge of possible universes of dis­
course, and codings for some simple ideas. 

The local context of a message, M, is the set 
of messages temporally adjacent to M. M may 
refer back to earlier messages. M may even be 
just a modification of a previous message, and 
only understandable in this context. For ex­
ample, consider the second sentence of the fol­
lowing discourse: "How many chaplains are in 
the U.S. Army? How many are in the Navy?" 

In order for communication to take place, the 
information map of both the listener and the 
speaker must be approximately the same, at 
least for the universe of discourse; also the de­
coding process of the listener must be an ap­
proximate inverse of the encoding process of 
the speaker. Education in language is, in large 
part, an attempt to force the language proces­
sors .of different people into a uniform mold to 
facilitate successful communication. Weare not 
proposing that identity in detail is achieved, 
but as Quine 9 put it : 

"Different persons growing up in the same 
language are like different bushes trimmed 
and trained to take the shape of identical ele­
phants. The anatomical details of twigs and 
branches will fulfill the elephantine form 
differently from bush to bush, but the over­
all outward results are alike." 

As a speaker transmits successive messages 
concerning some portion of his information 
map, the listener who understands the messages 
constructs a model of a "situation". The rela­
tion between the listener's model and the speak­
er's information map is that from each can be 
extracted the transmitted information relevant 
to the universe of discourse, ~ncluding informa­
tion deducible from the entire set of messages. 
The internal structure of the listener's model 
need bear no resemblance to that of the speaker, 
and may in· general contain far less detail. 



B. Definition of Coherent Discourse 

The theory of language generation and anal­
ysis which we shall describe below is designed 
to handle what we call coherent discourse. A 
discourse is a sequence of sentences, and the 
meaning of a discourse for a listener is the 
model of a situation he derives from this dis­
course. Determination of the meaning of each 
sentence of the discourse may sometimes in­
volve knowledge of the meanings of other sen­
tences of the discourse. A discourse is co­
herent if it has a complete and consistent in­
terpretation within the model of the situation 
being built by the listener. A listener under­
stands the discourse if his model of the situa­
tion is isomorphic to the speaker's model. 

A listener's ability to build a model of a situ­
ation from a discourse is dependent on infor­
mation available to him from his general store 
of knowledge. Therefore it is quite possible 
for a discourse to seem coherent to one listener 
and not another. A writer, reading his own 
writing, may feel that he has generated a co­
herent sequence of sentences, which, in fact, 
is incoherent to all other readers. This is, un­
fortunately, not a rare occurrence in the scien­
tific literature. Conversely, a listener who is a 
psychiatrist, for example, may find coherence 
in a sequence of remarks which a patient thinks 
are entirely unrelated. 

The STUDENT system utilizes an expanda­
ble store of general knowledge to build a model 
of a situation described in a member of a lim­
ited class of discourses. The form of the model 
of a situation built by STUDENT will be dis­
cussed in detail below. 

C. The Use of Kernel Sentences in Our Theory 

A basic postulate of our theory of language 
analysis is that a listener understands a dis­
course by transforming it into an equivalent (in 
meaning) sequence of simpler kernel sentences. 
A kernel sentence is one which the listener can 
understand directly; that is, one for which he 
knows a transformation into his information 
store. Conversely, a speaker generates a set of 
kernel sentences from his information map, and 
utilizes a sequence of transformations on this 
set to yield his spoken discourse. This set of 
kernel sentences is not invari~nt from person 
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to person, and even varies for a single indi­
vidual as he learns. 

Although we are not proposing our theory as 
a basis for a psychological model, it has been 
useful, to avoid circumlocutions, to describe the 
theory in terms of the properties and actions of 
a hypothetical speaker and listener. All state­
ments about speakers and listeners should be 
interpreted as referring to computer programs 
which respectively, generate and analyze co­
herent discourse. 

D. Generation of Coherent Discourse 

1) The Speaker's Model of the World. We 
assume that a speaker has some model of the 
world in his information store. We shall not be 
concerned here with how this model was built, 
or its exact form. Different forms for the 
model will be useful for different language 
tasks, but they must all have the properties de­
scribed below. 

The basic components of the model are a set 
of objects, rOd, a set of functions {Fin}, a set 
of relations {Rin}, a set of propositions {Pd, 
and a set of semantic deductive rules. A func­
tion Fin is a mapping from ordered sets of n 
objects, called the arguments of Fin, into the 
{Ode The mapping may be multivalued and 
is defined only if the arguments satisfy a set of 
conditions associated with Fin. A condition is 
essentially membership in a class of objects, 
but is defined more precisely below. A relation 
Rin is a special type of object in the model, and 
consists of a label (a unique identifier), and an 
ordered set of n conditions, called the argument 
conditions for the relation. Functions of rela­
tions are again relations. 

An elementary proposition Pi consists of a 
label associated with some relation, Rin, and an 
ordered set of n objects satisfying the argu­
ment conditions for this relation. One may 
think of these propositions as the beliefs of a 
speaker about what relationships between ob­
jects he has noticed are true in the world. 
Complex propositions are logical combinations 
(in the usual sense) of elementary proposi­
tions. 

The semantic deductive rules give procedures 
for adding new propositions to the model based 
on the propositions now in the model. In addi-
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tion to the ordinary rules of logic, these rules 
include axioms about the relationships of the 
relations in the model. The semantic deductive 
rules also include links to the senses of the 
speaker. For example, one such deductive rule 
for adding a proposition to the model might be 
(loosely speaking) "Look in the real world and 
see if it is true." These rules essentially deter­
mine how the model is to be expanded, and are 
the most complex part of a complete system. 
However, from our present point of view, we 
need only consider these rules as a black box 
which can extend the set of propositions in the 
model. 

A closed question is a relational lable for 
some Rill and an ordered set of n objects. The 
answer to this question is affirmative if the 
proposition, consisting of this label and the n 
objects, is in the model (or can be added to it 
according to the semantic deductive rules). If 
the negation of this proposition is in the model 
(or can be added), the answer is negative. 
Otherwise the answer is undefined. 

An open question consists of a relational label 
for an n-argument relation, Ri ll, and a set of 
objects ~orresponding to n-k of these argu­
ments, where n~k~1. An answer to an open 
question is an ordered set of k objects, such 
that if these objects are associated with the k 
unspecified arguments of Rill, the resulting 
proposition is in the model, or can be added to 
it. An open question may have no answers, or 
may have one or more answers. A condition is 
an open question with k=l, and an object 
satisfies a condition if it is an answer to the 
question. 

2) Generation of Kernel Sentences. We have 
described the logical properties of the speaker's 
model of the world. We shall now consider how 
strings in a language, words, phrases, and sen­
tences, are associated with the model. Corre­
sponding to the set of objects {Od there is a 
set {Nij } of strings (in English in our case), 
called the names of the objects. There is a 
many-one mapping from {Nid onto {Od. It 
is many-one because one object may have more 
than one name, e.g. frankfurter and hot dog 
both map back into the same object in the 
model. 

Recall that functions map n-tuples of objects 
into objects. Thus a function name and an n-

tuple can specify an object. We can derive a 
name for this object from the function name 
and the names of its n arguments. Associated 
with each function is at least one linguistic 
form, a string of words with blanks in which 
names of arguments of the function must be 
inserted. Examples of linguistic forms associ­
ated with a model are "number of ", 
"father of ", and "the child of __ _ 
and ". There is a many-one mapping 
from the set of linguistic forms {Lijll} cnto the 
set or runctions. Two examples oi multiple 
linguistic forms for the same function are: 
"father of " and " 's father"; 
and" plus " and "the sum of 
___ and ". Thus, if objects x and y 
ha ve names "the first number" and "the second 
number" and associated with the function "*,, 
is the linguistic form "the product of __ _ 
and ", then the name of the object pro­
duced by applying the function "*,, to x and y is 
"the product of the first number and the second 
number". A parsing of a name must decom­
pose it into the part which is the linguistic 
form, and the parts which are names of argu­
ments of the corresponding function. We shall 
call objects defined in terms of a function and 
an n-tuple of objects a functionally defined 
object, and those which are not functionally 
defined we shall call simple objects. Simple ob­
j ects have simple names and functionally de­
fined objects have composite names. 

In addition to linguistic forms associated 
with functions, there are linguistic forms as­
sociated with relations. For an n argument re­
lation there are n blanks in the linguistic form. 
Examples of relational linguistic forms are: 
" equals ", " gave ---
to " and " speaks". These lin-
guistic forms, corresponding to the relations 
in the model, serve as frames for the kernel 
sentences. 

In a manner similar to the way composite 
names are built, a kernel sentence correspond­
ing to an elementary proposition is constructed 
by inserting names corresponding to each argu­
ment in the appropriate blank. Names may be 
simple or composite. An example of a kernel 
sentence for a proposition built from such a re­
lational linguistic form is "John's father gave 
.3 times the salary of Bill to Jack." which con-



tains the simple names "John", ".3", "bill", 
and "Jack". It contains the functional linguis­
tic forms " 's father", " times 
___ " and "salary of " and the rela-
tional linguistic form " gave to " 

A kernel sentence corresponding to a com­
plex proposition is constructed recursively 
from the kernel sentences corresponding to its 
elementary propositional constituents by plac­
ing them in the corresponding places in the 
linguistic forms " and ", " __ _ 
or ___ ", "not ___ " etc. 

The kernel sentence corresponding to a closed 
question is constructed from the kernel of the 
corresponding proposition by placing it in the 
linguistic form "It is true that ?" For 
an open question, dummy objects are placed in 
the open argument positions to complete a prop­
ositional form. These dummy arguments have 
names "who", "what", "where", etc., and which 
dummy objects are used depends on the condi­
tion on that argument position. A question 
mark is placed at the end of the kernel sentence 
constructed in the usual way from the relational 
linguistic form and the names of the argu­
ments. 

In generating a coherent discourse, a speaker 
chooses a number of propositions in his model 
and/ or some open or closed questions. He then 
uses linguistic information associated with the 
model to construct the set of kernel sentences 
corresponding to this set of chosen proposi­
tions. In the next section we will discuss how 
he generates his discourse from this set of 
kernels. 

3) Transfor1r~tions on Kernel Sentences. 
The set of kernel sentences is the base of the 
coherent discourse. The meaning of a kernel 
sentence is the proposition into which it maps, 
and similarly, the meaning of any name is the 
object which is its image under the mapping. 
To this set of kernels we apply a sequence of 
meaning preserving transformations to get tlie 
final discourse. We use the word "transforma­
tion" in its broad general sense, not in the nar­
row technical sense defined by Chomsky.lO 

There two distinct types of transformations, 
structural and definitional. A structural or syn­
tactic transformation is only dependent on the 
structure of the kernel string(s) on which it 
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operates. For example, one syntactic transfor­
mation takes a kernel in the active voice to one 
in the passive voice. Another combines two 
sentences into a single complex coordinate sen­
tence. 

One large class of syntactic transformations 
is used to substitue pronominal phrases for 
names. Pronominal phrases may be ordinary 
pronouns such as "he", "she", or "it". They 
may be referential phrases such as "the latter", 
"the former" or "this quantity". They may also 
be truncations of a full name such as "the dis­
tance" for "the distance between New York 
and Los Angeles". In cases where such pro­
nominal reference is made, the coherence of the 
final discourse is dependent on the order in 
which the resultant strings appear. 

The second type of transformation is defini­
tional. It involves substitutions of linguistic 
strings and forms for ones appearing in the 
kernel sentences. For example, for any appear­
ance of "2 times" we may substitute "twice", 
and for ".5 times" substitute "one half of". In 
addition to this string substitution, some trans­
formations perform form substitution and re­
arrangement. For example, for a kernel sen­
tence of the form "x is y more than z", where 
x, y, and z are any names, one definitional 
transformation can substitute "x exceeds z by 
y". 

Some transformations are optional, and some 
may be mandatory if certain forms are present 
in the kernel set. Certain transformations are 
used by a speaker for stylistic purposes, for ex­
ample, to emphasize certain objects; other syn­
tactic transformations, such as those vvhich per­
form pronominal substitutions, are used be­
cause they decrease the depth of a construction, 
in the sense defined by Y ngve.ll 

Let us review the steps in the generation of 
a coherent discourse. The speaker chooses a 
set of propositions, the "ideas" he wishes to 
transmit. He then encodes them as language 
strings called kernel sentences in the manner 
described above. He then chooses a sequence of 
structural and definitional transformations 
which are defined on this set of kernels or on 
the ordered set of sentences which result from 
applications of the first transformations. The 
resulting sequence of sentences will be a co-
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herent discourse to a listener if he knows all 
the definitional transformations applied. In 
addition, every pair of distinct names which 
the speaker maps back into the same object, 
the listener must also map into a single object. 

E., Analysis of Coherent Discourse 

Generation of coherent discourse consists of 
two distinguishable steps. From propositions 
in the speaker's model of the world, he gen­
erates an ordered set of kernel sentences. He 
.... krt.'I"\ n'V'\"I"\.l~An n C"fAr"I'1I'A"I""IInn. A.~ +".n'l"\n~.n.".,....,.."n+': __ ~ +_ 
lI.l.lVu. app.l.lV';:) a ,;:)v\::\.uvu.\..-v V~ lI~au.';:)~Vl.l.u.alll.Vu.i::I lIV 

this kernel set. The resulting discourse is a 
coded message which is to be analyzed and de­
coded by a listener. The listener's problem can 
be loosely characterized as an attempt to an­
swer the question, "What would I have meant 
if I said that?" 

To analyze a discourse the listener must find 
the set of kernel sentences from which it was 
generated; one way to do this is to find a set 
of inverse transformations which when applied 
to the input discourse yield a sequence of kernel 
sentences. The listener must then transform 
these kernel sentences to an appropriate repre­
sentation in his information store. The appro­
priateness of a representation is a function of 
what later use the listener expects to make of 
the information contained in the discourse. The 
listener may simultaneously transform a given 
kernel sentence into a number of different rep­
resentations in his information store. On a level 
of pragmatic analysis, statements require only 
storage of information. Questions and impera­
tives require appropriate responses from the 
listener. The difficulties in analysis dichoto­
mize into those associated with finding the 
kernel sentences which are the base of the dis­
course, and those associated with transforming 
the kernel sentences into representations in the 
information store. 

STUDENT'S analytical program utilizes a 
set of inverse analytic transformations. If T i 
is a transformation that may be used in gen­
erating a discourse, and Ti (S) == S, where S 
and S are sets of sentences, then the analytic 
transformation T i -1 is the inverse of T i if and 
only if T i -1 (S) == S. The choice of which in­
verse transformations to apply and the order 
of their application may be restricted by utiliz-

ing heuristics concerned with features of the 
input. 

Once the base set of kernel sentences for a 
given discourse is determined, there remains 
the problem of entering representations of 
these sentences in the listener's information 
store. The major problem in accomplishing this 
step involves the separation of those words 
which are part of linguistic forms for relations, 
and those which are part of a name. This is 
difficult because the same word (lexicographic 
symbol) may have multiple uses in a language. 
Having separated the relational form from the 
names which represent the arguments of this 
relation, one can then analyze the name in 
terms of components which are functional lin­
guistic forms and others which are simple 
names. From this parsing in terms of rela­
tional linguistic forms, functional linguistic 
forms and simple names, the discourse can be 
transformed into a canonical representation in 
the information store of the listener. 

F. Limited Deductive Models 
A complete understanding of a discourse by 

a listener would imply that the representation 
of the discourse in his information store is es­
sentially isomorphic to the speaker's model of 
the world, at least for the universe of discourse. 
The listener's representation must preserve all 
information implicit in the discourse. 

If the listener is only interested in certain 
aspects of the discourse, he need only preserve 
information relevant to his interest, and dis­
card the rest. Within his area of interest the 
listener's model is isomorphic to the speaker's 
model in the sense that all relevant deductions 
which can be made by the speaker on the basis 
of the discourse can also be made by the lis­
tener. Outside this area of interest, the listener 
will be unable to answer any questions. We 
call such restricted information stores limited 
deductive models. 

The question-answering programs of Lindsay 
and Raphael, and the STUDENT system, all 
utilize limited deductive models. For the area 
of interest in each of these programs there is 
a "natural" representation for the information 
in the allowable input. These representations 
are natural in that they facilitate the deduction 
of implicit information. For example, Lindsay's 



family tree representation makes it easy to 
compute the relationship of any two individuals 
in the tree, independent of the number of sen­
tences necessary to build the tree. 

Because the number of relations and func­
tions expressible in the models in all three sys­
tems is very limited, there is a corresponding 
limitation on the number of linguistic forms 
that may appear in the input. This greatly 
simplifies the parsing problem by restricting 
alternatives for forms in the input text. 

G. The STUDENT Deductive Model 
The STUDENT system is an implementation 

of the analytic portion of our theory. STU­
DENT performs certain inverse transforma­
tions to obtain a set of kernel sentences and 
then transforms these kernel sentences to ex­
pressions in a limited deductive model. Utiliz­
ing the power of this deductive model, within 
its limited domain of understanding, it is able 
to answer questions based on information im­
plicit in the input information. 

The analytic and transformational techniques 
utilized in STUDENT are described in detail 
in the next section. We shall describe here the 
canonical representation of objects, relations, 
and functions within the model. STUDENT is 
restricted to answering questions framed in the 
context of algebra story problems. Algebraic 
equations are a natural representation for in­
formation in the input. 

The objects in the model are numbers, or 
numbers with an associated dimension. The 
only relation in the model is equality, and the 
only functions represented directly in the model 
are the arithmetic operations of addition, nega­
tion, multiplication, division and exponentia­
tion. Other functions are defined in terms of 
these basic functions, by composition, and/or 
substitution of constants for arguments of these 
functions. For example, the operation of squar­
ing is defined as exponentiation with "2" as 
the second argument of the exponential func­
tion; subtraction is a composition of addition 
and negation. 

Within the computer, a parenthesized prefix 
notation is used for a standard representation 
of the equations implicit in the English input. 
The arithmetic operation to .be expressed is 
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made the first element of a list, and the argu­
ments of the function are succeeding list ele­
ments. The exact notation is given in Figure 1. 
In the figure, A, B, and C are any representa­
tions of objects in the model, either composite 
or simple names. The usual infix notation for 
these functional expressions is given for com­
parison. Because this is a fully parenthesized 
notation, no ambiguity of operational order 
arises, as it does, for example, for the un par­
enthesized infix notation expression A *B+C, or 
its corresponding natural language expression 
"A times B plus C". Note also that in this 
prefix notation plus and times are not strictly 
binary operators. Indeed, in the model they 
may have any finite number of arguments, e.g. 
(TIMES ABC D) is a legitimate expression 
in the STUDENT model. 

Representations of objects in the STUDENT 
deductive model are taken from the input. Any 
strings of words not containing a linguistic 
form associated with an arithmetic function 
expressible in the model are considered simple 
names for objects. Thus, "the age of the child 
of John and Jane" is considered a simple name 
because it contains no functional linguistic 
forms associated with functions represented in 
ClmTTT'l.T.'111.Tm,_ l! __ !L_..l ..l_..l ___ L! _____ ..l_1 T__ 
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more general model it would be considered a 
composite name, and the functional forms "age 
of " and "child of and " 
would be mapped into their corresponding 
functions in the model. 

Figure 1: Notation Within the STUDENT 
Deductive Model 

Infix 
Operation Notation Prefix Notation 

Equality A=B (EQUALAB) 

Addition A+B (PLUS A B) 
A+B+C (PLUS AB C) 

Negation -A (MINUS A) 

Subtraction A-B (PLUS A 
(MINUS B» 

Multiplication A*B (TIMES A B) 
A*B*C (TIMESAB C) 

Division A/B (QUOTIENT A B) 

Exponentiation A B (EXPT AB) 

Figure 1. Flow Chart of the Student Program 
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Because such complex strings are considered 
simple names in the model, and objects are dis­
tinguished only by their names, it is important 
to determine when two distinct names actually 
refer to the same object. In fact, answers to 
questions in the STUDENT system are state­
ments of the identity of the object referenced 
by two names. However, one of the names (the 
desired one) must satisfy a certain lexical con­
dition. Most often this condition is just that 
the name be a numeral. For a more general 
model this restriction could be stated as re~ 
quiring a simple name corresponding to some 
functionally defined name-because, for ex­
ample, "number of " would be a func­
tional linguistic form in the general model, and 
the only simple name for such an object would 
be the numeral corresponding to this number. 
An answer consists of a statement of identity 
e.g. "The number of customers Tom gets is 
162." 

The other lexical restriction on answers 
sometimes used in the STUDENT system is in­
sistence that a certain unit (corresponding to 
a dimension associated with a number) appear 
in the desired answer. For example, spans is 
the unit specified by the question "How many 
spans equals 1 fathom ?", and the answer given 
by STUDENT is "1 fathom is 8 spans." 

The deductive model described here is useful 
for answering questions because we know how 
to extract implicit information from expres­
sions in this model. More explicity, we know 
how to solve sets of algebraic equations to find 
numerical values which satisfy these equations. 

III. Transformation of English to the 
STUDENT Deductive Model 

Our question-answering system contains two 
main programs which process English input. 
One is a program called STUDENT which ac­
cepts the statement of an algebra story prob­
lem and attempts to find the solution to the 
particular problem. STUDENT does not store 
any information, nor "remember" any thing 
from problem to problem. The information ob­
tained by STUDENT is the local context of the 
question. 

The other program is called REMEMBER 
and it processes and stores facts not specific 
to anyone problem. These facts make up STU-

DENT's store of "global information" as op­
posed to the "local information" contained in 
the statement of anyone problem. This in­
formation is accepted in a subset of English 
which overlaps but is different from the subset 
of English accepted by STUDENT. REMEM­
BER accepts statements in certain fixed for­
mats, and for each format the information is 
stored in a way that makes it convenient for 
retrieval and use within the STUDENT pro­
gram. The following examples indicate some 
"'-/! +"h .... nnn,-,. ...... +n hL" -/!A"II''I'Vl",t-", -fA"II' ",lAh", 1 ;,.,-fA1"1'YI!l_ 
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tion: 

"Distance equals speed times time." 
"Feet is the plural of foot." 
"Bill is a person." 
"Times is an operator of level 1." 
"One half always means .5." 

We will not give any details of the processing 
done by REMEMBER, except to note that some 
of the global information is stored by actually 
adding statements to the STUDENT program, 
and other information is stored on dictionary 
entries for the individual words. 

A. Outline of the Operation of STUDENT 

To provide perspective by which to view the 
detailed heuristic techniques used in the STU­
DENT program, we shall first give an outline 
of the operation of the STUDENT program 
when given a problem to solve. This outline is 
a verbal description of the flow chart of the 
program found in the appendix. 

STUDENT is asked to solve a particular 
problem. We assume that all necessary global 
information has been stored previously. STU­
DENT will now transform the English input 
statement of this problem into expressions in 
its limited deductive model, and through ap­
propriate deductive procedures attempt to find 
a solution. More specifically, STUDENT finds 
the kernel sentences of the input discourse, and 
transforms this sequence of kernels into a set 
of simultaneous equations, keeping a list of the 
answers required, a list of the units involved 
in the problem (e.g. dollars, pounds) and a 
list of all the variables (simple names) in the 
equations. Then STUDENT invokes the 
SOLVE program to solve this set of equations 
for the desired unknowns. If a solution is 
found, STUDENT prints the values of the un-



knowns requested in a fixed format, substitut­
ing in "(variable IS value)" the appropriate 
phrases for variable and value. If a solution 
cannot be found, various heuristics are used to 
identify two variables (i.e. find two slightly 
different phrases that refer to the same object 
in the model). If two two variables, A and B, 
are identified, the equation A == B is added to 
the set of equations. In addition, the store of 
global information is searched to find any equa­
tions that may be useful in finding the solution 
to this problem. STUDENT prints out any as­
sumptions it makes about the identity of two 
variables, and also any equations that it re­
trieves because it thinks they may be relevant. 
If the use of global equations or equations from 
identifications leads to a solution, the answers 
are printed out in the format described above. 

If a solution is not found, and certain idioms 
are present in the problem (a result of a defini­
tional transformation used in the generation of 
the problem), a substitution is made for each 
of these idioms in turn and the transformation 
and solution process is repeated. If the substi­
tutions for these idioms do not enable the prob­
lem to be solved by STUDENT, then STU­
DENT requests additional information from 
the questioner, showing him the variables being 
used in the problem. If any information is 
given, STUDENT tries to solve the problem 
again. If none is given, it reports its inability 
to solve this problem and terminates. If the 
problem is ever solved, the solution is printed 
and the program terminates. 

B. Categories of Words in a Transformation. 

The words and phrases (strings of words) 
in the English input can be classified into three 
distinct categories on the basis of how they are 
handled in the transformation to the deductive 
model. The first category consists of strings of 
words which name objects in the model; I call 
such strings, variables. Variables are identified 
only by the string of words in them, and if two 
strings differ at all, they define distinct vari­
ables. One important problem considered be­
low is how to determine when two distinct vari­
ables refer to the same object. 

The second category of words and phrases 
are what I call substitutors. Each substitutor 
may be replaced by another string. Some sub­
stitutions are mandatory; others are optional 
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and are only made if the problem cannot be 
solved without such substitutions. An example 
of a mandatory substitutions is "2 times" for 
the word "twice". "Twice" always means "2 
times" in the context of the model, and there­
fore this substitution is mandatory. One op­
tional "idiomatic" substitution is "twice the 
sum of the length and width of the rectangle" 
for "the perimeter of the rectangle". The use of 
these substitutions in the transformation pro­
cess is discussed below. These substitutions are 
inverses of definitional transformations as de­
fined earlier. 

Members of the third category of words in­
dicate the presence of functional linguistic 
forms which represent functions in the deduc­
tive model. I call members of this third class 
operators. Operators may indicate operations 
which are complex combinations of the basic 
functions of the deductive model. One simple 
operator is the word "plus", which indicates 
that the objects named by the two variables 
surrounding it are to be added. An example of 
a more complex operator is the phrase "percent 
less than", as in "10 percent less than the 
marked price", which indicates that the number 
immediately preceding the "percent" is to be 
,.."h4-", .... ,.,4-,.,.;) ~",,.,. ........ 1 f\f\ 4-l-.~,.. ".,.,.",,,14- ;)~TT~;)"";) hTT 1 f\f\ 
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and then this quotient multiplied by the vari­
able following the "than". 

Operators may be classified according to 
where their arguments are found. A prefix 
operator, such as "the square of .... " precedes 
its argument. An operator like " .... percent" 
is a suffix operator, and follows its argument. 
Infix operators such as " ..... plus ..... " or 
" .... less than ...... " appear between their 
two arguments. In a split prefix operator such 
as "difference between ...... and ...... ", 
part of the operator precedes, and part appears 
between the two arguments. "The sum of 
...... and ...... and ...... " is a split prefix 
operator with an indefinite number of argu­
ments. 

Some words may act as operators condi­
tionally, depending on their context. For ex­
ample, "of" is equivalent to "times" if there is 
a fraction immediately preceding it; e.g., ".5 of 
the profit" is equivalent to ".5 times the profit" ; 
however, "Queen of England" does not imply 
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a multiplicative relationship between the Queen 
and her country. 

C. Transformational Procedures. 

Let us now consider in detail the transforma­
tion procedure used by STUDENT, and see how 
the three categories of phrases interact. Let us 
consider the following example, which has been 
solved by STUDENT. 

(THE PROBLEM TO BE SOLVED IS) 
(IF THE NUMBER OF CUSTOMERS TOM 
GETS IS TWICE THE SQUARE OF 20 
PER CENT OF THE NUMBER OF AD­
VERTISEMENTS HE RUNS, AND THE 
NUMBER OF ADVERTISEMENTS HE 
RUNS IS 45, WHAT IS THE NUMBER OF 
CUSTOMERS TOM GETS Q.) 

Shown below are copies of actual printout 
from the STUDENT program, illustrating 
stages in the transformation and the solution 
of the problem. The parentheses are an arti­
fact of the LISP programming language, and 
"Q." is a replacement for the question mark 
not available on the key punch. 

The first stage in the transformation is to 
perform all mandatory substitutions. In this 
problem only the three phrases underlined (by 
the author, not the program) are substitutors: 
"twice" becomes "2 times", "per cent" becomes 
the single word "percent", and "square of" is 
truncated to "square". Having made these sub­
stitutions, STUDENT prints: 

(WITH MANDATORY SUBSTITUTIONS 
THE PROBLEM IS) 
(IF THE NUMBER OF CUSTOMERS TOM 
GETS IS 2 TIMES THE SQUARE 20 PER­
CENT OF THE NUMBER OF ADVER­
TISEMENTS HE RUNS, AND THE NUM­
BER OF ADVERTISEMENTS HE RUNS 
IS 45, WHAT IS THE NUMBER OF CUS­
TOMERS TOM GETS Q.) 

From dictionary entries for each word, the 
words in the problem are tagged by their func­
tion in terms of the transformation process, 
and STUDENT prints: 

(WITH WORDS TAGGED BY FUNCTION 
THE PROBLEM IS) 
(IF THE NUMBER (OF / OP) CUSTOM­
ERS (GETS / VERB) IS 2 (TIMES / OP 
1) THE (SQUARE / OP 1) 20 (PERCENT 

/ OP 2) (OF/OP) THE NUMBER (OF / 
OP) ADVERTISEMENTS (HE / PRO) 
RUNS, AND THE NUMBER (OF / OP) 
ADVERTISEMENTS (HE / PRO) RUNS 
IS 45, (WHAT / QWORD) IS THE NUM­
BER (OF / OP) CUSTOMERS TOM 
(GETS / VERB) (QMARK / DLM» 

If a word has a tag, or tags, the word followed 
by "/", followed by the tags, becomes a single 
unit, and is enclosed in parentheses. Some 
typical taggings are shown above. "(OF /OP)" 
indicates that "OF" is an operator and other 
taggings show that "GETS" is a verb, 
"TIMES" is an operator of level 1 (operator 
levels will be explained below), "SQUARE" is 
an operator of levell, "PERCENT" is an op­
erator of level 2, "HE" is a pronoun, "WHAT" 
is a question word, and "QMARK" (replacing 
Q.) is a delimiter of a sentence. These tagged 
words will play the principal role in the re­
maining transformation to the set of equations 
implicit in this problem statement. 

The next stage in the transformation is to 
break the input sentences into "kernel sen­
tences". As in the example, a problem may be 
stated using sentences of great grammatical 
complexity; however, the final stage of the 
transformation is only defined on a set of kernel 
sentences. The simplification to kernel sen­
tences as done in STUDENT depends on the 
recursive use of format matching. If an input 
sentence is of the form "IF" followed by a 
substring, followed by a comma, a question 
word and a second substring then the first sub­
string (between the IF and the comma) is made 
an independent sentence, and everything fol­
lowing the comma is made into a second sen­
tence. In the example, this means that the in­
put is resolved into the following two sentences, 
(where tags are omitted for the sake of brev­
ity) : 

"The number of customers Tom gets is 2 
times the square 20 percent of the number 
of advertisements he runs, and the number 
of advertisements he runs is 45." and "What 
is the number of customers Tom gets?" 

This last procedure effectively resolves a 
problem into declarative assumptions and a 
question sentence. A second complexity re­
solved by STUDENT is illustrated in the first 



sentence of this pair. A coordinate sentence 
consisting of two sentences joined by a comma 
immediately followed by an "and" will be re­
solved into these two independent sentences. 
The first sentence is therefore resolved into 
two simpler sentences. 

U sing these two inverse syntactic transfor­
mations, this problem statement is resolved into 
"simple" kernel sentences. For the example, 
STUDENT prints 

(THE SIMPLE SENTENCES ARE) 
(THE NUMBER (OF / OP) CUSTOMERS 
TOM (GETS / VERB) IS 2 (TIMES / OP 
1) THE (SQUARE / OP 1) 20 (PERCENT 
/ OP 2) (OF / OP) THE NUMBER (OF 
/ OP) ADVERTISEMENTS (HE / PRO) 
RUNS (PERIOD / DLM) 
(THE NUMBER (OF / OP) ADVERTISE­
CENTS (HE / PRO) RUNS IS 45 (PE­
RIOD /DLM) 
«WHAT / QWORD) IS THE NUMBER 
(OF / OP) CUSTOMERS TOM (GETS / 
VERB) (QMARK / DLM» 

Each simple sentence is a separate list, i.e., is 
enclosed in parentheses, and each ends with a 
delimiter (a period or question mark). Each 
of these sentences can now be transformed di~ 
rectly to its interpretation in the model. 

D. From Kernel Sentences to Equations 

The transformation from the simple kernel 
sentences to equations uses three levels of pre­
cedence for operators. Operators of higher pre­
cedence level are used earlier in the transfor­
mation. Be for e utilizing the operators, 
STUDENT looks for linguistic forms associ­
ated with the equality relation. These forms 
include the copula "is" and transitive verbs in 
certain contexts. In the example we are con­
sidering, only the copula "is" is used to indicate 
equality. The use of transitive verbs as indi­
cators of equality, that is, as relationallinguis­
tic forms, will be discussed in connection with 
another example. When the relational linguis­
tic form is identified, the names which are the 
arguments of the form are broken down into 
variables and operators (functional linguistic 
forms). In the present problem, the two names 
are those on either side of the "is" in each 
sentence. 
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The word "is" may also be used meaning­
fully within algebra story problems as an auxil­
iary verb (not meaning equality) in such verbal 
phrases as "is multiplied by" or "is divided by". 
A special check is made for the occurrence of 
these phrases before proceeding on to the main 
transformation procedure. The transformation 
of sentences containing these special verbal 
phrases will be discussed later. If "is" does not 
appear as an auxiliary in such a verbal phrase, 
a sentence of the form "PI is P2" is interpreted 
as indicating the equality of the objects named 
by phrases PI and P2. No equality relation 
will be recognized within these phrases, even 
if an appropriate transitive verb occurs within 
either of them. If PI * and P2* represent the 
arithmetic transformations of PI and P2, then 
"PI is P2" is transformed into the equation 
"(EQUAL PI * P2*) ". 

The transformation of PI and P2 to give 
them an interpretation in the model is per­
formed recursively using a program equivalent 
to the table in Figure 2. This table shows all 
the operators and formats currently recognized 
by the STUDENT program. New operators 
can easily be added to the program equivalent 
of this table. 

In performing the transformation of a phrase 
P, a left to right search is made for an operator 
of level 2 (indicated by subscripts of "OP" and 
2). If there is none, a left to right search is 
made for a level 1 operator (indicated by sub­
scripts "OP" and 1), and finally another left to 
right search is made for an operator of level 0 
(indicated by a subscript "OP" and no numeri­
cal subscript). The first operator found in this 
ordered search determines the first step in the 
transformation of the phrase. This operator 
and its context are transformed as indicated in 
column 4 in the table. If no operator is present, 
delimiters and articles (a, an and the) are de­
leted, and the phrase is treated as an indivisible 
entity, a variable. 

In the example, the first simple sentence is 

(THE NUMBER (OF/OP) CUSTOMERS 
TOM (GETS/VERB) IS 2 (TIMES/OP 
1) THE (SQUARE/OP 1) 20 (PER­
CENT/OP 2) (OF/OP) THE NUMBER 
(OF/OP) ADVERTISEMENTS (HE/ 
PRO) RUNS (PERIOD/DLM» 



602 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

Figure 2 

Operator Precedence Context 
Level 

PLUS 
PLUSS 
MINUS 

MINUSS 
TIMES 
DIVBY 
SQUARE 
SQUARED 

** 
LESSTHAN 
PER 

PERCENT 
PERLESS 
SUM 

DIFFERENCE 

OF 

2 
0 
2 

0 
1 
1 
1 
0 
0 
2 
0 

2 
2 
0 

0 

PI PLUS P2 
PI PLUSS P2 
PI MINUSP2 
MINUSP2 
PI MINUSS P2 
PI TIMES P2 
PI DIVBY P2 
SQUARE PI 
PI SQUARED 
PI ** P2 
PI LESSTHAN P2 
PI PERKP2 
PI PER P2 
PI K PERCENT P2 
PI K PERLESS P2 
SUM PI AND P2 AND P3 
SUM PI AND P2 
DIFFERENCE BETWEEN 
PI AND P2 

o KOFP2 
PI OF P2 

Interpretation in the Model 

(PLUS PI * P2*) 
(PLUS PI * P2*) 
(PLUS PI * (MINUS P2*» 
(MINUS P2*) 
(PLUS PI * (MINUS P2*» 
(TIMES PI * P2*) 
(QUOTIENT PI * P2*) 
(EXPT PI * 2) 
(EXPT Pl* 2) 
(EXPT PI * P2*) 
(PLUS P2* (MINUS PI *) ) 
(QUOTIENT PI * (K P2) *) 
(QUOTIENT PI * (1 P2) *) 
(PI (K/I00) P2) * 
(PI «100-K) /100) P2) * 
(PLUS PI * (SUM P2 AND P3) *) 
(PLUS PI * P2*) 
(PLUS PI * (MINUS P2*) ) 

(TIMES K P2*) 
(PI OF P2)* 

(a) 

(b) 

(c) 

(b) 

(d) 

(e) 

(f) 

(f) 

(f) 

(g) 

(g) 

(a) If P1 is a phrase, P1 * indicates its interpretation in the model. 
(b) PLUSS and MINUSS are identical to PLUS AND MINUS except for precedence level. 
(c) When two possible contexts are indicated, they are checked in the order shown. 
(d) SQUARE P1 and SUM P1 are idiomatic shortenings of SQUARE OF P1 and SUM OF PI. 
(e) * outside a parenthesized expression indicates that the enclosed phrase is to be transformed. 
(f) K is a number. 
(g) / and - imply that the indicated arithmetic operations are actually performed. 

This is of the form "PI is P2", and is trans­
formed to (EQUAL PI * P2*). PI is "(THE 
NUMBER (OF/OP) CUSTOMERS TOM 
(GETS/VERB»". The occurrence of the 
verb "gets" is ignored because of the presence 
of the "is" in the sentence, meaning "equals". 
The only operator found is "(OF /OP)". From 
the table we see that if "OF" is immediately 
preceded by a number (not the word "num­
ber") it is treated as if it were the infix 
"TIMES". In this case, however, "OF" is not 
preceded by a number; the subscript OP, indi­
cating that "OF" is an operator, is stripped 
away, and the transformation process is re­
peated on the phrase with "OF" no longer act-

ing as an operator. In this repetition, no 
operators are found, and PI * is the variable 

(NUMBER OF CUSTOMERS TOM (GETS/ 
VERB» . 
To the right of "IS" in the sentence is P2: 
(2 (TIMES/OP 1) THE (SQUARE/OP 1) 

20 (PERCENT/OP 2) (OF/OP) THE 
N U M B E R (OF lOP) ADVERTISE­
MENTS (HE/PRO) RUNS (PERIOD/ 
DLM» The first operator found in P2 is 
PERCENT, an operator of level 2. 

From the table in Figure 2, we see that this 
operator has the effect of dividing the number 
immediately preceding it by 100. The "PER-



CENT" is removed and the transformation is 
repeated on the remaining phrase. In the ex­
ample, the" .... 20 (PERCENT/OP 2) (OF/ 
OP) .... " becomes" .... 2000 (OF lOP) .... ". 

Continuing the transformation, the operators 
found are, in order, TIMES, SQUARE, OF and 
OF. Each is handled as indicated in the table. 
The "OF" in the context" .... 2000 (OF lOP) 
THE .... " is treated as an infix TIMES, while 
at the other occurrence of "OF", the operator 
marking is removed. The resulting trans­
formed expression for P2 is: 

(TIMES 2 (EXPT (TIMES .2 (NUMBER 
OF ADVERTISEMENTS (HE/PRO) 
RUNS» 2» 

The transformation of the second sentence 
of the example is done in a similar manner, 
and yields the equation: 

(EQUAL (NUMBER OF ADVERTISE­
MENTS (HE/PRO) RUNS) 45) 

The third sentence is of the form "What is 
PI ?". It starts with a question word and is 
therefore treated specially. A unique variable, 
a single word consisting of an X of G followed 
by five integers, . is created, and the equation 
(EQUAL Xnnnnn PI *) is stored. For this 
example, the variable XOOOOI was created, and 
this last simple sentence is transformed to the 
equation: 

(EQUAL XOOOOI (NUMBER OF CUSTOM­
ERS TOM (GETS/VERBS» 

In addition, the created variable is placed on 
the list of variables for which STUDENT is to 
find a value. Also, this variable is stored, paired 
with PI, the untransformed right side, for use 
in printing out the answer. If a value is found 
for this variable, STUDENT prints the sen­
tence (PI is value) with the appropriate sub­
stitution for value. Below we show the full set 
of equations, and the printed solution given by 
STUDENT for the example being considered. 
For ease in solution, the last equations created 
are put first in the list of equations. 

(THE EQUATIONS TO BE SOLVED ARE) 
(EQUAL XOOOOI (NUMBER OF CUSTOM­
ERS TOM (GETS/VERB» ) (EQUAL 
(NUMBER OF ADVERTISEMENTS (HE/ 
PRO) RUNS) 45) (EQUAL (NUMBER OF 
CUSTOMERS TOM (GETS/VERB» 
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(TIMES 2 (EXPT (TIMES .2000 (NUM­
BER OF ADVERTISEMENTS (HE/PRO) 
RUNS» 2») (THE NUMBER OF CUS­
TOMERS TOM GETS IS 162) 

In the example just shown, the equality relation 
was indicated by the copula "is". In the prob­
lem shown below, solved by STUDENT, equal­
ityjs indicated by the occurrence of a transitive 
verb in the proper context. 

(THE PROBLEM TO BE SOLVED IS) 
(TOM HAS TWICE AS MANY FISH AS 
MARY HAS GUPPIES. IF MARY HAS 3 
GUPPIES, WHAT IS THE NUMBER OF 
FISH TOM HAS Q.) 
(THE NUMBER OF FISH TOM HAS IS 6) 

The verb in this case is "has". The simple sen­
tence "Mary has 3 guppies" is transformed to 
the "equivalent" sentence "The number of 
guppies Mary has is 3" and the sentence is 
processed as before. This transformation rule 
may be stated generally as: anything (a sub­
ject) followed by a verb followed by a number 
followed by anything (the unit) is transformed 
to a sentence starting with "THE NUMBER 
OF" followed by the unit, followed by the sub­
ject and the verb, followed by "IS" and then 
the number. In "Mary has 3 guppies" the sub­
ject is "Mary", the verb "has", and the units 
"guppies". Similarly, the sentence "The 'witches 
of Firth brew 3 magic potions" would be trans­
formed to 

"The number of magic potions the witches of 
Firth brew is 3." 

In addition to a declaration of number, a 
single-object transitive verb may be used in a 
comparative structure, such as exhibited in the 
sentence "Tom has twice as many fish as Mary 
has guppies." STUDENT transforms this sen­
tence into the equivalent sentence. 

"The number of fish Tom has is twice the 
number of guppies Mary has." 

Transformations of new sentence formats to 
formats previously "understood" by the pro­
gram can be easily added to the program, thus 
extending the subset of English "understood" 
by STUDENT. 

The word "is" indicates equality only if it is 
not used as an auxiliary. The example below 
shows how verbal phrases containing "is", such 
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as "is multiplied by", and "is increased by" 
are handled in the transformation. 

(THE PROBLEM TO BE SOLVED IS) 
(A NUMBER IS MULTIPLIED BY 6. 
THIS PRODUCT IS INCREASED BY 44. 
THIS RESULT IS 68. FIND THE NUM­
BER.) 

(THE EQUATIONS TO BE SOLVED ARE) 
(EQUAL X00001 (NUMBER» 
(EQUAL (PLUS (TIMES (NUMBER) 6) 
44) 68) 

(THE NUMBER IS 4) 

The sentence "A number is multiplied by 6" 
only indicates that two objects in the model are 
related multiplicatively, and does not indicate 
explicitly any equality relation. The interpre­
tation of this sentence in the model is the prefix 
notation product "(TIMES (NUMBER 6» ". 
This latter phrase is stored in a temporary loca­
tion for possible later reference. In this prob­
lem, it is referenced in the next sentence, with 
the phrase "this produce". The important word 
in this last phrase is "this"-STUDENT ig­
nores all other 'words in a variable containing 
the key word "this". The last temporarily 
stored pp.rase is substituted for the phrase con­
taining "this". Thus, the first three sentences 
in the problem shown above yield only one 
equation, after two substitutions for "this" 
phrases. The last sentence "Find the number." 
is transformed as if it were "What is the num­
ber Q.", and yields the first equation shown. 

The word "this" may occur in a context 
where it is not referring to a previously stored 
phrase. Below is an example with such a con­
text. 

(THE PROBLEM TO BE SOLVED IS) 
(THE PRICE OF A RADIO IS 69.70 DOL­
LARS. IF THIS PRICE IS 15 PERCENT 
LESS THAN THE MARKED PRICE, FIND 
THE MARKED PRICE.) 

(THE MARKED PRICE IS 82 DOLLARS) 

In such contexts, the phrase containing "THIS" 
is replaced by the left half of the last equation 
created. In this example, STUDENT breaks 
the last sentence into two simple sentences, de­
leting the "IF". Then the phrase "THIS 
PRICE" is replaced by the variable "PRICE 
OF RADIO", which is the left half of the pre­
vious equation. 

This problem illustrates two other features 
of the STUDENT program. The first is the 
action of the complex operator "percent less 
than". It causes the number immediately pre­
ceding it, i.e., 15, to be subtracted from 100, 
this result divided by 100, to give .85. Then this 
operator becomes the infix operator "TIMES". 
This is indicated in the table in Figure 2. 

This problem also illustrates how units such 
as "dollars" are handled by the STUDENT pro­
gram. Any word which immediately follows a 
number is labeled as a special type of variable 
called a unit. A number followed by a unit is 
treated in the equation as a product of the 
number and the unit, e.g., "69.70 DOLLARS" 
becomes" (TIMES 69.70 (DOLLARS» ". Units 
are treated as special variables in solving the 
set of equations; a unit may appear in the an­
swer though variables cannot. If the value for 
a variable found by the solver is the product of 
a number and a unit, STUDENT concatenates 
the number and the unit. For example, the 
solution for" (MARKED PRICE)" in the prob­
lem above was (TIMES 82 (DOLLARS» and 
STUDENT printed out: 

(THE MARKED PRICE IS 82 DOLLARS) 

There is an exception to the fact that any 
unit may appear in the answer, as illustrated 
in the problem below. 

(THE PROBLEM TO BE SOLVED IS) 
(IF 1 SPAN EQUALS 9 INCHES, AND 1 
FATHOM EQUALS 6 FEET, HOW MANY 
SPANS EQUALS 1 FATHOM Q.) 

(THE EQUATIONS TO BE SOLVED ARE) 
(EQUALS X00001 (TIMES 1 (FATH­
OMS») (EQUAL (TIMES 1 (FATH­
OMS» (TIMES 6 (FEET») (EQUAL 
(TIMES 1 (SPANS» (TIMES 9 (INCH­
ES» ) 

THE EQUATIONS WERE INSUFFICIENT 
TO FIND A SOLUTION (USING THE 
FOLLOWING KNOWN RELATIONSHIPS) 
«EQUAL (TIMES 1 (YARDS» (TIMES 
3 (FEET») (EQUAL (TIMES 1 (FEET» 
(TIMES 12 (INCHES»» 

(1 FATHOM IS 8 SPANS) 

If the unit of the answer is specified, in this 
problem by the phrase "how many spans"­
then only that unit, in this problem "spans", 



may appear in the answer. Without this re­
striction, STUDENT would blithely answer 
this problem with" (1 FATHOM IS 1 FATH­
OM) ". 

In the transformation from the English 
statement of the problem to the equations, "9 
INCHES" became (TIMES 9 (INCHES». 
However, "1 FATHOM" became" (TIMES 1 
(FATHOMS»". The plural form for fathom 
has been used instead of the singular form. 
STUDENT always uses the plural form if 
known, to ensure that all units appear in only 
one form. Since "fathom" and "fathoms" are 
different, if both were used STUDENT would 
treat them as distinct, unrelated units. The 
plural form is part of the global information 
that can be made available to STUDENT, and 
the plural form of a word is substituted for 
any singular form appearing after "I" in any 
phrase. The inverse operation is carried out 
for correct printout of the solution. 

Notice that the information given in the 
problem above was insufficient to allow solution 
of the set of equations to be solved. Therefore, 
STUDENT looked in its glossary for informa­
tion concerning each of the units in this set of 
equations. It found the relationships "1 foot 
equals 12 inches." and "1 yard equals 3 feet." 
U sing only the first fact, and the equation it 
implies, STUDENT is then able to solve the 
problem. Thus, in certain cases where a prob­
lem is not analytic, in the sense that it does not 
contain, explicitly stated, all the information 
needed for its solution, STUDENT is able to 
draw on a body of facts, picking out relevant 
ones, and use them to obtain a solution. 

In certain problems, the transformation 
process does not yield a set of solvable equa­
tions. However, within this set of equations 
there exists a pair of variables (or more than 
one pair) such that the two variables are only 
"slightly different", and really name the same 
object in the model. When a set of equations fs 
unsolvable, STUDENT searches for relevant 
global equations. In addition, it uses several 
heuristic techniques for identifying two "slight­
ly different" varia-hIes in the equations. The 
problem below illustrates the identification of 
two variables where in one variable a pronoun 
has been substituted for a noun phrase in the 
other variable. This identification is made by 
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checking all variables appearing before one 
containing the pronoun, and finding one which 
is identical to this pronoun phrase, with a sub­
stitution of a string of any length for the pro­
noun. 

(THE PROBLEM TO BE SOLVED IS) 

(THE NUMBER OF SOLDIERS THE RUS­
SIANS HAVE IS ONE HALF OF THE 
NUMBER OF GUNS THEY HAVE. THE 
NUMBER OF GUNS THEY HAVE IS 7000. 
WHAT IS THE NUMBER OF SOLDIERS 
THEY HAVE Q.) 

THE EQUATIONS WERE INSUFFICIENT 
TO FIND A SOLUTION (ASSUMING 
THAT) 
( (NUMBER OF SOLDIERS (THEY/PRO) 
(HAVE/VERB» IS EQUAL TO (NUM­
BER OF SOLDIERS RUSSIANS (HA VEl 
VERB» ) 

(THE NUMBER OF SOLDIERS THEY 
HA VE IS 3500) 

If two variables match in this fashion, STU­
DENT assumes the two variables are equal, 
prints out a statement of this assumption, as 
shown, and adds an equation expressing this 
equality to the set to be solved. The solution 
procedure is tried again, with this additional 
equation. In this example, the additional equa­
tion was sufficient to allow determination of 
the solution. 

The example below is again a non-analytic 
problem. The first set of equations developed 
by STUDENT is unsolvable. Therefore, STU­
DENT tries to find some relevant equations in 
its store of global informa,tion. 

(THE PROBLEM TO BE SOLVED IS) 
(THE GAS CONSUMPTION OF MY CAR 
IS 15 MILES PER GALLON. THE DIS­
TANCE BETWEEN BOSTON AND NEW 
YORK IS 250 MILES. WHAT IS THE 
NUMBER OF GALLONS OF GAS USED 
ON A TRIP BETWEEN NEW YORK AND 
BOSTONQ.) 

THE EQUATIONS WERE INSUFFICIENT 
TO FIND A SOLUTION (USING THE 
FOLLOWING KNOWN RELATIONSHIPS) 
( (EQUAL (D 1ST A N C E) (T I M E S 
(SPEED) (TIME) » (EQUAL (DIS­
TANCE) (TIMES (GAS CONSUMPTION) 
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(NUMBER OF GALLONS OF GAS 
USED») ) 

(ASSUMING THAT) 
«DISTANCE) IS EQUAL TO (DISTANCE 
BETWEEN BOSTON AND NEW YORK) 
(ASSUMING THAT) 
«GAS CONSUMPTION) IS EQUAL TO 
(GAS CONSUMPTION OF MY CAR» 
(ASSUMING THAT) 
( (NUMBER OF GALLONS OF GAS 
USED) IS EQUAL TO (NUMBER OF 

TWEEN NEW YORK AND BOSTON» 

(THE NUMBER OF GALLONS OF GAS 
USED ON A TRIP BETWEEN NEW YORK 
AND BOSTON IS 16.66 GALLONS) 

It uses the first word of each variable string 
as a key to its glossary. The one exception to 
this rule is that the words "number of" are 
ignored if they are the first two words of a 
variable string. Thus, in this problem, STU­
DENT retrieved equations which were stored 
under the key words distance, gallons, gas, and 
miles. Two facts about distance had been stored 
earlier; "distance equals speed times time" and 
"distance equals gas consumption times number 
of gallons of gas used". The equations implicit 
in these sentences. were stored and retrieved 
now-as possibly useful for the solution of this 
problem. In fact, only the second is relevant. 

Before any attempt is made to solve this 
augmented set of equations, the variables in 
the augmented set are matched, to identify 
"slightly different" variables which refer to the 
same object in the model. In this example 
"(DISTANCE) ," "(GAS CONSUMPTION) ", 
and "(NUMBER OF GALLONS OF GAS 
USED)" are all identified with "similar" vari­
ables. The following conditions must be satis­
fied for this type of identification of variables 
P1 and P2: 

1) P1 must appear later in the problem than 
P2. 

2) P1 is completely contained in P2 in the 
sense that P1 is a contiguous substring 
within P2. 

This identification reflects a syntactic phe­
nomenon where a truncated phrase, with one 
or more modifying phrases dropped, is often 

used in place of the original phrase. For ex­
ample, if the phrase "the length of a rectangle" 
has occurred, the phrase "the length" may be 
used to mean the same thing. This type of iden­
tification is distinct from that made using pro­
noun substitution. 

In the example above, a stored schema was 
used by identifying the variables in the schema 
with the variables that occur in the problem. 
This problem is solvable because the key 
phrases "distance", "gas consumption" and 
"number of gallons of gas used" occur as sub­
strings of the variables in the problem. Since 
STUDENT identifies each generic key phrase 
of the schema with a particular variable of the 
problem, any schema can be used only once in 
a problem. Because STUDENT handles schema 
in this ad hoc fashion it cannot solve problems 
in which a relationship such as "distance equals 
speed times time" is needed for two different 
values of distance, speed, and time. 

E. Possible Idiomatic Substitutions 
There are some phrases which have a dual 

character, depending on the context. In the 
example below, the phrase "perimeter of a rec­
tangle" becomes a variable with no reference 
to its meaning, or definition, in terms of the 
length and width of the rectangle. This defini­
tion is unneeded for solution. 

(THE PROBLEM TO BE SOLVED IS) 
(THE SUM OF THE PERIMETER OF A 
RECTANGLE AND THE PERIMETER OF 
A TRIANGLE IS 24 INCHES. IF THE 
PERIMETER OF THE RECTANGLE IS 
TWICE THE PERIMETER OF THE TRI­
ANGLE, WHAT IS THE PERIMETER OF 
THE TRIANGLE Q.) 

(THE PERIMETER OF THE TRIANGLE 
IS 8 INCHES) 

However, the following problem is stated in 
terms of the perimeter, length and width of the 
rectangle. Transforming the English into equa­
tions is not sufficient for solution. N either re­
trieving and using an equation about "inches", 
the unit in the problem, nor identifying 
"length" with a longer phrase serve to make 
the problem solvable. Therefore, STUDENT 
looks in its dictionary of possible idioms, and 



finds one which it can try in the problem. STU­
DENT 

(THE PROBLEM TO BE SOLVED IS) 
(THE LENGTH OF A RECTANGLE IS 8 
INCHES MORE THAN THE WIDTH OF 
THE RECTANGLE. ONE HALF OF THE 
PERIMETER OF THE RECTANGLE IS 18 
INCHES. FIND THE LENGTH AND THE 
WIDTH OF THE RECTANGLE.) 

THE EQUATIONS WERE INSUFFICIENT 
TO FIND A SOLUTION TRYING POSSI­
BLE IDIOMS 
(THE PROBLEM WITH AN IDIOMATIC 
SUBSTITUTION IS) 

(THE LENGTH OF A RECTANGLE IS 8 
INCHES MORE THAN THE WIDTH OF 
THE RECTANGLE. ONE HALF OF 
TWICE THE SUM OF THE LENGTH AND 
WIDTH OF THE RECTANGLE IS 18 
INCHES. FIND THE LENGTH AND THE 
WIDTH OF THE RECTANGLE.) 

(ASSUMING THAT) 
«LENGTH) IS EQUAL TO (LENGTH OF 
RECTANGLE) ) 

(THE LENGTH IS 13 INCHES) 
(THE WIDTH OF THE RECTANGLE IS 5 
INCHES) 

actually had two possible idiomatic substitu­
tions which it could have made for "perimeter 
of a rectangle"; one was in terms of the length 
and width of the rectangle and the other was in 
terms of the shortest and longest sides of the 
rectangle. When there are two possible sub­
stitutions for a given phrase, one is tried first, 
namely the one STUDENT has been told about 
most recently. In this problem, the correct one 
was fortuitously first. If the other had been 
first, the revised problem would not have been 
solvable, and eventually the second ( correct) 
substitution would have been made. Only one 
non-mandatory idiomatic substitution is ever 
made at one time, although the substitution is 
made for all occurrences of the phrase chosen. 

In this problem, the idiomatic substitution 
made allows the problem to be solved, after 
identification of the variables "length" and 
"length of rectangle". The retrieved equation 
about inches was not needed. However, its 
presence in the set of equations to be solved 
did not sidetrack the solver in anyway. 
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This use of possible, but non-mandatory idio­
matic substitutions can also be used to give 
STUDENT a way to solve problems in which 
two phrases denoting one particular variable 
are quite different. For example, the phrase, 
"students who passed the admissions test" and 
"successful candidates" might be describing the 
same set of people. However, since STUDENT 
knows nothing of the "real world" and its value 
system for success, it would never identify 
these two phrases. However, if told that "suc­
cessful candidates" sometimes means "students 
who passed the admissions test", it would be 
able to solve a problem using these two phrases 
to identify the same variable. Thus, possible 
idiomatic substitutions serve the dual purpose 
of providing tentative substitutions of defini­
tions, and identification of synonomous phrases. 

F. Special Heuristics. 

The methods thus far discussed have been 
applicable to the entire range of algebra prob­
lems. However, for special classes of problems, 
additional heuristics may be used which are 
needed for members of the class, but not ap­
plicable to other problems. An example is the 
class of age problems, as typified by the prob­
lem below. 

(THE PROBLEM TO BE SOLVED IS) 
(BILL S FATHER S UNCLE IS TWICE 
AS OLD AS BILL S FATHER. 2 YEARS 
FROM NOW BILL S FATHER WILL BE 3 
TIMES AS OLD AS BILL. THE SUM OF 
THEIR AGES IS 92. FIND BILL SAGE.) 

(BILL S AGE IS 8) 

Before the age problem heuristics are used, a 
problem must be identified as belonging to that 
class of problems. STUDENT identifies age 
problems by any occurrence of one of the fol­
lowing phrases, "as old as", "years old" and 
"age". This identification is made immediately 
after all words are looked up in the dictionary 
and tagged by function. After the special 
heuristics are used the modified problem is 
transformed to equations as described previ­
ously. 

The need for special methods for age prob­
lems arises because of the conventions used for 
denoting the variables, all of which are ages. 
The word age is usually not used explicitly, 
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but is implicit in such phrases as "as old as". 
People's names are used where their ages are 
really the implicit variables. In the example, 
for instance, the phrase "Bill's father's uncle" 
is used instead of the phrase "Bill's father's 
uncle's age". 

STUDENT uses a special heuristic to make 
all these ages explicit. To do this, it must know 
which words are "person words" and there­
fore, may be associated with an age. For this 
problem STUDENT has been told that Bill, 
father, and uncle are person words. The 
"spaces -s" following a word is the STUDENT 
representation for possessive, used instead of 
"apostrophe -s" for programming convenience. 
STUDENT inserts a "S AGE" after every per­
son word not followed by a "S" (because this 
"S" indicates that the person word is being 
used in a possessive sense, not as an independ­
ent age variable). Thus, as indicated, the 
phrase "BILL S FATHER S UNCLE" becomes 

"BILL S FATHER S UNCLE SAGE". 

In addition to changing phrases naming peo­
ple to ones naming ages, STUDENT makes 
certain ~pecial idiomatic substitutions. For the 
phrase "their ages", STUDENT substitutes a 
conjunction of all the age variables encountered 
in the problem. In the example, for "THEIR 
AGES" STUDENT substitutes "BILL S FA­
THER S UNCLE S AGE AND BILL S FA­
THER S AGE AND BILL S AGE". The 
phrases "as old as" and "years old" are then 
deleted as dummy phrases not having any 
meaning, and "will be" and "was" are changed 
to "is". There is no need to preserve the tense 
of the copula, since the sense of the future or 
past tense is preserved in such prefix phrases 
as "2 years from now", or "3 years ago". 

The remaining special age problem heuristics 
are used to process the phrases "in 2 years", "5 
years ago" and "now". The phrase "2 years 
from now" is transformed to "in 2 years" be­
fore processing. These three time phrases may 
occur immediately after the word "age", (e.g., 
Bill's age 3 years ago") or at the beginning 
of the sentence. If a time phrase occurs at the 
beginning of the sentence, it implicitly modifies 
all ages mentioned in the sentence, except those 
followed by their own time phrase. For ex­
ample, "In 2 years Bill's father's age will be 3 

times Bill's age" is equivalent to "Bill's father's 
age in 2 years will be 3 times Bill's age in 2 
years". However, "3 years ago Mary's age was 
2 times Ann's age now" is equivalent to 
"Mary's age 3 years ago was 2 times Ann's 
age now". Thus prefix time phrases are han­
dled by distributing them over all ages not 
modified by another time phrase. 

After these prefix phrases have been dis­
tributed, each time phrase is translated ap­
propriately. The phrase "in 5 years" causes 
5 to be added to the age it follows, and "7 years 
ago" causes 7 to be subtracted from the age 
preceding this phrase. The word "now" is de­
leted. 

Only the special heuristics described thus 
far are necessary to solve the first age problem. 
The second age problem, given below, requires 
one additional heuristic not previously men­
tioned. This is a substitution for the phrase 
"was when" which effectively decouples the two 
facts combined in the first sentence. For "was 
when", STUDENT substitutes "was K years 
ago. K years ago" where K is a new variable 
created for this purpose. 

(THE PROBLEM TO BE SOLVED IS) 
(MARY IS TWICE AS OLD AS ANN WAS 
WHEN MARY WAS AS OLD AS ANN IS 
NOW. IF MARY IS 24 YEARS OLD, HOW 
OLD IS ANN Q.) 

(THE EQUATIONS TO BE SOLVED ARE) 
(EQUAL X00008 «ANN / PERSON) S 
AGE» 
(EQUAL «MARY / PERSON) SAGE) 
24) 
(EQUAL (PLUS «MARY / PERSON) S 
AGE) (MINUS X00007») «ANN / PER­
SON) SAGE» 
(EQUAL «MARY / PERSON) SAGE) 
(TIMES 2 (PLUS «ANN / PERSON) S 
AGE) (MINUS X00007» ) ) ) 

(ANN S AGE IS 18) 

In the example, the first sentence becomes the 
two sentences: "Mary is twice as old as Ann 
X00007 years ago. X00007 years ago Mary was 
as old as Ann is now." These two occurrences 
of time phrases are handled as discussed pre­
viously. Similarly the phrase "will be when" 
would be transformed to "in K years. In K 
years". 



These decoupling heuristics are useful not 
only for the STUDENT program but for peo­
ple trying to solve age problems. The classic 
age problem about Mary and Ann, given above, 
took an MIT graduate student over 5 minutes 
to solve because he did not know this heuristic. 
With the heuristic he was able to set up the ap­
propriate equations much more rapidly. As a 
crude measure of STUDENT's speed, note that 
STUDENT took less than one minute to solve 
this problem. 

G. When All Else Fails. 
For all the problems discussed thus far, STU­

DENT was able to find, a solution eventually. 
In some cases, however, necessary global in­
formation is missing from its store of informa­
tion, or variables which name the same object 
cannot be identified by the heuristics of the 
program. Whenever STUDENT cannot find a 
solution for any reason, it turns to the ques­
tioner for help. As in the problem below, it 
prints out "(DO YOU KNOW ANY MORE 
RELATIONSHIPS BETWEEN THESE VAR­
IABLES)" followed by a list of the variables 
in the problem. The questioner can answer 
"yes" or "no". If he says "yes", STUDENT 
says "TELL ME", and the questioner can ap­
pend another sentence to the statement of the 
problem. 

(THE PROBLEM TO BE SOLVED IS) 
(THE GROSS WEIGHT OF A SHIP IS 
20000 TONS. IF ITS NET WEIGHT IS 
15000 TONS, WHAT IS THE WEIGHT OF 
THE SHIPS CARGO Q.) 
THE EQUATIONS WERE INSUFFICIENT 
TO FIND A SOLUTION 
(DO YOU KNOW ANY MORE RELATION­
SHIPS AMONG THESE VARIABLES) 
(GROSS WEIGHT OF SHIP) 
(TONS) 
(ITS NET WEIGHT) 
(WEIGHT OF SHIPS CARGO) 
yes 
TELL ME 
(the weight of a ships cargo is the difference 
between the gross weight and the net weight) 
THE EQUATIO.NS WERE INSUFFICIENT 
TO FIND A SOLUTION 

(ASSUMING THAT) 
«NET WEIGHT) IS EQUAL TO (ITS 
NET WEIGHT) 
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(ASSUMING THAT) 
«GROSS WEIGHT) IS E QUA L TO 
(GROSS WEIGHT OF SHIP» 

(THE WEIGHT OF THE SHIPS CARGO 
IS 5000 TONS) 

In this problem, the additional information 
typed in (in lower case letters) was sufficient 
to solve the problem. If it was not, the question 
would be repeated until the questioner said 
"no", or provides sufficient information for 
solution of the problem. 

In the problem below, the solution to the set 
of equations involves solving a quadratic equa­
tion, which is beyond the mathematical ability 
of the present STUDENT system. Note that 
in this case STUDENT reports that the equa­
tions were unsolvable, not simply insufficient 
for solution. STUDENT still requests addi­
tional information from the questioner. In the 
example, the questioner says "no", and STU­
DENT states that "I CANT SOLVE THIS 
PROBLEM" and terminates. 

(THE PROBLEM TO BE SOLVED IS) 
(THE SQUARE OF THE DIFFERENCE 
BETWEEN THE NUMBER OF APPLES 
AND THE NUMBER OF ORANGES ON 
THE TABLE IS EQUAL TO 9. IF THE 
NUMBER OF APPLES IS 7, FIND THE 
NUMBER OF ORANGES ON THE TA­
BLE.) 
UNABLE TO SOLVE THIS SET OF EQUA­
TIONS 

TRYING POSSIBLE IDIOMS 
(DO YOU KNOW ANY MORE RELATION­
SHIPS Al\1:0NG THESE VARIABLES) 
(NUMBER OF APPLES) 
(NUMBER OF ORANGES ON TABLE) 
no 

I CANT SOLVE THIS PROBLEM 

H. Summary of the STUDENT 
Subset of English 

The subset of English understandable by 
STUDENT is built around a core of sentence 
and phrase formats which can be transformed 
into expressions in the STUDENT deductive 
model. On this basic core is built a larger set 
of formats. Each of these are first transformed 
into a string built on formats in this basic set 
and then this string is transformed into an ex-
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pression in the deductive model. For example, 
the format ($ IS EQUAL TO $) is changed to 
the basic format ($ IS $), and the phrase "IS 
CONSECUTIVE TO" is changed to "IS 1 
PLUS". The constructions discussed earlier in­
volving single object transitive verbs could 
have been handled this way, though for pro­
gramming convenience they were not. 

The basic linguistic form which is trans­
formed into an equation is one containing "is" 
as a copula. The phrases "is equal to" and 
"equals' are both changed to the coupla "is". 
The auxiliary verbal constructions "is multi­
plied by", "is divided by" and "is increased by" 
are also acceptable as principal verbs in a sen­
tence. As discussed in detail earlier, a sentence 
with no occurrence of "is" can have as a main 
verb a transitive verb immediately followed by 
a number. This number must be an element of 
the phrase which is the direct object of the 
verb, as in "Mary has three guppies". This 
type of transitive verb can also have a compara­
tive structure as direct object, e.g., "Mary has 
twice as many guppies as Tom has fish". 

This completes the repertoire of declarative 
sentence formats. Any number of declarative 
sentences may be conjoined, with ", and" be­
tween each pair, to form a new (complex) 
declarative sentenCe. A declarative sentence 
(even a complex declarative) can be made a 
presupposition for a question by preceding it 
with "IF" and following it with a comma and 
the question. 

Questions, that is, requests for information 
from STUDENT, will be understood it they 
match any of the following patterns (where 
$ will match any string, and $1 anyone word): 

(WHAT ARE $ AND (WHAT IS $) 
$) 

(FIND $ AND $) 

(HOW MANY $ DO 
$ HAVE) 

(HOW MANY $1 
IS $) 

(FIND $) 

(HOW MANY $ 
DOES $ HAVE) 

This completes the summary of the set of 
input formats presently understood by STU­
DENT. This set can be enlarged in two distinct 
ways. One is to enlarge the set of basic for­
mats, using standard subroutines to aid in de-

fining, for each new basic format, its interpre­
tation in the deductive model. The other method 
of extending the range of STUDENT input is 
to define transformations from new input for­
mats to previously understood basic or exten­
sion formats. 

Even if a story problem is stated within the 
subset of English acceptable to STUDENT, 
this is not a guarantee that this problem can be 
solved by STUDENT (assuming it to be solva­
ble). Two phrases describing the object must 
be at worst only "slightly different" by the 
criteria prescribed earlier. Appropriate global 
information must be available to STUDENT, 
and the algebra involved must not exceed the 
abilities of the solver. However, though most 
algebra story problems found in the standard 
texts cannot be solved by STUDENT exactly 
as written, the author has usually been able to 
find some paraphrase of almost all such prob­
lems which is solvable by STUDENT. 

1. Limitations of the STUDENT 
Subset of English 

The techniques presented here are general 
and can be used to enable a computer program 
to accept and understand a fairly extensive 
subset of English for a fixed semantic base. 
However, the current STUDENT system is ex­
perimental and has a number of limitations. 

STUDENT's interpretation of the input is 
based on format matching. If each format is 
used to express the meaning understood by 
STUDENT, no misinterpretation will occur. 
However, these formats occur in English dis­
course even in algebra story problems, in se­
mantic contexts not consistent with STU­
DENT's interpretation of these formats. For 
example, a sentence containing", and" is always 
interpreted by STUDENT as the conjunction 
of two declarative statements. Therefore, the 
sentence "Tom has 2 apples, 3 bananas, and 4 
pears." would be incorrectly divided into the 
two "sentences", "Tom has 2 apples, 3 ba­
nanas." and "4 pears." 

Each of the operator words shown in Figure 
2 must be used as an operator in the context 
as shown or a misinterpretation will result. For 
example, the phrase "the number of times I 
went to the movies" which should be inter-



preted as a variable string will be interpreted 
incorrectly as the product of the two variables 
"number of" and "I went to the movies", be­
cause "times" is always considered to be an 
operator. Similarly, in the current implementa­
tion of STUDENT, "of" is considered to be an 
operator if it is preceded by any number. How­
ever, the phrase "2 of the boys who passed" 
will be misinterpreted as the product of "2" 
and "the boys who passed". 

These examples obviously do not constitute 
a complete list of misinterpretations and errors 
STUDENT will make, but it should give the 
reader an idea of limitations on the STUDENT 
subset of English. In principle, all of these 
restrictions could be removed. However, re­
moving some of them would require only minor 
changes to the program, while others would 
require techniques not used in the current sys­
tem. 

For example, to correct the error in inter­
preting "2 of the boys who passed", one can 
simply check to see if the number before the 
"of" is less than 1, and if so, only then interpret 
"of" as an operator "times". However, a much 
more sophisticated grammer and parsing pro­
gram would be necessary to distinguish differ­
ent occurrences of", and" and correctly extract 
simpler sentences from complex coordinate and 
subordinate sentences. 

Because of limitations of the sort described 
above, and the fact that the STUDENT system 
currently occupies almost all of the computer 
memory, STUDENT serves principally as a 
demonstration of the power of the techniques 
utilized in its construction. However, I believe 
that on a larger computer one could use these 
techniques to construct a system of practical 
value which would communicate well with peo­
ple in English over the limited range of mate­
rial understood by the program. 

IV. CONCLUSION 

A. Results 
The purpose of the research reported here 

was to develop techniques which facilitate nat­
ural language communication with a computer. 
A semantic theory of coherent discourse was 
proposed as a basis for the design and under­
standing of such man-machine systems. This 

HIGH SCHOOL ALGEBRA WORD PROGRAMS 611 

theory was only outlined, and much additional 
work remains to be done. However, in its pres­
ent rough form, the theory served as a guide 
for construction of the STUDENT system, 
which can communicate in a limited subset of 
English. 

The language analysis in STUDENT is an 
implementation of the analytic portion of this 
theory. The STUDENT system has a very nar­
row semantic base. From the theory it is clear 
that by utilizing this knowledge of the limited 
range of meaning of the input discourse, the 
parsing problem becomes greatly simplified, 
since the number of linguistic forms that must 
be recognized is very small. If a parsing sys­
tem were based on any small semantic base, 
this same simplification would occur. This sug­
gests that in a general language processor, some 
time might be spent putting the input into a 
semantic context before going ahead with the 
syntactic analysis. 

The semantic base of the STUDENT lan­
guage analysis is delimited by the character­
istics of the problem solving system embedded 
in it. STUDENT is a question-answering sys­
tem which answers questions posed in the con­
text of "algebra story problems." We shall use 
four general criteria for evaluating this ques­
tion-answering system. 

1) Extent of Understanding. Other question­
answering systems analyze input sentence by 
sentence. Although a representation of the 
meaning of all input sentences may be placed 
in some common store, no syntactic connection 
is ever made between sentences. 

In the STUDENT system, an acceptable in­
put is a sequence of sentences, such that these 
sentences cannot be understood by just finding 
the meanings of the individual sentences, ignor­
ing their local context. Inter-sentence depend­
encies must be determined, and inter-sentence 
syntactic relationships must be used in this 
case for solution of the problem given. This 
extension of the syntactic dimension of under­
standing is important because such inter-sen­
tence dependencies (e.g., the use of pronouns) 
are very commonly used in natural language 
communication. 

The semantic model in the STUDENT sys­
tem is based on one relationship (equality) and 
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five basic arithmetic functions. Composition of 
these functions yield other functions which are 
also expressed as individual linguistic forms in 
the input language. The input language is 
richer in expressing functions than Lindsay's 
or Raphael's system. Some logic-based ques­
tion -answering systems may have more rela­
tionships (predicates) allowable in the input, 
but do not allow any composition of these predi­
cates. The logical combinations of predicates 
used are only those expressed in the input as 
logical combinations (using and, or, etc.) 

The deductive system in STUDENT, as in 
Lindsay's and Raphael's programs, is designed 
for the type of questions to be asked. It can 
only deduce answers of a certain type from the 
input information, that is arithmetic values 
satisfying a set of equations. In performing its 
deductions it is reasonably sophisticated in 
avoiding irrelevant information, as are the 
other two mentioned. It lacks the general power 
of a logical system, but is much more efficient 
in obtaining its particular class of deductions 
than would be a general deductive system util­
izing the axioms of arithmetic. 

2) Facility for Extending Abilities. Extend­
ing the syntactic abilities of most other ques­
tion-answering systems would require repro­
gramming. In the STUDENT system new defi­
nitional transformations can be introduced at 
run time without any reprogramming. The in­
formation concerning these transformations 
can be input in English, or in a combination of 
English and METEOR, if that is more appro­
priate. New syntactic transformations must be 
added by extending the program. 

The semantic base of the STUDENT system 
can be extended only by adding new program, 
as is true of other question-answering systems. 
However STUDENT is organized to facilitate 
such extensions, by minimizing the interactions 
of different parts of the program. The neces­
sary information need only be added to the 
program equivalent of the table of operators 
in Figure 2. 

Similarly, the deductive portion of STU­
DENT, which solves the derived set of equa­
tions, is an independent package. Therefore, a 
new extended solver can be added to the system 
by just replacing the package, and maintaining 

the input-output characteristics of this subrou­
tine. 

3) Knowledge of Internal Structure Needed 
by User. Very little if any internal knowledge 
of the workings of the STUDENT system need 
be known by the user. He must have a firm 
grasp of the type of problem that STUDENT 
can solve, and a knowledge of the input gram­
mar. For example, he must be aware that the 
same phrase must always be used to represent 
the same variable in a problem, within the 
l~~~.j..~ ~.J! ~~~~l~_~.j..~? ,J~.g~~,J ~~.~l~~~ U ~ ~ •• ~.j.. 
UllUlIl:) V~ 1:)1111UCtl1l1.Y U1;:;11111;:;U I;:;Ctl. uta. ~~I;:; l.l1Ui::IlI 

realize that even within these limits STUDENT 
will not recognize more than one variation on a 
phrase. But if the user does forget any of these 
facts, he can still use the system, for the inter­
action discussed in the next section allows him 
to make amends for almost any mistake. 

4) Interaction with the User. The STU­
DENT system is embedded in a time-sharing 
environment and this greatly facilitates inter­
action with the user. STUDENT differentiates 
between its failure to solve a problem because 
of its mathematical limitations and failure 
from lack of sufficient information. In case of 
failure it asks the user for additional informa­
tion, and suggests the nature of the needed in­
formation (relationships among variables of 
the problem). It can go back to the user re­
peatedly for information until it. has enough 
to solve the problem, or until the user gives up. 

STUDENT also reports when it does not 
recognize the format of an input sentence. 
U sing this information as a guide, the user is 
in a teaching-machine type situation, and can 
quickly learn to speak STUDENT's brand of 
input English. By monitoring the assumptions 
that STUDENT makes about the input, and the 
global information it uses, the user can stop 
the system and reword a problem to avoid an 
unwanted ambiguity, or add new general in­
formation to the global information store. 

B. Extensions 
The present STUDENT system has reached 

the maximum size allowable in the LISP system 
on a thirty-two thousand word IBM 7094. 
Therefore, very little can be added directly to 
the present system. All the programming ex­
tensions mentioned here are predicated on the 



existence of a computer with a much larger 
memory. 

Without inventing any new techniques, I 
think that the STUDENT system could be 
made to understand most of the algebra story 
problems that appear in first year high school 
text books. If new operators, new combinations 
of arithmetic operations occur, they can easily 
be added to the subroutine which maps the 
kernel English sentences into equations. The 
number of formats recognizable in the system 
can be increased without reprogramming 
through the machinery available for storing 
global information. Th~ problems it would not 
handle are those having excessive verbiage or 
implied information about the world not ex­
pressible in a single sentence. 

As mentioned earlier, the system can now 
make use of any given schema only once in 
solving a problem. This is because the schema 
equation is added to the set of equations to be 
solved, and the variables in the schema only 
identified with one another set of variables ap­
p'earing in the problem. For example, if "dis­
tance equals speed times time" were the schema, 
the "distance", as a variable in the schema 
might be set equal to "distance traveled by 
train" or "distance traveled by plane", but not 
both in the same problem. This problem could 
be resolved by not adding the schema equation 
directly to the set of equations to be solved, but 
by looking for consistent sets of variables to 
identify with the schema variables. Then STU­
DENT could add an instance of the schema 
equations, with the appropriate substitutions, 
for each consistent set of variables found which 
are "similar" to the schema variables. 

At the moment the solving subroutine of 
STUDENT can only perform linear operations 
on literal equations, and substitutions of num­
bers in polynomials and exponentials. It would 
be relatively easy to add the facility for solving 
quadratic or even higher order solvable equa­
tions. One could even add, quite easily, suffici­
ent mechanisms to allow the solver to perform 
the differentiatio~ needed to do related rate 
problems in the differential calculus. 

The semantic base of the STUDENT system 
could be expanded. In order to add the relations 
recognized by the SIR system of Raphael, for 
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example, one would have to add on the lowest 
level of the STUDENT program the set of ker­
nel sentences understood in SIR, their map­
ping to the SIR model, and the question-:answer­
ing routine to retrieve facts. Then the ap­
paratus of the STUDENT system would process 
much more complicated input statements for 
the SIR model. One serious problem which 
arises when the semantic base is extended is 
based on the fact that one kernel may have an 
interpretation in terms of two different seman­
tic bases. For example, "Tom has 3 fish." can 
be interpreted in both SIR and the present 
STUDENT system. To resolve this semantic 
ambiguity,' the program can check the context 
of the ambiguous statement to see if there has 
been one consistent model into which all the 
other statements have been processed. If the 
latter condition does not determine a slngle 
preferred interpretation for the statement, then 
both interpretations can be stored. 

One use for our model for generation and 
analysis of discourse would be as a hypothesis 
about the linguistic behavior of people. STU­
DENT may be a good predictive model for the 
behaviour of people when confronted with an 
algebra problem to solve. This can be tested, 
and such a study may lead to a better under­
standing of human behaviour, and/or a better 
reformulation of this theory of language pro­
cessing. 

I think we are far from writing a program 
which can understand all, or even a very large 
segment of English. However, within its nar­
row field of competence, STUDENT has dem­
onstrated that "understanding" machines 12 can 
be built. Indeed, I believe that using the tech­
niques developed in this research, one could 
construct a system of practical value which 
would communicate well with people in English 
over the range of material understood by the 
program. 
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Unit Preference and Set of Support Strategies 

The theorems, axioms, etc., to which the 
algorithm and strategies described in this 
paper are applied are stated in a normal form 
de~ned ~. follows: A literal is formed by pre­
fixIng a predicat€' letter to an appropriate 
number of . argUments (constants,' variables, or 
expressions formed with the aid of function 
symbols) and then perhaps writing a negation 
sign (~) before the predicate letter. For €X~ 
ample: 

P(b,x) -P(b,x) Q(y) R(a,b,x,z,c) S 

are all literals if P, Q, R, and S are two-, one-, 
five-, and zero-place predicate letters, respec­
tively. The predicate letter is usually thought 
of as standing for some n-place relation. Then 
the literal P (a,b), for example, is thought of 
as saying that the ordered pair (a,b) has the 
property P. The literal - P (a,b) is thought of 
as saying that (a,b) does not have the prop­
erty P. 

One may build a clause by writing a sequence 
of literals separated by disjunction (logical 
"or") signs. Logical "or" will be symbolized 
by a small letter "v" (distinguishable from pos­
sible uses of "v" as a variable from context). 
Where it is desired to indicate dependence of a 
particular argument of a predicate letter upon 
one or more other variables, function symbols 
are employed. The clause 

P(x,y,z) v Q(x,f(x,y» 

thus says that either the ordered triple (x,y,z) 
has the property P or the ordered pair 
(x,f (x,y» has the property Q (or both). Each 
of the variables in a clause is then thought of 
as being universally quantified (that is, if the 
variable x occurs in a clause, the clause is as­
sumed to be preceded by an implicit quantifier, 
"for each x." Functional expressions such as 
f (x,y) are then treated as existentially quanti­
fied variables. Roughly speaking, f (x,y) in the 
example above stands for an element (depend­
ing on x and y) which forms, when used as the 
second element with x as the first element an , , 
ordered pair which has the property Q. A unit 
clause is a clause composed of a single literal. 

Finally, one may consider a sequence of 
clauses implicitly joined by logical "and" (con­
junction). Such a sequence of clauses will be 
said to be in (conjunctive) rwrrnal form. 

Instantiation, as applied to this normal form, 
can be thought of as the forming' of a possibly 
less general (more specific) i1lJ8tance of a clause 
by performing a systematic replacement of 
variables by constants, new variables, or by 
expressions formed with the aid of function 
symbols. Substituting b for x and f(d,u) for 
y in the clause 

P(x,y) v Q(b,y) 

would yield a less general instance of that 
clause: 

P(b,f(d,u» v Q(b,f(d,u». 

* Work performed under the auspices of the U. S.Atomic Energy Commission. 
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The latter is less general in that, while it can 
be deduced from the former, the former cannot 
be deduced from the latter. 

Early computer-oriented theorem-proving ef­
forts employed search techniques involving in­
stantiation of a given set of logical formulae. 
In these methods, successively larger sets of 
constants were generated. As each set was gen­
erated, all permissible substitutions of such 
constants for variables were made in the origi­
nal formulae, producing successively larger 
sets of instances. These instances· differed from 
the original formulae in that they included no 
logical quantifiers: "For each x," "For some x," 
etc. For sets of such quantifier-free formulae, 
straightforward techniques were known for 
determining validity or inconsistency. P. C. 
Gilmore2 described an IBM 704 program using 
the technique of conversion of sets of quanti­
fier-free formulae from conjunctive normal 
form to disjunctive normal form. Davis and 
Putnam intropuced a substantial improvement 
in the method of testing such sets of quantifier­
free formulae. A 704 program4 incorporating 
this improvement proved to be several orders 
of magnitude faster than Gilmore's program 
for the same machine. 

These instantiation techniques employed the 
argument forms existential instantiation and 
universal instantiation (see for example 
Quine5

) to infer the quantifier-free instances 
from the original . formulae. All permissible 
substitutions were made in a systematic, ex­
haustive manner,guaranteeing that if a proof 
existed of the desired theorem, it would be cap­
tured in the steadily expanding sets of in­
stan.ces. The disastrous rate of growth of these 
sets,!iue to the inclusion of numerous unprofit­
able, inferences, spelled .,the d,oom of exhaus­
tive ·.lnstantiation. Study of the nature of the 
i~stances which could . be expected to result 
from(such a program led, however, to the sus­
picion that the logical completeness of the 
method could be retained but the combinatoric 
explosion substantially reduced by considering 
the generalizations represented by classes of 
similar instances. This led to the formulation 
of computer-oriented rules of inference. which 
suppressed universal ,instantiation and retained 
universally quantified variables in their more 
general form. These rules were codified and 

put on a sound logical basis by J. A. Robinson3 

in his paper on the resolution principle. As a 
computer algorithm, he proposed that the origi­
nal set of formulae be completely "resolved" in 
the sense that all possible applications of the 
inference rule resolution be made in a system­
atic, exhaustive manner. 

Where exhaustive instantiation methods met 
their downfall was in blindly forming all pos­
sible maximally specific instances from a given 
set of clauses; once formed, such instances were 
never to be discarded. Only then was consider­
ation given to what interactions might occur 
between the instances (specifically, to whether 
the set thus generated was inconsistent). Fur­
thermore, in most interesting cases, many new 
objects to be substituted were manufactured, 
resulting in a combinatoric explosion of further 
instances. 

Resolution, as proposed by J. A. Robinson, 
curtails the number of instances produced, in 
that it produces a new clause only when it can 
be determined in advance that two existing 
clauses will, when each is instantiated, yield a 
pair of instances that will interact, forming a 
clause which could not have been inferred from 
either parent clause taken by itself. Specifi­
cally, in resolution a pair of clauses (each of 
which is called a resolvend) is examined to see 
if there is a· substitution which will transform 
the clauses into a pair of the form 

L v Ll V L2 V ••• v Lm, - L V Kl V K2 V ••• v Kn 

From such a pair, the clause 

Ll v L2 V ••• v L~ V Kl V K2 V ••• Kn 

can be inferred. This clause (called the resol­
vent) is then added to the set of clauses which 
ha ve been accumulated from previous infer­
ences. Furthermore, a substitution is considered 
only if it is the most general that could be 
made, thus maintaining the maximum degree 
of generality in the result. Another closely re­
latedmethod of inference is factoring: A sub­
stitution is sought such that (a) two or more 
of the literals of a clause will collapse into a 
single literal, and (b) no more general substi­
tution would have the same effect.. The result­
ing clause is called a factor. 

Substitution of these rules of inference. for 
the earlier instantiation inference rules was 
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shown to produce a reduction of the combina­
toric explosion by a factor in excess of 1050, 
leading to some rather spectacular achieve­
ments when compared to the instantiation 
techniques. Nevertheless, the search algorithm 
employed a more or less random generation of 
resolvents inferred by means of the resolution 
principle. Using only these techniques, previ­
ously established bench-mark problems required 
prohibitive amounts of machine time. It seemed 
that a change of emphasis would be profitable. 

One approach would be to concentrate upon 
the strategies of search. The current paper 
considers one such strategy, the unit preference 
strategy. This strategy has been implemented 
in a theorem-proving program now successfully 
running on the Control Data 3600. We will de­
scribe the search algorithm employed in the 
program, prove its soundness and completeness, 
consider some examples, and describe addi­
tional search strategies which can be employed 
to effect further improvement. 

The principal search strategy arises from the 
fact that the object of the resolution principle 
is the generation through inference of two unit 
clauses which are manifestly contradictory. 
Here and elsewhere in this paper, contradict 
is used as in mathematics in the somewhat 
broader sense of conflict, rather than in the 
narrower sense frequently used in logic. Two 
clauses will be called contradictory if they are 
mutually exclusive (contrary) clauses. We do 
not require them to bear the relation of a clause 
to its negation. With this in mind, it seemed 
worthwhile to orient the program to produce 
shorter and still shorter clauses in preference 
to other possible inferences. 

"The Unit Preference Strategy 
The data for consideration consists of a set 

of clauses in the normal form. The clauses cor­
respond to a given set of axioms and the denial 
of a theorem to be proved from these axioms, 
for it is to be remembered that the program 
finds proofs and not theorems. Remember that 
all variables that occur are treated as univer­
sally quantified; an existentially quantified 
variables have been replaced by constants or 
functions. 

The algorithm is divided into two sections, a 
unit section and a non-unit section. Where a 

j-clause is a clause of length j (Le., has j lit­
erals), and the j-list is the list of j-clauses, the 
logic of the unit section is as follows, starting 
with j = 1: 

1. Search the unit list and the j-list for a 
pair of elements C and D such that C is 
a unit, D is of length j, and for some 
literal m of D resolution has not been 
attempted for C and D on m; if no such 
pair exists, execute step 2; if such a pair 
exists, execute step 3. 

(The search in the program proceeds by taking 
the first unit and the first j-clause and exam­
injng each of its literals; the procedure is re­
peated with the same j-clause and the next unit, 
and continues until the unit list is exhausted. 
Then the process is applied to the next 
j-clause.) 

2. If j is the length of the longest clause 
present, enter the non-unit section; if not, 
increase j by 1 and return to 1. 

3. Resolve C and D on m; if no resolvent is 
generated, return to 1 and resume the 
search; if a resolvent of length i > 0 is 
generated, add the resolvent to the i-list, 
set j = i, and return to 1; if the empty 
resolvent is generated, execute the proof 
recovery. (The generation of the empty 
resolvent is equivalent to finding that the 
clauses C and D are manifestly contradic­
tory.) 

In order to avoid the possibility of being 
caught in an infinite loop, there is a constraint 
placed on step 3. The constraint is formulated 
in terms of the concept of the level of a clause. 
Let So be the original set of clauses; define Si 
for i > 0 to be the set of resolvents of Si - 1 

together with Si _ 1. The level k of a clause C 
is 0 if C is input, is that of B if C is obtained 
by factoring B, and is 1 greater than the maxi­
mum of the levels of A and B· if C is obtained 
by resolving A and B. The constraint imposed 
on 3 is: if the resolvent of C and D is a non­
unit whose level is a specified bound ko, or a 
unit whose level exceeds ko, then it is not added 
to the corresponding list, and the pair is treated 
as if no resolvent were generated. To illustrate 
the difficulty thus avoided consider the set con­
sisting of the clauses P (a), - P (x) v P (f (x», 
which correspond to a subset of the Peano 
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axioms, and some clause of length 3. Without 
the level bound, the program would generate 
P(f(a», P(f(f(a»), P(f(f(f(a»», ... , ad 
infinitum. We would be caught in an infinite 
loop which would continually present and exe­
cute the task of resolving a new unit with the 
same 2-clause instead of either passing to the 
proof recovery or to the non-unit section. 

The non-unit section beings by setting j = 2, 
then: 

1. Search the j-list for a clause D with lit­
erals 1 and m on which factoring has not 
been attempted; if one exists, execute 2; 
if not, execute 3. 

2. Factor D on 1 and m; if no factor is 
generated, return to 1; if a factor C of 
length i is generated, add C to the i-list, 
set j = i, and return to step 1 of the unit 
section. 

3. If j = 2, increase j by 1 and return to 
step 1 of the non-unit section; if j =1= 2, 
execute 4. 

4. Set h = 2, replace j by j-l, and execute 5. 

5. Search the h-list and the j-list for a pair 
C and D such that C is an h-clause with 
a literal 1, D is a j-clause with a literal m, 
and resolution has not been attempted for 
C and D on 1 and m; if no such pair ex­
ists, execute 6; if such a pair exists, exe­
cute 7. 

6. If h > the maximum length of all clauses 
present, the program stops with the con­
clusion that no proof exists within level 
ko; if h < this maximum and h + 1 ~ j, 
replace j by h + j and return to 1 of the 
non-unit section; if h + 1 < j, replace h 
by h + 1 and j by j - 1 and return to 5. 

7. Resolve C and D on 1 and m; if no resol­
vent is generated, return to 5; if a resol­
vent B of length i is generated, then add 
B to the i-list, set j = i, and return to 1 
of the unit section. Again the level con­
straint imposed on Step 3 of the unit sec­
tion applies. 

Soundness and Completeness 
The soundness of the procedure follows from 

the fact that if C is in Si or a factor of some 
D in Si for any i, C is implied by So, i.e., C is a 
consequence of So. So, if C and D are elements 

of the unit list which conflict (are manifestly 
contradictory), 8.0 is inconsistent. 

The argument for completeness is as follows: 
J. A. Robinson3 proved in effect that if So is an 
inconsistent set, there exists a k such that Sk 
contains the empty resolvent; this implies that 
Sk - 1 contains two clauses which are units or 
have unit factors which conflict. The claim is 
that when the level bound ko of the program 
is equal to this k, whether ko is immediately 
set equal to k or set equal to 1,2, ... k, the 
desired unit conft.ict will be obtained. At any 
given time the set of clauses which occur on 
any list is contained in Sk, and is therefore 
finite. The search through any list for poten­
tial factors or through any pair of lists for 
potential resolvents is a finite process since all 
lists are finite. The number of searches 
through any list is limited by the size of the 
input and the number of clauses which are ad­
joined and is, therefore, finite also. So any 
clause which occurs on any list will do so after 
a finite number of steps. In a similar fashion 
we can see that all clauses on all lists will be 
factored and, within the level bound, pairwise 
resolved in a finite number of steps. Consider 
the case where ko is sufficiently large to have 
SkO contain the empty resolvent. If ko = 1, So 
contains the clauses which yield the conflict, 
and the previous argument shows that the pro­
gram will examine the pair in question. If 
ko = 2, the same argument shows that S1 will 
be contained in the lists of clauses, and again 
the conflict will be obtained. Applying the argu­
ment ko times shows SkO - 1 will be contained in 
the lists of clauses. So we have proven the fol­
lowing lemma. 

Lemma: Using the search algorithm with 
level bound ko such that Sk{) contains the empty 
resolvent, the program finds a proof if and 
only if So is unsatisfiable. 

Subsidiary Strategies 
The most important subsidiary strategy is 

based on the concept of a chain. With the 
appropriate grouping, any clause which occurs 
on any list is expressible in terms of the ele­
ments of S{) together with the operators of 
resolution and factoring. Such an expression is 
called a chain, and the number of resolutions 
which occur therein is its length. The elements 
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of So and the factors of those elements are 
chains of length 0; those of Sl have chains of 
length 0 and 1; those of S2 have chains of 
length of 0, 1, 2 and 3. 

If T is a nonempty subset of 8.0 and C is a 
chain of length 0 whose single element is in T 
or is a factor of an element in T, we say C is 
supported by T or C has T -support. Chains C 
of length greater than 0 have T-support if, for 
every resolution, that occurs in C, at least one 
of the resolvends has T -support. The clause B 
is said to be derived from T, if its chain (its 
expression or derivation in So) has T-support. 

The strategy employed here is to choose T 
and generate only those elements of Si for i > 0 
which are derived from T. The choice of T 
obviously has a profound effect on the number 
of clauses generated during the search for a 
proof. The question remains as to which avail­
able choices of T preserve completeness of the 
procedure. By the lemma of the previous sec­
tion, T = So is admissible under the appropri­
ate conditions. For a given So the clauses might 
be divided into 3 categories; those which cor­
respond to the basic axioms of the theory under 
study; those which correspond to the special 
hypotheses of the theorem under consideration, 
and those which correspond to the denial of the 
conclusion of the theorem. For example, con­
sider the theorem: in a group, if the square of 
every element is the identity, the group is com­
mutative. The first category would consist of a 
set of axioms which characterize groups; the 
second would consist of the axiom, for every x 
in the group X2 = e; the third would be the 
denial of commutativity, there exist a and b 
such that ab =1= ba. (This example will be con­
sidered later under various conditions.) It ap­
pears that, where T is the join of the last two 
categories, this choice of T for set of support 
preserves completeness and is most valuable in 
obtaining proofs in a reasonable amount of 
time. 

Among the other strategies which can be 
employed are: deletion of the unit clause B 
upon generation if the unit list contains a 
clause A such that every instance of B is also 
one of A; deletion upon generation of a clause 
if it contains two literals which have opposite 
sign but are otherwise identical; deletion of B 

if the unit A is a resolvent of B with some C 
such that all instances of some literal k of B 
are contained in the set of instances of A. 

EXAMPLE 1: In an associative system with 
left and right solutions, there is a right identity 
element. 

Basic Axioms: 
AI. - P (x,y,u) v - P (y,z,v) 

) v -P(x,v,w) v P(u,z,w) 
A2. - P (x,y,u) v - P (y,z,v) 

v - P (u,z,w) v P (x,v,w) 
(associativity) 

A3. P (g (x,y) ,x,y) (left solution) 
A4. P (x,h (x,y) ,y) (right solution) 
A5. P (x,y,f (x,y» (closure) 

Negation of Conclusion: 
A6. - P (j (x) ,x,j (x» (no right identity) 

When A6 was taken as the only member of 
the set of support, the computer generated the 
following proof in 35 milliseconds with 11 
clauses in memory at the time the proof was 
detected: 

1. - P (x,y,u) v - P (y,z,v) v 
-P(x,v,w) v P(u,z,w) 

2. P (g(x,y) ,x,y) 
3. P (x,h (x,y),y) 

4. 
5. 

- P (j (x) ,x,j (x) ) 
- P (x,y,j (z» v - P (y,z,v) 

(AI) 

(A3) 
(A4) 

(A6) 

v - P (x,v,j (z) ) (from 4 and 1) 
6. - P (y,z,v) v - P (g (y,j (z) ) ,v,j (z) ) 

(from 2 and 5) 
7. - P (v,z,v) (from 2 and 6) 

Since 3 and 7 are manifestly contradictory, 
the proof is complete. 

EXAMPLE 2: In an associative system with 
an identity element, if the square of every ele­
ment is the identity, the system is commutative. 

Basic Axioms: 
AI. P (x,e,x) (right identity) 
A2. P (e,x,x) (left identity) 
A3. - P (x,y,u) v - P (y,z,v) ) 

v -P(u,z,w) v P(x,v,w) . 
A4. - P (x,y,u) v - P (y,z,v) 

v -P(x,v,w) v P(u,z,w) 
( associa ti vi ty ) 
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Special Hypothesis: 

A5. P (x,x,e) 
(The square of every element is the 
identity.) 

Negation of Conclusion: 

A6. P(a,b,c) 
A7. -P(b,a,c) 

(There are elements a and b which 
do not commute.) 

When A1 through A 7 were used as the set 
of support, the machine generated the following 
proof in 1.124 seconds with 119 clauses in 
memory at the time the proof was detected. 

1. P (x,e,x) (A1) 
2. P (e,x,x) (A2) 
3. - P (x,y,u) v - P (y,z,v) 

v -P(u,z,w) v P(x,v,w) 
4. - P (x,y,u) v - P (y,z,v) 

v - P (x,v,w) v P (u,z,w) 
5. P(x,x,e) 
6. P(a,b,c) 
7. - P (b,a,c) 
8. -.p (x,y,e) v - P (y,w,v) 

(A3) 

(A4) 
(A5) 
(A6) 
(A7) 

v P(x,v,w) (from 2 and 3) 
9. - P (y,w,v) v P (y,v,w) (from 5 and 8) 

10. -P(w,y,u) v -P(y,z,e) 
v P(u,z,w) 

11. -P(w,z,u) v P(u,z,w) 
12. P(c,b,a) 
13. P (c,a,b ) 
14. -P(c,a,b) 

(from 1 and 4) 
(from 5 and 10) 
(from 6 and 11) 
(from 12 and 9) 
(from 7 and 11) 

Since 13 and 14 are manifestly contradictory, 
the proof is complete. 

When, instead, only A5, A6, and A 7 were 
used as the set of support, the machine gen­
erated the following proof in the faster time of 
538 milliseconds with 72 clauses in memory at 
the time the proof was detected: 

1. P(x,e,x) 
2. P(e,x,x) 
3. - P (x,y,u) v - P (y,z,v) 

v - P (u,z,w) v P (x,v,w) 
4. - P (x,y,u) v - P (y,z,v) 

v - p (x,v,w) v P (u,z,w) 
5. P(x,x,e) 
6. P(a,b,c) 
7. -P(b,a,c) 

(A1) 
(A2) 

(A3) 

(A4) 
(A5) 
(A6) 
(A7) 

S. -P(y,z,v) v -P(e,z,w) 
v P(y,v,w) (from 5 and 3) 

(from 2 and S) 9. - P (y,w,v) v p (y,v,w) 
10. -P(x,z,u) v -P(x,e,w) 

v P(u,z,w) (from 5 and 4) 
(from 1 and 10) 
(from 6 and 11) 
(from 12 and 9) 
(from 7 and 11) 

11. -P(w,z,u) v P(u,z,w) 
12. P(c,b,a) 
13. P (c,a,b) 
14. -P(c,a,b) 

Since 13 and 14 are manifestly contradictory, 
the proof is complete. 

EXAMPLE 3: In a group, if the square of 
every element is the identity, the group is com­
mutative. 

Basic Axioms: 
AI. 
A2. 
A3. 
A4. 
A5. 
A6. 
A7. 

AS. 

A9. 

A10. 

All. 

A12. 
A13. 
A14. 
A15. 
A16. 
A17. 

P (x,y,f (x,y) ) (closure) 

P (e,x,x) l (existence of identity) 
P(x,e,x) ~ 
P(x,g(x),e) l 
P (g(x) ,x,e) ~ (existence of inverse) 

R (x,x) (reflexivity of =) 
-R(x,y) v 
R (y,x) (symmetry of =) 
- R (x,y) v - R (y,z) 
v R (x,z) (transitivity of =) 
- P (x,y,u) v - P (x,y,v) 
v R(u,v) 

(multiplication is well-defined) 
- P (x,y,u) v - P (y,z,v) 1 
v - P (U,Z,w) v P (X,V,w) 
- P (X,y,u) v - P (y,z,v) J 
v -P(x,V,W) v P(u,Z,W) 

( associa ti vi ty ) 
- R (u,v) v - P (x,y,u) v P (X,y,v) 1 
-R(u,v) v -P(x,U,y) v P(x,v,y) 
- R (U,v) v - P (U,x,y) v P (V,x,y) 
-R(u,v) vR(f(x,u),f(x,v» 
-R(u,v) v R(f(u,y),f(v,y» 
-R(u,v) vR(g(u),g(v» J 

(substitution for =) 

Special Hypothesis: 
A1S. P(x,x,e) 

(The square of every element is the 
identity.) 

Negation of Conclusion: 
A19. P (a,b,c) 
A20. -P(b,a,c) 

(There are elements a and b which 
do not commute.) 
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With A18 through A20 used as the set of 
support, the computer generated the following 
proof in 54 seconds with 563 clauses in memory 
at the time the proof was detected: 

1. P(x,y,f(x,y) ) (A1) 
2. P(e,x,x) (A2) 
3. P(x,e,x) (A3) 
4. - P (x,y,u) v - P (y,z,v) v 

-P(u,z,w) v P(x,v,w) (A10) 
5. - P (x,y,u) v - P (y,z,v) v 

- P (x,v,w) v P (u,z,w) (All) 
6. P(x,x,e) (A18) 
7. P (a,b,c) (A19) 
8. -P(b,a,c) (A20) 
9. -P(y,z,v) v -P(e,z,w) v 

P(y,v,w) (from 6 and 4) 
10. -P(e,z,w) v 

P (y,f (y,z) ,w) (from 1 and 9) 
11. P(y,f(y,w) ,w) (from 2 and 10) 
12. - P (x,y,z) v - P (y,z,v) v 

P(x,v,e) (from 6 and 4) 
13. -P(x,y,z) v 

P (x,f (y,z) ,e) (from 1 and 12) 
14. P (a,f (b,c),e) (from 7 and 13) 
15. - P (b,y,u) v - P (y,z,a) v 

-P(u,z,c) (from 8 and 4) 
16. -P(e,z,a) v -P(b,z,c) (from 3 and 15) 
17. - P (e,f (b,c).,a) {IrOm 11 ana 10) 

18. - P (y,z,v) v - P (y,v,w) v 
P(e,z,w) (from 6 and 5) 

19. -P(w,z,e) v P(e,z,w) (from 3 and 18) 
20. P (e,f (b,c) ,a) (from 14 and 19) 

Since 17 and 20 are manifestly contradictory, 
the proof is complete. 

Discussion 

In order to study the importance of the vari­
ous strategies discussed above, Example 2 was 

run without the aid of the unit preference 
strategy or the set of support strategy. At the 
end of 30 minutes the program had just fin­
ished generating S2' having also generated Sl' 
without obtaining a proof. By comparison, 
with the aid of these strategies, the proof was 
obtained in about .5 seconds. 

Example 3 serves to illustrate the compara­
tive difficulty encountered when attacking a 
mathematical theorem without a priori knowl­
edge, such as that employed in Example 2, as 
to which subset of the basic axioms of the 
theory is relevant. The proof of Example 2 was 
completed in about .5 seconds, while Example 3 
required 54 seconds although the same strategy 
was applied to both. It should be noted that, 
without the set of support strategy, Example 3 
was beyond the range of a 65,000 word ma­
chine. 
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COMMENTS ON LEARNIN.G AND AD.APTIVE MACHINES 

FOR PATTERN RECOGNITION* 
C.HugkMays 

I INTRODUCTION 

By learning and adaptive machines I mean 
special purpose machines with internal compo­
nents having adjustable values. The use of 
such machines for the solution of several kinds 
of problems has been proposed. These include 
the design of switching functions, the design 
of classification machines (classification ma­
chines is meant to imply recognition, predic­
tion, decision and classification machines) , 
automatic manufacturing of certain devices, 
self optimization or decision machines with 
time variable input statistics, improving the re­
liability of digital processes, and automatic wir­
ing and testing of microcomponents. Most of 
the work to date has been on using learning 
machines to design switching functions and 
classification machines. 

Learning machines will be useful only if they 
can solve significant problems faster, cheaper or 
with greater programming ease than conven­
tional machines. The recommendations and 
comments in this paper are predominantly con­
cerned with the question of the potential advan­
tages of learning and adaptive machine ap­
proaches. 

In a learning machine, samples of data are 
used as inputs to the machine. Other inputs 
indicate the desired machine response to the 
samples. Values of internal components are 
changed in accordance with some algorithm 
until the actual response is equal to the desired 
response. 

II PROBLEM STATEMENT 

A. Data Classification 
Data classification and processing problems 

are becoming so complex that new techniques 
are required if these problems are to be solved 
economically. I will be mainly concerned with 
data classification problems in the following 
material, (i.e., problems requiring that a deci­
sion or prediction be made on the basis of given 
data and performance criteria). 

For Example: 

(1) A decision to buy or sell a paritcular 
stock must be made. 

(2) The state of the weather in one week 
must be predicted. 

(3) A blood sample must be classified to de­
termine if a patient has a given disease. 

(4) Directions must be given to the pilots of 
several airplanes when their locations, 
velocities and directions of flight are 
known. 

B. Availability of Data 
In designing a classification system we may 

have a complete mathematical and statistical 
description of the physical process generating 
the data (e.g., certain control systems) or we 
may have samples of the data and a relatively 
incomplete mathematical and statistical descrip­
tion (e.g., a weather system) . The kinds of in­
formation that may be available when a data 

* This work was done at Stanford University, Stanford, California. 
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classification system is to be designed include 
the following: 

(1) A complete or partial mathematical and 
statistical description. 

(2) Many samples of data with a clear indi­
cation of the class represented by each 
sample. 

(3) Few samples of data with a clear indica­
tion of the class of each sample. 

(4) Many samples of data without a clear in­
dication of the class of each sample. 

(5) Few samples without a clear indication 
of class of each sample. 

(6) A problem with time variable character­
istics. 

(7) Any reasonable combination of the above 
itenas. ' 

In the following material most of the discus­
sion will be concerned with items 1, 2, 3 and any 
reasonable combination of these items. The dis­
cussion will assume that the decison and pre­
diction problems are to be solved by a com­
pletely mechanized system. 

C. Mechanization of Classification Processes 
There are two aspects to data classification. 

These are 1) the design of' the classification 
mechanism and 2) the problem of what to 
measure and how to preprocess the measure­
ments for presentation to a classification sys­
tem. 

The main techniques used for the design of 
classification mechanisms are logical design 1, 

the use of decision theory '2, the use of ,learning 
or adaptive machines 3, 4 and the use of heuristic 
programs.'24 Logical design can be used when 
a process is not subject to noise. Decision theory 
is used when a process is noisy and knowledge 
about the statistics of the data generated by the 
process is available. Decision theory is pres­
ently limited to cases where the statistics are 
relatively simple. The most significant results 
have been obtained for Gaussian statistics. 

This paper contains very little material on 
the use of heuristic programming approaches; 
Minsky's paper 24 contains a number of refer­
ences to this subject. 

The problem of what to measure, and how to 
preprocess the results of the measurements for 
use in a classification machine is not very well 

understood. Some work has been done on find­
ing measurements that give invariant results 
for certain transformations (e.g., rotations and 
translations) of planar figures. I know of no 
work that has been completed for arbitrary 
transformations. 

Learning machines are special purpose ma­
chines used to determine the values of compo­
nents of a classification system. The learning 
machine may also be used as an element of a 
classification system rather than as a computer 
to determine numeric solutions. Presently most 
learning machines use networks of adaptive 
threshold elements. 

III THRESHOLD ELEMENTS AND ADAP­
TIVE THRESHOLD ELEMENTS 

A. Fixed Elements 
In a threshold element a weighted sum of 

input variables is formed 5,6. If this sum is 
greater than or equal to a threshold value, the 
output of the element is a logical one; otherwise 
the output is a logical zero. In an adaptive 
threshold element the weight values are adjus­
able by adaptation circuitry. 

Geometrically, the threshold element imple­
ments a hyperplane through the space of input 
variables 7,8. In the case where the input vari­
ables represent data from two classes, the 
classes are called linearly separable if there 
exists a set of weights and a threshold such that 
the response of the threshold element is a logical 
one for inputs representing one class and a logi­
cal zero for inputs representing the other class. 

The hyperplane represents an optimum sepa­
rating surface for certain kinds of statistical 
problems (e.g., two classes with Gaussian dis­
tributions and equal covariance matrices 9). In 
these problems it is impossible to do a perfect 
job of separating the classes. Therefore the 
hyperplane must be placed so as to minimize 
the expected cost of misclassifying samples. 
For statistical problems having k classes with 
equal covariance matrices, we may require k 
(k-1) /2 threshold 'elements followed by a de­
coding network. If the analog value of the 
weighted sum minus the threshold is available 
for manipulation, we need only k-1 summing 
elements plus circuits to compare the analog 
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values. I have no idea which scheme is cheaper. 
For a few classes, a classification mechanism 
with only threshold elements is probably 
cheaper. As more classes are added the use of 
comparison circuits in conjunction with sum­
ming elements is probably cheaper. 

Networks of threshold elements can be used 
to approximate other separating surfaces (e.g., 
quadratic and higher order surfaces). If we al­
low the use of analog multipliers (AND gates 
in the case of binary inputs), threshold ele­
ments can be used to exactly realize quadratic 
and higher order surfaces. 

Since threshold elements can realize AND, 
OR, and NOT functions, networks of these ele­
ments can be used to realize any switching 
function or logical decision rule. There has been 
a considerable amount of work on the synthesis 
of switching functions with threshold ele­
ments 5, ~,10. 

B. Adaptive Elements 
Algorithms for changing the weight values 

of a single adaptive threshold element are very 
well understood 3, 11-13. I know of only one 
case '25 where these algorithms tend to produce 
an optimum separating hyperplane; and this is 
for a relatively simple statistical case (two 
classes, equal covariance matrices, equal a pri­
ori probabilities and the probability of mis­
classification errors is to be minimized). Al­
gorithms for nontrivial networks of adaptive 
threshold elements are not very well under­
stood. (Nontrivial means that the desired re­
sponse does not uniquely determine the response 
of every threshold element.) I know of pro­
posed algorithms 1'2 for such networks but of no 
satisfactory proof that the algorithms will 
cause convergence to a solution in a finite 
amount of time. However, experimental re­
sults indiate that these algorithms cause con­
vergence most of the time. 

The most successful adaptive machines have 
used very simple networks of adaptive thres­
hold elements. In these machines the algorithms 
for changing weight values can be interpreted 
in terms of surface searching methods '26. With 
these methods the weight values are always 
changed in a direction that moves the weights 
closer to a solution. It appears that nontrivial 
networks of adaptive threshold elements have 

local minimum (at least for the networks so 
far considered) . If surface searching methods 
are to be used, work needs to be done on finding 
ways to adapt nontrivial networks so as to 
avoid local minimum. 

As the number of inputs to threshold ele­
ments is raised, the tolerance requirements on 
weight values get continually tighter 14, 15, if the 
full power of the, elements is to be realized. This 
means that very precise components with small 
drift values must be used. One way around this 
problem is to use more threshold elements. This 
introduces redundancy into any classification 
mechanism and increases the cost. The cost in­
crease caused by redundancy may be more than 
offset by the use of less precise components. 

Threshold elements appear to be very useful 
and, at least conceptually, they are simple units. 
Realization of threshold elements with hard­
ware has included the use of Kirchoff adders, 
(at Stanford), magnetic cores 16, 17, summing 
amplifiers (at Stanford) and resistor bridge 
networks 18. Fixed threshold logic can be im­
plemented easily but adaptive threshold ele­
ments place restrictions on the phenomena that 
can be used. For example, it would be difficult 
to make an adaptive threshold element that 
used the number of turns on a magnetic core to 
control weight values. The two most successful 
adaptive components have been a variable re­
sistance device 18 and a magnetic device that 
uses remanent flux states to control weight 
values 17. 

IV USE OF LEARNING MACHINES FOR 
DESIGN PURPOSES 

A. The Experimental Approach 
In a classification machine, a sample of data 

is used as an input to the machine and some re­
sponse to this input is obtained. For example 
the input might be a photograph of a cancer 
smear and the response a diagnosis of the 
smear. In a learning machine a sample of data 
is used as an input together with an input indi­
cating the desired machine response. The in­
ternal structure of the machine is then modified 
according to some algorithm so that the actual 
response is equal to the desired response. One 
sample or several samples may be used as in­
puts at anyone time. Several machines have 
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been built (Adaline and Madaline at Stanford, 
Perceptron at Cornell) that use only one sample 
at a time as an input. As far as I know, no one 
has built a learning machine to take more than 
one sample as an input at one time. There is 
no reason why such a machine could not be 
built and there may be advantages to do so, 
particularly if the samples are correlated. 

Most experiments with learning machines 
have been performed as follows. Samples of 
data together with the classifications of the 
sarnples are stored in a conventional rnernory. 
The samples and their classifications are then 
picked one at a time to be used as inputs to a 
learning machine. This process continues until 
the response of the machine to each sample 
agrees with the desired response; the machine is 
said to have converged at this point. It may be 
necessary to use each sample as an input more 
than one time before convergence is obtained. 
After convergence is obtained the machine is 
tested on new samples. If the mahine makes 
very few misclassifications of new samples, the 
experiment is considered to be successful and 
the machine is said to have generalized. 

The experimental approach outlined above 
has been used for determining machines for 
weather prediction 19, speech recognition !20, 

classification of radar returns (no published re­
ports) and classification of electrocardio­
grams '21. These experiments were performed 
using digital computer simulations of the learn­
ing machine. These experiments appear to be 
very successful but a fair amount of work went 
into determining what measurements to take 
and how to preprocess them. In evaluating re­
sults it is difficult to separate the effects of pre­
processing from the learning machine approach. 

The experimental approach described above 
is used as a mechanism for understanding 
learning machines. Each experiment adds a­
little to our understanding. These experiments 
may show that our approach has been too naive 
and that we must understand a great deal 
more about the physical process we are experi­
menting with. On the other hand, the learning 
machine approach may provide a technique for 
exploring physical processes. For example the 
weather experiment described above showed 
that large weight values in the learning ma-

chine corresponded to geographic locations that 
the weather man found to be useful in predict­
ing the weather. 

B. Generality, Generalizing and Optimum Ma­
chines 

In order to handle many different classifica­
tion problems, learning machines must be flexi­
ble; in other words, the machine must be able 
to realize many different mappings. between in­
puts and outputs. I call this property general­
ity. If the machine has great generality~ train­
ing on a set of samples may imply very little 
about the response of the machine to new sam­
pIes; in other words, the machine may not gen­
eralize very well. It appears that if generaliz­
ing is to be obtained, either the generality of 
the machine must be limited or the algorithms 
for changing the internal structure must be 
tailored to the problem being solved. The re­
lationship between machine generality and al­
gorithms on the one hand and generalizing on 
the other is not very well understood. 

The question of optimum classifying mechan­
isms has been mentioned above in connection 
with certain problems handled by decision 
theory. With the one exception mentioned 
above; I know of no case where a learning ma­
chine gives an optimum classifying system. If 
optimization criteria can be defined for particu­
lar classification problems and a way can be 
found to implement these criteria in the learn­
ing machine, the problem of generalizing may 
be fairly well solved. There has been work on 
using analog computers '22 for solving certain 
linear programming problems. This work is 
similar to recent work on learning machines. 
Results using analog computers were never 
very successful because of accuracy limitations; 
however, the approach may indicate ways to 
enter optimization criteria into learning ma­
chines. 

If a learning machine is trained on a limited 
number of samples the machine may converge 
to a very non-optimum solution because the 
amount of data is not sufficient to define an op­
timum solution. Sometimes a limited amount 
of data may be accompanied by a partial mathe­
matical and statistical description of the process 
generating the data. I know of no general 
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method for using the mathematical and statis­
tical information as an input to the learning 
machine. If a method can be found to use all 
available information as inputs to learning ma­
chines, a limited number of samples may not 
be such a great handicap. 

The above discussion indicates that a learn­
ing machine may require a rather large instruc­
tion set. This instruction set may have pe­
culiar characteristics when compared to the in­
structions for a conventional digital computer. 
For example, an instruction used to enter sta­
tistical characteristics of data may require that 
the machine rewire its components. Of course 
this could be done by use of logical gates. 

C. Preprocessing 

If a learning machine has limited generality, 
its performance is very dependent on what 
measurements are taken and how these meas­
urements are preprocessed for presentation to 
the machine. In the weather prediction experi­
ments mentioned above, the input information 
was barometric pressure and change of pres­
sure over a 24 hour period at several geographic 
locations. When the information presented was 
changed to the actual pressures 24. hours apart, 
the performance of the solution found by the 
learning machine was much worse than that 
found using the same information presented in 
the form of pressure and change of pressure. 
The preprocessing of the data had a consider­
able effect on performance even though the in­
formation content was not changed. 

In other cases, the preprocessing of data may 
deterruine if a learning machine of limited gen­
erality will converge to a solution at all. The 
designer of a classification system may not be 
able to use a learning machine without a con­
siderable knowledge of the process generating 
the data and of the limitations of the machine. 
The designer's work may be to determine how 
to preprocess the data so that the learning ma­
chine will converge to a satisfactory solution 
as determined by cost criteria. 

D. Ease of Use and Speed 

One of the possible advantages of using a 
learning machine for design of classification 
systems is ease of programming. The idea of 
using samples of data and desired responses as 

inputs and then letting the machine grind away 
until convergence is obtained is relatively sim­
ple. It should be possible to design learning 
machines that can be easily programmed. 

If a long time is required to converge with a 
learning machine, it might be cheaper to use a 
general purpose digital computer. On the other 
hand if the learning machine can be made 
cheaply, a longer time to solve a problem may 
not be too much of a disadvantage. The ques­
tion of speed is essentially a hardware question 
and it is too early to make any comments on the 
relative speed of digital computers and learning 
machines (which may be special purpose digital 
computers) . 

V OTHER USES FOR LEARNING AND 
ADAPTIVE MACHINES 

The above discussion was mainly concerned 
with using learning machines for the solution 
of conventional problems. Problems exist for 
which machines similar to learning machines 
might be used as permanent parts of operating 
systems. 
Possible other uses for adaptive machines in­
clude the following: 

(1) Manufacturing classification machines 
(2) Compensation for drift and failure of 

machine components 
(3) Optimization of machines having inputs 

with unknown time variations. 

The idea of using the concepts of learning ma­
chines in manufacturing processes is appealing. 
A single kind of adaptive unit produced in large 
quantities could be trained to perform many 
different functions by presenting different in­
puts and desired responses to different units. 
A practical question is, Does the decreased cost 
of producing identical units more than offset 
the increased cost of adaptive units? 

It may turn out that some sort of adaptive 
capability will be helpful in manufacturing de­
vices using microcomponents. Two of the maj or 
problems with microcomponents appear to be 
the problem of interconnections and the prob­
lem of not obtaining 100 % yields. Perhaps 
some sort of adaptive scheme can be formulated 
to provide automatic interconnection of good 
components and rejection of bad components. 
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The use of redundancy and adaptation to in­
crease the reliability and lifetime of digital sys­
tems has been proposed 23. I know of no prac­
tical system that uses adaptation for compen­
sation of changes in component values, but the 
idea appears to be workable. Redundancy im­
plies that all working component are not being 
used to their full capabilities. In some instances 
it may be desirable to use adaptive techniques 
to assure that all components are being used to 
their full capabilities. 

One of the more exciting possibilities for 
adaptive techniques is their use for self-opti­
mization of a classification machine as the sta­
tistics of the inputs change. For example, in a 
speech recognition system, a machine that per­
forms well on one speaker can be found rela­
tively easily; however, a machine that will per­
form well on many different speakers is more 
difficult to find. With an adaptive speech rec­
ognizer, the system could be optimized for in­
dividual speakers. Other examples include a 
communication channel with time variable noise 
characteristics and a piece of equipment that 
generates data with an average that changes as 
the equipment ages. 

In Section IV A above a procedure for use of 
a learing machine was decribed that required a 
conventional memory for the storage of data. 
In some applications it may be necessary to 
start classifying inputs before all data is avail­
able; as more data becomes available it should 
be possible to design a better classification ma­
chine. 

It may be possible to design adaptive ma­
chines that can have their performance updated 
as more data becomes available without having 
to store all past data in a conventional memory. 

A concpet evolving in the field of learning 
machines with time variable input statistics has 
been called learning without a teacher. In the 
learning machines described above, a desired 
response was supplied with each training sam­
ple. In learning without a teacher, no desired 
response is supplied; the values of internal com­
ponents are changed by rules that depend on the 
response of the machine rather than on desired 
responses. There has been relatively little work 
on this idea and I know of no published work. 

VI RECOMMENDATIONS 

The basic problem in the learning machine 
field is to determine if learning and adaptive 
machine approaches offer cost, speed or ease 
of programming advantages over more conven­
tional approaches. Before the solution to this 
problem is obtained, several theoretical and 
technological problems need to be explored. 
Specific recommendations are given in the fol­
lowing paragraphs: 

problems that can be solved by learning 
machine approaches should be made. 

(2) The properties and limitations of 
threshold elements should be thoroughly 
understood. A side benefit from this 
item may be efficient methods of syn­
thesis of switching functions with 
threshold elements. 

(3) Algorithms for adjusting the weights 
and thresholds of networks of threshold 
elements should be found. This item 
will require research into the structure 
of such networks as well as into al­
gorithms for adjusting weights. 

( 4) The use of something other than 
threshold elements in learning machines 
should be investigated. I have no spe­
cific technique to suggest. 

(5) Some way of entering optimization cri­
teria into a learning machine should be 
found. Work done on using analog com­
puters to solve linear programming 
problems may give a clue on how to do 
this. 

(6) Some way of entering partial mathe­
matical descriptions into a learning ma­
chine should be found. The problem 
with this and the previous item is find­
ing a way to enter many different kinds 
of information into a single machine. 

(7) The instruction set for the learning ma­
chine and the set's relationship to ma­
chine structure and algorithms should 
be investigated. Some instructions may 
require manual or automatic rewiring 
of the machine structure. 

(8) The relationship of generality to ma­
chine structure should be investigated. 
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(9) The relationships of generality, ma­
chine struture, and algorithms to gen­
eralizing should be investigated. 

(10) Problems of measurements and pre­
processing as related to learning ma­
chines should be investigated. It may 
not be possible to come up with broad 
conclusions on this item. Measurements 
and preprocessing may depend so in­
timately on the process generating data 
that only conclusions for specific proc­
esses can be formulated. Probably this 
item can be best approached by study­
ing specific processes and trying to gen­
eralize the results. 

(11) The question of what to do with a 
learning machine when only a small 
sample size is available should be in­
vestigated. 

(12) The question of tolerance requirements 
for the components of a learning ma­
chine should be investigated. 

(13) Questions concerning speed and cost 
are predominantly technological ques­
tions. To answer these questions the 
cost and speed of components to imple­
ment the findings of the investigation 
outlined above should be determined. 
The need for special purpose devices 
should be investigated. 

( 14) The concept of learning without a 
teacher should be investigated. 

(15) The use of adaptive techniques in 
manufacturing processes should be in­
vestiga ted. 

(16) Techniques for updating the perform­
ance of learning and adaptive machines 
as, more data and information become 
available should be investigated. The 
problem here is to find updating proce­
dures that do not require that all past 
input data be stored in a conventional 
memory. 

C. Hugh Mays 
IBM, Poughkeepsie, New York 

REFERENCES 

1. S. H. CALDWELL, "Switching Circuits and 
Logical Design," John Wiley & Sons, Inc., 
New York, N. Y.; 1959. 

2. D. BLACKWELL and M. A. GIRSHICK, 
"Theory of Games and Statistical Deci­
sions," John Wiley & Son, Inc., New York, 
N. Y.; 1954. 

3. F. ROSENBLATT, "Principles of Neurody­
namics: Perceptrons and the Theory of 
Brain Mechanisms," Spartan Books, Wash­
ington, D. C.; 1962. 

4. B. WIDROW and J. B. ANGELL, "Reliable, 
Trainable Networks for Computing and 
Control," Aerospace Engineering, Vol. 21, 
No.9, September 1962, pp. 78-123. 

5. R. O. WINDER, "Single Stage Threshold 
Logic," Proc.First Annual Symposium on 
Switching Circuit Theory and Logical De­
sign; October 1960. 

6. S. MUROGA, 1. IODA, and S. TAKASU, "Theory 
of Majority Decision Elements," Journal 
of the Franklin Institute, Vol. 271, pp. 376-
418; May 1961. 

7. R. L. MATTSON, Master's Thesis, "The De­
sign and Analysis of an Adaptive System 
for Statistical Classification," M. 1. T., 
Cambridge, Mass. ; May 22, 1959. 

8. R. L. MATTSON, "A Self-organizing Binary 
System," Proc, EJCC, pp= 212-217; 1959. 

9. G. S.SEBESTYEN, "Decision-Making Proc­
esses in Pattern Recognition,;' MacMillan 
Co., New York, N. Y.; 1962. 

10. P. M. LEWIS, II and C. L. COATES, "Realiza­
tion of Logical Functions by a Network of 
Threshold Components with Specified Sen­
sitivity," IEEE Transactions on Electronic 
Computers, Vol. EC-12, No.5, pp. 443--454; 
October 1963. 

11. B. WIDROW, "Adaptive Sampled-Data Sys­
tems," Stanford Electronics Laboratories, 
TR No. 2104-1, Stanford University, Stan­
ford, California; July 15, 1960. 

12. W. C. RIDGEWAY, III, "An Adaptive Logic 
System with Generalizing Properties," 
Stanford Electronics Laboratories, TR No. 
1556-1, Stanford University, Stanford, 
California; April, 1962. 

13. C. H. MAYS, "Adaptive Threshold Logic," 
Stanford Electronics Laboratories, TR No. 
1557-1, Stanford University, Stanford, 
California; April, 1963. 



630 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

14. E. GOTO, "Threshold, Majority, and Bilat­
eral Switching Devices," in Switching 
Theory in Space Technology, edited by H. 
A. Ken and J. W. F. Main, Stanford Uni­
versity Press, Stanford, California; pp. 47-
67; 1963. 

15. C. H. MAYS, "Adaptive Threshold Logic" 
in Papers on Adaptive Systems, compiled 
by B. Widrow and C. F. Franklin, Stanford 
Electronics Laboratories, TR No. 2104-2, 
Stanford University, Stanford, California, 
pp. 33-47; May, 1962. 

16. M. KARNAUGH, "Puise-Switching Circuits 
Using Magnetic Cores," Proc. IRE; May, 
1955. 

17. H. S. CRAFTS, "Components That Learn 
and How to Use Them," Electronics, Vol. 
36, pp. 49-53; March, 1963. 

18. M. E. HOFF, JR., "Learning Phenomena in 
Networks of Adaptive Switching Circuits," 
Stanford Electronic Laboratories, TR No. 
1554-1, Stanford University, Stanford, 
California; July, 1962. 

19. M. J. Hu, "A Trainable Weather:-Forecast­
ing System," Stanford Electronics Labora­
tories, TR No. 6759-1, Stanford University, 
Stanford, California; June, 1963. 

20. L. R. TALBERT, et aI, "A Real-Time Adap­
tive Speech-Recognition System," Stanford 
Electronics Laboratories, TR No. 6760-1, 
Stanford University, Stanford, California; 
May, 1963. 

21. D. F. SPECHT, "Vectocardiographic Diag­
nosis Utilizing Adaptive Pattern Recogni­
tion Techniques," Engineer's Thesis, Stan­
ford U, to be published. 

22. G. A. and T. M. KORN, "Electronic Analog 
Computers," 2nd edition, McGraw-Hill 
Book Company, Inc., New York, pp. 147-
151; 1956. 

23. W. H. PIERCE, "Adaptive Vote Takers Im­
prove the Use of Redundancy," in Redun­
dancy Techniques for Computer Systems, 
edited by R. H. Wilcox and W. C. Mann, 
Spartan Books, 1962. 

24. MARVIN MINSKY, "Steps Toward Artificial 
Intelligence," Proceedings of the IRE, Vol. 
49, No.1, pp 8-30, January 1964. 

25. G. F. GRONER, "Statistical Analysis of 
Adaptive Linear Classifier," Doctoral Dis­
sertation, Stanford University, Stanford, 
California; April, 1964. 

26. J., S. KOFORD, "Adaptive Pattern Dichtomi­
zation," Stanford Electronics Laboratories, 
TR No. 6759-1, Stanford University, Stan­
ford, California; April, 1964. 



FLODAC-A PURE FLUID DIGITAL COMPUTER 
R. s. Gluskin, M. Jacoby, and T. D. Reader 

UNIVAC 
A Division of the Sperry Rand Corporation 

Blue Bell, Pennsylvania 

INTRODUCTION 

The use of fluids (both liquids and gases) for 
the transmission and amplification of power has 
been common for over a century. This power 
has been controlled by valves, pistons, and other 
mechanical parts. Within the past decade con­
siderable attention has been given, both in this 
country and in Russia, l to the use of fluids for 
control and logic functions, and until recently 
these systems also employed mechanical moving 
parts. In 1960 the Diamond Ordnance Fuze 
Laboratory (now the Harry Diamond Labora­
tories) of the U. S. Army announced a fluid am­
plifier with no moving parts2-a discovery 
which seems likely to revolutionize the whole 
field of fluid logic and control. 

There are two fundamental mechanisms in­
volved in pure fluid amplification: One is mo­
mentum transfer, and the other is wall effect. 

A jet of fluid having a density p, a velocity V, 
and a cross sectional area A has a momentum 
Ml = p V'2 A. Consider now a smaller jet, of 
momentum M2, which we shall call the control 
jet, impinging at right angles on the larger jet, 
of momentum M1 , which we shall call the power 
jet, as is shown in Figure 1. From conservation 
of momentum principles it can be seen that the 
power jet will be deflected through an angle 

() = tan-1 M2. If a receiver or catcher is placed 
Ml . 

as shown in Figure 1 all the energy of the 
power jet can, in principle at least, be recap­
tured if there is zero control jet flow. But as 
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the control jet flow is increased the power jet 
will be deflected, and less and less energy will 
enter the receiver. 

The wall effect is shown in Figure 2. If a 
wall is placed close to a jet it is found that the 
jet appears to be attracted to the wall and will 
often attach itself to the wall quite strongly. 
The reason for this is that as the jet moves it 
entrains fluid from the surrounding medium. 
This entrained fluid must be made up by fluid 
from afar. If a ,vall is placed close to one side 
of a jet, the flow of replacement fluid is im­
peded, resulting in a slightly lower pressure on 
the side of the jet close to the wall than on the 
other side where there is no impediment. Con­
sequently, the jet will bend toward the wall, 

POWER JET 
MOMENTUM=~ 

• ~ 
~ CONTROL JET 

MOMENTUM = M2 

Figure 1. Momentum Exchange. 
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J 
) 

.1 
Figure 2. Wall Effect. 

making it even harder for replacement fluid to 
flow into the low-pressure region, and even­
tually lock onto the wall altogether, forming 
what is called a low-pressure bubble upstream 
from the point of attachment. This wall effect 
is sometimes called the Coanda effect. 3 Both 
wall effect and momentum transfer are usually 
involved in most fluid amplifiers. 

The Harry Diamond Laboratories' amplifier, 
shown in Figure 3, consists of a power jet, A, 
an interaction region, B, two control jets, C and 
D, and two output passages, E and F. 

,The amplifier may be made to operate either 
proportionally or in a digital fashion, depend­
ing on slight differences in geometry. In the 
proportional device, fluid issuing from jet A 
will divide almost equally between output pas­
sages E and F in the absence of any control 
signals at C or D; but if a small amount of fluid 
is blown into the device through control port C, 
the main jet well be deflected to the right, and 
more of it will exit from passage F than from 

E F 

c B D 

H J 

A 
Figure 3. Representation of Amplifier Developed at 

Harry Diamond Laboratories. 

passage E. For small signals, the output varia­
tion can be made fairly linear with respect to 
the input, and furthermore, the output varia­
tion will be larger than the input variation, thus 
producing gain or amplification. 

If certain changes are made in the geometry 
of the proportional amplifier, namely, if the 
divider tip G is moved further downstream and 
if the walls HH and J J are moved closer to the 
centerline of symmetry, the amplifier becomes 
bistable or digital. That is, the power jet bends 
by itself and attaches to one or the other of the 
sidewalls so that even in the absence of any con­
trol signal, substantially all the flow is from a 
single output passage, for example, passage E. 

Assuming an output from passage E, if the 
pressure at control port C is now slowly in­
creased, no change occurs until a certain 
threshold value is reached, at which point the 
power jet suddenly switches to the other side 
and exits from output passage F. If the control 
signal is returned to zero, the power jet re­
mains locked to wall J J and continues to issue 
from output passage F. Thus, the device has 
memory capability and is the logical equivalent 
of the electronic flip-flop. 

All the other fundamental switching and logic 
functions which are now performed electroni­
cally can also be implemented by pure fluid de­
vices. Figure 4 shows a pure fluid inverter. This 
device is purposely made very asymmetrical 
so that in the absence of a control signal the 
fluid flows essentially in a straight line and exits 
from the left-hand leg. Only when a control 
signal of sufficient strength is present will the 
jet be blown over to the right-hand leg. The 
wall lock-on effect on the right-hand leg is mini­
mized, and when the control signal disappears 
the output will immediately return to the left­
hand leg. Thus, the output from the left-hand 
leg is the inverse of the control signal; the out­
put from the right-hand leg is the control signal 
amplified. 

An OR gate may be readily constructed by 
converting the pressure energy in two or more 
signals to velocity energy and directing this into 
a common receiver, as is shown in Figure 5. 
Because of the vector quality of the two jets, 
there will be very little leakage of signal from 
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A 

A 

Figure 4. Inverter. 

one input backward through the other unless 
the output is substantially blocked, in which 
case the fluid would have no place else to go. 
The purpose of the hvo side passages shown in 
Figure 5 is to provide for fluid escape in just 
this eventuality. If a high impedance is pre-
sented to the output the fluid will escape 
through the side bleeds rather than reversing 
and flowing into the other signal input. 

The vector properties of high-velocity jets 
are also made use of in the AND gate (Figure 
6). If the signal A is present alone it will pass 
straight through the AND gate and vent to at­
mosphere, and similarly for B alone. If sig­
nals A and B are present simultaneously, how­
ever, and have approximately equal amplitudes, 
then the resulting jet will make an angle of 45° 
to the original jets and will be caught in the re­
ceiver placed at this position. With proper de­
sign of the receiver exact balance of the two 
signals is not necessary. Ratios of 2 : 1 are 
easily accommodated. 

The combination of the OR gate and the in­
verter as shown in Figure 7 gives an extremely 
powerful element. The right-hand output is 
the amplified OR function of the inputs while 
simultaneously the left-hand output gives the 

amplified NOR function, that is, A . B. This 
principle has been extended to achieve a NOR 
gate with a fan-in and fan-out of four; that is, 
the device has been provided with four input 
terminals. The presence of a signal on anyone 
of these terminals will switch the device off, and 
the output has been divided and channeled to 
four output terminals so that four identical ele­
ments can be driven from one element. In this 
NOR gate the OR output is not provided. 

As is well known, all logic and switching 
functions can be implemented with NOR gates 
alone. A flip-flop, for example, can be made by 
interconnecting two NOR elements, as is shown 
in Figure 8. 

In this configuration, one element is in the 
1 state, and its output is used to switch the 
other element into the 0 state. The elements re­
main stable in their respective states until an 
outside signal changes the state of the flip-flop. 
With reference to Figure 8, assume that element 
A is in the 1 state, that is, its output signal is 
in leg d. This signal is sent to element B 
through input j which switches the element 
into the 0 state, that is, the jet is diverted to 

.. ~ 
A-t-tj 

Figure 5. OR Gate. 
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A·B 

B 
Figure 6. AND Gate. 

output f. There is no signal in leg e of element 
B; therefore, element A is not affected by ele­
ment B. The flip-flop will remain stable in this 
state until an outside signal is applied to ele­
ment A by way of input h. When the signal 
appears, A will be switched to the 0 state, and 
the jet will be diverted from leg d to leg c. The 
signal to input j of B will go off, and the ele­
ment will switch from the 0 state to the 1 state, 
that is, the jet will switch from leg f to leg e. 
The signal from B will then be applied to A 
through input g. When the outside signal 
through h is removed, the signal through g will 
keep A in the 0 state. The flip-flop has been 
switched, and it will remain stable in this state 
until another outside signal is applied to input 
k of element B. 

FLODAC is built entirely of NOR gates and 
requires about 250 of these elements to do its 
job. FLODAC, incidentally, stands for Fluid 
Operated Digital Automatic Computer. 

Why Fluid Amplifiers? 

Granting the feasibility of constructing com­
plex digital systems from fluid amplifiers, what 
is the motivation for doing so? What advan­
tages, if any, do fluid amplifiers have over their 
well-established electronic counterparts? The 
use of fluid amplifiers rather than their elec­
tronic counterparts may be justified on the 

A-a A+B 

Figure 7. NOR Gate. 

basis of four significant advantages: reliability, 
environmental immunity, low cost, and absence 
of r-f radiation. Each of these advantages is 
briefly discussed below: 

1. Reliability: Pure fluid amplifiers have no 
moving parts except the fluid itself. There 
is nothing to wear out, nothing to age, 
nothing to burn out. With the proper se­
lection of structural material and fluid, 
there are no potential chemical or solid-

d e 

t t 
A B 

Figure 8. FLODAC Flip-Flop. 
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state reactions. There need be no deli­
cate structures. In short, the life of a 
fluid amplifier should be practically in­
finite, whether in use or quiescent. About 
the only conceivable cause of deterioration 
would be dirt in the fluid, and this can be 
controlled easily by filtration and the use 
of closed-cycle systems. 

The fluid amplifier art is still too young 
for masses of statistical data on reliabil­
ity to have been compiled. However, the 
nature and operation of these devices are 
such that extremely favorable compari­
sons with electronic and other types of de­
vices can be expected.4 

2. Environmental Immunity: Fluid ampli­
fiers can be made of almost any solid ma­
terial, for example, plastics, metals, glass, 
or ceramics. If the right materials are se­
lected, operation is possible under environ­
mental conditions which preclude the use 
of electronic devices. For example, ce­
ramic fluid amplifiers could operate at 
white heat. Metal fluid amplifiers should 
be operable in intense radiation fields. 
With the proper materials and assembly 
procedures, shocks, or accelerations, of 
thousands 
problem. 

3. Low Cost: Fluid amplifiers consist basi­
cally of rectangular channels in a suitable 
material. They can be fabricated by any 
one of a number of extremely low-cost 
methods, such as casting, injection mold­
ing, stamping, or etching. Entire circuits 
of fluid amplifiers, including the intercon­
necting passageways, can be formed by 
such methods in one low-cost operation. 
Planes could be stacked one on top of an­
other with holes in the planes at the 
proper locations for the necessary inter­
connections. With techniques such as 
these, which are already being developed; 
it is estimated that the cost of fluid am­
plifier circuits may be as much as 100 
times less than the cost of comparable 
electronic circuits. 

4. R~f Radiation: 'No electromagnetic energy 
is radiated by fluid circuits; consequently, 
a very common and often serious problem 
associated with electronic logic, namely, 

r-f radiation, is eliminated. Often exten­
sive and costly measures must be taken to 
shield electronic equipment to prevent in­
terference with other equipment or com­
munications or to prevent detection of 
radiated intelligence by hostile agencies. 
However, such measures are never 100 
percent effective. Also, external radiation 
can seriously affect electronic equipment 
by causing errors or malfunctions. Both 
of these problems are completely elimi­
nated by fluid devices, which neither emit 
nor are affected by radiation. 

Operational Speed 
Fluid amplifiers have one significant disad­

vantage: their operational speed is relatively 
slow. Switching times are of the order of a 
millisecond, and signal propagation time is of 
the order of a millisecond per foot. Fluid am­
plifiers, at present, are only approaching kilo­
cycle rates of operation as opposed to the mega­
cycle and higher rates common in electronic 
systems. Speeds can be expected to improve, of 
course, but nanosecond switching times are not 
foreseeable today. Because of this speed limita­
tion, there may be applications where fluid am­
plifiers are not suitable. 

It should be noted that the inherent speed 
limitation can be offset appreciably by taking 
advantage of the low cost and high reliability of 
fluid amplifiers, which make it economical to 
compensate for much of the speed deficIt .. by 
making extensive use of parallel and polymor­
phic operation. 

In any event, there are numerous applications 
where the speed of fluid circuitry is adequate. 
Today's system designer must realize both the 
merits and shortcomings of these new elements; 
by appraising his problem requirements objec­
tively, he can use fluid amplifiers with excellent 
results wherever their advantages enable them 
to do the job better and/or more economically. 

SPECIFICATIONS AND LOGICAL DESIGN 

Every general-purpose digital computer must 
have means for accomplishing four basic func­
tions: Memory, Arithmetic, Control, and Input! 
Output. Consequently, it was necessary to pro­
vide these functions if we were to fully meet the 
goal of demonstrating a generalized fluid com-
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puter, even though on a very small scale. All 
four functions are fully and formally developed 
inFLODAC. 

The problems of memory size, word size, and 
instruction set are all interrelated. The objec­
tive was to build a very small air-powered gen­
eral-purpose digital computer which could be 
programmed to do a few elementary problems. 
At least three instructions seemed necessary to 
prove generality: an Arithmetic instruction, a 
Data Transfer instruction, and a Conditional 
Jump instruction. Since two bits are needed to 
specify three instructions, a fourth instruction 
becomes possible without any increase in word 
size. It was decided to make this a Halt instruc­
tion. The four instructions used then are: 

Instruction Code Explanation 

Transfer T m 

Add A m 

Jump J n 

10 (A)~m 

11 (m) + (A) ~A 

01 Go to instruction in 
memory location n if 
(A) # 0; otherwise 
continue with the next 
instruction in the 
memory. 

Halt H 00 Stop the computer. 

After a few trials it was found that a reason­
able program could be written using all four in­
structions with a memory of only four words. 
This program, which is the basic test program 
for FLODAC, will be discussed later. 

A four-word memory implies two bits for ad­
dressing, and this, with the two bit operation 
code, fixes the word length at four bits. The 
first two bits of a word are the operation code 
and the last two the address. Alternately, a 
word may consist of numerical data only. 

To recapitulate, FLODAC has four instruc­
tions and four words of memory; each word is 
four bits long. To compensate as much as pos­
sible for the speed disadvantage of fluid ele­
ments, operation is bit parallel. 

Figure 9 shows the overall block diagram of 
FLODAC. Each instruction is processed in 
four steps by the step counter which is driven 
from the master clock. The control counter 
contains the address of the next instruction to 

MEMORY 

00 M4 M3 M2 MI 

01 ~T r-r ~r -r-II 
r- - ---t-- - -=- --

10 
r- - ---t--- --- ,--

! J 
ARITHMETIC REGISTER 

A4 A3 A2 AI - .1. .L .L .1. 

J 
STATIC REGISTER ----, INSTRUCTION ADDRESS 

~ FUNCTION }= - S4 S3 ~ MEMORY 
SELECT - S2 SI 

I- SELECT 

J. J. J. J. f f I STEP I CONTROL 

COUNTER I COUNTER 

"- C2\ CI 1 
4 CLOCK ~ MANUAL CONTROL 

ONE II + INSTRUCTION CONTINUOUS START 

.L J.. J.. 

Figure 9. FLODAC, Block Diagram. 

be executed and, except during the fulfillment of 
the Conditional Jump instruction, is augmented 
by one at the end of each instruction cycle. Dur­
ing step 1 the control counter operates the mem­
ory select circuits, and by the end of step 1 the 
specified memory word, which contains the next 
instruction, is read into the static register. The 
two left-hand bits are decoded as to operation, 
and this information is sent to the function 
select circuits, where, in conjunction with step 
counter and clock signals, the necessary gating 
pulses for all instructions are generated. The 
two right-hand bits, specifying the operand ad­
dress, are sent to the memory select circuits, 
permitting the required data word to be read 
out. All this takes place during step 1. The ac­
tual instruction execution is carried out during 
some or all of the last three steps. 

The Add instruction is carried out in two 
stages. The first stage is completed during step 
3 and consists of adding the word in the mem­
ory to the word in the arithmetic register with­
out regard to carry. This portion of the Add 
instruction changes a bit in the arithmetic regis­
ter from a 1 to 0 or vice versa, whenever there 
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is a 1 in the corresponding position of the word 
to be added. The second stage of the addition 
process starts at the beginning of step 4 and 
causes a carry pulse to be sent to the next more 
significant bit position wherever the sum bit is 
presently a zero and the addend bit was a one. 
Means are provided to rapidly transmit the 
carries to subsequent stages if the original 
carry pulse would in turn produce another carry 
at the next higher bit position. This carry gen­
eration and propagation ·proceeds asynchro­
nously and could continue during steps 4 and 1, 
if necessary. It is actually completed by the 
end of step 4. 

A brief description of the operation of the 
memory may be in order here. The memory is 

WRITE WORD 
SELECT 

A REGISTER BIT 

81T1 

81T3 

81T4 

WORD 4 WORD 3 WORD 2 

a two-dimensional matrix array using flip-flops 
as the storage means. 

Figure 10 is a schematic of the FLODAC 
memory. Each block represents a NOR element 
with four inputs and four outputs. Lines into 
the left side and bottom of the blocks indicate 
inputs to the elements, and lines from the right 
side and top represent outputs from the ele­
ments. The memory contains four words, each 
consisting of four bits of information. The 
words are located in vertical columns, the right 
column being the first or 00 word address. The 
horizontal rows contain the same information 
bit for all four words, the. top row being the 
least significant bit. 

WORD 1 

READOUT 
81T1 

READOUT 
81T2 

READOUT 
81T3 

READOUT 
81T4 

Figure 10. FLODAC Memory, Schematic Diagram. 
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Writing into memory is a three-step opera­
tion. First, the memory storage location is se­
lected by the static register and the memory se­
lect circuits. Second, a clear memory signal 
from the function select erases any information 
already in that word location by resetting all 
flip-flops to zero. Third, the word in the ac­
cumulator is gated into the memory location by 
another function select signal. The write op­
eration utilizes three counts of the step counter 
cycle. 

A simple nondestructive readout is employed. 
Each of the 16 memory flip-flops feeds into an 
intermediate NOR element which in turn sends 
a signal to one of the four memory readout ele­
ments (far right in schematic). These inter­
mediate elements are controlled by the memory 
select circuits. When a particular address· is 
chosen for readout, the memory select turns off 
the intermediate elements of the other three 
words, thus prohibiting any output signals from 
these words. Parallel operation is used. There­
fore, all bits of a word are written into and 
read out simultaneously. 

Referring back to the overall block diagram, 
Figure 9, it is seen that a manual control unit 
is provided which makes possible two modes of 
operation: continuous and one instruction. To 
enter information into the memory of FLODAC 
the computer is placed in the one instruction 
mode. A word is then set up manually in the 
A register, and a Transfer instruction specify­
ing the desired memory location of the word is 
set up in the static register. When the START 
switch, also located in the manual control unit, 
is activated, the word in the A register will be 
transferred into the memory. This process is 
repeated for each word to be loaded. It should 
be mentioned perhaps that the act of setting a 
switch consists merely in putting one's finger 
lightly over a bleed hole on the control console 
(Figure 11). The resulting back pressure will 
then set a flip-flop or generate a fluid pulse, as 

the case may be. I t is difficult to imagine a sim­
pler form of keyboard. The contents of the A 
register and static register are displayed by 
using bipositional visual indicators. The in­
dicators consist of a colored ball in a glass tube. 
The balls are lifted into view by a pressure sig­
nal when the flip-flops are in the 1 state. 

CONSTRUCTION, AND TEST 

Production of Logical Elements 
The NOR elements used in FLODAC were 

made by injection-molding a thermoplastic ma­
terial into a metal negative master. 

The physical size of the fluid devices is a 
function of the width of the power input noz­
zles. The widths of the nozzles used on the 
FLODAC elements were either 0.016 inch or 
0.020 inch. These widths were chosen because 
they allowed the use of standard laboratory 
fabrication techniques and equipment and af­
forded accessible tolerances. Increased dimen­
sional accuracy was obtained by machining the 
master from a large template five times nonnal 
size and reducing by means of a pantomill. 

Reducing the size of the elements with the 
above fabrication method is limited by the size 
of the cutting tool used in making the master. 
A nozzle width of 0.005 inch might be attain­
able, but present photoetching processes are 
able to produce still smaller and more accurate 
models. 

Testing the Individual Elements 
Because of dimensional variations occurring 

during fabrication, the characteristics of the 
elements sometimes differed. It was necessary, 
therefore, to set up a testing procedure to check 
out all elements before using them in the 
FLODAC circuits. Two testing criteria were 
chosen. The first was that the pressure recov­
ery be at least a set minimum value. Pressure 
recovery is the ratio, expressed in percentage, 

Figure 11. Control Console. 
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of the output pressure to the input supply pres­
sure. At the present state-of-the-art, the NOR 
elements have a rather low pressure recovery 
factor. The FLODAC elements averaged about 
30 percent, although other experimental models 
have reached almost 50 percent. Acceptability 
for FLODAC required a pressure recovery of at 
least 28 percent. 

The second test for the elements was gain. 
This is the ratio of the element output to the 
input signal required to switch the. element. A 
figure of 1.6 was chosen as the criterion here. 
The supply pressure for the elements in 
FLODAC was 20 inches of water (0.8 of a 
pound per square inch). This means that the 
output pressure would have to be at least five 
inches of water and that the elements would 
have to switch with less than three inches of 
water input signal pressure. Elements not meet­
ing these specifications were rej ected. All tests 
were made with the device loaded with the 
equivalent load of four other elements. 

Method of Assembly and Testing of Circuits 
To simplify construction and testing of 

FLODAC, the computer was divided into two 
parts. Each half consists of a power supply 
manifold and three rows of NOR elements. 
There is a total of 280 elements in FLODAC. 
The existing circuitry requires only 250 NOR 
elements, but the extra elements were added in 
case replacements had to be made or for possi­
ble changes or extensions to the logic. The NOR 
element power inputs are plugged directly into 
the manifold. Interconnection of the elements 
is done by simply connecting one of the four 
outputs of an element to one of the four inputs 
of the next logical element in the circuit. These 
connections were made with plastic tubing. 

One side of the computer contains the clock, 
step counter, instruction portion of the static 
register, function table, and A register circuits; 
the other side contains the control counter, ad­
dress portion of static register, memory select, 
and memory circuits. 

The two halves were wired and tested inde­
pendently. Simulated pressure signals were 
used where necessary when testing the circuits 
on each side. When both were working sepa­
rately, the entire computer was assembled, all 
the cross connections between the two sections 

were made, and appropriate outputs were con­
nected to the control panel indicators. To fa­
cilitate maintenance, FLODAC was constructed 
so that one side hinges out, exposing all of the 
internal circuitry (Figure 12). 

The entire system was then tested, and after 
straightening out a few minor problems in the 
circuitry, FLODAC was working reliably as an 
independent, coordinated system. Figure 13 
is an overall view of the finished FLODAC as­
sembly. 

Testing the Complete Computer 
After all the elements had been intercon­

nected, the system was ready for a complete 
checkout. This was done by carrying out sim­
ple programs which required use of the four 
computer instructions: Add, Transfer, Jump, 
and Halt. Instructions were stored in the four­
word, four-bit memory unit. 

The FLODAC clock was capable of being 
pulsed manually so that a program could be 
carried out one step at a time and checked for 
correctness at every intermediate step. Pres­
sure taps connected to indicator manometers 
were placed at critical points throughout the 
computer circuitry. This showed the state of 
the elements and greatly simplified trouble­
shooting. 

When a program was working satisfactorily 
with manual clock control, the program was 
tried with automatic computer controls. In~ 

Figure 12. FLODAC Circuitry, Internal View. 
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Figure 13. FLODAC. 

formation was stored in the memory, the 
process was started by manually pressing the 
program START button, and the program was 
carried out automatically. 

The most comprehensive test program makes 
use of all four instructions and is shown below 
as a matter of interest. 

Memory 
Location Instruction Address Explanation 

1 

2 

3 

4 

A 

T 

J 

xx 

4 (4) + (A)~A 
4 (A)~4 

1 Go to location 1 
if (A) =1= 0000; 
otherwise go to 
location 4. 

xx Arbitrary num­
ber; or Halt in­
struction if 0000. 

This program takes an arbitrary number 
(stored in memory location 4), adds it to the 
accumulator, transfers the sum back to memory 
location 4, tests to see if the number in the ac­
cumulator is now zero, and repeats this process 
automatically until the sum in the accumulator 
is zero. When this condition is reached, as it 
must be after at most five cycles, the Condi­
tional Jump back to 1, stored in memory loca­
tion 3, is not carried out, and the program 
moves on to memory location 4. The content of 
memory location 4 is now 0000, which is inter­
preted as a Halt instruction, and the computer 
stops. The above program, of course, doubles 

the number in the accumulator on each cycle 
after the first. 

Alternately, memory locations 2 and 3 can be 
interchanged, and in this case the accumulator 
will be augmented each cycle by the number 
initially stored in location 4 until it again 
reaches zero. In this form 16 cycles are possi~ 
ble. 

SUMMARY AND CONCLUSIONS 

The individuai reiiabiiity test given to each 
component NOR element greatly reduced the 
probability of encountering any serious prob~ 
lems during the final checkout of the system. A 
few minor logic and performance problems did 
show up, but these were easily traced and cor~ 
rected. FLODAC was operating reliably only a 
few weeks after construction was begun. 

The nominal clock rate of FLODAC is ten 
cycles per second. This was chosen to avoid 
wave propagation and reflection problems 
which are potential dangers at not very much 
higher frequencies because of the long lead 
lengths involved and the lack of attention given 
to exact impedance matching. It should be 
pointed out that the speed of fluid signal pro­
pagation in air is almost one million times 
slower than the speed of signal propagation in 
electric wires. Thus, from the point of view of 
signal wave length, a frequency of ten cycles 
per second using air as the working medium is 
analogous to a frequency of ten megacycles in 
electronics. Simpler circuits built with elements 
identical with those in FLODAC, but compactly 
packaged, have operated with clock frequencies 
as high as 250 cycles per second. 

FLODAC has amply demonstrated that a 
pure fluid general-purpose digital computer is 
indeed feasible. The question remains: Is such 
a computer desirable? There are many areas 
in which fluid logic cannot hope to compete with 
electronic logic simply because of the speed Um­
itations inherent in fluid systems even if the ut~ 
most advantage is taken of parallel and poly~ 
morphic operation. 

Conversely, however, there are areas involv~ 
ing extreme environments, such as very high 
radiation levels or very high temperatures, 
where present-day electronics cannot hope to 
compete with fluids, and here fluid logic may 
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supply the only means of solving many pressing 
military and space science problems. Between 
these two extremes there is a vast area where 
fluid logic does appear to be competitive with 
electronics and where the advantages and dis­
advantages of both approaches will have to be 
carefully studied. This area includes such de­
vices as adding machines, desk calculators, tab­
ulating machines, process control computers, 
and such peripherals as keyboards and punched 
card and paper tape readers. Here, timing 
rates are frequently below a kilocycle, and the 
speed disadvantage of fluid amplifiers disap­
pears. Here too, the tremendous cost advan­
tage plus the postulated reliability advantage 
makes fluid logic look very attractive indeed. 
It may further develop that, given sufficient 
cost and reliability advantages, the marketplace 
may well learn to live with slower computing 
speeds for small general-purpose computers. 

The authors believe that there is a vast role 
to be played by fluid technology in the computer 
field, and this view is shared by their company. 

UNIV AC's FLODAC is the precursor of what 
we hope will be long series of useful pure fluid 
systems of increasing complexity and decreas­
ing cost. 
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INTRODUCTION 

Our first objective in developing the Design 
Automation (DA) System described herein was 
to produce and maintain, using a digital com­
puter, the manufacturing and field service docu­
ments for a small electronic calculator. How­
ever, as a long range objective we wanted a 
system capable of handling the documentation 
for virtually any digital computing device, and 
aiding in certain design functions. On the sur­
face this appears to be the very task performed 
by existing DA systems but as it turns out the 
construction techniques used on the calculator 
give rise to problems not normally handled by 
th~se systems. 

Because of the wide variance between exist­
ing and anticipated construction techniques, it 
was decided to use Boolean equations as the 
basic input. The equations are written in a 
modified form of Polish notation which enables 
one to very effectively relate the logic to the 
hardware for trouble shooting purposes. Along 
with the equations a description of each gate, 
flip-flop, etc. is input to the system. The form 
of these descriptions readily accommodates 
most types of hardware implementation. 

This paper is based upon our experience in 
documenting the design of a small electronic 
calculator. We shall indicate, as we go, how the 
system is generalized to handle other digital 
computing devices. 

643 

THE EC/130 

To give the reader some idea as to the size 
of the device we set out to document, we men­
tion here a few of the features of the Friden 
electronic calculator model EC/130. In addition 
to those features normally associated with desk 
calculators the EC/130 (cf. Figure 1) has a 
four high push down stack as well as auxiliary 
storage. All stack information is stored on a 
magnetostrictive sonic delay line and constantly 
displayed on the cathode ray tube shown in 
Figure 2. 

The EC/130 is a low cost high production 
item on which great engineering effort has been 
expended to reduce size and cost to a minimum. 
As a result of this intense engineering effort 
the degree of standardization is minimal. No 

Figure 1. Friden Electronic Calculator Model EC/130. 
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Figure 2. Vic"\v of Calculator Packaging. 

standard building blocks, such as flip-flop 
modules, are used. For a basic circuit type (i.e. 
amplifier, flip-flop, etc.) used n times, there are 
typically n/2 different circuit designs. 

The basic constructional unit in the EC /130 
is a printed circuit card such as the one pictured 
in Figure 3. Each card contains from 400 to 
500 components. For purposes of automatic 
insertion each lead of a component is located 
on a point of a .050 grid. Thus, each hole on a 
circuit card has an ordered pair of numbers 
(x,y) associated with it giving its position rela-
tive to this fixed coordinate system. 

To document the logic of the EC /130 and yet 
be able to handle other more complex systems, 
we needed a descriptive language which is hard­
ware independent and yet can be related to any 
type of hardware implementation. For this rea­
son we chose Boolean equations as our basic 
input. The particular format in which the equa­
tions are written was devised to facilitate the 
process of relating the logic to the hardware .. 

MODIFIED POLISH NOTATION 

Any digital computing device is logically a 
set of interconnected "elements," where for our 

Figure 3. Typical Printed Circuit Card. 

purpose we define an element as any combina­
tion of components which has a clearly definable 
function with the exception of AND gates, OR 
gates, and INVERTERS. For example, flip­
flops and drivers are considered elements. When 
the elements of a computing device are com­
bined, they are combined using AND and OR 
gates. Thus, all such combinations can be de­
scribed using Boolean equations. 1 Boolean 
equations have been used by other manufac­
turers to describe equipment designs;2,3 how­
ever, we chose not to use the standard Boolean 
notation for an equation written in this nota­
tion cannot be conveniently related to the cor­
responding hardware. There has also been some 
work done, on an experimental basis, using a 
combination of block diagram and Polish nota­
tion features as the descriptive language. 4 We 
avoided the use of block diagram features for 
their use tends to destroy the continuity of an 
equation line. 

A characteristic of most logic block diagrams, 
such as the one in Figure 4, is that the inputs 
( operands) are always shown to the left of the 
associated gates (operators). A notation using 
this form of operand-operator ordering is the 
notation of Lukasiewicz,5 the so-called Polish 
notation. In this notation the input to the three 
legged OR gate of Figure 4 would be written 
AB + C +. 

In the usual Polish notation each operator is 
a binary or unary operator in the sense that it 
operates on not more than two operands. Let 
us consider the operators + (or) and • (and) 
as not binary but n-ary. Then the expression 
AB + C + could be written ABC +. If we 
allow the scope of an operator to extend over n 
operands we must in some way delimit this 
scope. To delimit operator scope and also to 
enhance readability we use parentheses. With 
the scope of the operators extended and paren­
theses added to the notation we now write the 
equation equivalent to Figure 4. 

II = (A B C +) (D E +) • (i) 

Figure 5 illustrates how equation (i) is related 
to the hardware. The location of a given gate 
input (Le. the point at which this input may be 
tested) is printed directly under the name or 
gate where the input signal originates. For ex-
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Figure 4. Logic Block Diagram. 

ample, the quantity printed under the name A 
(A being the naine of a particular element out­
put), indicates where the signal, A, is connected 
to the OR gate (the reader should refer to 
Figure 4 where some of the location informa­
tion has been indicated). The AND gate out­
put is the input to an element hence the location 
of the element input is given in line 0003.002.00 
rather than under the AND gate itself. The 
indication here is that the particular element 
input can be found on circuit card JK at 
(01,01), the component at JK0101 is a transis­
tor (Q) and the lead of interest is the base (B) 
lead. 

It is important to note that the continuity of 
equation (i) is completely retained in Figure 5, 
and the clear separation between the logic and 
hardware information enhances readability. 
Further, the format in which the location in­
formation is printed reflects the structure of 
the schematic of Figure 4. 

the named input signals. For example, the 
AND gate in Figure 4 is at logical level 2. The 
full importance of the logical level indication 
(cf. Figure 5) is clearly evident when an equa­
tion is longer than one line. Figure 6 serves to 
illustrate how equations of arbitrary length are 
handled and also supplies those details missing 
from Figure 5. 

Figure 6 is typical of the form that an ele­
ment description takes. Line 0132.00.00 is the 
heading line and contains the element name, the 
element function code and the latest element 
revision letter. Line 0132.01.00, contains the 
name and location of the element output. The 
gate reference line, 0132.02.12 contains the con­
struction file reference (discussed in a later 
section) for each gate in the input equation. In 
the modified Polish notation there is a one-to­
one correspondence between operator symbols 
and hardware gates. The correspondence be­
tween the symbols and the associated references 

A gate, G, is said to be at "logical level" j if is thus determined by the order in which the 
there are j-1 gates interposed between G and gates appear in the equation. The remarks 

ELEMENT REFERENCE NO. 
EQUATION NO. 
REFERENCE LINE NO. 

~ ELEMENT INPUT ! II 
0003.02.00 JKOfOIQB II=(A B C +) (0 E +) • 
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02 

N PI3260A NPI3280A NPI3250A NP21110A NP21120A::7LOCATION OF 

JK0203C JK0202R GATE INPUTS 

L- LOGICAL LEVEL 
Figure 5. Logic Schematic Corresponding to Figure 4. 
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0132.00.00 EPCSTEP6 INV AA 

01.00 JK0627QC 01- EPCSTEP6 

02.00 JK0528R 11= ((DPCTRO / DPSTORFN +)1 COMDIGfN +J I DIVFF EPCTR4FN + 
02.01 01 NP0611DA 
02.02 02 NP0812DA NPI761DA 
02.03 03 NP0809R 
02.04 04 NP0412DA NP0411 DA 
02.05 05 NP0409R 
02.06 06 NP0212DA NP0211DA NP0329DA 
02.07 07 JKI710DA 

(EPCTR2FN HOME 0 (NBI5T NSHIL') DPSFN +)/+ 

02.08 01 JKI425 R JKI009C JK2106R JK2207C 
02.09 02 J K0336DA JK0529DA JK0632DA 
02.10 03 J K0932R 
02.11 07 JKI711 DA 

02.12 0050 0061 00700098 0099 0100 0101 0131 0120 0125 0126 
02.13 OUTPUT FAILURE RESULTS I N STACK I SHifT LEFT ERRORS 

Figure 6. Computer Generated Logic Schematic. 

line, 0132.02.13, is used to convey trouble shoot­
ing information to the service man. 

In Figure 6 there are two lines with a logical 
level indication of 07. Thjs implies that the in­
puts to the gate at level 07 are from elements 
or gates implied by two lines of the equation. In 
general, the logical level indicates the relation­
ship between the location information associ­
ated with one line of an equation and that of 
another. 

The information which the DA system uses 
to produce the logic schematic (cf. Figure 6) 
consists of the construction file and the input 
schematic pictured in Figure 7. 

It may seem that we have gone out of our 
way to eliminate one of the most important fea­
tures of the Polish notation, namely, that it is 
parenthesis free. However, keep in mind that 
at the outset we were after a notation that is 
convenient to use in design documentation. We 
have traded those features of the Polish nota­
tion which facilitate mechanical translation for 
features which add to the power of the notation 
for our use in documentation. 

RELATING THE LOGIC TO THE 
HARDWARE 

It is an inherent requirement of the DA sys­
tem that its output fulfill the documentation 
needs of both the production and field service 

013200 EPCSTEP6 INV 

013201 01= EPCSTEP6 

departments. At the outset of the system de­
sign it was assumed that these needs would be 
relatively compatible, i.e., that information 
generated in a format acceptable to one depart­
ment could be effectively utilized by the alter­
nate department with only a minor amount of 
reformatting. That this is not the case' becomes 
evident when one considers the differing needs 
of the two departments. Whereas a repairman 
is interested in finding a circuit point as quickly 
as possible, the production line requires the 
precise location and size of each lead associated 
with a part for automatic drilling and part 
insertion. 

Referring to the circuit card picture (Figure 
3) , a repairman can more easily locate a circuit 
point if he is given the location in terms of 
visual ~olumns and rows (note the repairman's 
removable plastic scale on the left margin of 
the card) than if he is given the location in 
terms of the .050" co-ordinates used in the card 
production. To provide visual co-ordinates to 
the field service department and absolute .050" 
co-ordinates to the production department, an 
updatable visual-to-absolute transformation file 
is maintained as a portion of the part file. The 
part file also contains an updatable dimensional 
description of each part used in the ECj130. 

Using the transformation file, the system per­
forms automatic visual-to-absolute co-ordinate 
transformation as the need arises. Given the 
transformation file and dimensional informa-

013202 II=(CDPCTRO / DPSTORFN+J' COMDIGFN+J/ DIVFF EPCTR4FN + 
013202 (EPCTR2fN HOME' (NSI5T NSHIL'J DPSFN +l"+ 

0050 0061 00700098 00990100 0101 0131 0120 0125 0126 

OUTPUT FAILURE RESULTS IN STACK I SHIFT LEFT ERRORS 

Figure 7. Input Schematic From Which Figure 6 Is Generated. 
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tion for a particular part, only the visual loca­
tion of one lead of the part and a one digit 
orientation code need be mentioned for the sys­
tem to automatically determine the absolute 
location of all of the leads of the part, thus 
minimizing the input description of the ECj130 
circuits as they appear in the construction file. 

As an example, consider a transistor (Part 
No. 223297) on card NP with its base lead lo­
cated with a relationship to visual column 17 
and visual row 14 defined by an orientation code 
of 1. To completely locate this part, the system 
input is NP 17 14 1 223297 and the output is as 
sketched below: 

NUMBER 

223297 

NAME 

2N1499 

LOCATION 

NP 159-052 
161-054 
161-050 

LEAD 

B 
C 
E 

HOLE SIZE 

.026 

.026 

.026 

The base lead (i.e. "key lead") is precisely lo­
cated with reference to its nearest co-ordinate 
intersection by the orientation number which, 
through the transformation process, specifies 
the exact location of the transistor. For all 
parts other than transistors the orientation 
code indicates the relationship (up, down, right, 
left) of a part's second lead to its key lead. 

Experience has shown the value of the two 
co-ordinate system described above. At an early . 
stage in DA system development, only the .050" 
grid co-ordinates were used with all leads of a 
part being specified. Although the production 
deparhl1ents could get their docunlents with 
ease, the field service repairmen and the 
writers of the input documents were tied to the 
same production oriented requirements with 
a negative effect on DA system acceptance. 
Recognizing the visual division of pri~ted cir­
cuit card parts into rows and columns and the 
red(undant nature of specifying more than a 
part's first lead when the part was not a varia-

FRIDEN INC 

ble size, the system was modified to handle tne 
visual co-ordinate and key lead ideas. The im­
mediate effect was a great improvement in DA 
system acceptance. 

It should be stressed that the key lead concept 
can be easily extended by a simple change to 
the transformation programs to handle multi­
lead modules of the type commonly found in 
large digital devices. The fact that the ECj130 
'is a very small electronic device should not 
obscure the more significant fact that the basic 
DA concept described herein is designed to be 
applicable to much larger systems. 

THE CONSTRUCTION FILE 

Recognizing the prior entry of a part file and 
co-ordinate transformation file, the first major 
system input is the construction file, an example 
of which is shown in Figure 8. NOTE: (1) Fig­
ure 8 is an example of the printed output of the 
construction file, (2) the revision code ("AF" 

PAGE 020.00AF 

E C / 130 CONSTRUC TION FI LE 

REV REF-LINE LOCATION T L 0 A P PART NUMBER IN PART REMARKS 
LTR INSERT OUT DESCRI PTI ON 

010.0 JK004 032 D A 2 0223292 1.5 IN662 
012.0 JK005 030 R 0223392 01 12K 5PC 1/2W 

AF 0132.000.0 JK005 028 R 0223403 II 6.8K 5PC 1/2W HIGH SPEED INVERTER 
002.0 JK005 029 C 0804083 680 PF lOPe 200V (WATCH OUT FOR 
004.0 JK006 027 R 2 0804044 22K5PC 1/2W VALUE CHANGE S IN 
006.0 JK006 027 Q B 0223297 2NI305 680PF CAP.) 
007.0 JK006 027 Q C 01 
009.0 JK005 026 R 0223257 10K 5PC 1/2W 

AF 0133.000.0 JK006 023 D A 2 0223292 II I N662 fOUR INPUT OR GATE 
001.0 C INPUT 2 IS HEAVILY 
002.0 JK006 024 D A 2 0223292 12 IN662 LOADED 

Figure 8. Construction File. 
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in the example for both page and circuit) is 
determined by the DA system, and (3) the 
"Part Description" information is obtained 
from the part file at print time and is not part 
of the construction file input. 

The construction file is a sequential undat­
able listing of the various circuits used in a 
digital device, and requires as input: (1) the 
number and location of each part, (2) a code 
for each circuit input/output, (3) a file refer­
ence number (of the form: Circuit, Line, In­
sert digit) used for file searching, (4) any 
remarks pertinent to the construction of the 
circuit, and (5) several coded entries explained 
below. The combination of circuit reference 
number and I/O code is the search key used by 
the DA system to obtain the hardware location 
of the inputs and outputs of Logic Schematic 
elements, gates, and inverters. It should be 
noted that the input codes for a particular gate 
are determined by the order in which these 
inputs appear in the equation. Typically, only 
one construction file entry line is needed for 
complete specification of a part. 

Anyone of several non-zero entries in column 
A (absolute) permits entry of mixed (visual 
and/or .050") grid co-ordinate information for 
those parts whose shape does not permit them 
to be located in the normal relationship to the 
visual grid. Entries to columns T (part type) 
and L (lead code) give additional information 
about the circuit component and are used: 
(1) as sorting flags for the production oriented 
documents and (2) to assist the servicemen in 
accurately finding a given part. The Column 0 
(orientation) entry describes the orientation 
of the part with reference to its key lead. Col­
umn P is used in EC /130 construction to indi­
cate a plated hole in a circuit card. A normal 
part entry requires no entries to Columns 0, A 
or P. 

FRIDEN INC 
EC/130 GLOSSARY OF TERMS 

TERM DEFINED AT USED IN EQUATIONS 

ENTERKEY EXT. INPUT 0182.02 0183.02 

EPCSTEP60132.01 0087.050091.060161.04 

0185.02 0254.02 0306.06 
0307.05 0308.05 0309.05 
0310.05 

EPCSTPIN 0142.01 0183.02 0185.02 0232.02 
0236.02 0249.02 0254.02 

0264.04 0264.06 

The construction file occupies a central posi­
tion in this DA system. It is the source file for 
the input/output location information appear­
ing in the Logic Schematic printout, and for 
generation of the various production oriented 
documents: from the Construction File, control 
information is produced for automatic insertion 
machines and automatic drilling machines; and 
by-product documents, such as bills-of-material, 
are produced as requested by various company 
departments. 

ADDITIONAL FIELD SERVICE 
DOCUMENTS 

Besides the Logic Schematic there are two 
other field service documents: a glossary of 
terms and a logic block diagram. The Logic 
Block Diagram is manually drawn and shows 
how all the elements of the Logic Schematic are 
interconnected to form the EC /130 system. 
Groups of gates (represented as Boolean equa­
tions in the Logic Schematic) are shown as 
single blocks referenced to the appropriate 
Logic Schematic equation. The Logic Block 
Diagram is used as a field service reference and 
training aid. 

The Logic Schematic File is the major data 
source for the Glossary of Terms. A list of (1) 
the names used in the Logic Schematic Boolean 
equations and (2) the names of each Logic 
Schematic element output is generated. This 
list (containing the names and associated ele­
ment numbers) and a card deck giving prose 
definitions of the various names are used to 
construct the Glossary of Terms. 

The four columns of the Glossary of Terms 
(Figure 9) are defined as follows: Column #1, 
Boolean variable name; Column #2, element­
equation having this output name (if the name 
is used in an equation but does not appear as 
an element output name, the words "EXT. 
INPUT," i.e., "External Input," appear in this 

PAGE 07.00AF 

DEFINITION 

ENTER KEY 

ENTRY PHASE COUNTER STEP 6 OUTPUT INYERTER 
FAILURE WILL RESULT IN STACK I SHIFT LEFT 
ERRORS ENTRY NG. ADD OK. SUS OK .MULT NG. DIY 
NG 

ENTRY PHASE COUNTER FLIP-FLOP I RESET 
FAI LURE WILL RESULT IN STAct\ SHIFT UP ERRORS 

ENTRY NG (MAYSO,SUS NG. MULT NG, DIY NG 

Figure 9. Glossary of Terms. 
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column); Column #3, element-equation num­
bers where this variable is used; Column #4, 
prose variable definition. 

The Glossary of Terms is the repairman's 
entry point to the field service documents. In 
many cases, a brief examination of a digital 
computing device will indicate its major mal­
function. For the EC/130, once this is done, 
the Glossary of Terms indicates those elements 
affected by the particular problem and, from 
this point, reference is made to the Logic 
Schematic and, if necessary, to the Construc­
tion File. Note that the variable names are 
carefully chosen to be as closely related to their 
function and as easily understood as possible. 

ENGINEERING CHANGES 

An important reason for the existence of a 
DA system is to decrease the time lag between 
the decision to make a product change and the 
carrying out of this decision. The DA system 
described herein permits rapid additions, 
changes or deletions to all the files: part file, 
card co-ordinate transformation file, construc­
tion file, logic schematic file, glossary, etc. Any 
change to one file is automatically carried 
through the system and reflected as necessary 
in all subsequently maintained files. As an 
example of the checking involved in the carry-
ing through of changes, before the Logic 
Schematic is printed, an automatic check is 
made to determine if the hardware implied by 
the Logic Schematic has been properly specified 
in the other system files. 

In the case of the many paged major output 
documents (i.e. Construction File, Logic Sche­
matic, Glossary of Terms) only the changed 
pages are printed. These files have associated 
with them an internally updatable page con­
trol file giving page limits and revision codes 
(for each page). These files are built during 
the first generation of their related printout, 
with the page limits being set to waste as little 
paper as possible while trying to prevent their 
parent file's basic unit of information (i.e. con­
struction file, circuit; logic schematic, equation; 
glossary, name) from spreading from one page 
to the next. 

A problem of intrinsic interest is that of 
adding to (deleting from) a page other than 

the last one of a file. At first glance this would 
push down (up) all subsequent pages causing 
a potentially excessive printout of mostly un­
changed information. To avoid this problem, 
each page is looked upon as an extendable unit. 
Additions to a page cause its being printed on 
more than one sheet of paper with page indi­
cations of the form: Page 011.00AB, Page 
011.01AB, etc. The page revision letter is up­
dated whenever a page is changed thus pre­
cluding the existence of dissimilar pages with 
the same page designation. 

SYSTEM SUMMARY 

The DA system described herein is comprised 
of seventeen computer programs. Figure 10 
gi ves an overall view of the system. The card 
inputs, on the left of the figure, are the changes 
(additions, deletions, corrections) to the var­
ious files. The outputs, on the right of the 
figure, will occur only when required by a 
change. Immediately preceding the printing of 
the Part List, Construction File, or Logic Sche­
matic there can occur an error listing indicat­
ing all detectable improper file changes. 

CONCLUDING REMARKS 

The system we have discussed is most prop­
erly a system for lVIechanized Design Docu­
mentation. However, in view of the fact that 
logical equations are our basic input we can 
provide various forms of design assistance, 
such as, logic simulation, load analysis and 
some of the more exotic things such as module 
placement and cost approximation. 

One of the unmentioned merits of the system 
discussed is that it was very simple to imple­
ment. The system was designed and the neces­
sary computer programs written for a Honey­
well 400 computer in six months. This made 
it feasible to do the documentation for a ma­
chine as small as the EG/130. 

The initial reaction of new personnel to the 
DA system and especially to the logical equa­
tion notation was one of mild horror. However, 
as they began to use the system, this attitude 
disappeared. In fact, it is now felt that the 
Logic Schematic is a more useful aid to the 
trouble shooter than the conventional circuit 
schematic normally supplied. 

" 
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PART FILE 

CARD CO-ORDINATE 

FILE 

CONSTRUCTION 

FILE 

INPUT SCHEMATIC 

VARIABLE 

DEFINITIONS 

(I) PART LIST 
1----_ 

(2) CARD CO-ORDINATE LIST 

1---__ (I) LOGIC SCHEMATIC 

(2)GLOSSARY OF TERMS 

Figure 10. DA System Diagram. 
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INTRODUCTION 

In recent years considerable interest has been 
manifested in the fields of information storage 
and retrieval and pattern recognition. An im­
portant element in the design of information­
retrieval systems and pattern recognition de­
vices is associative memory 5, 10-13, 15. An as­
sociative memory is particularly suitable for 
search of a record from a large file, the sorting 
of data into an ordered list 9, 10, 12 and the 
identification of patterns. Cryotron circuits are 
important components in the construction of 
an associative memory system. Despite this im­
portance and though cryotron technology has 
been actively developed for some year~, it is 
still in its infancy. 

( 

An associative memory is designed to per-
form simultaneous comparisons of all stored 
information with the interrogating bits. Thus, 
in an associative memory system the memory 
cells should be able to read and write and the 
switching circuits should be able to perform 
comparisons. 

Cryotrons have been recognized as the ele­
ments most suited to the construction of such 
a system. They are ranked among the most 
challenging components in the digital com­
puters to be designed. 

In an associative memory system switching 
circuits playas important a role as the memory 

cells. This paper is concerned with the system­
atic design of cryotron logic circuits for such 
storage systems. No constraints are imposed 
upon the logic functions to be synthesized. How­
ever, emphasis is placed upon three-terminal 
cryotron gate networks to realize complemen­
tary logic functions. 

USE OF COMPLEMENTARY LOGIC 
FUNCTIONS 

The design of cryotron logic circuits dis­
cussed here involves the realization of comple­
mentary logic functions. In a cryotron circuit 
each single gate has a resistance of the order of 
0.01 ohm in the resistive state, and zero re­
sistance in the superconducting state. If the 
resistive state is identified as "0" of a binary 
variable and the superconducting state is des­
ignated as "1," the two states are rather dif­
ficult to distinguish from each other because 
of the small difference in resistance which cor­
responds to a small difference in current or 
voltage of the circuit. To improve the relia­
bility of cryotron-circuit operation, use of the 
complementary logic functions are proposed. 

An elementary cryotron circuit consists of 
two separate branches representing a state and 
its complement. If one branch is superconduct­
ing, the other is resistive. The superconducting 
path allows the entire current to pass through; 

* The work reported here was supported in part by the National Science Foundation and the Office of Naval 
Research. 
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the resistive branch blocks the flow of the cur­
rent. Thus the superconducting branch, or non­
zero current condition, designates the "1" bit; 
and the resistive branch, or zero current con­
dition, designates the "0" bit. This logic circuit 
can be designed systematically by using a se­
rial-parallel branch which realizes a given logic 
function and another branch which realizes the 
complement of that function. 

An alternate method of designing a cryotron 
logic circuit is to synthesize the given logic 
function by using a controlled by-pass branch. 
Whenever the main branch becomes supercon­
ducting, the by-pass branch is changed to re­
sistive or is disconnected from the circuit by a 
selection and control circuit. Conversely, when 
the main branch becomes resistive, no matter 
how small the resistance may be, the by-pass 
branch is made superconducting to allow the 
entire current to flow. This method may re­
quire a smaller number of cryotrons but the de­
sign is complicated by the selection and control 
circuits. 

This paper is primarily concerned with the 
systematic synthesis of cryotron circuits to re­
alize the complementary logic functions. Each 
cryotron circuit is split into two parts: the con­
trol circuit and the gate network. Each gate 
in association with a relevant control is an 
integral circuit element which forms a cryotron. 

CRYOTRON SWITCHING CIRCUITS VS. 
MULTITERMINAL RELAY NETWORKS 

In view of the analogies between cryotrons 
and relays as well as their respective switching 
circuits, the techniques originally developed for 
the synthesis of transfer-contact relay networks 
may be applied to synthesize a three-terminal 
cryotron gate network with complementary out­
puts, or to synthesize a two-terminal cryotron 
gate network with a by-pass branch and the 
necessary selection and control circuit. Re­
sembling the multiterminal relay network illus­
trated in Fig. 1, a cryotron switching circuit 
may be characterized by a block diagram as 
shown in Fig. 2. Their similarities and differ­
ences are discussed below. 

Each relay contact has two stable states: 
"open" or "closed." The "closed" state may be 
identified as a "1" and the "open" state may 

1 :s. 
Relay 

1 fl (Xm) 
X
2 

Control 
2 l-lindings Contact 2 

f
2

(X
m

) 

X:!. II Network 

m ttxoueh fn(Xm) 
X m m -

Figure 1. Block Diagram of a Multi terminal Relay 
Switching Circuit. 

be designated as a "0". Each cryotron gate is 
in one of its two stable states: the supercon­
ducting state or the resistive state, which may 
be designated as "1" and "0," respectively. The 
state of the relay contact is changed by applica­
tion of a sufficient current to its relevant con­
trol winding. Similarly, the superconductive­
to-resistive (or vice versa) state-transition of 
the gate is accomplished by passing an ap­
propriate current through its associated cryo­
tron control. In both cases the state transition 
is entirely independent of the direction of the 
control current, but dependent on its magni­
tude. 

A single relay winding may control several 
pairs of relay contacts, each pair of which is 
known as a transfer-contact. One contact is 
normally open and the other normally closed. 
Each cryogenic switching device, as developed 
in this paper, may control a number of gate­
pairs, each pair having the same variable as­
signment. The maximum allowable number of 
cryotron controls in a single switching device is 
limited by the resultant inductance of the serial 
cryotron controls in each load circuit of this 
device. On a single relay a number of transfer­
contacts may be used, so long as the maximum 
allowable number of springs is not exceeded. 

For convenience of analysis a multiterminal 
relay switching circuit may be split into two 
parts: the control winding arrangement and 
the contact network as shown in Fig. 1. A cryo-

1 Cryotron °1 F(\t) 
COnstant Gate 

2 Current I Network 
Sources 

ptXm) m 
°2 

~ -

Figure 2. Block Diagram of a Cryotron Switching 
Circuit with Complementary Output Functions. 
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tron switching circuit may likewise be split into 
two separate networks as shown in Fig. 2. 

There are, however, several differences be­
tween them. While each transfer-contact with 
its complementary variable assignment Xi and 
Xi is controlled by a single relay winding, each 
pair of gates assigned by Xi and Xi is generally 
controlled by its respective cryotron controls; 
but the current which passes through one of the 
two controls at a time is determined by a single 
cryogenic switching device. Thus the comple­
mentary gate-pairs may be considered equiva­
lent to the transfer-contacts and the switching 
devices equivalent to the relay windings. 

While the variables Xi and Xi are assigned, 
respectively, to the normally open and nor­
mally closed contacts of a transfer-contact re­
lay, their truth values are: Xi = 0 and Xi = 1 
when the relay is not operated. These values 
are changed to 

and 

when the relay winding is excited by sufficient 
current, at which time the relay is operated. 
The variables Xi and Xi are assigned to two 
separate ct;yotrons. One cryotron gate which 
is represented by Xi is considered to be nor­
mally superconducting without critical or over­
excitation, i.e., the current passing through its 
control is below the critical value for gate state­
transition, or even zero. The other, normally 
resistive gate, is assigned by the variable Xi. 
The resistive state is maintained by the appli­
cation of a sufficiently large current in the con­
trol. The change of the variable truth value is 
accomplished by switching a current from one 
control circuit to the other, or vice versa. For 
example, the normally resistive gate which 
represents the variable Xi = 0 is changed to 
Xi = 1 when its control current is transferred 
to the other cryotron control to make the latter 
cryotron gate resistive, i.e., Xi = O. In other 
words, two cryotrons each of which includes 
a "control" and a "gate" are needed for the 
selection of the variables Xi and Xi ; but in the 
relay circuit a single transfer contact relay 
winding can obtain this result. 

Although the cryotron gate network, like the 
relay contact network, may have n outputs each 
of which fulfills a different logic function 
among f1 (Xm), f2 (Xm ), • • •• fn (Xm ), where 

m indicates the total number of distinct com­
plementary variable-pairs, the series-parallel 
connection of only two outputs which represent 
the complementary functions F (Xm ) and 
F (Xm ) is generally adopted, as previously de­
scribed. By taking advantage of these existing 
similarities several well-developed synthesizing 
methods-particularly the techniques of cas­
cading three-terminal subnetworks with com­
plementary outputs, the tree configuration, and 
the symmetric network4-may be employed for 
the realization of logic functions by means of 
cryotron circuits. 

CRYOTRON CONTROL NETWORK 

A cryotron control network for use in con­
trolling the gate states follows. This network 
consists of m elements if the gate network is 
composed of m distinct complementary gate­
pairs. Each element here is called a control 
current switching device, shown in Fig. 3. Its 
structural skeleton was originally proposed by 
Buckingham3 and later studied by Vail and his 
co-workers.16 However, its mode of operation 
as herein proposed is entirely different. 

As here conceived, each of these devices is 
used for controlling a pair of complementary 
cryotrons which are labeled Xi and Xi and 
shown in Fig. 3. Each device, however, may 
control several gate-pairs if all of them are as­
signed by the same Boolean variables. The 
terminals P 1 and P!2 of the primary loop are 
connected to a· current source of pulses or even 
sine waves. The terminals S1 and ~ of the 
secondary loop are connected to a constant di­
rect current source Id. Suppose that the pri­
mary current Ip is a positive pulse applied in 
the direction indicated by the arrowhead in 
Fig. 3. The secondary current Is is induced 
counterclockwise during the leading edge of Ip. 
If the current Id takes the direction indicated 
in the diagram, the current Is and a part of Id 

xi :----1 

d 

~ I '-____ 1 

Figure 3a. Cryogenic Control Current Switching Device 
for the ph Cryotron-Pair. 
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Figure 3b. 
Ied 

Equilibrium eCurrent Distribution in the 
Equivalent Graph. 

become additive while passing through the arc 
ac. The resultant current is sufficient to make 
the arc ac temporarily resistive and thus~ the 
current taking the shorter superconducting 
path abd which includes the control circuit of 
the cryotron Xi is large enough to make the 
gate Xi resistive; but the gate Xi remains 
superconducting because the current taking the 
longer path abcd which includes the control cir­
cuit of the cryotron Xi is less in value. This 
means that a bit "I" is transmitted through the 
Xi gate circuit. 

It should be noted that no current flows from 
ld through the arc ac once it becomes resistive 
until a second induced current I' is made to s 

flow clockwise around the secondary loop dur-
ing the trailing edge of Ip. At that time the arc 
ab is made temporarily resistive. The cryotron 
gate Xi is changed into resistive because of the 
larger current which passes through the path 
acd. 

The switching action takes place only when 
the primary current Ip is changing either at the 
leading edge or at the trailing edge of the ap­
plied pulse Ip. This implies that a sine wave 
current source may be used to take advantage 
of easy frequency control as well as phase ad­
justment. 

When there are m distinct gate-pairs in the 
gate network, a total number of m control cur­
rent switching devices are needed. The sec­
ondary circuits of these m devices may be con­
nected in parallel and supplied by a common 
direct current source with a magnitude mId, or 
each device may be supplied by a separate 
source Id. In the secondary circuit of each de­
vice, the distribution of Id between the two 
parallel superconducting paths bd and bcd (if 
once the arc ac bec9mes resistive) or cd and 
cbd (if once the arc ab becomes resistive) is 
inversely proportional to the inductances of 
those paths which differ only in the small 
amount of inductance of the arc bc. The in-

ductance differences of the connecting paths bd 
and cd with respect to the arc bc inductance, 
must be kept as small as possible and the m de­
vices therefore should not be connected in series 
and use a common source ld unless the arc bc 
inductance is made large enough to keep these 
differences small. 

Referring to Fig. 3 and assuming that the 
switching device is symmetric in construction, 
the arcs ab and ac have the same inductance 
values (Lab = Lac) ; this is equally true of the 
load paths bd and cd whose values are (~d = 
Led), The distribution of current components 
are shown in Fig. 3 (b). Their magnitudes are 
found to be: 

Illb = Id (la) 

Ibd = (Lbe + Lbd ) Id / (Lbe + 2 ~d) (lb) 

Ibe = led = Lbd Id / (~e + 2 ~d) (lc) 

Each of these currents flows from the node in­
dicated by its first subscript to the node repre­
sented by the second subscript 

The current component Ibd must be large 
enough to maintain the gate Xi in its resistive 
state; but the current led passing through the 
control Xi must be insufficient to transit the 
state of the gate Xi' 

If the current source Id is removed, persistent 
currents hI and Ip2 will circulate in the loops 
abca and abdca, respectively, and are given by 

hI = ~d Id / (Lbe + 2 ~d) (2a) 

h2 = ~d Id / 2(Lbc + 2 ~d) (2b) 

The removal of Id from the device is equivalent 
to the superposition of another Id with reversed 
polarity on the original Id. Since this device is 
assumed to be a superconducting circuit of a 
balance bridge type, the reversed Id alone is 
distributed in each of the paths ba, db, dc, and 
ca with a magnitude Id / 2 and a reversed po­
larity with respect to Eq. (1) . When these 
currents and those shown in Eq. (1) are super­
imposed in each path, the resultant branch cur­
rents in the equivalent graph are: 

I~b = ld / 2 (3a) 

I~d = Lbc Id / 2 (Lbe + 2 Lbd) (3b) 

I~e = Lbd Id / (4c + 2 Lbd) (3c) 
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I~c = ~c Id / 2 (~c + 2 Lbd ) (3d) 

I:a = Id / 2 (3e ) 

We can convert these branch currents into two 
loop currents which circulate in the loops abca 
and abdca and thus form the persistent cur­
rents, as described in Eq. (2) and shown in 
Fig. 4. However, when the Id source is reap­
plied, the original current distribution shown 
in Fig. 3 (b) and given by Eq. (1) is recovered. 
Therefore these persistent currents will not 
cause an unsatisfactory result. 

CRYOTRON GATE NETWORK 

A cryotron gate network which is considered 
equivalent to a transfer-contact relay circuit 
may be synthesized by one of the following 
methods: 

(a) Cascading three-terminal sub-networks 
with complementary outputs; 

(b) Tree networks; and 

( c) Symmetric networks if the logic func­
tions to be realized are identified as sym­
metric functions. 

If any of these techniques is to be used, the 
following aspects should be taken into consid­
eration: 

1. The synthesized circuit should contain a 
minimum number of cryotrons for eco­
nomical realization. 

2. All gates which constitute the circuit 
should appear in complementary pairs to 
meet the requirement of the cryotron con­
trol network. Each gate-pair is repre­
sented by the complementary Boolean 
variables Xi and Xi. 

b 

Figure 4. Persistent Currents in the Equivalent Graph 
After Id Source is Removed. 

3. Different variable-pairs should be dis­
tributed as uniformly as possible through­
out the synthesized network to equalize 
the inductive loads among the control cur­
rent switching devices. 

Three methods of synthesis procedure follow: 

A. Synthesis by Cascading Three-Terminal 
Sub-N etworks 

Use of this method entails the following: 

1. Check whether the function F (Xm ) is 
given in the form of the minimum product 
as 

(4) 
k=l 

If it is given in this form, its complement 
F(Xm ) is then derived as a minimum sum 
of the following form: 

n 

(5) 

by the application of De Morgan's theo­
rem.4 If F(Xm ) is not given as Eq. (4), 
one of the minimization methods4 should 
be used to reduce these functions to their 
optimum forms as given in Eqs. (4) and 
( 5) in order to secure an economical 
realization. 

The function F(Xm ) is expressed as an 
"And" function made up of the subfunc­
tions PI through P n. Its complement 
F (Xm ) is represented by an "Or" func­
tion composed of the complementary sub­
functions P 1 through P n' 

2. By use of the following relationship of 
the logic function 

P k + Pk Pk+1 = Pk + Pk +1, k = 1,2, ... , n - 1 (6) 

the sub-networks realized by those sub­
functions can be connected, as shown in 
the resulting block diagram of Fig. 5. 

The sub-network P1 starts from input termi­
nal I, i.e., node 1, and stops at node 2, P 2 from 
2 to 3, and so forth, until P n from n to output 
terminal 0 1• The function F (Xm ) is thus real­
ized between terminals I and 0 1 and expressed 
by Eq. (4). All sub-networks realized by the 
complementary subfunctions PI through P n 
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Figure 5. Block Diagram of Cryotron Gate-Network 
Synthesized by Cascading n Three-Terminal 

Sub-Networks. 

stop at the same output terminal O2 , but each 
starts from the node k which is identical with 
the subscript k of its relevant subfunction Pk • 

The function F (Xm ) given in Eq. (5) then ap­
pears between the terminals I and O2 • 

Whenever any subfunction Pk is still a com­
posite function instead of a single variable, the 
above steps should be repeated for synthesizing 
the small three-terminal sub-network with node 
k as its input terminal and node k+l and termi­
nal O2 as its output terminals. 

Illustrative Example 1 

Design a three-terminal cryotron gate net­
work which realizes the logic function 

F (X4 ) = Xl X2 Xg X4 + Xl X2 Xg X4 + 
(7) 

and its complement, using complementary cryo­
tron ga te-pairs only. 

In this particular problem the function 
F (X4 ) of Eq. (7) is not given in the same 
form as Eq. (4). Since it contains only three 
terms in its first canonical form, its comple­
ment F (X4 ) should have thirteen terms in the 
canonical form. By the use of a Karnaugh map, 
F (X4 ) in the form of Eq. ( 5 ) can easily be 
found: 

F(X4 ) = Xl (X2 + Xg) + (X2 + Xg) X4 + 
Xl (X2 + Xg X4 ) (8) 

When F (X4 ) is complemented by De Morgan's 
theorem F (X4 ) is found to be 

F (X4 ) = (Xl + X2 Xg) (X2 Xg + X4 ) 

(Xl + X2 [Xg + X4]) (9) 

By comparison of Eqs. (8) and (9) with 
Eqs. (5) and (4), respectively, the subfunc­
tions are: 

PI == Xl + X2 Xg, 
P2 = X 2 X g + X 4 , 

PI = XI(X2 + Xg) 
P 2 = (X2 + Xg) X4 

n _ V I V IV I V \ 
.1. g - .A.I T .A.2 \.A.g T .A. 4 I , 

Pg = XI(X2 + Xg X4 ) 

(10) 

Each of these three pairs of subfunctions in 
Eq. (10) represents a smaller three-terminal 
sub-network which can be further decomposed 
by repeating the synthesizing procedure be­
cause each pair Pi and Pi (i = 1, 2, or 3) is 
also complementary. 

The final network is shown in Fig. 6 in which 
the total number of complementary gate-pairs 
is ten and the distribution of variable-pairs is 
2, 3, 3, 2 for the order Xl' X2 , Xg, X4 • In this 
case the required control network should have 
four cryogenic switching devices. The device 
for cryotrons assigned by the variable-pair Xl 
and Xl or X4 and X4 has two serially connected 
cryotron controls in each load circuit. Each of 
the other two devices, however, has three series 
controls in a load circuit. 

B. Synthesis by the Tree Method 
A complete tree of m distinct variable-pairs 

Xi and Xi possesses 2m disjunctive outputs, 
each of which represents a single term of the 
2m possible distinct terms. The outputs are said 
to be "disjunctive" with respect to each other 
if there is no superconducting path between 
any pair of the output terminals 0 through 
2m - 1 which also indicate the decimal equiva­
lents of the 2m distinct terms. Suppose that 
the variable Xi is designated by 2i-1 as its deci­
mal equivalent. 

A complete tree gate network with three 
variables Xg , X2 and Xl distributed in the ratio 
of 1: 2: 4, illustrated in Fig. 7, can be converted 
into a three-terminal network with comple­
mentary output functions by connecting those 
outputs of the tree to form the output terminal 
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-I"1n.----T--_ 01 

F(x.,> 

Figure 6. Cryotron Gate-Network Synthesized by 
Cascading Three-Terminal Sub-Networks. 

0 1 which represents all terms in the given func­
tion F (Xm). All the remaining outputs when 
connected as a common terminal O2 contribute 
the complementary function F (Xm ). The syn­
thesis can be carried out in two major steps: 

1. Since each output terminal of a complete 
tree represents a term of logic function, 
the given function F (Xm) and its com­
plement F (Xm ) should be expressed in 
first canonical forms. 

2. Assign variable-pairs to cryotrons such 
that the output terminals of a complete 
tree which constitute the terms of the 
function F (Xm ) can be located as close as 
possible to the outputs. When these termi­
nals are connected to form F(Xm ) and all 

~-fTl--6 

5 

~-fTI-_4 

~-rn---2 

'---LLr-_l 

"---[I}--_O 

Figure 7. Cryotron Gate-Network in Complete Tree 
Form. 

the remaining output terminals are tied 
together to form F (Xm ), some comple­
mentary cryotron-pairs are connected in 
parallel at output terminals. Each pair 
of these parallel paths is always super­
conducting. They are therefore redun­
dant and can be removed. An incomplete 
tree which forms the synthesized gate 
network thus results. 

One possible way of obtaining this result is 
to find the minimum sum form of the given 
function by using the minimization method. 
The relative frequencies of the appearances of 
various variables in this minimum form are 
examined. The most frequently appearing vari­
able should be assigned nearest to the input side 
but not the least common one. 

An economical realization and almost uni­
form distribution of the inductive loads among 
various cryogenic control current switching de­
vices can also be attained by use of the general 
principles of contact redistribution. 

These two considerations should be combined 
whenever there are more than one distinct vari­
ables which appear with equal and lowest fre­
quency. These variables should be assigned 
nearest to the output side and also distributed 
in accordance with the Shannon rule.4 Since 
the distribution of variables in a tree is not 
unique, there are various ways in which they 
may be assigned. 

Illustrative Example 2, 
Suppose that the given function to be real­

ized by the cryotron gate network is expressed 
in the minimum sum form 

F (Xa) = X2 Xa + Xl X2 Xa (11) 

which may be expanded into first canonical 
form as 

F(Xa) = Xl X2 Xa + Xl X2 Xa + 
(12) 

Its complementary function in first canonical 
form is found to be 

F (Xa) = Xl X2 Xa + Xl X2 Xa + Xl X2 Xa + 
Xl X2 Xa + Xl X2 Xa (13) 

Since F(Xa) is given in minimum sum form, 
shown in Eq. (11), examination of its variables 
shows that the variable Xl appears only once, 
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but X2 and X3 appear twice. The variable X2 

or X3 but not Xl should be distributed nearest 
to the input side, otherwise economical realiza­
tion cannot be obtained. 

If the initial variable distribution in a com­
plete tree is 1, 2, 4, the variables can be as­
signed to cryotrons in the order X3, X2 , Xl, or 
X2 , X3, Xl' The variable Xl is assigned nearest 
to the output side. The final synthesized net­
work in both cases contains eight cryotrons 
with three distinct variable-pairs assigned in a 
distribution of 1, 2, 1. If the decimal equiva­
lent of Xl is designated by 2 i - l one of the three 
gate-pairs assigned by Xl and Xl is tied to­
gether at the output terminals 0 and 1; the 
other two pairs are connected at terminals 2 
through 5. Since each pair of these gates is 
connected in parallel, it is always supercon­
ducting and thus must be removed. The gate 
network synthesized by this method is shown in 
Fig. 8 in which the complementary variable­
pairs X2 and X3 can be interchanged. The out .. 
put terminals 01 and O2 are derived from the 
complete tree by connecting the output termi­
nals 0, 1, 6 and all remainders, respectively. 

If the initial distribution of 1, 3, 3 is used 
in the complete tree in accordance with Shan­
non's rule, the variable X2 or X3 must be lo­
cated nearest the input terminal. The remain­
ing two variables are assigned to cryotrons in 
diagonal positions. When Xl and Xa are di­
agonally positioned, the three gate-pairs near 
terminals 0 and 1, 3 and 7, and 4 and 5 are 
redundant. If Xl and X2 are diagonally as­
signed, the redundancy occurs at terminals 0 
and 1, 2 and 3, and 5 and 7. 

For any other cases of assignment, the syn­
thesized network must use twelve cryotrons. 
This is not economical. 

Illustrative Example 3 

Referring to Example 1, the given function 
F (X4 ) of Eq. (9) contains the terms whose 
decimal equivalents according to previous des­
ignation are 2, 9 and 14. If the variables are 
assigned in the order of Xl, X2, X3, X4 from the 
input terminal I to the output side in a com­
plete tree of 1, 2, 4, 8 distribution, the output 
terminals 2, 9 and 14 which correspond to the 
terms 2, 9 and 14 in F (X4 ) are located within 
two sub-trees of the variables X3 and X4 • When 
the remaining 13 output terminals i (i = 0, 1, 
... , 15 but exclusive of 2, 9 and 14) are con­
nected to form F (X4 ), two pairs of comple­
mentary gates X3 and X3 and five pairs of gates 
X4 and X4 are connected in parallel at the com­
mon output terminal. They can be discarded. 
Therefore sixteen cryotrons are used in the 
synthesized network. The distribution of com­
plementary cryotron-pairs in the order of Xl' 
X2 , X3 and X4 is 1, 2, 2, 3. In this case, Xl and 
X,2 (and also X3 and X4) can be interchanged 
because of the same frequency of appearance. 

If this property is not used to assign varia­
bles, two more cryotrons must be added. As 
compared with the first method explained in 
Example 1, four cryotrons are saved by this 
technique. 

C. Synthesis via Symmetric Network 
In a cryotron switching circuit, a logic func­

tion realized by a gate network with two termi­
nals built on cryotrons assigned by m distinct 
variable-pairs is said to be symmetric when a 
superconducting path is provided between these 
two terminals by any n truth value changes of 
these m variable-pairs. The symmetric func­
tion according to the definition given here is 
usually expressed symbolically by 

Sn (XI, ... , Xi, ... , X j , ••• , Xm) 

I 

The variables in the parenthesis represent the 
01 F(~) variables of symmetry, i.e., the parameters of 

symmetric function. The subscript n of S indi-
02 FeJS} cates how many distinctly assigned gate-pairs 

must have their states transmitted in order to 
make the path superconducting. This quantity 
is called the characteristic number. 

Figure 8. Cryotron Gate-Network Synthesized by the 
Tree Method. 

Some of the variables of symmetry may be 
represented by the symbols without a bar over 
each as, for instance, Xi, Xm, etc., while others 
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are written XI, Xh etc. These parameters are 
all considered normally resistive gates, but 
their complements XI, Xi, Xh Xm, etc., are 
treated as normally superconducting gates. The 
designations of the parameters XI, X j , etc., and 
their complements, XI, Xh etc., are exactly op­
posite here to those which occur when XI, Xh 

etc., are not parameters of symmetric function. 
When a symmetric function is involved, atten­
tion must be paid to its parameters. 

It should be noted that the sum, as well as 
its complement, of several symmetric functions, 
are both symmetric. However, the symmetric 
property of these composite functions cannot be 
derived from the previous definition, especially 
when the parameters are mixed with Xi and X j • 

A more inclusive definition of the symmetric 
function is introduced by Shannon4

: "A func­
tion of the m variables Xl, ... , Xi! ... , Xh 

... , Xm is said to be symmetric in these vari­
ables if any interchange of the variables leaves 
the function identically the same." 

The given function F (Xm) which is identified 
as symmetric in accordance with either of the 
described definitions, may be realized in a cryo­
tron circuit by the following procedure: 

1. Ascertain whether or not the given func­
tion is symmetric. If it is symmetric ac­
cording to either definition, then deter­
mine its parameters and its characteristic 
numbers. Suppose the parameters are 
mixed with XI, ... , Xh ••• , Xh · ••• , Xm 
and the characteristic numbers are equal 
to p, q. 

2. Express F(Xm) in symbolic form by 
means of the known parameters and char­
acteristic numbers. 

F (Xm) = Sp,q (Xl, ... , Xh ••• , Xh ••• , Xm) 

= 8p (XI, ... , Xi, ... , X j , ••• , Xm) 

+ Sq (XI, ... , Xi, ... , Xh ••• , Xm) 
(15) 

3. Find the complement of Eq. (15) and 
express it in symbolic form. 

F (Xm) = Sp,q (XI, ... , Xb ... , Xh ••• , Xm) 
m 

= ~ Sk (XI, ... , Xb ... , X j , ••• , Xm) 
k=p=q 
k=O 

The complement is found by replacing the 
characteristic numbers p and q with a 
set of numerical values k, where k = 0, 1, 
2, ... , m but exclusive of p and q. It 
should be noted that all parameters in the 
parentheses do not take complements. 

4. Assign the parameters to all horizontally 
positioned gates and their complements 
to all vertically positioned gates. 

As an illustration, suppose the param­
eters for some function are determined 
as Xl, X2 and Xs. The complete sym­
metric gate network with its proper vari­
able assignment is shown in Fig. 9. 

5. Connect the output terminals marked by 
the component symmetric functions 

Sp (XI, ... , Xi, ... , Xh ••• ,Xm) and 

Sq (Xl, ... , Xi, ... , Xh ••• ,Xm) 

to form the composite symmetric function 
F (Xm ). All the remaining output termi­
nals marked by 

Sk (Xl, ... , Xi! ... , X j , ••• , Xm) 

where k = 0, 1, ... , m but exclusive of p 
and q, when connected represent the func­
tion F(Xm ). 

6. Discard any redundant gates, one of 
which usually appears as a complemen­
tary gate-pair connected in parallel and 
equivalent to a short-circuited path. Some 
of them may be removed by the method 
of folding.4 

Figure 9. Cryotron Gate-Network in Complete 
Symmetric Form. 
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Illustrative Example 4-
Realize the logic function 

F (Xa) = Xl X2 Xa + Xl X2 Xa + 
Xl X'2 Xa (17) 

by cryotron circuit. 

The given function F (Xg) is not symmetric 
by the first definition if we consider the param­
eters of symmetry to be Xl, X2, Xg or Xl, X2 , 

Xa. When Xl and X2 or Xl and Xa are inter­
changed, Eg. (17) is left identically the same. 
Thus it is symmetric in the variables Xh X2 , 

Xg by the second definition. Eq. (17) is equal 
to "0" (which designates a resistive path), be­
cause each term contains two resistive gates. 
Whenever any two of the resistive gates Xh X2 

and Xa become superconducting, Eq. (17) is 
changed to "1" (which represents a super­
conducting path). The characteristic number is 
therefore equal to 2 in accordance with the first 
definition. In addition, the characteristic num­
ber should satisfy the following relation: 

mCn = m!/n! (m - n)! (18) 

which shows all possible ways of producing the 
characteristic number n. The given function 
F (Xg) expressed in symmetric symbolic nota­
tion is 

F (Xa) = S2 (Xh X2, Xg) (19) 

Its complement is found to be: 

F (Xa) = So, 1, a (Xl' X2 , Xa) (20) 

The output terminal 2 of Fig. 9 represents .Eq. 
(19). All other terminals 0, 1, and 3 which 
are connected represent Eq. (20). The gate­
pair Xa and Xa located at the left bottom part 
of Fig. 9 is redundant and therefore must be 
removed. 

If Eqs. (19) and (20) are synthesized by the 
tree method 2 more cryotrons are needed. 

DISCUSSION 

Complementary logic functions realized by 
cryotron circuits are easily accomplished 
through the design of a control network and 
the synthesis of a gate network. If the total 
number of distinct cryotron-pairs used in the 
circuit is m then the minimum number of cryo­
genic switching devices is equal to m. When 

the Boolean variables assigned to the cryotron­
pairs cannot be distributed uniformly, some 
switching devices may have heavy inductive 
loads. In such a case, additional switching de­
vices should be added to equalize the inductive 
loads in their secondary circuits. However, 
those devices which control cryotron-pairs with 
the same variable assignment should be oper­
ated synchronously, so that their primary cir­
cuits are connected in series and supplied by a 
common current source. The synthesized gate 
network should use minimal elements to reduce 
the cost; and it should have uniformly distrib­
uted Boolean variables to equalize inductive 
loads in the switching devices. 

If the switching device is considered equiva­
lent to the relay control winding and the com­
plementary gate-pair equivalent to the transfer 
relay contacts, the same synthesis technique 
which has been used in the design of the relay 
switching circuit to synthesize a gate network 
can be applied. The various synthesis proce­
dures are systematic and easy to follow espe­
cially for anyone familiar with relay switching 
circuits. 

In the transfer-contact relay circuit, a mini­
mal contact network without any redundancy 
may contain a static hazard in the tie or cut 
sets4 and cause momentary malfunction or even 
a complete failure of the circuit. Although the 
cryotron gate may have an intermediate-state 
during the state-transition, its superconductive­
to-resistive state change (or vice versa) is so 
rapid that such trouble seems non-existent in a 
cryotron circuit. This simplifies the synthesis 
procedure. 

When the realized circuitry is made more 
complex, the overall circuit inductance is pro­
portionately increased. This in turn increases 
the time constant of the circuit. The switching 
speed is accordingly lowered. Low gain film 
cryotrons which have less inductances can be 
used as the circuit elements to overcome this 
limitation. 

In the method of cascading three-terminal 
sub-networks, the distribution of the various 
gate-pairs can be examined by counting the 
frequency of the appearances of the variables 
in the given logic function while it is expressed 
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in its mInImum product or sum form. Al­
though the method is simple and straightfor­
ward, it seems difficult to synthesize the cryo­
tron network with a minimum number of gates. 

In a tree-network of m distinct gate-pairs, 
aside from the single pair nearest to the input 
terminal I, the distribution among the remain­
ing m - 1 pairs can be made almost uniform 
by Shannon's rule, though an absolute uniform 
distribution is impossible. But this almost uni­
form distribution cannot assure that the syn­
thesized network is the most economical reali­
zation which has been illustrated, as Example 
3. We should assign variables to cryotrons -in 
such a way that those output terminals which 
represent the terms of logic function to be 
synthesized are located as close as possible. We 
should try to group these terminals within the 
same sub-tree or two adjacent sub-trees by 
consideration of the relative frequencies of 
variable appearance and/or the Shannon rule. 
This will increase the number of redundant 
gate-pairs which can be removed. 

The gate-pairs in a complete symmetric net­
work witl;1 i parameters cannot be uniformly 
distributed because a single pair is always 
nearest to the input and the i-pair is located 
nearest to the output terminals. When i is 
made larger, the degree of non-uniformity in­
creases, proportionately. When a function is 
symmetric special ~~tention must be paid to its 
parameters because the designation of the vari­
able X j is resistive. It is exactly opposite if 
X j is not a parameter of the symmetric func­
tion. The designation of resistive X j is, there­
fore, restricted in the symmetric network. In 
this case, the cryotron control assigned by X j 

must be kept by a sufficient current flowing 
through it to maintain the gate X j in its resis­
tive state. 
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BINARY-COMPATIBLE SIGNED-DIGIT ARITHMETIC 
Algirdas Avizienis 

University of California, Los Angeles, California 
and 

Jet Propulsion Laboratory, Pasadena, California 

1. Signed-Digit Number Representations 
Signed-digit representations are positional 

number representations with a constant integer 
radix r ~ 3, in which the allowed values of the 
individual digits Zi are a sequence of 
q(r +2 :::; q :::; 2r-1) integers: (-a, ... , -1, 
... , a), where a is the maximum digit magnitude. 
The value of a is chosen from the following 
range: 

1f2 (ro +1) :::; a :::; ro-1, 
for odd radices ro ~ 3; 

lhre + 1 :::; a :::; re~l, 
for even radices re ~ 4. 

Both positive and negative digit values are al­
lowed. The individual digits contain all sign 
information, therefore a separate sign digit is 
not required for the entire number.' For ex­
ample, only one set of digit values exists for 
radix r == 3 (values -2, -1, 0, 1, 2) and for 
r==4 (values -3, -2, -1, 0, 1, 2, 3) ; for radix 
r==10 there are four sets, from 13 values (-6 
to 6) to 19 values (-9 to 9). 

Signed-digit representations are redundant, 
that is, each radix r digit Zi assumes more than 
r different values. In a conventional (nonre­
dundant) representation only r values of a 
digit (0, 1, ... , r-1) are allowed. Signed-digit 
numbers have minimal redudancy (ro + 2 or 
r e .+ 3 digit values) when the value of a is 
chosen as follows: 

a == 1f2 (ro + 1) == amin 
a == 1f2re + 1 == amin 

663 

They have maximal redundancy (2r-1 digit 
values) for both odd and even radices when a 
has the value: 

a==r-1==amax 
The characteristic properties of signed-digit 

representations are listed below . 

1. The algebraic value Z of the number Z 
composed of n + m·+ 1 digits (Z-n ... Z-1ZoZl ... Zm) 
is given by the conventional expression: 

m 
Z == ~ ZiFi 

i == - n 

2. Algebraic value Z == 0 if, and only if all 
Zi == O. 

3. The sign of the algebraic value Z is given 
by the sign of the most significant (left most) 
nonzero digit. 

4. To form the representation of the additive 
inverse -Z, the sign of ever~ nonzero digit 

'Zi is changed individually. . 

5. The addition and subtraction of two 
signed-digit operands Z and y satisfies Si == 
f (Zh Yi, Zi+h Yi+l) for all positions i, where Si 
are digits in the representation of the sum or 
difference s == z ± y. 

There are no carry-propagation chains in 
signed-digit addition (or subtraction), that is, 
any digit of the sum is a function of only two 
adjacent digits of the operands. Subtraction is 
performed as a change of sign followed by an 
addition. The logical time of one addition is 



664 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

independent of the length of the operands and 
is equal to the time required by one digital 
position. The rules of operation and block 
diagram of a signed-digit adder for one pair 
of digits are shown in Figure 1. Here ti is 
called the transfer digit and may assume the 
values 1, 0, and -1; Wi is called the interim 
sum digit and may assume one from the se­
quence of values: (-Wmax, ... , -1, 0, 1, .... , 
w max) . In the case of minimal redundancy, 
Wmax = amin - 1 is chosen; in all other cases 
(a > amin), Wmax is chosen from the range 

ami n - 1 ~ Wmax ~ a-I 

Previous publications present a detailed des­
cription of signed-digit number systems!, and 
the general rules for variable-precision and 

Si 

5'+1 

ADDITION (TWO STEPS) 

I CAl Z 1+ Yi = tt i-I + Wd 
t
'
_1 = 0 If IZ,+Yils. Wmax 

t i-, = I if Zi +Y, ) Wmax 

ti -I = -I if Z i + Y I < - W max 

I(8) Si = Wi + til 
SUBTRACTION: chang_ lign of 
Yi if Yi "0 and add 

Figure 1. Rules of Signed-Digit Addition 

significant digit operations2 , on which this pa­
per is based. 

2. Application of Signed-Digit Arithmetic 

The elimination of carry propagation re­
moves a fundamental constraint of digital arith­
metic units and necessitates a reconsideration 
of all arithmetic algorithms. The most import­
tant new aspects of signed-digit (to be ab­
breviated "s-d" from now on) arithmetic are: 

1. the addition time of a parallel adder con­
sisting of any number of cascaded identical 
digit-adder packages is (logically) constant; 

2. the most significant digits of the product 
(as well as of the quotient) are generated first 
and may be processed further before the less 
significant digits become available; 

3. the addition (and subtraction) algorithms 
apply to operands of an arbitrary multiple pre­
cision (arbitrary length with respect to the 
length of the adder) : the most significant sec­
tions are added first and may be immediately 
processed further; 

4. the multiplication and division algorithms 
are identical both for single- and multiple-pre­
cision operands; 

5. in floating-point arithmetic the application 
of a special digit value ~ (the space-zero) to 
designate non-significant positions allows the 
implementation of normalized significant digit 
arithmetic3 

; 

6. the non-significant digit value (space­
zero) 0 may be employed to determine the com­
pletion of a multiple-precision significant digit 
algorithm; in this case the lengths of the oper­
ands may be unknown at the beginning of the 
algorithm. 

A rather novel arithmetic processor may be 
constructed if these properties of s-d arith­
metic are utilized. The properties (2) and (3) 
permit the elimination of temporary storage of 
intermediate results in a complex algorithm; 
right shifts are not employed, and the flow of 
operand and result digits is only in one direc­
tion (to the left) , resembling signal flow 
through gate networks. The properties (3), 
( 4) and (6) cancel the distinction between the 
implementation of single and multiple-precision 
algorithms in an arithmetic processor and al­
low the completion of an algorithm to be de-
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tected by an inspection of the operands. Prop­
erty (5) permits the inclusion of significant 
digit arithmetic while retaining all advantages 
of the number system and without changing 
the algorithms. Finally, property (1) permits 
the assembly of fixed-time adders of any length 
from identical building blocks (without any 
carry-Iookahead or similar logic structures); 
this feature promises convenient assembly and 
restructuring of arithmetic processors for 
hardware implementation of complex algo­
rithms in a variable structure computer4

• The 
cost of the various innovations, when compared 
to a parallel binary arithmetic unit, is found 
in the greater complexity of the individual digit 
adders and in the increased storage require­
ments (for the same precision of operands) 
due to the redundancy of the number represen­
tation. 

A further important consideration in the 
definition of a practical signed-digit arithmetic 
processor is its compatibility with the widely 
employed conventional binary number system. 
The potential application of s-d arithmetic in 
the VCLA Variable Structure Computer 5 estab­
lished the need for a binary-compatible signed­
digit arithmetic. In such an arithmetic the 
s-d arithmetic processor accepts binary as well 
as s-d operands and produces s-d results. 
Furthermore, a reconversion algorithm is pro­
vided which allows the reconversion of s-d 
numbers to conventional binary forms either 
in the signed-digit or in a conventional binary 
arithmetic processor. The following sections 
describe a set of algorithms for a binary-com­
patible s-d arithmetic and outline the imple­
mentation of an aritlh"TIetic processor which em­
ploys these algorithms. The algorithms are 
applicable to any radix r=2k, with k ~ 2; the 
specific description will be given in terms of the 
radix r=8. An adaptation for a decimal-com­
patible signed-digit arithmetic is also quite 
evident. 

3. Structure of One Digit-Adder 

It is evident that any maximal-redundancy 
radix r s-d number system, with the allowed 
digit values ranging from - (r-1) to r-l, in­
cludes all allowed digit values (0 to r-l) of 
the conventional number system with the same 
radix. The prefixing of an individual sign to 
each digit then will convert a conventional 

number to an s-d number of the same alge­
braic value, in which all digits carry the same 
sign as the conventional number. The con­
version in this case requires no arithmetic and 
is executed simultaneously for all digits. 

A binary number may be interpreted as a 
number of radix r=2k (k ~ 2) by grouping the 
binary digits into groups of k bits each. The 
values of individual digits are then in binary­
coded form. Consequently, a sign-and-magni­
tude form of a binary number becomes a radix 
2k maximal-redundancy s-d number (with 
all digits sharing a common sign) by means of 
an interpretation of digit grouping. Any 
register which provides storage for a radix 2k 
s-d number will be able to store the binary 
number as an s-d number. Since both posi­
tive and negative digit values occur in one s-d 
number, it is necessary to choose the represen­
tation for negative digit values. Sign-and­
magnitude and complement forms both may be 
employed within each digit; the complement 
with respect to 2k+l is a generally convenient 
choice. Table I shows the "16's complement" 
coding of digit values for radix 8. 

The otherwise unused bit pattern 1000 is em­
ployed to designate the non-significant space­
zero 0. The choice of representation for nega­
tive digit values determined the rule for digit­
wise subtraction, which is implemented as the 
addition of "16's complements" of the sub­
trahend digits to the digits of the minuend. 
The addition table for first step of a radix 8 
digit-adder is presented in Table II. 

The second step of addition generates the 
sum digit of value Sj = '-Vi + tie The space­
zero 0 (pattern 1000) is detected by a special 

TABLE I: CODING OF DIGIT VALVES FOR 
RADIX 8 

Value Code Value Code 

0 0000 0 1000 
+1 0001 -1 1111 
+2 0010 -2 1110 
+3 0011 -3 1101 
+4 0100 -4 1100 
+5 0101 -5 1011 
+6 0110 -6 1010 
+7 0111 ". ~T'- 1001 



666 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

TABLE II: FIRST-STEP ADDITION TABLE 
FOR RADIX 8 (MAX. REDUNDANCY) 

Zl +Yi Wi t i-l Zi +Yi Wi t i- l 

+14 +6 +1 -14 -6 -1 
+13 +5 +1 -13 -5 -1 
+12 +4 +1 -12 -4 -1 
+11 +3 +1 -11 -3 -1 
+10 +2 +1 -10 -2 -1 
+9 +1 +1 -9 -1 -1 
IQ n I 1 Q 0 ~1 TU v T.L -..., 

+7 -1 +1 -7 +1 -1 
+6 +6 0 -6 -6 0 
+5 +5 0 -5 -5 0 
+4 +4 0 -4 -4 0 
+3 +3 0 -3 -3 0 
+2 +2 0 -2 -2 0 
+1 +1 0 -1 -1 0 
0 0 0 

logic circuit at the input of the digit-adder. It 
is always entered as the value zero (0000) into 
the adder. This conversion allows the use of 
the same digit-adder for both "conventional ad­
dition" and "significance addition" modes; in 
the latter mode the output of the digit-adder is 
forced to space-zero 0 (pattern 1000) if either 
one or both input digits were space-zeros. In 
"conventional addition" mode the 0 digits may 
be employed to mark the end· of a variable­
length number; in this case, the output is set 
to 0 only when both input digits are space­
zeros. Conventional addition without use of 
the space-zero values is also possible. 

An inspection of Table II shows that an 
ordinary four-bit (modulo 16) binary adder 
will generate three correct bits of the interim 
sum Wi. The correct value of the leftmost 
(sign) bit and of the outgoing transfer digit 
t i- I is computed by a separate logic circuit. To 
add the incoming transfer digit ti to the interim 
sum Wi one of two methods may be chosen: 
either a second pass to add ti is made through 
the same 4-bit adder which was used to compute 
Wi, or a separate ± 1 circuit (carry-propagate 
and borrow-propagate arrangement over 4 
bits) is employed. A detailed study and com­
parison of these two methods is currently in 
progress.ll 

4. Addition and Subtraction 
A convenient range for the signed-digit proc­

essor is the fractional range 1 > X > - 1 in 
which the value X of an n-digit number x com­
posed of the digits X1X:2 ••• Xn is: 

n 

X == ~ Xir-i 

i == I 

Overflow occurs when I to I == 1 is generated by 
the adder position i==l; therefore the range in 
,x:hich overfiO\"'1 ,XliII never be indicated is 

n n 
~ (r-2)r-i~ X ~ - ~ (r-2)r-i 

i==l i==l 

In the "significance addition" mode the space­
zero digit 0 enters the digit adder as the value 
zero, but the output of the digit adder is forced 
to the space-zero by the special circuit which 
senses 0, and is enabled by the "significance ad­
dition" command. In this case, the addition Xi 
+0 will generate Iti- l l==l when IXil==r-l, and 
ti-I=O otherwise, while si==0 will always hold. 
The result will be rounded to the precision of 
the shorter operand. The roundoff by means 
of 0 digits will be without bias if every digit 
value is assumed to occur with equal probabil­
ity. The maximum magnitude of the discarded 
part is Emax==r-i (r-1) _r-n when it consists of 
the digits xi, Xi+h' .. Xn' This value is reduced 
(at the cost of additional logic) to Emax==r-i (r/ 
2) _r-n by executing Xi + 0 as Xi+ (-I- r/2) 
whenever Xi =1= 0. The sign of ±r /2 is chosen 
to be the same as the sign of Xi; either sign is 
acceptable for Xi == O. In either case, roundoff 
has been implemented as a part of addition and 
executed concurrently at the level of individual 
digits. In the "conventional addition" mode, 0 
is always entered as value zero, and the digit 
adder output is forced to 0 only where both in­
put digits have the value 0. The result retains 
the length of the longer operand. 

In a floating-point system the exponent is 
represented by a signed-digit integer of desired 
range which is held at the left end of the frac­
tion. All fractions are kept in normal form and 
non-significant positions are filled with 0 
(space-zero) digits. There is at least one 0 at 
the right end of every fraction. When leading 
zeros develop in a fraction, it is normalized by 
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s-d augend 
s-d addend 

Z 
Y 

digit sums Zi+ Yi 
interim sum digits Wi 
transfer digits ti 
digit-adder output Wi + ti 
conventional sum S 
significance sum S' == 

.6 0 7 4 7 5 ~ 

. 2 7 1 5 ~ ~ ~ 
4 7 6 11 7 5 0 
416 1 150 

o 101100 
.5 1 7 0 1 5 0 
.5 1 7 0 1 5 t'J 
.5 1 7 0 ~ ~ ~ 

Note: the value ~ enters the adder as the value 
o in forming the digit sums Zi+ Yi' 

Figure 2. Addition Example (Radix 8) 

left shifts and a corresponding decrease of the 
exponent; significant digits are lost. Overflow 
is corrected by the transposition of the radix 
point of the result one position to the left and 
an increase of one in the exponent; the fraction 
gains one significant digit. Only one exponent 
is needed with multiple-precision fractions, 
since the exponent serves as the index of the 
relative position of the leftmost digit Xl of the 
fraction. Further details of floating-point ad­
dition have been presented in a previous paper.2 

5. The Pack-Add Algorithm and Normalization 

The "pack-add" algorithm is a variation of 
the usual "clear-add" algorithm. It is appli-
cable in several aspects of maximal-redundancy 
s-d arithmetic. The packed form x* of the 
s-d number x retains the algebraic value of x, 
but has only r+ 1 possible digit~values:~·.-~{cT'"i"'-l, 
... , 1, 0, -1). "Pack-add x" is implemented 
as the addition followed by an immediate sub­
traction of ± 1 to the n-digit fraction x. The 
addend ±1 is represented by the n-digit frac­
tion c, in which all digits have the value Ci == 
± (r-1), plus an incoming transfer digit tn 
== ± 1. Simultaneously the overflow transfer 
digit to == ± 1 is discarded, thus subtracting 
± 1 from x + c+ t n ; as a result the algebraic 
values of x and x* remain equal. The signs of 
Ci and tn must be the same as the sign of the 
leftmost digit Xl in order to guarantee Itol == 1; 
if Xl == 0, both signs of Ci and tn are allowable. 
The sign of Ci which has been employed in the 
algorithm is designated as the dominant sign. 
When x contains one or more ~ digits at its 
right end, the leftmost ~ digit (xn+! == ~) will 
generate til == ± 1 as the result of the addition 

of en+!, which is executed as + (r-1.) + ~ in 
the "significance addition" mode . 

After the execution of one pack-add algo­
rithm, digits of the opposite (non-dominant) 
sign may have only the magniture 1. Further­
more, any pair of these opposite sign digits of 
unit magnitude will be separated by at least 
one digit; at least one of the separating digits 
will be a non-zero digit with the dominant sign. 
The minimum separation increases by one digit 
for every successive application of the pack-add 
algorithm. These properties facilitate the· for­
mation of multiples of s-d multiplicands and 
divisors in the multiplication and division algo­
rithms. 

The application of the pack-add algorithm 
also permits the elimination of pseudo-normal 
s-d operands. There exists a class of maxi­
mal-redundancy s-d numbers of the same alge­
braic value which assume the forms )( == .16 
... ~, and x==.02 ... t'J, with the worst case 
being x' == .177 ... 77 t'J, and x == .000 ... 0 1 t'J, 
in which the form x' is pseudo-normal. The 
pseudo-normal form satisfies xl#O, but fails to 
satisfy a minimum magnitude requirement for 
its algebraic value; it also presents an incorrect 
count of significant digits. 

An exact rule for the recognition of normal 
forms is required in maximal-redundancy s-d 
arithmetic. An application of the pack-add 
algorithm to a pseudo-normal form will cause 
the appearance of leading zeros and permit 
further normalization of the operand. A con­
venient definition of a normal form is that one 

s-d operand 
packing addend 

Z 
C 

digit sums Zi + Y i 
interim sum digits Wi 
transfer digits ti 
digit-adder output Wi + ti == 
packed form Z* == 

.6074 7 5 t'J 

.7777 7 77 
15703 16 147 
5103641 

1 1001 1 1 
.6 104 7 5 1 
.6 1 04 7 5 t'J 

Notes: significance addition is employed and 
the overflow transfer digit to is dis­
carded to obtain Z*. 
The second application of the pack-add 
algorithm will yield the form Z** == 
.570475t'J without negative digit values. 

Figure 3. Pack-Add Algorithm Example (Radix 8). 
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of the following conditions should be satisfied 
byx: 

IXII ~ 2; 
Xl . +1, and X2 ~ 0; 
Xl = -1, and X2 S 0; 
X2 = ~ with any value of Xl' 

The magnitude range of non-zero normal forms 
x is given by 

1 - r-n ~ IXI ~ r2 (r-1) + r-n 

where Xn is the least significant digit of x. The 
nIYl"1"YI<:Il fA",n'\ Af f-h'" .f",nnf-;".".. nn 1.,,,,, V - 1\ .: .... ... .&"' .... .L.&. ... ~.1. .LV..L ~.I.~ V..L \,I.l..I.c.; .L~ ",vll.l.VJ...1 V a.1Uv ..£~ - V ~o 

uniquely represented by Xl = 0 and ~ == ~. 
Evidently, other definitions of normal forms 
may be convenient under different circum­
stances. 

Still another property of the pack-add algo­
rithm is the elimination of all opposite-sign 
digit values, which is a method of reconversion 
into the conventional binary form. A digit 
with the opposite signs survives a pack-add op­
eration only if there was a zerO' digit at its left; 
the new form will contain an opposite-sign 
unit value digit in the former position of this 
zero digit. Consequently, the longest string of 
zero digits ending with an opposite-sign digit 
at its right determines the number of pack-add 
operations needed for a reconversion; k+1 op­
erations are needed when this longest string 
contains k zero digits. The worst case will re­
quire n-1 pack-add operations for an n-digit 
form which has n-2 zeros separating non-zero 
digits Xl and Xn with unlike signs; however, 
the average number of operations required for 
complete elimination of opposite-sign digits will 
be considerably lower. 

6. Multiplication 

An important property of signed-digit multi­
plication is the availability of the most signifi­
cant product digit in its final form after the 
first two steps of the iterative mUltiplication 
algorithm. Given the radix r s-d multiplicand 
X and multiplier Y (with digits Yh Y2, ... Yn), 
the algorithm is : 

pW = r [p(j-l) + X Yj], with j = 1, 2, ... , n; 

where P<o) is an initial augend, and p(n) == 
p<o) + XY is the product2. Only left shifts are 
employed in this algO'rithm. For maximal re­
dundancy radix 8 multiplication, the multiplier 

digits Yj are recorded sequentially into digits 
y'j such that 4 ~ y'j ~ -4 holds. The recod­
ing generates a digit y'o (value 0, +1, or -1) ; 
therefore P<O) == rXy'o is specified. The value 
of y'j is a function of the values of Yb Yj+1' and 
of the sign of yj+:2 during the j-th step of multi­
plication. 

In binary arithmetic, high speeds of multi­
plication can be attained by cascading carry­
save adders 6 to form a multiple-operand adder 
which sums several mUltiples (+ 2i) X of the 
binary multiplicand X at once and produces a 
partial product in stored-carry form. The final 
product is obtained by entering the stored-carry 
form of the product into a carry-propagate 
adder. The multiple 2iX are obtained by left­
shifting the multiplicand X. Signed-digit ad­
ders may be similarily cascaded to add several 
operands at once. In this case, m-1 adders 
wil be required to form the s-d sum of m s-d 
operands; evidently, a carry-propagate adder 
is no longer necessary. The last remaining 
problem is the formation of the multiples 
(± 2i) X of the s-d multiplicand X. Two 
cases must be distinguished here. 

In the first case, X is delivered to the s-d 
processor in conventional binary sign-and­
magnitude form; the multiples 2iX of the mag­
nitude are obtained by left shifts of X before 
entering it into the s-d adder. For the radix 
8, the multiples 2X and 4X will be obtained by 
one-bit and two-bit left shifts of X; the multiple 
3X is computed by adding X to 2X in the s-d 
adder and storing the result (now in s-d 
form) in a separate register. With a binary 
multiplicand X and the stored multiple 3X, a 
single addition in a 2-input s-d adder will ac­
count for one radix 8 multiplier digit y'j. For 
multiplication using m radix 8 multiplier digits 
at once, m signed-digit adders must be cas­
caded; the partial product is generated in s-d 
form. 

In the second case, the multiplicand X is in 
s-d form a one-bit left shift will not yield the 
s-d form of 2X because adjacent radix 8 digits 
may have different signs. Multiple-forming 
circuits2 may be applied to generate 2X and 4X ; 
however, a more general solution is provided 
by the use of one more adder to add in the 
negative digits separately from the positive 
digits. Since the weight of the leftmost bit in 
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the radix 8 digit Xi is -8, this bit may be con­
sidered as having the weight +1 in the digit 
x" i-I of a negative sign-and-magnitude octal 
number X", while X without the -8 weighted 
digits remains a positive sign-and-magnitude 
octal number X', where X==X' .+ X" holds. 
Now X' and X" may be shifted bitwise and 
4X' + 4X" or 2X' + 2X" added to pO-I) by the 
use of two cascaded s-d adders, or by using 
the same s-d adder twice. 

We observe that with the above discussed 
approach, an arrangement of two cascaded s-d 
adders will handle two multiplier digits at once 
for a binary multiplicand X, and one digit at 
once for an s-d multiplicand X. When more 
than two s-d adders are cascaded, it is pos­
sible to use a cascade of m> 2 adders for m 
multiplier digits at once in case of a binary X, 
and for m-1 multiplier digits at once for a 
signed-digit X, if the s-d multiplicand X is 
converted to its packed form X * prior to the 
multiplication. The application of the pack­
add algorithm to -I- X leaves ± 1 as the only 
digit value of the opposite sign in X *; the 
number of successive applications is equal to 
the minimum separation (in digits) between 
any two opposite sign (± 1) digits. A single 
s-d adder is sufficient to add all m-l mUltiples 
of the opposite sign unit digits of X*, when the 
s-d multiplicand X is packed m-2 times be­
fore placed into the multiplicand register as X * . 

In conclusion, it is observed that the cascad­
ing of s-d adders differs from the cascading 
of carry-save adders for binary multiplication 
in several significant aspects. First, the carry­
save structure serves as a special=purpose adder 
for multiplication only and requires a carry­
propagate adder to generate the . final result. 
The s-d cascade is composed of fully complete 
s-d adders which may be used separately for 
independent operations when fast multiplica­
tion is not required. Furthermore, the radix .8 
division algorithm uses the same s-d adder ar­
rangement as the one-multiplier-digit algorithm 
for multiplication. 

The roundoff of a product is implemented by 
concluding the algorithm when the required 
number of product digits has been generated. 
Significant digit multiplication ~,8 employs the 
"conventional addition" mode for each step of 
the algorithm; the number of significant digits 

in the product is determined by a sequential 
scanning of both operands 2. Exponents in a 
floating-point multiplication are handled in the 
usual manner. 

7. Division 
The most convenient method of division in 

signed-digit arithmetic is the algorithm des­
cribed by Robertson 7, in which the representa­
tion of the quotient is redundant and the value 
of the next quotient digit is selected by com­
paring approximate magnitudes of the divisor 
and the partial remainder. One quotient digit 
qj is generated during each step of the division 
algorithm, which consists of an iterative se­
quence of left shifts and additions or subtrac­
tions: 

R(j) == r [R(j-I) - X qj] , with j==1, 2, ... , n 

where X is the divisor, R (0) is the dividend 
(satisfying IR(O) 1 < k 1 X I, with k to be speci­
fied) , R(n) is the remainder, the RW for n>j>O 
are partial remainders, and n specifies the re­
quired precision of the quotient 2. 

For radix 8 signed-digit division, the allowed 
values of the quotient digits qj may be chosen 
to be in the range 4 ~ pj ~ -4. In this case 
the Ip.ultiplication algorithm and the division 
algorithm are interchangeable when R(j) is sub­
stituted for pm, and -qj replaces the recoded 
mUltiplier digit y'j. The entire preceding dis­
cussion of implementing multiplication applies 
to division as well and will not be repeated 
here. The important difference is that the 
multiplier digits y'j were available, while the 
quotient digits qj must be determined before 
the next partial remainder RW can be com­
puted. 

The quotient digits qj is determined by com­
paring the magnitude of the number R', con­
sisting of the first three digits and the tem­
porary overflow position i==O of the partial 
remainder R (-Ij, to the magnitudes of the num­
bers X' 0, X'17 X' 2 X' 3 consisting of the same 
digits (i==O, 1,2,3) of the multiples Xj2, 3Xj2, 
5Xj2 and 7Xj2 of the normalized divisor X 
respectively. The magnitude of the quotient 
digit will be Iqj 1 == g, where g is the subscript 
of the least test number X' g which satisfies the 
test condition: 
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if all four test numbers fail to satisfy the above 
condition, Iqj I == 4 is to be chosen. The sign 
of each nonzero qj is chosen to be such that the 
sign of the term X qj is the same as the sign 
of the partial remainder R (j-1) . 

The divisor X is required to be packed and 
normalized; in this case the analysis of the re­
quired precision of comparison1 shows that the 
positions i == 4, 5, ... , n may be disregarded 
in the choice of quotient digits. The initial 
condition which is to be satisfied by R(O) in 
order to apply the division algorithm without 
quotient overflow is that before the first left 
shift 

IR'I<IX'ol 

must hold, where R" consists of the digits i==O, 
1, 2, 3 of the number R(O) -Xq1' When Iq1i 
~ 3 is chosen, the above condition is known to 
be satisfied; the selection of IqII ==4 indicates 
a possible quotient overflow. A convenient 
solution to the overflow problem in floating­
point division (employing no right shifts) is to 
repeat the selection of IqII once more (before 
the first left shift) when IqII -4 is indicated. 
If Iqll ~3 is indicated, the correct magnitude of 
ql is the-,sum of both indicated values, and the 
left shift is executed. If the second selection 
is again I q11 ==4, then I qo I == 1 is recorded (qo 
is the quotient overflow digit) and the proce­
dure is continued until an indication of Iq11 ~3 
allows the first left shift. After this initial 
range adjustment, one quotient digit will be 
generated during each step of the division algo­
rithm. 

In the implementation of division, the multi­
plication hardware can be used for the required 
test subtractions which determine the quotient 
digits. Three digits of X/2 (designated as 
X'o) are obtained by displacing all bits of the 
first three digits of the packed and normalized 
divisor X one binary position to the right. 
Since 2X and 3X are available, the other tests 
(if necessary) are performed by first obtaining 
X'o ± R' (add if signs of X and R(j-l) differ, 
subtract otherwise) and then separately add­
ing to this result the required digits (positions 
i==O, 1, 2, 3) of X, 2X, and 3X. This method 
will yield one radix 8 quotient digit for every 
addition, employing the one-digit multiplication 
arrangement supplemented by the comparison 
circuitry. 

Significant digit division 3,8 follows the same 
rules as multiplication, which was discussed in 
the preceding section. 

8. Reconversion to Binary Forms 

Several feasible methods exist for the recon­
version of s-d numbers into the conventional 
form; the specific choice depends on the system 
relationships of the s-d arithmetic processor. 

One method is the previously discussed re­
peated application of the pack-add algorithm. 
This method requires a variable number of 
steps, and is essentially a serial radix 8 borrow­
propagation method with sensing of the com­
pletion of all borrow chains. 

Another method of reconversion employs a 
borrow-propagation circuit which accepts the 
three positively weighted (+4, +2 and +1) 
bits of each radix 8 digit as bits of a binary 
operand and the negatively weighted (-8) bit 
as a binary borrow into the (+1) position of 
the octal s-d digit which is immediately to the 
left. Negative numbers will appear in "two's 
complement" form. An end-around borrow 
connection will give the result in binary "one's 
complement" form, which is readily converted 
to the sign-and-magnitude form. The "-1" 
circuits which add the negative transfer digit 
to the interim sum in every digit adder may be 
interconnected for this purpose, or a separate 
borrow circuit may be employed. Any desired 
amount of borrow-lookahead may be incQ,rpo­
rated in this arrangement; borrow-completion 
sensing may also be used. 

Finally, the s-d number may be entered as 
a pair of binary operands with opposite signs 
into a conventional binary adder when it is 
available in the computing system. The posi­
tive operand is composed of the positively 
weighted bits of all s-d digits, while the nega­
tive operand consists of the negatively weighted 
bits. 

9. Conclusion 
Signed-digit arithmetic is characterized by 

an affinity for variable-length operations with 
floating-point and significance-arithmetic op­
tions. Special carry-acceleration circuits are 
completely eliminated, and the space-zero value 
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implements some control functions at the level 
of individual digit adders instead of at a central 
control location. For instance, explicit infor­
mation on the length of operands and results 
is not required. The logical complexity of in­
dividual digit adders is consequently increased. 
For example, a preliminary design of a radix 8 
digit-adder with the separate transfer addition 
circuit indicates that it requires between 2 and 
21;2 times as many logic circuits as a ripple­
carry radix 8 (three-bit) conventional adder. 
A special control circuit is also required to de­
tect the presence of the space-zero digit values 
(~) at adder inputs. The modular nature of 
digit-adders is expected to be especially suitable 
for microelectronic systems. One radix 2k , or 
radix 10 digit-adder offers a standard building 
block of considerable complexity which is suit­
able for micro-electronic implementation. An 
arithmetic processor with specified perform­
ance characteristics then will be constructed as 
an array of the standard building blocks. Each 
digit adder is an arithmetic unit of limited ca­
pabality in the specified processor. The ex­
tent of central control functions is reduced and 
"one-of-a-kind" logic circuits are eliminated. 

A second novel and potentially useful prop­
erty of s-d arithmetic is the order in which 
the digits of results are produced for the ele­
mentary set of algorithms: addition, subtrac­
tion, multiplication and division. The most 
significant digits of the results always appear 
first and may be processed further without 
waiting for the less significant digits to be 
computed. Furthermore, only left shifts are 
employed in these algorithms, and the digits of 
the operands and results "flow" in one direc­
tion-to the left, while the rate at which they 
are produced depends on the number of digit 
adders which are available. Complex algo­
rithms may now be implemented by an array 
of digit adders without the need for inter­
mediate storage of results and in an asynchron­
ous manner, with the space-zero values serving 
to indicate completion of the various elemen­
tary algorithms. Both aspects of s-d arith­
metic which were mentioned above and methods 
of failure detection are now being investigated 
for potential application in the restructurable 
computer system.5 
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I. INTRODUCTION 

The accurate storage of a continuous voltage 
has always proven to be a difficult and challeng­
ing problem to the designers of electronic ana­
log systems. Most modern analog computer in­
stallations include a number of "sample-hold" 
devices, utilizing high-quality operational am­
plifiers in combination with special electronic 
switching circuitry. In such units the voltage 
is stored as charge on a capacitor, so that leak­
age and grid currents must be extremely care­
fully controlled to permit long-time storage 
with high accuracy. Recently introduced hybrid 
computer systems have placed an additional 
requirement upon the analog memory unit: 
economy. For example, in the discrete-space­
discrete-time hybrid computer system now un~ 
der development at UCLA, 1,000 sample-hold 
circuits will be required in order to accommo­
date 1,000 parallel digital-analog channels. 
Furthermore, hold times of several minutes are 
desired. Under these conditions conventional 
capacitor-type analog memories become eco­
nomically unfeasible. These considerations have 
stimulated a search for a rapid, accurate and 
economic analog memory and have resulted in 
the development of the FM-transfluxor unit de­
scribed in this paper. Since their introduction 
by Rajchman1

,2 in 1955, multiaperture mag­
netic devices (MAD) have assumed an imp or-

tant place as magnetic logic and memory de­
vices in digital computer applications. The 
extension of this technique to analog systems 
has been proposed from time to time, but no 
fully satisfactory transfluxor analog memory 
has been described to date. 

In essence, a transfluxor is a ferrite core 
with at least two holes-the major and the 
minor aperture. In memory applications, ad­
vantage is taken of the fact that an electrical 
signal applied to the major aperture effects a 
change in the magnetic field in the entire core. 
Provided certain geometrical criteria are satis­
fied, it is then possible to sense the magnetic 
condition of the core by means of an electrical 
signal applied to the minor aperture, without 
affecting the magnetic field about the major 
aperture. If it is desired to store analog vari­
ables, it is necessary to provide for the uninter­
rupted read-out of a continuous electrical volt­
age. This in turn necessitates that the sensing 
signal be applied continuously and that it be 
suitably modulated by the setting signal about 
the major aperture whenever a change in 
the stored information is desired. Suggested 
approaches to analog memories can be con­
veniently classified as amplitude-modulated, 
phase-modulated, or frequency-modulated, as 
determined by the manner in which the setting 
signal is made to affect the sensing signal. 

* This work was supported in part by the National Science Foundation under Grant G-24888. 
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In an amplitude-modulation system,2, 3, 4, 5, 6 as 
illustrated in Figure la, a constant amplitude 
sinusoidal oscillator applies the sensing signal 
to the minor aperture. The sensing signal is 
picked up by a second winding about the minor 
aperture and is converted to DC by an ampli­
tude-to-DC converter, consisting of an ampli­
fier, a rectifier and a low-pass filter. The set­
ting signal controls the coupling between the 
two windings about the minor aperture. The 
DC output voltage can therefore be varied con­
tinuously from a minimum (decoupled) to a 
maximum (fully coupled) value by means of 
suitable setting signals. 

In the phase-modulated memory7 shown in 
Figure lb, the winding about the _minor aper­
ture constitutes an inductor and forms part of 
an RLC circuit. An oscillator is placed in series 
with this parallel circuit, so that the phase of 
the resulting sinusoidal signal is determined by 
the magnitude of the inductor. By means of a 
suitable phase-to-DC converter, the phase shift 
effected by a variation in the magnitude of the 
inductor is translated into a DC output voltage. 
The inductor magnitude is in turn determined 
by the magnetic field in the transfluxor core 
and is controlled by the setting signal. 

MAJOR 
APERTURE 

Figure Ia - AM Memory 

Figure Ib - PM Memory 

OUTPUT 

Figure Ie - FM Memory 

FREQUENCY-
D.C. -CONVERTER OUTPUT 

Figure 1. Transfluxor Analog Memory Systems. 
Figure 1a. AM Memory. 
Figure lb. PM Memory. 
Figure 1e. FM Memory. 

In the frequency-modulation approach 3, 8, 9 

described in this paper, a winding about the 
minor aperture forms part of an oscillator and 
controls the oscillator frequency. A frequency­
to-DC converter is then employed to translate 
this frequency into a DC output. Since the 
magnetic field in the transfluxor controls the 
oscillator frequency, the setting signal can be 
employed to vary the DC output voltage over 
a wide range. 

All of the memory circuits described above 
feature an essentially unlimited memory time. 
Provided environmental extremes are avoided, 
the drift of the magnetic field within the trans­
fluxor from the value imposed by a setting sig­
nal is essentially negligible over a period of 
weeks and months. Hence, the DC output volt­
age of the transfluxor memory is likewise con­
stant over a long period of time. An analog 
memory can then be fashioned simply by caus­
ing the analog input voltage to be translated 
into a suitable setting signal, which in turn 
produces a proportional DC output voltage. 
This mode of operation may be termed "open­
loop" and has the advantage of simplicity. If 
a large number of transfluxor memory channels 
are to. bse used, however, open-loop operation 
makes it necessary to calibrate each channel 
separately to take into account minor varia­
tions in transfluxor characteristics. It is then 
also necessary to assure that the transfluxor 
temperature at the time of operation is identi­
cal to the temperature at the time when the 
transfluxor was calibrated. These inconvenient 
features can be overcome by employing a 
"closed-loop" mode as illustrated in Figure 2. 
Here the DC output voltage is compared to the 
DC input voltage and the resulting error signal 
is made to activate a drive circuit. Setting 
pulses are then applied to the major aperture 
until the error voltage falls within prescribed 
limits. The drive circuit can then be discon­
nected from the memory unit without affecting 
the DC output. This facilitates time-shared 
operation. 

In the course of the past two years, all three 
modes of transfluxor memory operation have 
been analyzed experimentally and theoretically. 
On the basis of these studies it was determined 
that the frequency-modulation approach offers 
the greatest accuracy, economy and freedom 
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I 

MULTIPLEX 

DC 
J"SENSi~+-~O~UTPUT 

Figure 2. Transfiuxor Closed-Loop Memory. 

from noise effects. Accordingly, an FM-trans­
fluxor memory, operating in a closed-loop 
fashion, has been developed and tested. The 
overall features sought in this unit can be sum­
marized as follows: 

Nominal accuracy: 0.1 % of half-scale 
Memory speed: 1 millisecond 
Dynamic range: -10 volts to + 10 volts 
Facility for multiplexing 
All solid state 
Parts cost per module: less than $5.00 

II. SYSTEM OPERATION 

A simplified diagram of the closed-loop FM 
analog memory system is shown in Figure 3 
and is seen to include two major units: a) the 
transfluxor and sensing circuitry, which is pro­
vided for each analog channel, and b) the com­
parator and drive circuitry, which is tinie­
shared among all the transfluxor modules. It 
can be seen that the memory modules are very 
simple in design, containing only three tran­
sistors and one diode in addition to passive 
components including the transfluxor itself. 
The nature of each of the major elements in 
the memory system will now be described. 

Trans/luxor: The prototype transfluxor con­
figuration currently employed in the memory 
is shown in Figure 4a. The core is fashioned 
from a disc of Indiana General type S-6 ferrite 
material, 25.55 mm in diameter and 1.57 mm 
thick. The S-6 type material was selected pri­
marily because of the commercial availability 

Figure 3. Simplified Schematic of Transfiuxor F-M 
Memory System. 

Ql, Q2, Qa - 2N1309; Rl = 390K; Cl = 500 p.p.f; 

Re = 1000; Rbb = 33K; C2 = 30 p.p.f; C3 = .05 p.f; 
R3 = 38K. 

of the 25.55 mm diameter disc employing this 
material. In addition, as evidenced by the B-H 
characteristics of Figure 4b, the low threshold 
coercive force of 0.2 oersteds of the S-6 mate­
rial minimizes the power requirements of the 
transfluxor driving circuitry. An ultra-sonic 
drill is used to fashion the maj or and minor 

MAJOR 
APERTURE'\ 

-----+------ r~J~~ .. A~RTURE 
. I.'KJ MM UIA. 

R-,O.oo MM I i 
LEG 

r-3 
LEG , ~1CCENTER LEG 2, 

------ ~~O.7~~---P+~~+-
I I 

I! 

2.075 MM 

1------- 25.55 MM-----------~ 

Figure 4a. Prototype Transfiuxor Geometry. 
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Figure 4b. Prototype Transfluxor Magnetic 
Characteristics. 

Initial Permeability (IMC) = 110 
Maximum Permeability (Dc) = 6000 
Saturation Flux Density (Dc gauss) 

3450 at Hm = 25 oersteds 
Coercive Force (Dc 60 cycle) = 0.20 
Maximum EriEs Ratio = 0.95 at 1 

oersted 

apertures which are 20 mm and 1.4 mm in 
diameter .respectively. The disc is therefore 
quite large when compared to memory cores 
used in digital computer applications. This 
large size provides greater temperature stabil­
ity and facilitates the application of the setting 
and the sensing windings. The major aperture 
winding consists of 75 turns of #34 wire. The 
number of turns on the minor aperture are 
given below. The theory underlying specifica­
tion of the transfluxor geometry is summarized 
in Appendix A. 

Sensing Circuit: The sensing winding in the 
transfluxor forms a portion of an oscillator 
circuit. Both sinusoidal and switching-mode 
oscillators were investigated and the latter 
selected for their greater stability. The con­
trol of multivibrator frequencies using fer­
rite cores has been described by Royer10 and 
others.l1, 12, 13, H These units employ two trans­
fluxor windings, the coupling coefficient be­
tween them determining the frequency of oper­
ation. The circuit shown in Figure 3 is a 
modified form of this type of multivibrator. In 
an alternative realization of the memory mod­
ule, a multi vibrator circuit similar to that 

shown in Figure 5 has been used with consider­
able success. Here a single minor aperture 
winding is connected between the collectors of 
two transistors. The operation of transfluxor 
controlled multi vibrators is discussed briefly 
in Appendix B. The output of the multivibra­
tor is converted to a DC voltage, directly pro­
portional to the frequency by means of a so­
called "pump"15 circuit. 

Comparator: A high-quality chopper-stabi­
lized, DC amplifier is employed to compare the 
analog input voltage to the analog output volt­
age. The difference between these two values 
is amplified 100 times and is identified as the 
error signal E. Not shown in Figure 3 are 
auxiliary circuits employed for closed-loop sta­
bilization, to accelerate the response of the 
pump circuit to error signals, and to shift the 
DC output into the desired range. A consider­
able reduction in output impedance can be at­
tained by the inclusion of an additional tran­
sistor. 

Driving Circuit: I t is the function of the 
driving circuit to translate the error signal into 
suitable setting pulses. Numerous experiments 
indicated that short voltage pulses constitute 
the most effective manner of controlling the 
magnetic field in the transfluxor. The optimum 
pulse-width for effecting increases in multi­
vibrator frequency were found to be consider­
ably larger than the optimum pulse-width for 
decreasing multi vibrator frequencies. In order 

-Vee -Ve -Vee 

CLAMP 
VOLTAGE 

Re Re 

MINOR APERTURE 
WINDING 

Figure 5. Transfluxor Multivibrator with Single Minor 
Aperture Winding. 

Vet· = -20 Volts; Ve = -6 Volts; Vbb = 20 Volts; 
Re = 1K; Ch = 120 p,p,f; Rh = 1.5K; Rbb = 200K. 
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to facilitate the efficient traversing of a fre­
quency range from 250 to 900 KC, separate 
"forward" and "backward" channels are em­
ployed. 

A clock multivibrator generates a square­
wave of constant frequency. This unit drives 
two separate monostable multivibrators A and 
B which produce trains of pulses with widths 
of 1.30 and 0.65 microsecond respectively. The 
former of these two pulse trains is applied to 
gate A which produces an output only if the 
error voltage is more negative than -1.0 volts. 
Similarly, gate B permits the output of the 
single shot B to be transmitted only if the error 
voltage E is more positive than + 1.0 volt. De­
pending upon the polarity of the error signal, 
therefore, positive pulses 1.30 microsecond. in 
width or negative pulses 0.65 microsecond in 
width are applied to the setting winding of the 
transfluxor. The optimum frequency range and 
pulse-width depend of course upon a number 
of considerations and can be expected to vary 
from application to application. 

The overall operation of the memory unit 
can be summarized as follows: Prior to the 
application of an input signal, the frequency 
of oscillation in the sensing circuit is deter­
mined by the magnetic condition of the trans­
fluxor unit. This frequency, in the range 250 
KC to 900 KC results ina corresponding DC 
voltage in the range -10 volts to + 10 volts. 
The driving circuit is now connected using two 
multiplexer switching poles, and a DC input 
signal in the range -10 to + 10 volts is ap­
plied. Any difference between the DC output 
of the memory module and the applied input 
results in error voltage E. This error signal 
causes a train of positive or negative voltage 
pulses to be applied to the setting winding of 
the transfluxor. The effect of these pulses is to 
change the frequency in the sensing circuit 
until the difference between the output voltage 
and the input voltage becomes less than 5 milli­
volts. The drive circuit then becomes inopera­
tive and can be switched to another memory 
module. Of particular interest in characteriz­
ing the performance of such a memory unit is 
the long-term stability of the memory module 
and the resolution or accuracy attainable. These 
aspects are considered in the following sections. 

III. STABILITY CHARACTERISTICS 

The magnetic characteristics of square-loop 
ferrite materials are strongly affected by tem­
perature. The coercive force, the saturation 
flux density and the remanant flux density all 
decrease in magnitude as the temperature of 
the core is increased.16 In evaluating the effec­
tiveness of transfluxo!s as analog memories, 
the effect of temperature variations upon mem­
ory operation must be carefully considered. 

Of primary interest is the drift in the sens­
ing circuit frequency and hence in the DC out­
put, when a memory module is set to a specific 
output voltage and subjected to temperature 
variations typical of a laboratory environment. 
Accordingly, a series of such long-term drift 
experiments were conducted, with the trans­
fluxor at different levels of saturation. The 
transfluxor and sensing circuit were placed in 
an_ air-conditioned laboratory without special 
efforts at temperature stabilization and the 
drift in sensing circuit frequency as a function 
of temperature and time was recorded. In the 
course of a typical three-hour run the labora­
tory ambient air temperature varied from 73 
to 75°F. The results of these tests for three 
major-aperture flux states are summarized in 
Figure 6. As shown, the percent drift over a 
three hour or greater interval is in the order 
of 0.1 % for all flux states. It should be recog-
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Figure 6. Long-Time Drift Characteristics of Trans­
fluxor Multivibrator for Various Setting Conditions. 
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nized that in any specific application, the trans­
fluxor memory is required only to maintain a 
constant output between successive analog in­
puts. In most hybrid computer systems, hold­
ing-time requirements rarely exceed one minute 
and are usually of the order of several seconds. 

Additional series of experiments were con­
ducted to determine the general sensitivity of 
the transfluxor circuit to temperature. Accord­
ingly, the transfluxor core was placed in an 
oven and the variation in sensing circuit fre­
quency was observed over a telllperature range 
from -80°F to + 150°F. These measurements 
were repeated with the transfluxor set to five 
different levels of saturation and are illustrated 
in Figure 7. In the course of these experiments 
it was observed that for each specific trans­
fluxor geometry there exists a critical tempera­
ture beyond which irreversible effects take 
place. That is, if the critical temperature is 
exceeded information stored in the transfluxor 
memory becomes essentially lost. The reason 
for this effect lies in the fact that the coercive 
force17 He decreases with frequency. If this de­
crease becomes large enough, it then becomes 
possible for signals about the minor aperture 
to switch flux about the major aperture. Such 
major aperture flux switching results in turn 
in a change in the sensing circuit frequency. 
This effect must be carefully avoided by suit­
able design of the transfluxor and by suitable 
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choice of the resistor R placed in parallel with 
the setting winding. 

IV. DRIVING CHARACTERISTICS 

The frequency of the sensing circuit, which 
determines the DC output, is varied and con­
trolled by means of trains of positive or nega­
tive voltage pulses applied to the setting wind­
ing. In order to achieve a high resolution and 
hence a high accuracy, it is important that the 
increment in frequency produced by a single 
pulse be very small. For example, if the fre­
quency is to range from 250 KC to 900 KC, it 
is necessary that a single pulse produce a fre­
quency change of less than 650 cycles, in order 
that a 0.1 % resolution be obtained. The prob­
lem of selecting an optimum pulse-width and 
repetition rate is complicated by the fact that 
the effect upon the frequency of a setting pulse 
of a given width is different when the fre­
quency is being increased than when it is de­
sired to decrease the frequency. This is illus­
trated in Figure 8 for a number of different 
pulse-widths. In each case the core was first 
saturated (high frequency), and a series of 
rectangular voltage pulses were applied one at 
a time so as to decrease the frequency to its 
minimum value. The polarity of the pulses was 
then reversed and the core brought gradually 
back to the saturated state. From these data 
it is apparent that for increasing frequencies 
the pulse-width should be at least twice as 
great as for decreasing frequencies. These 
curves also point out the desirability of oper-
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ating in the relatively linear low-frequency 
range rather than over the entire frequency 
domain. 

The speed of response of the memory circuit 
is determined by a number of design param­
eters and compromises. Of particular impor­
tance is the frequency of the clock multivibra­
tor in Figure 3, since this determines the rate 
at which control pulses are applied to the set­
ting winding. The width of the control pulses 
is likewise important in determining the speed 
of operation, since wider pulses produce larger 
increments in frequency. A compromise be­
tween speed and accuracy must hence be made. 
The RC time constant at the output of the 
pump circuit is also important in determining 
the speed. Here the compromise is between 
speed and output ripple, since the low-pass fil­
tering action of the pump output circuit varies 
directly with the time constant. The switching 
characteristics of the transfluxor core itself 
appear to have a relatively minor effect upon 
the response time of the memory unit. 

V. CONCLUSION 

On the basis of experience with. a number of 
prototype memory systems, it is concluded that 
the FlYI transfluxor analog memory offers 
unusual promise. The memory module is excep­
tionally simple, compact and economic, per­
mitting the design of systems with large num­
bers of sample-hold channels. The usefulness 
of this type of memory in the hybrid applica­
tion is further enhanced by the fact that the 
memory time under normal laboratory condi­
tions is very long, permitting a great flexibility 
in digital-analog scanning cycles. Since the 
driving circuitry is time-shared among all the 
memory modules, great care and sophistication 
can be employed in its final designs, so as to 
attain an optimum compromise between re­
sponse, speed and accuracy. A second poten­
tially useful application of the transfluxor 
memory is in pure analog track-hold circuits. 
Here the low cost of the individual modules 
permits the utilization of a relatively large 
number of them to store a continuous function 
of time as a large set of discrete points. 
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APPENDIX A 

Transfluxor Geometry and Driving 
Considerations 

Major and Minor Aperture Signal Constraints 

If the core material of a transfluxor has a 
magnetizing force He, the coercive force for 
any closed flux path j-k is 

where 

N j = Number of turns around leg j 

lj-k = Mean circumference of path j-k 

(1) 

I j - k = Current required to establish coercive 
force for path j-k 

Equation (1) can be used to establish the 
constraints imposed on the major and minor 
aperture signals by the geometry and material 
properties of the transfluxor. The range of 
allowable adjustment for the major aperture 
control signal in the oscillator mode of opera­
tion (Figure 9a) is limited by the flux path 
lengths 11- 2 and 1'1-2 of Figure 9c. Applying 

OR 

1J'---"4---iMI.LTlVIBRATOR 

Figure 9. Transfluxor Multivibrator Mode of Operation. 
Figure 9a. Oscillator Mode of Operation. 
Figure 9b. Minor Aperture Path Lengths. 
Figure 9c. Major Aperture Path Lengths. 
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Equation (1), with the assumption that the 
threshold mmf of the transfluxor material is 
Reo, yields 

Heo 11-2 ~N1 ISET ~ Heo 1'1-2 (2) 
ampere turns 

where 

Reo = Threshold mmf of transfluxor ma­
terial in oersteds 

11-2, 1'1-2 = Path lengths shown in Figure 9c 
in centimeters 

ISET = Major aperture setting current -
amperes 

N1 = Number of turns on major aper-
ture 

The path lengths 11-2 and 1'1-2 can be regarded 
as the basic geometric parameters for the 
transfluxor since their ratio establishes the set­
ting range of the major aperture. 

1'1-2 > ISET MAX 

11- 2 - ISET MIX 

(3) 

Similar constraints can be established for the 
minor aperture using the path lengths Ia-z and 
Ll-l of Figure 9b. 

Hco13-2 ~ N 3 Ie ~ Heo13-1 (4) 
where 

13-h 13-2 = Path lengths in Figure 9b in centi­
meters 

N 3 = Number of turns on minor aper-
ture 

Ic = Collector current of saturated or 
on transistor in multivibrator 
amperes 

The ratio of the path lengths 13- 1 and 13-2 

establishes the range of satisfactory adjust­
ment for Ie according to 

Ic MAX < 13- 1 

Ic MIN - L-2 
(5) 

As indicated by Equations (4) and (5), the 
multivibrator parameters should be adjusted so 
that the maximum value of Ie is greater than 
that value of current necessary to just magne­
tize the unsaturated path 13-2, but smaller than 
that value which would magnetize an unsatu­
rated path 13-10 These limit values should be 
separated by as large a margin as possible in 
a transfluxor to provide adequate isolation be­
tween the major and minor apertures. 

For complete minor aperture saturation, a 
considerably higher value of magnetizing force 
than the threshold value Rco is required. Desig­
nating this magnetizing force by Hes Equations 
(4) and (5) become: 

HCR 13-2 ~ N 3Ic ~ Heo 13-1 

Ie MAX < 13-1 Heo 
Ie MIN - 13-2 Hes 

(6) 

(7) 

Equations (6) and (7) place a severer restric­
tion on the adjustment range of Ie, particularly 
if Hcs » R Cil ' Consider, for example, the proto­
type transfluxor used in the present research. 
The parameters of Equations (6) and (7) for 
this transfluxor are 13- 1 = 6.50 cm, 13-2 = 1.10 
cm, Heo = 0.2 oersteds and Hes = 1.0 oersted. 
Using these values Equation (6) becomes 

1.10 ~ N 3Ie ~ 1.30 ampere turns (8) 

Since Equation (8) satisfies the conditions 
of Equation (6), flux switching of the major 
aperture by the minor aperture should not 
occur. In the event that flux switching of the 
major aperture by the minor aperture does be­
come a problem, the path length 13- 1 must be 
increased. This can be accomplished by redi­
mensioning the transfluxor; but this would lead 
to a reduction in the frequency range. A more 
practical approach is to place a resistance 
across the major aperture winding, which acts 
effectively to increase the path length 13- 1 by 
decreasing the major aperture field available 
for flux switching. 

Major Aperture Driving Characteristics 

The primary requirement of the major aper­
ture driving signal is that it be capable of 
changing the flux state of the aperture by very 
small increments so that the frequency of the 
minor aperture oscillator is also changed in 
correspondingly small increments. The accu­
racy of the memory is a direct function of the 
number of quantized flux steps Mi into which 
the major aperture flux range 0 1 can be di­
vided. For an ideal square-loop core material 
the number of flux increments is given by 

Mi = N 10 1 (9) 
VsT 

where 

N 1 = Number of turns on leg 1 of maj or 
aperture 
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v" = Amplitude of a rectangular setting 
pulse of width T applied to the major 
aperture 

Unfortunately, the actual major aperture 
o - NI characteristics are not square but form 
a distorted hysteresis18 loop due to the finite 
inner-diameter outer-diameter ratio of the ma­
jor aperture. 

Hawkins and Munsey19 have analyzed the ef­
fects of core geometry on the driving signal 
and core-flux state of a toroidal core. Although 
their analysis is restricted to a toroidal shape, 
it can be extended to a~y closed-magnetic-path 
geometry possessing flux paths of different 
lengths such as the major aperture of a trans­
fluxor. The primary result of this study is 
given by 

(10) 

where 

o = Flux stored in major aperture core 

0 x = Lumped constant which is a function 
of applied volt-time integral and core 
geometry 

Mi = Number of input voltage pulses ap­
plied to the core (in this case the main 
aperture) 

T == Time constant \Xlhich is a function of 
the core geometry and material prop­
erties 

Equation (10) applies until 0 reaches satura­
tion for the given core 0 5 and can be plotted 
as shown in Figure 10 with 0 = 0 5 • As shown, 
improved linearity can be obtained by making 
0 x large with respect to 0 5 • However this im­
provement in linearity must be traded for reso­
lution since fewer pulses Mj are required to 
saturate the core as 0 x is increased. 

A second significant result of the analysis is 
an expression for the maximum number of 
pulses Mi as a fl,Jnction of core magnetic prop­
erties and geometry of the form 

where 

Sr 

Mi MAX = IjSr 
Ln (ril) 

rj 

Ln [_l_J (11) 
1- P 

= Squareness ratio of the core mate­
rial 

r o, rj = Outer and inner radius of core (ma­
jor aperture) respectively 

P = Linearity and is defined as the frac-
tion by which an incremental flux 
change at the maximum value of Mi 
differs from that at Mi = O. 

The quantity P may also be interpreted as the 
relative flux change at the worst point (near 
saturation) on the hysteresis loop. 

As shown in Equation (11) for any desired 
value of P the maximum value of Mj is deter­
mined by core magnetic properties and geom­
etry only. In particular Equation (11) indi­
cates that the closer (r{)/ri) approaches unity 
the greater the resolution. Thus, ideally the 
transfluxor major aperture should be struc­
tured so that rO/ri is as close to unity as pos­
sible. 

Also as nonlinearity increases (Le. p ~ 1) 
the resolution increases. This is advantageous 
for the frequency mode of operation since the 
DC voltage output of the memory is inversely 
proportional to the minor aperture flux avail­
able for switching-(memory output voltage 
,-' 1/0). The 1/0 dependence makes the mem­
ory output voltage a hyperbolic function of the 
major aperture control signal. By suitable con­
trol and choice of P it is possible simultane­
ously to improve resolution and to make the 
memory output linearly dependent on the ma­
jor aperture control signal. 

~ --------------------------------

1 

-------------------
4> 
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Figure 10. Variation of Major Aperture Stored Flux 
as a Function of Setting Resolution. 
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APPENDIX B 

Transfluxor Multivibrators 

Two-Winding Oscillator 

The circuit diagram for the two-winding 
transfiuxor multivibrator is shown in the sys­
tem diagram of Figure 3. The basic operation 
of the unit is discussed in detail in references 
13, 14 and 20, and consequently will not be 
described here. Two windings each with N 
turns are '\vound around the minor aperture, 
and the winding with N 1 turns is placed around 
the major aperture. A control signal applied 
to Nl changes the switching flux of the multi­
vibrator causing the frequency of oscillation 
to be a function of the magnetomotive force in 
the minor aperture windings N. If the major 
aperture is demagnetized the multivibrator 
operates at minimum frequency. When the flux 
state of the major aperture is equal to the satu­
ration flux of the minor aperture by applying 
a control signal of sufficient magnitude, the 
multivibrator operates on remnant flux alone 
at maximum frequency. 

U sing the prototype transfluxor described 
above with 25 turns and a supply voltage of 
12 volts, a frequency range of -250 KC to 1.0 
MC was obtained for the circuit of Figure 3. 

Single Winding Multivib1'°ator 

The single winding oscillator of Figure 5 
permits a reduction in number of minor aper­
ture windings and provides closer control over 

the collector current. As indicated in Figure 5, 
the single winding multivibrator is actually a 
clamped flip-flop with the single minor aperture 
winding N connected between the collectors of 
the transistors Ql and Q2. This circuit has 
yielded satisfactory results under widely vary­
ing conditions. For example with a clamp volt­
age V c = - 6 volts and N = 20 turns on the 
transfluxor minor aperture, a six volt square 
wave output was obtained over a 100 KC to 1 
MC frequency range. Typical output wave­
forms are shown in Figure 11. 

Frequency of Oscillation 

An expression for the frequency of oscilla­
tion of the single or two-winding multivibrator 
can be obtained by applying the definite inte­
gral form of Faraday's law to the transfluxor 
minor aperture winding. This operation yields 
the following expression for the frequency F-

where: 

F= V 
4NBsA 

(12) 

V = Voltage across the minor aperture 
winding volts 

N = Number of turns on single minor aper­
ture winding 

Bs = Saturation flux density of transfluxor 
core material-webers/meter2 

A = Cross-sectional area of minor aperture 
leg assuming the areas of legs 2 and 3 
are equal-square meters 

Figure 11. Typical Output Waveforms of Single Winding Transfluxor Multivibrator. 

Figure lla. Output Waveform From Q2 Collector; Frequency = 100KC; Scale; 
Amplitude = 5 Volts/CM; Time = 2 f-L sec/eM. 

Figure llb. Output Waveform From Q2 Collector; Frequency = 500KC; Amplitude = 

5 Volts/CM; Time = 1 f-L sec/CM. 
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Equation (12) is an approximate expres­
sion for the minimum frequency of the multi­
vibrator in the demagnetized state. Although 
the expression is idealized in the sense that it 
does not include the effects of such factors as 
switchover time, it is useful in estimating the 
minimum frequency of oscillation. For exam-' 
pIe, for the two-winding oscillator with V = 12 
volts, N = 25 turns, A = 1.61 X 10-6 square 
meters and Bs = 0.345 webers per square meter 
Equation (12) gives 220 KC for the minimum 
frequency as compared to the measured value 
of 250 KC. A similar calculation for the single 
winding oscillator with N = 20 turns and V = 
6v yields 90 KC for the minimum frequency as 
compared to 100 KC for the measured value. 
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THE USE OF A PORTABLE ANALOG COMPUTER FOR 

PROCESS IDENTIFIC,ATION,· 

CALCULATION AND CONTROL 
L. H. Fricke and R. A. Walsh 
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St. Louis, Missouri 

In the design and development of controlled 
processes there are two areas of intense activ­
ity-the theoretical simulation of the total 
plant and empirical simulations involving the 
collection of reliable experimental data to as­
sist in the construction of a special purpose 
model. The simulation of a newly proposed 
process, even from the best available theoreti­
cal basis, is usually only approximate. It re­
quires use of large and expensive computer in­
stallations, either analog and/or digital, so that 
by direct programming of the design criteria, 
the optimum plant operating conditions may be 
determined. However, even if such a model 
were extremely reliable (pilot plant) , the scale­
up problems are quite complex. In some cases, 
it might be well-nigh impossible to maintain 
the exact relationships between certain intrin­
sic parameters, surface tension, heat transfer, 
etc.-and, of course, few theoretical models 
can anticipate all the significant process char­
acteristics. As a result, many full scale plants 
are in need of partial redesign. The authors 
feel that techniques relying on plant data are 
indispensable for accomplishing this end. 

It is the purpose of this pa per to review 
some of the present in-plant techniques em­
ployed to determine both the static and dy­
namic characteristics and show how the results 
are used to select the correct process revisions 

685 

and achievable controller schemes for optimum 
operation. In particular, a newer method 
employing a portable analog computer to first 
determine system characteristics is described. 
Following an analysis of these results the 
method of reprogramming the computer to the 
proper controller characteristics is given. 

To make the example realistic and to avoid 
the criticism that the methods are impractical, 
a real system was studied and made part of 
the discussion. 

It is important to take a wide view to all 
aspects of the work here described. Thus the 
methods of procuring the basic data are simple 
and generally applicable to any physical sys­
tem. The procedure of reducing data and the 
representation of dynamic behavior as a La­
placian transfer function is both routine and 
commonplace to electronics or servomechanism 
engineers. These methods are easy to use and 
are equally applicable to any linear system and 
any nonlinear system within the bounds of the 
perturbations of interest. 

DATA COLLECTION SYSTEMS 

The heart of any experimental effort is the 
data collection apparatus. The sensing elements 
must be essentially free of any nonlinearities 
and dynamic delays so that a clear, accurate 
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diagnosis may be had. It is our experience that 
the best type of data collecting system (where 
possible) is multi-channel recording oscillo­
graphs coupled with very fast strain-gage 
transducers. Some of the distinct advantages 
of direct-writing analog recording are: 

1. The data collection system provides easily 
adjusted signal conditioning such as fil­
tering, suppression, and amplification. 

2. The collection system provides signals 
that can be easily utilized in continuous 
analog computer calculation such as ma­
terial balance, heat balance, etc. 

3. The quality of both static and dynamic 
process data can be evaluated immedi­
ately. 

4. The intuition of the testing engineer is 
strongly reinforced through the simul­
taneous observation of cause and effect. 

5. Information which was not anticipated at 
the time of the tests is frequently dis­
covered through subsequent studies of the 
records. 

6. Malperforming process components or 
systems can frequently be located quickly 
by visual inspection of the recordings. 

The ideal data system is one that combines 
the virtues of both analog recording and digital 
storage--the first to obtain information from 
a limited number of signals, the second to pro­
vide complete coverage and ease the burden of 
excessive data handling and computation. 

SYSTEM IDENTIFICATION METHODS 

Excluding those cases where the desired re­
lationships can be derived completely by mathe­
matical analysis, it is necessary to arrive at 
process descriptions by the analysis of input­
output pairs. To determine these relationships 
one must make a cortelation between the vari­
ables of interest under nor:fl1.al operating con­
ditions. One way of obtaining such a correla­
tion is to force a pertinent independent variable 
and observe the changes of its output. Another 
is to examine statistically auto and cross corre­
lations of the noise spectra of perhaps many 
inputs and their respective outputs. This latter 
technique is extremely time consuming and al­
though is theoretically superior for the analy-

sis of multi input-output systems, is definitely 
not recommended in practice. To date, few 
practical techniques have been developed for 
the process industries. 

One of the earliest methods of system char­
acterization was done by introducing sinusoidal 
fluctuations on the independent variables and 
measuring amplitude and phase ratio between 
the output and input for the series of fre­
quencies of interest. From this a linear de­
scription can be obtained in the form of a Bode 
plot or Laplacian transfer function. However, 
this method is found to be objectionable to the 
process industries for two main reasons-first, 
the order of delays and time constants may be 
as long as 2 or 3 days and the measurement of 
sufficient data points could very well take weeks 
to several months and second, the perturba­
tions necessary to obtain a good signal to noise 
ratio might very well tend to undulate the 
process deleteriously for too long a time. 

Another of these methods, and one recom­
mended in practice by J. O. Hougen, is the pulse 
technique. In this procedure, independent vari­
ables are disturbed with a closed input pulse 
of rectangUlar, displaced cosine, ramp or any 
other shape that will have sufficient harmonic 
content to excite the pertinent frequencies of 
interest. The unknown particular output is re­
corded simultaneously with one driven input. 
These input-output pairs are then reduced to 
a frequency response form by numerical evalu­
ation of the ratio of Fourier transforms. Thus 
the performance function relating one pair is-

J+OO e-jOltf(t) outdt 

- 00 
PF = --------

J+OO e -jOltf (t) i ndt 

-00 

which will yield an amplitude ratio and phase 
angle for different preselected values of w. 

Care must be exercised both in conducting 
the plant tests and in reducing the data. If 
pure time delay is present as indicated from 
time history records, it should be removed by 
shifting the time axis prior to data processing. 
Hysteresis is a more difficult nonlinearity to 
handle and its effect on the results of pulse 
testing have not been thoroughly explored. 
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In any event, where permissible, the results 
of the reduction of pulse data are most con­
veniently presented as a Bode diagram, with 
amplitude ratio and phase angle plotted versus 
frequency. Figure 1 shows the comparative 
results of pulse testing and sinusoidal testing 
of a shell and tube heat exchanger. 

Generally it is useful and instructive to de­
rive a linear model which will describe the fre­
quency response data. This is done by finding 
a combination of linear Laplacian forms which 
will reproduce the data as a Bode plot. 

This procedure of fitting a linear model to 
the data of a system known to be nonlinear 
has been found, in our experience, to be ex­
tremely useful and is usually sufficient to per­
mit subsequent synthesis of the correct control 
system. A single model is not expected to be 
valid for all levels or modes of operation of a 
process whose behavior changes drastically as 
the operating levels are altered. However, 
within a small range of normal operating con­
ditions, these simple models have proved to be 
very useful and adequate for the purposes in­
tended. 

There are several advantages to this 
method-for one; the time required for the test 
is reduced to a minimum becam~e only one dis-
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Figure 1. Comparison of Frequency Response Data 
Obtained by Direct and Pulse Testing Methods. Tube 
and Shell Heat Exchanger. Input: Water Valve Stem 
Displacement. Output: Effluent Water Temperature 
- • and 0 from Pulse Test; A and T::::J from Frequency 
Test. Source: Lees, S., and Hougen, J. 0., Industrial 
Engineering Chemistry, 48, 1058 (1956). Frequency 
Test Data Supplied by S. H. Goodhue, Foxboro 

Company. 

turbance is required instead of a series of sinu­
soids. Another is that the plant can remain in 
the normal operating mode with little or no 
production time loss. 

Conversely, there are some disadvantages­
it is usually necessary to have available a large 
digital computer to generate the Fourier trans­
form pairs, so the test engineer will not spend 
the major part of his time deriving the trans­
forms by hand. Another is the degree of uncer­
tainty involved in transforming chart readings 
by hand to digital data sheets, or if one wishes 
to be more sophisticated, the use of an analog 
to digital converter device to feed the computer. 
A third disadvantage is the necessity of fitting 
the resulting Bode plots to curves describing 
known linear models. 

Still another approach to this problem of 
deriving simple linear models characterizing a 
controllable process is to augment the pulse 
approach by utilizing an analog computer pro­
grammed with a preselected set of general mod­
els with adjustable coefficients. The scheme of 
operation here would be to pulse both the inde­
pendent variable input and the proposed model 
and then to compare the process and model 
outputs. A similar device has been marketed 
by the vVayne Kerr Company and is called uThe 
Transfer Function Computer." The disadvan­
tage of such a system in present state develop­
ment has been the interdependence of the 
coefficients. Once one coefficient has been ad­
justed so that the best agreement of process 
and model has been attained; upon proceeding 
to adj ust the second coefficient one discovers 
that the first must be readjusted again to fur­
ther minimize the difference between process 
and model, and so on. To overcome this inter­
dependency of the coefficients, 3, 4, 5, consider­
able work has been done to derive process 
identification models in a specific way. These 
models are described technically as orthonor­
mal polynomials. A short discussion of the 
principles developed in the above references 
follows. 

Consider a linear, stable process whose dy­
namic characteristics are unknown. This open 
loop system may be described diagrammati­
cally: 

X(t)-----I~----·y(t) 
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where x (t) is the input to the process, y (t) 
the process output, and g (t) the process im­
pulse response function. 

Similarly, associate with the process a model 
by the same input as follows: 

x (t) ------II h (t) II-----w (t) 
where x (t) is an identical input to the model, 
w (t) is the model output, and h (t) the model 
impulse response function, which will be ad-
;l1e!tarl ;n e!lH''''' ':I 'UT':I"tT ':Ie! to Tl'HJlz-a UT{t\ ':Ie! TVlllt>h J ..... u"''''''''''' ......... u ..... "" ........... .,..,. IL4I'J ~It.,] 1J'\J ...... ..L""' ..... "" ." \ "I ~tr..J' ......... '-'L""' ...... 

like y (t) as possible. 

N ext, combine y (t) and w (t) through a sum­
ming device 

e(t) = y(t) - w(t) 

where e (t) is called the error signal. The error 
signal is squared and integrated, allowing a 
continuous evaluation of the following equa­
tion: 

= f~ [y(t) - W(t)], dt Eq. 1 

o 

I t is desired to adj ust the model in a systematic 
manner such that lEI will be minimized. If the 
input is a pulse, one may write 

X(j .. ) = f~ e-;w, x(t)dt 

and if g(t) and h(t) are stable, 

GO.,) = f~ e-;w, g(t)dt 

H(j .. ) = f~ e-;w, h(t)dt 

where G (jw) is the transfer function of the 
process and H (jw) is the transfer function of 
the process and H (jw) is the transfer function 
of the model. After considerable manipulation, 
Equation 1 is transformed as follows: 

I E I = -.!..f +00 I X (j w) 12 1 G (j w) - H (j w) \2 d(1l 
271" 

-00 

Eq.2 

where 
IX(jw) 12 = X( -jw) • X( -jw) 

and 

IG(jw) - H(jw) 12 = IG(jw) - H(jw) I • 

IG( -jw) - H( -jw)/ 

Equation 2 will be used to generate H (jw), the 
frequency analog of h (t). Now let 

n 

H (jw) = ~ aj Ki (jw) Eq.3 
j = 1 

If Equation 3 is substituted in Equation 2, it 
can be shown that a sufficient condition for lEI 
to be a minimum and that the aj in Equation 3 
to be noninteracting is for the Ki (jw) to be 
orthonormal. The restrictions produce 

aj = ~f+oo Re IG( -jw) • Ki (jw) 1 

271" 
-00 

I X(jw) 12 dw Eq. 4 

Equation 4 illustrates the dependence of the at 
on input, model, and process. If the input is 
measured with care, the adjusted ai will insure 
a good representation of the process if the 
Ki (jw) 's are chosen properly. In the following 
the jw will be replaced by the Laplacian opera­
tor s in order to obtain more conventional 
forms. Three orthonormal functions have been 
constructed from functions of the type: 

P j (s) = Va (1 - as~ i Eq. 5 
(1 + as)l +1 

Research in this area may be considered as 
an offshoot of ideas originating largely with 
the late Norbert Wiener and A. N. Kolmo­
goroff4 who were responsible for three crucial 
phases of the present work: the discovery of 
a convenient form for representing the dis­
crepancy between process and model in the 
time domain, the conversion in the time domain 
to equivalent integrals in the frequency do­
main, and the introduction of orthonormal 
functions as an aid to minimizing the discrep­
ancy of process and model. 

To date, we have derived two sets of ortho­
normal polynomials to construct models of the 
general form H (s) = a1K1 (s) + a 2K2 (s) + 
aaK3 (s). These are: if T equals unity-

1 - s 
K1 (s) 1 + 2s + S2 
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K3 (s) 

1 - 3.8266s + 2.8277s2 
1 + 3s + 3s2 + S3 

1 - 2.5841s + 4.407s2 - 2.823s2 

1 + 4s + 6s2 + 4s3 + S4 

and if in Eq. 5, V-;; = 1 and let i be 0, 1, 2: 

1 

(TIs + 1) (T2s + 1) 

(1 - TIs) (1 - T2s) 
K3 (s) = ----------­

(TIs + 1) (T2s + 1) (Tas + 1) 

The first set of the above was made ortho­
normal to the input weighting function of a 
rectangular input pulse of duration of T /2. If 
the duration of the unknown output is long 
compared to the extent time of the input pulse, 
the second set of polynomials may be substi­
tuted for the first. The second set has been 
used to find simple models of flow systems and 
other processes. The diagram of the functional 
scheme is given in Figure 2. 

In actual practice, the values of a l and T 1 

are first adjusted for a minimum time integral 

the model output, then a2 and T2 are adjusted, 
and still later, a3 and T 3' When the best fit is 
obtained by observing the time histories of both 
the unknown and model to the pulse input along 
with the value of the integral, the coefficients, 
a h T h a2, T 2, as, and T 3 are read out and a sim­
ple expression is obtained for the input-output 
pair of interest. The results of the application 
of these to unknown transfer functions are 
shown in Figures 3 and 4. Figure 4 shows how 
transport delay times can be handled-that is, 

X(t.) 

Figure 2. Functional Scheme. 
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Figure 3. Time Responses of Unknown and Best Model 
Values. Input Pulse 100 Units .2 Seconds Duration. 

the input pulse to the model is delayed so that 
the output of the unknown and the model will 
begin at coincident times. 

UTILIZATION OF PROCESS DATA 

Once it has been established that the simple 
linear model is sufficient to describe the process 
in the region of interest, it is routine to deter­
mine the correct values of integral action, pro­
portional action, and derivative action on a 
standard process controller. The methods of 
Bode and Black, Nyquist, root locus, etc. apply 
directly. 

lVIoreover, the open loop adaptive control 
function can be determined by establishing a 
simple linear model for different levels of oper­
ation. Thus, the necessary controller character­
istics for the entire set of model functions can 
be found as a function of these levels and with 
the application of these characteristics the 

Figure 4. Model Results for Unknown Containing 
Transport Delay. 
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process will always be operating at an opti­
mum. 

Chemical systems are almost always non­
oscillatory-that is, the transfer functions de­
scribing the dynamics are a series of time con­
stants in the denominator with real roots. This 
makes it very easy to formulate a procedure 
to obtain a slightly more damped close loop 
response than the one cycle quarter amplitude 
ratio, one and one-half overshoots, or minimum 
error squared criteria. Stability apart, this is 
done by setting the transfer function of the 
closed loop system with unknown controller 
constants equal to unity. and rewriting the ex­
pression in descending powers of s in numera­
tor and denominator. One then equates the 
coefficients of like powers and solves for the 
controller characteristics. 

The general controller characteristic equa­
tion used will be 

~=Ki + ~ + KIs 
ei s 

This type of control is easily simulated on 
the analog computer and is the one used in the 
following example. 

EXAMPLE 

In order to demonstrate the use of the or­
thogonal polynomials approach and still have 
something that is realistic, portable, and would 
utilize the repetitive operation mode of the 
analog computer, a system of two incandescent 
lights and photosensitive resistors was selected. 
The bulbs and photosensitive cells were ar­
ranged in two compartments of a box with 
each cell looking at a bulb. 

This system of lights was selected as an 
example in preference to other applications 
(flow or pressure control) of this technique to 
chemical processes, and was from the begin­
ning designed to be a part of a portable en­
semble demonstrated to engineering groups. 
Many of the dynamic characteristics of actual 
chemical systems are exhibited by the incan­
descent lamp-photoresistor combination. 

In this "process" the first bulb is operated 
at a constant light level as adjusted by the 
steady-state output of a computer amplifier. 

The first photocell "looks" at this bulb's light 
output and is arranged to diminish the second 
bulb's input for an increase in the light it 
senses. The second photocell is arranged in a 
circuit to give an output proportional to the 
intensity of the second bUlb. The light from the 
second bulb is isolated from the first photocell 
so that no system instabilities can exist. Thus, 
when the first bulb is pulsed, the second photo­
cell produces an output change depending on 
the direction, gain, and dynamics of the whole 
_____ L ! ___ L! _ __ m1_ _ _ ___ 1 _ _ .J! _ ___ _ __ .e _ __ L 1_ _ _ •• 

l:UIIlUlIlaHUIl. .lIle allalug ulagrall1 .lur Llle £1.1-

rangement is shown in Figure 5. 

If one were to try to consider the simulation 
of the dynamics of the system, the simulation 
might be as follows: 

Each light bulb: 
Power in (Pi) = Power radiated (Pr ) + 

Power absorbed (P a) + Power conducted 
away (Pc) 

Thus: 

Ein2 
_ K 4 dT T ) R - 1 et T + K2 mcp dt + K3 (T - room 

INTEGRAL ERROR SQUARED 

Figure 5. Computer Diagram During Process 
Identification. 
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et Emissivity of tungsten 
R = p(l + aT) 
KJ Stefan-Boltzmann Constant 5.67 X 10-8 

vvatt/meter2/oK4 

m Mass of Filament 
cp Heat Capacity 
K3 Coefficient of Conductivity 

or 

dT E ·2 In ---------
dt p(l + aT) K2mcp 

K1 et T4 K3 (T - Troom ) 

K2 mcp 

Each photocell: 
Upon consultation of the manual on CdS 

photoconductive cells, 7, one vvill see that there 
is a response time associated vvith the output 
current vs. the change in light level. These 
curves shovv that this apparent time constant 
is not constant vvith level or past history but 
a definite function of the history. 

Thus it might be expected that the "system" 
vvill be at least fourth order. 

To determine the "transfer function" experi­
mentally, vve vvill use the analog computer to 
pulse the first light, observe the "process sys­
tem" output. N ext, pulse the input to the 
orthogonal model, observe its output, and com­
pare the differences betvveen process and model 
output on an integral error squared basis. The 
orthogonal set programmed on the computer is : 

o a1 a2 (1 - TIs) 
-- + + 
I T1s+1-(T1s+1)(T2 s+1) 

a3 (1 - TIs) (1 - T 2 s) 

(T1 S + 1) (T2 s + 1) (T3 s + 1) 

When the steady-state level of the lights is 
80 volts and the input pulse height to the !In­
knovvn is 10 volts, the values of the coefficients 
aI, a2, a3 and T 1, T 2, T 3 vvere found to be: 

For an increasing pulse For a decreasing pulse 

a1 = 3.13 
T1 = .0543 
a2 = .657 
T2 = .0063 
a3 = .579 
Ts = .0067 

a1 = 3.29 
T1 = .0538 
a2 = .892 
T2 = .0081 
as = .632 
Ts = .0075 

A static measurement at 80 volts with an in­
put change from 79 to 81 volts gives a gain 
of 4.7. Other values for the orthogonal model 
constants at different operating levels are given 
in Table I. 

The values in Table I can be used in the gen­
eral expression of the model, and a "transfer 
function" vvritten for each case. These are 
shown in Table II. Inspection of the numerator 
of each expression in the orthonormal column 
might lead one to think that the s terms are 
part of the e-Ts series. Thus, ignoring the valid­
ity of the sign of the 82 term in some cases, the 
function might be written as shown in the 
exponential columns of Table II. Typical time 
histories of the application of this technique to 
the "process" are shown in Figure 6. 

In process systems, the controller most always 
follows the error device being placed before the 
process in the forward loop. Thus, the form of 
the closed loop function is always 

~ (s) = Gc Gp 

I 1 + Gc Gp 

The above can be rearranged into the form: 

aSn + Bsn-l + . . . . . 1 
Asn + Bsn-l + . . . . . 1 

If we then set this expression equal to unity, 
and require that the models of the same be 
unity for all s, then, vve must equate coefficients 
of like powers. 

TABLE I. ORTHOGONAL MODEL 
CONSTANTS AT DIFFERENT 

OPERATING LEVELS 

. Level * Model Constants 
(Lamp 
Volts) a1 T1 sec. a2 T2 sec. as Ts sec. 

40 52.2 .102 29.0 .040 2.78 .0073 

50 31.2 .077 21.8 .033 1.77 .0086 
60 10.78 .055 7.46 .024 .596 .0024 

70 3.86 .041 3.00 .019 .368 .0069 
80 3.13 .054 .657 .0063 .579 .0067 
90 1.29 .043 .397 .0059 .208 .0075 

* Steady-state value of supply voltage with a rec-
tangular pulse of + 10 volts for 20 milliseconds dura-
tion input disturbance in each case. 
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~90 using the data of Table II. These are shown in 
~ Table III. 
~ 
~ao 

..J 

~ 
~1.25 

~ .. "" 

The analog computer was used as a check of 
these values. The diagram is shown in Figure 7. 

~o~O-.O~I--.~ro~~~~5--.~07--~.OV~-.~"--~.I~~-.~i~--;'.,,~ 
TIMECSECOND!5) 

Equating like coefficients will often give a 
transient response slightly more damped than 
the integral error squared or the integral ab­
solute value criteria. This is not a deterrent 
to the application of the technique to chemical 
processes, because in most instances the process 
is quite noisy and very tight control is probably 
impossible. 

Figure 6. Typical Time Histories of Example 
Application. 

Close examination of Table III suggests that 
the controller parameters K j , Kp and Kt be 
made some function of the level of operation. 
Logarithmic plots of these functions demon­
strate that there is approximately the same 
relative changes in each parameter for changes 
in the level (Le., the controller constants cal­
culated in each case are essentially only a func­
tionof the open loop gain). In the example 
cited, the approximate function of operating 
level compensation is to interpose in the error 

Thus, if the process is of the same order as 
the controller, it is possible to completely com­
pensate the system. If, however, as is the 
general case, the process order is higher, astute 
judgment must be used in selecting the pre­
dominate quantities. The values of Kh Kp and 
Kt at different levels can be calculated this way 

TABLE II. THE APPROXIMATE LAPLACE FORMS OF THE MODEL FUNCTIONS 

Level * 
(Lamp 
Volts) 

40 

50 

60 

70 

80 

90 

* As in Table I. 

Functional 

Orthonormal Exponential 

84 (1 - .012s + 5.9 X 10-5S2 ) 84 e-·01S 

(.102s + 1) (.04s + 1) (7.3 X 10-3s + 1) (.102s + 1) (.04s + 1) (7.3 X 10-3s + 1) 

55 (1 - 7 X 10-3s - 2 X 10-5S2 ) 55 e-· 007S 

(.077s + 1) (.033s + 1) (8.6 X 10-3s + 1) (.077s + 1) (.033s + 1) (8.6 X 10-3s + 1) 

19 (1 - 8 X 10-3s + 2.2 X 10-5S2 ) 19 e-·008S 

(.055s + 1) (.024s + 1) (2.4 X 10-3s + 1) (.055s + 1) (.024s + 1) (2.4 X 10-3s + 1) 

7.2 (1 - 3.4 X 10-3s - 7.8 X 10-6S2) 7.2 e-·003S 

(.041s + 1) (.019s + 1) (6.9 X 10-3s + 1) (.041s + 1) (.019s + 1) (6.9s + 1) 

4.4 (1 - 5.8 X 10-3s + 2.1 X 10-5S2) 4.4 e-·006S 

(.054s + 1) (.0067s + 1) (6.3 X 10-3s + 1) (.054s + 1) (.0067s + 1) (6.3 X 10-3s + 1) 

1.9 (1 - 3.7 X 10-3s - 9.6 X 10-6S2 ) 1.9 e-·004S 

(.043s + 1) (.0075s + 1) (5.9 X 10-3s + 1) (.043s + 1) (.0075s + 1) (5.9 X 10-3s + 1) 
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TABLE III. VALUES OF CONTROLLER 
CONSTANTS FOR VARIOUS 

OPERATING LEVELS 

Controller Constants 
Level * 

(Lamp Volts) Ki Kp ~ 

40 .11 .017 .0005 
50 .24 .026 .0006 
60 .96 .076 .0010 
70 3.40 .203 .0030 
80 4.20 .260 .0020 
90 12.00 .620 .0040 

* For an increasing 10 volt step. It is possible to 
experience instability when the same values are used 
with a decreasing step. 

signal a gain change equal to .0014 eL
/

10
, where 

L is the lamp level in volts. Coupled with this, 
the fixed controller values are to be adjusted to 
Ki = 12, Kp = .62 and ~ = .004. This will give 
good control at all levels of operation without 
readjustment. 

REFERENCES 

1. HOUGEN, J. 0., and R. A. WALSH, "Pulse 
Testing Method," Chemical Engineering 
Progress, Vol. 57, No.3, March 1961. 

2. HOUGEN, J. 0., C. G. HAGBERG, L. H. FRICKE, 
and O. R. MARTIN, "Process Identification 
and the Design of Process Systems with 
Predictable Performance." Proceedings of 
the Twelfth Annual Instrumentation Con­
ference, Louisiana Polytechnic Institute, 
Ruston, Louisiana. (To be published in 
Chemical Engineering Progress, August 
1964) . 

3. WIENER, N., The Extrapolation, Interpola­
tion and Smoothing of Stationary Time 
Series with Engineering Applications, 
Wiley, 1949. 

4. EYKHOFF, P., "Process-Parameter Esti­
mation," Technological University, Elec-

~
ooo 
RELAY 

At t REF.~ 0 

tON 

STEP 

CONTROLLER 

PROCESS 

Figure 7. Computer Diagram During Process Control. 

tronics Laboratory, Delft, Netherlands, 
May 1962. 

5. KOLMOGOROFF, A. N., "Interpolation und 
Extrapolation von Stationaren Zufalligen 
Folgen," Bulletin de l' Academie des Sciences 
de USSR, Ser. Math. 5, 1941. 

6. KITAMORI, T., "Applications of Orthogonal 
Functions to the Determination of Process 
Dynamic Characteristics and to the Con­
struction of Self-Optimizing Control Sys­
tems," Automatic and Remote Control, 
Proceedings of the First International Con­
gress of IFAC, Moscow, 1960, Volume II, 
pp. 613-618, Butterworths, 1961. 

7. RCA Photocells Circuits Data Solid-State 
Photosensitive Devices Booklet ICE-261, 
Radio Corporation of America, Electron 
Tube Division, Harrison, N. J. 





PROGRESS OF HYBRID COMPUTATION 

AT UNITED AIRCRAFT RESEARCH LABORATORIES 
Gerard A. Paquette 

United Aircraft Research Laboratories 
East Hartford, Connecticut 

INTRODUCTION 

Many of the present day simulation problems 
utilizing analog equipment exclusively require 
large, expensive computing facilities. The non­
linear calculations involved in modern simula­
tions require a large portion of the all analog 
system. Increase in operation speed and reli­
ability coupled with reduction in purchase cost 
have made the digital computer desirable for 
these nonlinear computations. 

Prior to the end of 1962, the analog facility 
at United Aircraft Research Laboratories con­
sisted of two large analog consoles, one small 
analog console, and associated analog equip­
ment with emphasis on nonlinear devices. At 
this time, several problems required all of this 
equipment combined. 

In hopes of improving the operation and 
capacity for highly nonlinear simulations, a hy­
brid facilityl was added toward the end of 
1962. This consisted of a general purpose digi­
tal computer, a D.C. analog computer, and in­
terconnecting linkage. The hybrid system is 
presently being used to simulate V/STOL air­
craft, aircraft,2 engine, and space systems in 
real time. An example, Single Rotor Helicopter 
Simulation, is discussed in this paper. 

Initial plans for the .hybrid facility were to 
use the digital computer for most nonlinear 
functions and the analog computer for dy­
namics. As time progressed, advanced tech-

695 

niques were developed to permit further digital 
application. These techniques include compen­
sating calculations for sampling delay and 
practical integration schemes.3

- 5 Thus in some 
systems presently simulated at United Aircraft, 
most or all computation is becoming digital. 

In addition, the digital computer is used to 
support problem preparation and modification. 
Utility programs permit procedure and data 
changes from paper tape, typewriter, or digital 
scope and light pen input. 

THE UNITED AIRCRAFT HYBRID 
FACILITY 

Analog 
A Beckman Ease 2133 Analog Computer is 

assigned to the hybrid installation. Its comple­
ment of equipment emphasizes linear analog 
operations in the expectation that the digital 
computer will process most nonlinear calcula­
tions. The computer contains 100 operational 
amplifiers, 150 potentiometers, 20 time division 
multipliers, 10 quarter square multipliers, and 
20 II-segment, diode function generators. 

Auxiliary equipment includes a DO /IT 
(Digital Output/Input Translator) which per­
mits typewriter control of pot setting and com­
ponent reading. A digital voltmeter is used for 
component reading through the DO/IT or by 
itself. A digital clock, part of the analog sys­
tem hardware, is available for mode timing. 
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Mode switching is provided by reed relays to 
permit rapid, repetitive operation. 

Digital 
A Digital Equipment Corporation PDP-l 

Computer was selected as the best compromise 
of capacity, speed, and cost among 1962 com­
puters useful for hybrid application. This com­
puter resembles the TX-O computer at M.LT. 
which has been used for real time simulation.2 

The PDP-l is a single address, single in­
struction, stored program machine with a word 
length of 18 binary bits. Basic memory con­
tains 4096 words with a memory cycle time of 
5 microseconds. Instructions available permit a 
wide range of logical operations and fixed-point 
arithmetic. Instruction execution requires 5 to 
10 microseconds for most operations. MUltiply 
and divide average 20 and 30 microseconds, 
respectively. These speeds would permit execu­
tion of approximately 2000 instructions in a 
program providing 50 solutions per second. 

Input/output devices include analog linkage, 
typewriter, paper tape reader, paper tape 
punch, and digital scope. The photoelectric 
tape reader accepts eight level punched tape 
at a rate of 400 characters per second. The 
tape punch provides output at 63 characters 
per second. 

An incremental digital scope can be used to 
display graphical and/or alphanumeric infor­
mation. Various scope modes permit display 
of points, incremental data, vectors, or charac­
ters. Writing speeds vary from 35 microsec­
onds per point in point mode to 1.5 microsec­
onds per point in vector mode. 

A 2048 word memory is used with the scope 
to maintain a fixed display while the computer 
is operating independently. The scope memory 
includes hardware to permit programmed char­
acter generation. Data transfer from the com­
puter to this memory can be made as desired 
to modify the display. 

Light pen input to the computer is available 
from the scope. On sensing light, the pen inter­
rupts the computer and display sequence. The 
current scope coordinates can be read to locate 
the pen after the interrupt. 

A real time, digital clock is included for tim­
ing of digital computation cycles. Two modes 

of clock operation are used over a time range 
of 10 microseconds to 13 seconds. In one case, 
the clock can be preset to interrupt the pro­
gram at a desired time interval within the 
above range. In the second case, the clock can 
be used as a data source with clock clearing 
and reading under program control. 

Computer Linkage 

The linkage system can be divided into two 
distinct parts: the computing linkage and the 
control linkage. The computing linkage in­
cludes both data and logic converters from each 
computer to the other. All converters are under 
digital program control. 

Computing data linkage includes 20 digital­
to-analog and 20 analog-to-digital conversion 
channels. These utilize a word length of 14 
binary bits corresponding to an analog range 
within plus and minus 128 volts. The 14 bit 
word provides a resolution of 1 part in 16,384 
which is consistent with analog accuracy. 

Digital-to-analog converters were designed 
and built at United Aircraft. The data word 
from the digital computer is transferred to a 
14 binary bit, flip-flop buffer storage; analog 
gates; resistor network; and an operational 
amplifier. Programmed data transfer to the 
converter buffer requires 5 to 15 microseconds 
depending on the initial location of the data 
word. Overall conversion speed is primarily de­
pendent on the response of the output amplifier. 

Analog-to-digital conversion equipment con­
sists of a Packard Bell, 20 channel multiplexer, 
a sample and hold amplifier, and a Multiverter. 
Programming sequence includes three instruc­
tions: select-multiplexer-channel, convert, and 
read-converter-buffer. The select-multiplexer­
channel instruction addresses the analog input 
to be connected to the sample and hold. A delay 
of at least 15 microseconds must be pro­
grammed before the convert instruction to per­
mit mUltiplexer switching. On execution of the 
convert instruction, the sample and hold enters 
hold mode in which it will remain until conver­
sion is complete. The Multiverter converts the 
analog voltage one bit at a time and stores the 
resulting binary word in its buffer. Conversion 
requires approximately 75 microseconds. The 
conversion can be programmed for automatic 
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computer delay or the time can be made avail­
able for computation. The read-converter­
buffer instruction transfers the data word into 
the computer. Overall analog-to-digital conver­
sion time is 90 microseconds. 

Logic linkage includes 4 digital-to-analog and 
8 analog-to-digital conversions. The digital-to­
analog logic converters permit program control 
of single-pole, double-throw relays at the ana­
log console. A ground or open circuit at the 
input of each analog-to-digital logic converter 
sets a digital status bit to one or zero, respec­
tively. 

The control linkage allows the PDP-l to set 
analog computer modes and operate or monitor 
all DO lIT functions. A single instruction cor­
responds to each analog computer mode. Ex­
isting modes at the analog computer set desig­
nated bits of a status word in the PDP-l to 
close the information loop. 

For DO lIT operation from the PDP-l, char­
acter codes similar to those of the DO lIT's own 
typewriter can be transmitted to and from the 
DO lIT hardware. The digital program can 
then become a replacement for this typewriter. 

HYBRID APPLICATION AND 
PREPARATION 

Real time simulation has long been associ­
ated with the analog computer. Preparation 
and modification of the circuit diagram, patch 
board, and potentiometer values is rapid. Im­
provements in analog components and automa­
tion of set up procedures have advanced analog 
computing capability. However, as the operat­
ing ranges of modern physical systems have in­
creased, the simulation nonlinearities and accu­
racy requirements have grown. Dynamically, 
we still handle problems in 6-degrees of free­
dom but the needs for variable products, trigo­
nometric functions, arbitrary functions, and 
other nonlinearities have increased to the point 
where the parallel analog system requires too 
many expensive, and sometimes insufficiently 
accurate, devices. 

Application 
The hybrid facility consists of digital and 

analog devices and uniting linkage. The prob­
lem equations are divided between the two com-

puters to take advantage of the capabilities of 
each device4

, 5 as indicated in Table 1. 

The analog equipment is generally used for 
dynamics, implicit algebra, and simple diode 
controlled nonlinearities though the digital can 
often be extended into these areas as well. The 
evaluation of nonlinear operations, especially 
arbitrary function generation, is the primary 
application of the digital computer. 

Analog signals are repetitively sampled by 
the analog-to-digital converters, operated on by 
the sequential digital program, and transferred 
to the analog through the digital-to-analog con­
verters. The controlling factors in determining 
the operations to be performed digitally in­
clude: 

1. Digital memory available for program 
and data 

2. Conversion channels available to link the 
computers 

3. Time permitted for each sample-calculate-
output cycle 

The quantity of digital memory and conversion 
channels to be provided is determined from a 
rough attempt at designing existing problems 
intI') tho huh'l"i£l <;!u<;!tOl'Yl 
..I...&..&.""V \,I.I...&.'-' .I..LJ r-J..L..I..'-4 UJ Uvv..l...L.I.. 

Digital program cycle time is usually the pri­
mary limiting factor. The sample-calculate­
output cycle presents a fictitious time delay to 
the simulation and must be sufficiently short 
relative to the periods of the real system. Some 
advance knowledge of the frequency spectrum 

TABLE 1. TYPICAL USES FOR EACH 
COMPUTER OF THE HYBRID FACILITY 

Analog Computer 

Time Integration 

Constant by Variable 
Products 

Implicit Calculations 

Limits, Dead Zones, 
etc. 

Flight Simulator 
Coupling 

Digital Computer 

Arbitrary Function 
Generation 

Variable by Variable 
Products 

Trigonometric Calcu­
lations 

Logical Control 

High-speed Display 
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of the real system is generally available but 
the delay influence is best determined experi­
mentally. Application of the digital to the 
lower frequency portions of the problem allows 
lower point rate and more digital operations 
per cycle. Use of the digital in the higher fre­
quency areas can be permitted if the fewer 
calculations available are more significant in 
their corresponding analog representation. 
Some problems require application of the digi­
tal computer to portions with different fre­
quency band"widths. For optimum digital 
utility, time sharing of the separate sample­
calculate-output cycles can be provided by the 
program. 

As an example of selecting initial cycle time, 
a reasonable choice is to use one-hundredth of 
the shortest period of interest. This would pro­
vide a phase error of less than four degrees at 
the selected frequency. The time delay error 
can be further reduced by corrective measures 
discussed below. 

Effects of the sampling rate obtained with 
the digital program are tested experimentally, 
The nonlinear nature of most simulations does 
not permit easy evaluation and comparison of 
damping factors, frequencies, etc. A number 
of scattered dynamic test cases are run at real 
time. These are repeated with the analog time 
constants increased or with dummy time delays 
added to the digital program to represent rela­
tive slowing or speed-up. This form of com­
parison is also useful to indicate future 
capabilities of the digital. Final problem veri­
fication also includes, whenever possible, the 
simulation of a known vehicle and comparison 
with flight test before extrapolation to an 
advanced vehicle. 

Preparation 
The preparation of the digital program6 is 

quite similar to preparing the analog circuits, 
as seen in Figure 1, except that a different lan­
guage is used. Similar data scaling operations 
exist in preparing the problem for either com­
puter. Digital program sequence is linear, sac­
rificing space in order to avoid time consuming 
subroutine linkage. Symbolic, machine lan­
guage is used in describing the operations to 
be performed and the locations of the infor­
ma tion in memory. Basic routines such as sine, 

MODIFY PLUGBOARD I>NJ 
CHANGE POT SETTINGS 

Figure 1. Problem Preparation for the Computers of a 
Hybrid Facility. 

arctangent, function interpolation, square root, 
etc. are available as building blocks for the pro­
grammer. The symbolic information is con­
verted to computer language by an assembly 
program.i Our experience at United Aircraft 
has shown the digital programming to be easily 
mastered by the same simulation engineers who 
design the analog circuits. The program can 
generally be prepared in the same amount of 
time as designing and wiring a corresponding 
analog circuit. 

Though somewhat slower than analog patch 
board changing, digital calculations can usually 
be deleted, inserted, or changed during on-line 
problem operation by program patching tech­
niques. To retain good system organization, a 
reassembly of the modified program is obtained 
after the simulation session. 

Digital data changes, including function 
curves, are more rapid than can be obtained at 
the analog. This capability is provided by aux­
iliary digital programs discussed later. 

Checkout of the digital and analog calcula­
tions is initially independent. Digital algebra 
and trigonometry are verified relative to the 
system equations with all logical branches inde­
pendently checked. Analog check is performed 
by applying static voltage to various portions 
of the problem and testing component output 
values or time constants. The digital checking 
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requires more time than analog because of the 
larger number of calculations usually per­
formed at the digital. Typical checkout of the 
program has taken' from two to three 8-hour 
shifts. When each computer portion is inde­
pendently checked, the system is closed and 
conversion channels are checked for proper wir­
ing at the analog and proper timing at the 
digital. 

SOME DIGITAL TECHNIQUES FOR 
SIMULATION 

Relative to the analog computer, the digital 
computer is a new element in real time simula­
tion and its application bears some examina­
tion. A few demonstrative techniques are dis­
cussed below. 

Delay Correction 

The digital computer is generally applied in 
the area of calculation from the motions of a 
system to its derivatives. The digital output 
will remain fixed over each sampling interval 
and, though the analog integrations vary con­
tinuously with time, the analog will be read at 
discrete levels each program cycle. Each out­
put from the digital is dependent on data ob­
tained at the start of the progranl cycle and 
represents a delay of at least one cycle, T. 

Consider the time relations of a closed loop 
calculation involving one integration with digi­
tal feedback as shown in Figure 2. Initially, the 
digital computer should have cycled at least 
once before problem start to provide derivative 
output for zero time. The functional time 
sequence after the problem begins operation' is 
shown in Figure 3. Assuming the computation 
begins with the digital sequence at the start of 
a cycle, the variable read at zero time will be 
used to compute the derivative output at time 
T. Likewise, the variable at time T will lead to 
derivative output at 2T. Thus the analog re-

x 

Figure 2. Typical Computer Application. 
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Figure 3. Function Timing Without Delay Correction. 

ceives data one cycle time behind true time and 
must integrate this constant data until the com­
pletion of the next digital cycle. 

x(nT) = x(nT - T) + Tx(nT - 2T) (1) 

n = 1,2, ... 

Higher order analog integration is affected in 
much the same manner. Two integrators in 
sequence would operate as in equation (2). 

T=~ 
x(nT) = x(nT - T) + -x(nT - 2T) (2) 

2 

The effect of digital delay can be reduced, 
where necessary, by extrapolating problem 
variables forward one sample interval. The re­
sulting influence, illustrated in Figure 4, 
changes Equation (1) to the form in Equation 
(3) . 

x(nT) = x(nT - T) + Tx(nT - T) (3) 

The order of extrapolation used provides a 
trade-off between accuracy of function fit and 
time for calculation and data handling. The 
simplest is linear extrapolation as in Equa­
tion (4). 

x(nT + T) = 2x(nT) - x(nT - T) (4) 

The parabolic form is shown in Equation (5). 

x(nT + T) = 3x (nT) -

3x(nT - T) + x(nT - 2T) (5) 

At zero time, the system is generally at rest 
allowing the variables at negative times to be 
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Figure 4. Function Timing with One Interval Delay Correction. 

equal to the variable at zero time, i.e., x (0) = 

x( -T) = etc. If initial derivatives are not zero, 
an iteration must be made to calculate the 
initial values at negative time and adjust the 
derivatives. 

Digital Integration 
An examination of Equation (3) above shows 

this to be identical to the Euler Forward Step 
Integration method used for time integration in 
digital computation. It is therefore possible to 
digitally simulate the operation of integration 
by this fast and easily programmed technique. 
Use of this method for more than a single 
integration in sequence must proceed from the 
last integration first. That is, 

x(nT) = x(nT - T) + Tx(nT - T) (6) 

then 

x(nT) = x(nT - T) + Tx(nT - T) (7) 

For two integrations, it is also possible to use 
Equation (8) which duplicates the equivalent 
analog integrations with digital feedback and 
delay correction. 

T2 
x(nT) = x(nT - T) + 2 x(nT - T) (8) 

For linearly fedback analog transfer func­
tions such as lags, damped second order net­
works, etc., a difference equation approach, 
discussed by Hurt, 3 can be used. By this tech­
nique, the Laplace transfer function is obtained 
and converted to an equivalent pulse transform 
from which a difference equation can be 
formulated. 

A rbitrary Function Generation 

Various digital techniques are available for 
evaluating function data. Among these are 
polynomial representations and table interpola­
tions. The table approach is useful for the 
arbitrary shapes of aerodynamic curves. How­
ever, searching for the table arguments is un­
desirable because of the execution time required. 

A direct fuinction look-up technique,S, 9 de­
scribed for bivariate functions in Appendix I, 
is used at United Aircraft. This method uses 
a table of function values taken at equispaced 
input arguments. The input intervals are 
scaled to permit use of a portion of the binary 
argument word as a table reference address 
and the remainder of this word as the linear 
interpolation ratio. 



HYBRID COMPUTATION AT UNITED AIRCRAFT RESEARCH LABORATORIES 701 

The use of a single argument interval often 
requires an excessively large data table to ade­
quately describe the function. Some reduction 
in table size can be accomplished by subdivid­
ing the function into regions with different 
argument modifying function to the problem 
argument, i.e., 

f(x) = g(h(x» (9) 

Function Algorithms 
Some calculations such as trigonometric or 

logarithmic functions can be reduced to poly­
nomial evaluations. A fast converging and rea­
sonably accurate polynomial algorithm is de­
sired. In general, Chebyshev polynomial fits/o 
for these functions satisfy this need; e.g., sine 
function for angle () over two quadrants 

sin () = 1.5706268x -

0.6432292x3 + 0.0727102x5 (10) 

2() 
where x =-

7r 

The results are accurate to within 0.012 % over 
the range of (), consistent with current day 
analog resolvers. Execution time in PDP-l 
computer averages 140 microseconds. 

I terated Functions 
Some computations require iteration in their 

evaluation. The square root is a typical exam­
ple. The square root can be obtained by using 
the Newton-Rhapson method for iteratively 
solving roots of equations.11 

(X2) 
-, -, + x(n) 
x(n) , 

2 
x(n + 1) (11) 

n = 1,2, ... 

A fixed number of iterations can be used with­
out convergence testing if the range of input 
variable change and accuracy of rooting are 
known. 

In simulation activities, the problem varia­
bles should not change by a large ratio from one 
program cycle to the next unless the variables 
are insignificantly small within the range 
scaled. If the successive input variables are 
within 0.5 to 2 times the previous values and 
the preceding root is used as the initial output 

estimate, four iterations of Equation (11) are 
known to provide less than 0.01 % convergence 
error. 

OFF-LINE DIGITAL SUPPORT 

Off-line, digital utility programs support 
the simulation from problem preparation 
through output presentation. This is especially 
important when problem turn around time is 
as frequent as eight hours, a common proce­
dure at United Aircraft. Typical utility pro­
grams are as follows: 

1. Assembly' and debugging12 systems for 
program preparation and modification. 

2. Coefficient generation programs6 for 
evaluating problem constants and potenti­
ometer settings from engineering data. 

3. DO/IT control programs1
;! (UAC-15, S. 

Sharpe and J. Miller) for potentiometer 
setting and component reading. 

4. Digital scope, arbitrary function display 
with light pen, curve modifier.14 

5. Digital scope display9 for graphically pre­
sented and alphanumerically identified 
time sequence, cross plot, or steady state 
data. 

Some .of these systems are discussed in more 
detail below. 

Coefficient Generator 
Equation coefficients used in the simulation 

mathematics are functions of parameters of 
the physical device and its environment. These 
parameters are part of the problem data lan-
guage used by the engineer and are often 
changed during a study. 

A digital program is used to compute the 
problem coefficients from the engineering pa­
rameters. All scale factors to be applied in 
converting coefficients to pot values for the 
analog computer or constants for the digital 
on-line program are included. Gain changes 
needed to adj ust the range of computed pot 
values are applied by the program. Range 
changes for digital constants are generally not 
required since the digital on-line program can 
be scaled for wider range than analog due to 
the one in over 200,000 parts resolution avail­
able. 
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Pot Setting 
With the control linkage between the digital 

and analog computers, it is possible for a pro­
gram to set analog potentiometers directly 
from the results of a coefficient generation pro­
gram. The settings can be made and checked 
faste:r ;)nd more reliably than by a human oper­
ator. If a failure occurs, the user receives a 
typed output indicating the difficulty. If gain 
changes are required, the digital program types 
the information. For pots requiring frequent 
gain changes, the digital-to-analog logic linkage 
can be used to switch gains under program con­
trol. 

Analog Check 
The digital control of the analog computer 

permits reading of all analog components. With 
this feature, a program (UAC-8, G. Paquette 
and J. Miller) has been developed for checking 
the analog circuits. This program accepts equa­
tions representing a static condition on the 
analog hardware. These are solved interpre­
tively and results are compared with analog 
components within specifiable tolerances. Er­
rors are typed out. Changes in analog cir­
cuitry or pot values can easily be updated in 
the check equations and data by typewriter 
control or direct input from the coefficient 
generator program. This system is discussed 
further in Appendix II. 

Function Display and Modification 
Curves used with the hybrid simulation are 

generally included in the digital calculation. 
The few, if any, remaining on the analog are 
still subject to the slow set up and change pro­
cedures typical of diode function generators 
even with servo set capability. 

Curves contained in the digital memory can 
be loaded from paper tape and changed by tape 
or typewriter input. In addition, the curves 
can be displayed on a digital scope individually 
or as maps for easy modification using the light 
pen. This technique permits the user to rapidly 
change function data without requiring a calcu­
lation of each point. 

OPERATIONAL HYBRID SIMULATION 

The Single Rotor Helicopter, Real Time Sim­
ulation sponsored by the Sikorsky Division, 

demonstrates an application of hybrid compu­
tation at United Aircraft. The simulation con­
sists of three basic portions. 

1. Fuselage aerodynamics, kinematics, and 
dynamics. 

2. Main rotor aerodynamics and dynamics. 
3. Fixed base, flight simulator. 

The total force, 6-degree of freedom, aircraft 
mathematics include computation of fuselage 
and tail rotor forces and moments as functions 
of air speed and direction. Along with main 
rotor components, these forces and moments 
are applied in computing linear and angular 
motions. Most nonlinear aerodynamic and kine­
matic calculations are obtained at the digital 
computer. Flight path and attitude integra­
tions are performed at the analog computer. 

The rigid, hinged blade main rotor dynamic 
degrees include blade flapping and azimuth 
speed. Force calculations, including effects of 
mach number and stall, are obtained over the 
blade span and rotor azimuth. The entire rotor 
computation, including dynamics, is performed 
at the digital computer. 

The flight simulator, used to study flying 
qualities and human factors, contains pilot con­
trols; instruments; and a Norden Conalog, arti­
ficial world, television display. The amount of 
data required is fairly large but the calcula­
tions are reasonably simple and contain few 
nonlinearities. In order to minimize the num­
ber of digital-to-analog converters required, 
these computations are performed at the analog 
computer. 

Auxiliary computation tools provide for 
rapid implementation of desired studies: 

1. A digital coefficient evaluation program 
to convert engineering data into the digi­
tal program constants and analog pot set­
tings. 

2. Automatic controls at the analog com­
puter to obtain aircraft trim at desired 
flight conditions. 

3. Digital scope, display programs for aero­
dynamic functions and dynamic output 
data. 

The digital computer provides the mathemati­
cal operations shown in Table II. 
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TABLE II. DIGITAL OPERATIONS FOR 
HELICOPTER SIMULATION 

9 Bivariate Functions 
2 Univariate Functions 

15 Trigonometric Functions 
2 Two-dimensional Coordinate Transforma­

tions 
2 Square Roots 
4 Time Integrations 

Numerous Term Products and Sums 

The digital program cycle time is 0.03 sec. pro­
viding five cycles of rotor calculation within 
each fuselage sample-calculate-output cycle. 
The rotor calculation is executed more fre­
quently because of the higher frequency range 
of the rotor system relative to the aircraft. 
Memory requirements for this program ap­
proach 4000 words for the simulation problem 
and its data. The simulation program, coeffi­
cientgenerator, and arbitrary function display 
occupy the same memory space and must be 
used independently. 

This problem, in a less sophisticated version, 
was once simulated exclusively with analog 
equipment. From this computer representation 
and estimates of the requirements for the ex-
pansion, the digital program alone replaces 
the following analog equipment: 

172 Amplifiers 
295 Coefficient Potentiometers 
118 Variable Products 
64 Arbitrary Function Curves 

The function curves each contain 32 points, 
representing 31 linear segments. Exact re­
placement with diode function generators 
would require192 11-segment units. 

The analog equipment presently utilized in 
the hybrid version is as follows: 

59 Amplifiers 
67 Coefficient Potentiometers 
16 Multipliers 
4 11-Segment Diode Function Generators 

An important distinction between the two 
systems, analog of the past and hybrid of the 
present, is the speed of set up and modification. 

The original analog system required an a ver­
age of four hours to set up and check out as­
suming approximately 40 function generators 
were set during the previous shift. Set up and 
check out of the hybrid system is less than 30 
minutes. Part of the time saving is due to the 
reliability of the digital computer and the re­
duction in analog components with a corre­
sponding reduction in the number of equipment 
failures encountered at check out. 

Static trim ~ata for the helicopter was ob­
tained from the original analog simulation; 
the hybrid simulation; and a highly sophisti­
cated, non-real time, performance program for 
IBM 7090. Relative to the 7090 results, the 
hybrid system produced values with one-fifth 
to one-tenth the differences exhibited by the 
original analog system. 

Time histories of pilot control and re~ultant 
helicopter motion were obtained from Sikorsky 
flight tests. The same pilot control motions 
were applied to the hybrid simulation. Good 
correlation with the flight test was obtained. 

FUTURE INDICATIONS 

Trends at United Aircraft indiCate the fu-
ture will find real time calculations processed 
more extensively by the digital computer. Con­
tributing to this trend are the following points: 

1. Considering the helicopter problem above, 
essentially two consoles of analog equip­
ment were replaced by a digital computer 
which costs significantly less tha,u one of 
these consoles. 

2. The digital equipment is highly reliable 
and it can be preventatively maintained 
during idle time. 

3. Once checked out, a paper tape of pro­
gram and data can be reloaded with high 
confidence in its subsequent operation. 

4. Set up by prepared program tapes is 
much faster than analog set up. 

5. Man-machine communication is improv­
ing with utility program support as dis­
cussed above. 

Some real time problems at United Aircraft 
have already become essentially digital. The 
growth of the helicopter problem has been typi­
cal of this trend. The original hybridization 



704 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

utilized the digital computer only in calculating 
the highly nonlinear, main rotor aerodynamics. 

Competitively priced digital computers are 
now available with larger word size at effective 
speeds up to four times that of the PDP-I. In­
deed, computers with floating point arithmetic, 
a step toward solving the simulation scaling 
problem, are becoming available at reasonable 
cost and provide floating point operation faster 
than the fixed point calculation·of the PDP-I. 
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APPENDIX 1. BIVARIATE FUNCTION 
GENERATION 

The desired function 

z = f(x,y) (12) 

is obtained by cross-linear interpolation within 
a table of function values. The function table 
is stored in memory without argument values 
in the following sequence: 

Zi,,= :(C~>(X"Y'») (13) 

where i, j = 0,1,2, ... 

The Yj arguments must be selected at equal 
intervals, tl.y, and the Xi arguments must be 
selected at equal intervals, Llx. Note that i and 
j can be obtained as: 

i= 
(Xi - xo) 

(14) 
Llx 

j = 
(yj - Yo) 

tl.y 
(15) 

The function interpolation for input argu­
ments X and y proceeds as follows: 

(
X - Xi ) zx, j + 1 = (Zi + 1, j + 1 - Zi, j + 1) _ + Zi, j + 1 

Xi +1 Xi 
(16) 

- ( y - Yj ) Z - (ZX,j+1 - Zx,j) _ + Zx,j (18) 
yj+1 Yj 

where Xi ~. * < Xi + 1 and Yj ~ Y < Yj + 1 

The data for interpolation can be obtained frorri 
the sequence (13) if i and j are computed. 
From (14), (15), and the bounds on X and y, 
above, 

j = I( x :xxo
) = ( Xi ~ "0 ) (19) 

I \ I \ 

j = I ( y :yY ° ) = ( y,:/ ° ) (20) 

where I denotes "integral part of." The loca .. 
tion of Zi, j is then 

loc (Zi, j) = loc (zo,o) + i + Lj (21) 

and further 
loc (Zi+l,j) = loc (Zi,j) + 1 

loc (Zi, j + 1) = loc (Zi, j) + L 
loc (Zi+l,j+l) = loc (Zi,j+l) + 1 

(22) 

(23) 

(24) 

The interpolation ratios in Equations (16) to 
(18) are obtained as the fractional parts left 
after i and j are removed in Equations (19) 
and (20). 

F(X:XXO) (X:XXO)_j 
= C~~_X~.) (25) 

F(Y:/O) (Y:/O) 
= C~+~ ~~,) (26) 

The table addressing operations described 
above can be computed more rapidly if the 
number of function values taken for each curve 
at constant y, the X interval, and the y interval 
are chosen as integral powers of 2; i.e., 

L = 2C (27) 
(28) 
(29) 

where C is a positive integer and Nand Mare 
positive or negative integers. The divisions in 
Equations (19), (20), (25), and (26) and the 
multiplication in Equation (21) are then re­
placed by word shifts about the binary point. 
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APPENDIX II. ANALOG COMPUTER 
SYMBOLIC SET AND DEBUG 

A group of three PDP-1 programs (UAC-8) 
provide problem checks for analog computer 
users. The program group includes an equation 
loader, an interpretive mathematical and logi­
cal equation solver, and an output printer or 
puncher. 

The user communicates with the analog 
check program by paper tape or typewriter 
using an equation language which defines the 
components of his computer and their relations. 
These equations may be defined directly from 
the circuit diagram by technical aide personnel. 

Analog computer components are denoted by 
a letter and a four digit address identifying 
the component type, console number, and com­
ponent address. Component types include am­
plifiers, function generators, servo mUltiplier­
resolvers, electronic multipliers, trunks, and 
potentiometers. In addition, dummy codes for 
switches, relays, test voltage, etc. are available 
for devices not read by DO lIT. All the above· 
components except potentiometers may ·be 
defined by equations relating to other compo­
nents. Potentiometers can be defined by nu­
meric value only. In addition to assigning com­
ponent or test values, numeric values are used 
to state gains, references, and function coordi-
nates. 

Mathematical or logical operations permitted 
are listed in Table III. 

TABLE III. OPERATIONS EXECUTED 
BY UAC-8 

Addition 
Subtraction 
Multiplication 

Division 
Square root 
Function interpolation or extrapolation 
Trigonometric operations sine, cosine, and 

arctangent 
Dead zone, symmetrical or not 
Limit, symmetrical or not 
Logical term control by greater or less than 

test as with operational relays 

A loading program is used to enter the equa­
tions and data from typewriter or paper tape. 
In addition, the user can change existing equa­
tions or add to the current check system with 
this loader. 

An interpretive equation solving program 
processes all mathematically defined compo­
nents. Equations to be solved must represent 
an open loop system as is common with static, 
initial condition, or hold testing procedures; i.e., 
equations are solved sequentially, not simul­
taneously. The order of equations presented is 
irrelevant as the program automatically deter­
mines the order in which solutions may be ob­
tained. Digitally computed values can be com­
pared with analog components within user 
specified tolerances. 

An output program provides typed solution 
values with their component codes. In addition, 
the output program provides the user with an 
optional punched or printed copy of his updated 
equation language. 
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A STROBED ANALOG D,AT A DIGITIZER WITH 

PAPER TAPE OUTPUT 
R. L. Carbrey 

Bell Telephone Laboratories, Murray Hill, New Jersey 

INTRODUCTION 

In a group doing research on communica­
tion techniques, a wide variety of analog sig­
nals are encountered which must be analyzed. 
The most effective general purpose tool avail­
able for carrying out the analysis is a high­
speed digital computer. Thus the problem of 
converting large quantities of analog data to a 
digital form suitable for use on the computer 
arises frequently. A number of high resolu­
tion anaiog-to-digitai converters which can 
handle data in the kilocycle range are com­
merciallyavailable, but the majority of signals 
to be analyzed are those with frequency com­
ponents in the range from a few megacycles 
up to a gigacycle or more. For these,ordinary 
real time A-to-D conversion cannot presently be 
used. 

Fortunately experiments in this range are 
usually set up in such a manner that the signals 
can be viewed on a sampling type oscilloscope 
which means that the high-speed signals must 
be repetitive in order to permit them to be 
sampled many times at some relatively slow 
rate. By designing a system which also per­
forms the analog-to-digital conversion on these 
oscilloscope samples and systematically stores 
the resultant binary codes in a memory cir­
cuit, the range of operations has been extended 
to include most of the signals which are en­
countered. A one-to-one correspondence be­
tween memory address and sample time is 
obtained by converting the memory address 

707 

codes to an analog voltage and using this volt­
age as the horizontal position signal for the 
sampling oscilloscope. 

The function of the digitizer is to convert 
either the direct analog signal or the strobed 
samples to a sequence of a selected number of 
twelve bit binary words. Twelve bit words 
permit resolving a full load signal to one part 
in 4096 or about 0.025 7c. These words are 
then stored in a coincident core memory with 
a capacity of 4096 words; so its address posi­
tions are also controlled by twelve digits. 
These are generated by a settable counter with 
six digits allotted to the X location of the 
memory and the remaining six to the Y loca­
tion. Ultimately the stored digital data is 
used to control a combination punch and type­
writer which punches the paper tape. This 
tape presently serves as the transfer medium 
between the digitizer and the digital computer. 
Ultimately, direct read-out to a magnetic tape 
is planned. 

Before punching is started, however, one 
should observe the results of the digitizing 
operation to determine whether the data meets 
the requirements for processing. Therefore, 
digital-to-analog convarsion is also included. 
The stored data can be displayed on the oscil­
loscope or an X-Y plotter. The results of 
se"veral related experiments can be stored for 
observation at one time, or one run can be 
divided into a number of small segments each 
of which can be examined in minute detail. A 
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lamp display section provides a visual indica­
tion of both address locations and data in 
digital form. 

The objective was to provide a digitizer which 
was both flexible in operation and compact 
enough to permit ready movement into the 
laboratory where the experiment was being 
run. To achieve this, the control problem was 
simplified by using three types of manual oper­
ation. The number of words in any sequence 
and their location in the memory is established 
by manually registering memory address start 
and end points. Octal thumbwheel switches 
are used. This same type of switch is used to 
manually set up any arbitrary binary word 
which is to be written into the memory in­
stead of a sample value. Finally, illuminated 
push button switches are used to select the op­
eration to be performed and to initiate a load­
ing, transferring, plotting, or punching opera­
tion. Although thirty-three of the push button 
positions provided on the console are actually 
used to perform a variety of operations, many 
of which will not be discussed, the basic 
manual switching functions are those indicated 
schematically in the block diagram discussed 
below. A photograph of the complete unit is 
shown in Fig. l. 

In order to minimize the construction and 
debugging time, most of the blocks were im­
plemented with commercially available equip­
ment all of which has proven to be very satis­
factory. 

BLOCK DIAGRAM 

A simplified block diagram of the digitizer 
is shown in Fig. 2. The heart of the system is 
the coincident current core memory which 
serves as a buffer unit between the varied in­
put information rates and the fixed output 
punching rate or any desired display rate. The 
particular unit selected for the digitizer has a 
capacity of 4096 words of sixteen bits each. 
(The extra four bits are used for arithmetic 
or flagging operations. ) The self-contained 
access circuity was designed to operate in the 
Random/Sequential Interlace mode with fu11 
cycle operation. In the random mode, the in­
ternal address register for the writing opera­
tion can be set to any selecte,d one of the 4096 

Figure 1. Digitizer and output typewriter with paper 
punch. 

address positions by applying the desired 
twelve bit address word and then issuing a 
load command. 

If the unit is then switched to the Sequential 
Interlace mode, it will proceed systematically 
from this address advancing once per load 
command. The unload address counter can be 
similarly indexed. Full cycle control requires 
that each load operation includes both clear 
and write while each unload operation includes 
both read and restore; therefore, the readout 
is essentially nondestructive. The load and un­
load operations can be carried on in any ar­
bitary sequence, but they cannot be performed 
simultaneously, and care should be exercised 
not to load in an area where wanted data is 
already stored. A full cycle requires 10 micro­
seconds; so the maximum operation rate is 
100,000 commands per second. 

For purposes of block explanation, the mem­
ory has been divided into four parts-the load 
position address, unload position address, the 
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load into and the unload data from the com­
mon storage medium. The twelve bit position­
addresses are handled in parallel as are the 
data bits. When switch 84 is in the position 
shown, the selected orderly sequence of address 
codes appears as the input to the X Position 
Digital-to-Analog converter. The resulting out­
put is a staircase voltage with the number of 
steps equal to the difference between the start 
and stop addresses, the risers equal to 1/4095 of 
the full range, and the treads as long as the 
time between load commands. This staircase 
serves as the X axis input signal to the sam­
pling oscilloscope replacing the internally 
generated "slow ramp." 

As is usual in this type of oscilloscope, an 
internal "fast ramp" is triggered by the syn­
chronizing signal. At the instant this latter 
ramp voltage becomes equal in magnitude to 
the address voltage, a strobe sample is taken 
of the Y axis input signal. The sample poten­
tial is then held until the fast ramp cycle is 
completed and a new trigger operation takes 
place. 

Once a sample voltage has been established 
on the scope's storage circuit, a beam "un-

blanking" signal is provided which permits the 
sample magnitude to be displayed at the hori­
zontal position corresponding to the memory 
address. This unblanking signal is also used 
to initiate each A-D conversion. Thus the 
conversion and subsequent loading operation 
is asynchronous with the maximum rate being 
limited to 40,000 conversions per second by 
the twelve bit A-D Converter. A conversion 
command causes the A-D Converter to sample 
and hold the signal stored in the oscilloscope. 
This double sampling process, once in the 
~scope and once in the converter, is required 
because the storage circuits in the converter 
take longer to charge than the duration of 
many of the phenomena to be observed. The 
storage circuit in the converter must, on the 
other hand, be very precise if the full 4096 
level resolution is to be obtained. Low-speed 
waveforms are connected directly into the A-D 
Converter; so they are only sampled once as 
in more conventional practice.! 

Three microseconds prior to the completion 
of conversion, a program pulse is generated 
which initiates the load command for the mem­
ory. As a result, the "clear" part of the clear/ 
write cycle is almost over by the time the 
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Figure 2. Simplified block diagram of Tape Output Strobed Analog Data Digitizer. 
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digitization is complete and the twelve bit 
word is available for writing into the memory. 
The strobe, convert, and load sequence con­
tinues until all of the assigned positions have 
been filled during one horizontal sweep. Dur­
ing setup, it is frequently desirable to observe 
repeatedly all or part of a display. This is 
accomplished in the auto-start mode by per­
mitting a selected address to initiate a new 
start command thus resetting the sweep and 
starting over. 

Once the data has been stored in the memory 
in digital form, the usual procedure is to check 
it by "playing it back." This is accomplished 
by transferring the switches to the plot mode, 
setting the Unload Start and Unload Stop 
thumbwheel switches to the desired range and 
pushing the auto-unload switch. Switch S4 
connects the unload position address to the X 
Position D-A Converter. Output from the 
latter supplies the horizontal signal for both 
the sampling oscilloscope and the X-Y Plotter. 
The plotter is built into the control console 
under a sliding plexiglass writing surface. 

Unload command rates are controlled by an 
internal multi vibrator with a fast unload rate 
of about 40 kc permitting ten repeated oscil­
loscope displays per second of the full memory 
load or correspondingly more frequent displays 
of shorter memory sections. A variety of 
slower speeds can be selected for use with the 
plotter and visual readout. Conversion of the 
stored data is accomplished by switching the 
A-D Converter to its D-A mode. 

PAPER TAPE PUNCHING AND CONVER­
SION TO MAGNE'TIC TAPE 

A mixed alphabetic and binary data format 
is used on the eight column punched paper 
tape. Experiment titles and interspersed com­
ments are typed in from the keyboard in a 
conventional manner except that an appro­
priate one of four characters is. typed on each 
line just before the carriage return key is op­
erated. The control characters used are: H 
(Holerith) for alpha-numeric characters, B 
for binary data, P for end of experiment,and 
X for end of tape. Anything which is not 
wanted in the digital computer's magnetic tape 
copy of the paper tape can be deleted by punch­
ing something other than one of these four. 

Holes in column eight of the tape are punched 
only by the carriage return key. 

The start of a binary data run is indicated 
by the letter "B" followed by the carriage re­
turn punch, and the end of the data is always 
terminated by another column eight punch. 
Each twelve bit data word is punched as two 
six-bit characters with the first half of the 
word identified by a space in column five and 
the second half by a hole. The odd parity 
function normally assigned to this column was 
ignored since the paper tape reader at the 
Murray Hill Computation Center generates its 
own parity bit. Instead a check on the punch­
ing operation is obtained by simultaneously 
reading the split words from the punched tape 
back into the digital-to-analog converter and 
plotting the result alongside the X-Y plot 
which was made prior to punching. Sixteen 
minutes are required to punch out a full mem­
ory load of 4096 words in sixty-eight feet of 
tape. 

The paper . tape reader which serves as the 
peripheral input device to the computer, can 
read a full memory load in sixteen seconds. 
Although the reader cannot transfer the col­
umn eight punch to the magnetic tape, it can 
recognize this "End of Line" indication, and 
use it to generate the proper flagging instruc­
tion for the paper to magnetic tape conversion 
program. Once the first generation magnetic 
tape is produced, a computer program is used 
to delete the parts so m~rked, unpack the data 
and text, block them into the standard com­
puter format, and translate double-case type­
writer symbols to. appropriate digital computer 
symbols where different. When desired, a 
microfilm plot is provided for comparison with 
the original X-Y plot. The process can, of 
course, be reversed; so that computer data can 
be put into the digitizer memory by way of a 
punched paper tape. 

SWEEP CALIBRATION AND LINEARITY 

In the digitizer, one coded sample value is 
stored at each memory address position, so the 
standard sweep calibration; is made in nano­
seconds per address. The nominal 10-volt ref­
erence voltage for the X Position Address 
Decoder is set so that just eight complete 
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cycles of the oscilloscope's internal ten mc 
calibration wave will appear when 4000 (deci­
mal) address positions are used with a Sweep 
Time/cm of 0.1 f-tsec. This calibration corre­
sponds to 0.2 nsec/address. Selection of other 
settings of the Ext. Horiz. Input and the 
Sweep Time/ cm controls permits changing 
this over a range from 4 f-tsec/address to 0.4 
pi cosec / address. 

In normal sampling oscilloscope usage, a 
nonlinearity in the horizontal sweep cannot be 
observed because the sample is taken at a time 
proportional to the horizontal sweep voltage 
and the sweep positions the beam at the actual 
sweep value. The sweep can even be stopped 
or reversed enroute, and the waveform will be 
displayed with fidelity except for a brightness 
change. The high speed ramp and associated 
comparison decision must be linear, however. 
When the horizontal position is converted to 
an address as it is in the digitizer, each quan­
tized horizontal increment is treated by the 
computer as a specified time increment. This 
will lead to distortion if the horizontal display 
is not linear. A calibration run can be made 
which will permit correcting the values in the 
computer, but adequate linearity is much to be 
preferred. 

The linearity was measured by first calibrat­
ing the sweep for 0.2 nsec/address with the 
ten mc test wave and then switching to the 
Ion me test wave. Figure 3 shows a plot of 
interpolated addresses or sampling intervals 
between adjacent positive going center axis 

crossings as well as those for negative cross­
ings. At 0.2 nsec/address, 50 addresses cor­
respond to one cycle, and the center axis slope 
of a full load 100 mc sine wave is about 500 
code levels per sample. 

Although the actual axis crossing can be de~ 
termined only to the nearest 0.2 nsec sample 
increment, the spacings interpolated from the 
coded amplitude values immediately before and 
after crossing should, ideally, plot on a hori­
zontal straight line. The slight curvature of 
the fitted line shows an effective compression 
of about 1 % for the combined sweep, scope 
amplifier, and threshold decision. The offset 
from the 50 sample periods shows that the 
initial manual calibration was also off by about 
1 roo This can now be adjusted more precisely 
with a ten turn potentiometer. 

The dispersion of interpolated points indi~ 

cates that both of the foregoing are masked by 
a combination of other factors which are 
loosely lumped into the 'scope sync. category. 
In normal sampling 'scope usage, repeated 
patterns are observed, and the eye or the 
camera averages the plotted points at anyone 
place on the wave. The better the synchroniza­
tion, the narrower will be the line of points. 
In the digitizer application, however, the 
amplitude samples are normally recorded only 
once at each address-quantized horizontal posi­
tion. No averaging takes place. If the "syn­
chronization" is not perfect, some of the points 
will be displaced slightly. A plot of the wave­
form will be somewhat irregular as illustrated 

53~--------------------~------------------------------------------------------------~-==, 

47~~ ____ ~ ____ ~ ____ ~ ____ ~~ __ ~ __ ~ __ ~ __ ~~~~ __ ~ __ ~ __ ~~ 
o 20 40 60 100 teo 

AXIS CROSSING NUMBER 

Figure 3. Sweep linearity calibration and synchronizing noise check by interpolated 
address differences between same direction axis crossings of a 100 mc sine wave. 

Strajght line at address difference of 50 would be ideal. 
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for the 100 mc repetition rate snap diode pulse 
of Fig. 4a. 

Small timing variations of this nature ac­
count for the dispersion shown in Fig. 3. Since 
the strobed sample is taken at the instant the 
triggered fast ramp becomes equal in magni­
tude to the decoded horizontal address voltage 
and each address is 1/4096 part of the total, 
the combined synchronization and amplitude 
decision must be better than this fraction to 
keep the point spread within ± 1 address. 

Both experiment and synchronization noise 
can be averaged out by making repeated meas­
urements of the data and averaging the results 
either in the computer or in the digitizer. 2 See 
Fig. 4b. The digitizer memory can store words 
as long as sixteen bits, thus allowing the extra 
four digits to be used for accumulation of six­
teen repeated waveforms when full magnitude 
signals are coded or correspondingly more 
repetitions when fewer than twelve bit words 
are coded. 

SUMMARY 

Perhaps the best summary of the digitizer's 
capabilities is an illustration showing a few of 
the varied types of data which have been con-

o o 
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Figure 4a. One nanosec section of snap diode pulse at 
4 picosec per sample with no sampling oscilloscope 
smoothing. This shows waveform irregularity due to 

noise and synchronization problems. 
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Figure 4b. Reduction of irregularity by computed 
average of sixteen repeated runs including that of 

Figure 4a. 

verted from analog to digital form. The fig­
ures are microfilm plots made from precompu­
tation tapes processed on the high speed digital 
computer. Experiment and run titles which 
were typed into the paper tape at the time the 
experiment was run are generated at the left 
of each microfilm plot along with supplemen­
tary information determined in the computer 
program such as the maximum and minimum 
value, but these are not large enough to be 
clearly legible in reduced reproductions. 
Neither are the horizontal scales which are 
decimal integer equivalents of the memory 
addresses. The plot program option to use 
the maximum and minimum as vertical plot 
limits was selected for all figures except num­
ber six. 

Figure 5 shows a twenty-four sample section 
of a snap diode pulse similar to that shown in 
Fig. 4a, but here the samples are spaced only 
40 picoseconds per address. The total inter­
val is one sample short of one nanosecond. At 
this sensitivity, the horizontal signal is chang­
ing in large enough steps to minimize the syn­
chronization differences. Because the micro­
film plot program draws straight lines between 
sample points, the individual points can be 
observed. It is apparent from the slope at the 
top of the plotted pulse that the peak of the 
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Figure 5. Twenty-four samples at 40 picosec per sam­
ple of one nanosec section of snap diode pulse. Slope 

indicates that peak was not sampled. 

snap diode pulse was not sampled. This pulse 
is used as a 100 mc clock pulse for work on 
high speed digital circuits. It was generated 
by driving a silicon snap-off diode from a 100 
mc source. The diode and input shunt capaci­
tor were mounted in a 52-ohm ENe connector 
tee section with a short circuited plug in the 
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tee serving as an echo line. Fig. 4b is the most 
accurate representation of these 3-volt pulses 
which repeat at 10 nsec intervals and have a 
half amplitude width of 0.24 nsec. 

Figure 6 shows the 10 nsec pulse to a 200-
foot length of RG58A/U coaxial cable and the 
pulse reflected back to the input from a short 
circuit at the far end. The intervening 560 
nsec, corresponding to decimal addresses 300 
to 3100 at 0.2 nsec/address, were deleted from 
the strip of microfilm. Transmission char­
acteritics of cables can be determined from 
this type of pulse response measurement. When 
the meauring probe is bridged across the near 
end, the same takeoff can be used for both the 
input and output, and the pulse must travel the 
full length of the cable twice before it reap­
pears at the output. 

Figure 7 is a plot of the smoothed samples 
of the peak output of the 40th, 424th, and 808th 
-read pulses from a wire plated with a magnetic 
film. 3 In the test setup, a single write pulse 
was first applied at one location on the wire. 
Then about 940 consecutive read pulses of 100 
nsec duration were applied. The horizontal 
position of the sampling oscilloscope was set 
manually to the peak of the resulting output 
pul~es and the address decoder was disengaged 
because only the variation in peak magnitude 
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Figure 6. First 300 samples showing 10 nanosec input pulse to 200 ft. of RG58A/U coaxial cable, and last 300 
samples, 0.6 usec later, showing return pulse reflected from short circuit at far end. 
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Figure 7. Oscilloscope smoothed samples of 40th, 424th, 
and 808th output pulses from eight adjacent sections 
of a wire plated with a magnetic film. With fixed 
sweep, samples are at pulse peak for three positive 

and three negative output conditions. 

was wanted rather than the pulse shape. The 
internal smoothing control of the sampling 
oscilloscope was set for maximum smoothing; 
so the three selected samples actually loaded 
in the memory represented an average peak 
amplitude early, midway, and late in the con­
secutive read sequence. Following this, an­
other block of 940 read pulses at a reduced 
current was applied, and the selected samples 
were loaded. The wire was then disturbed by 
simulating writing operations at other loca­
tions along the wire, and still another 940 
consecutive read pulses at the original current 
were applied. The selected three samples were 
loaded. This sequence of nine loading opera­
tions was then repeated except that the initial 
single write pulse was negative. After the 
nine positive and nine negative signals were 
loaded, the test location was mechanically in­
cremented and the test was repeated. The 4096 
word memory permits eighteen samples to be 
loaded at as many as 227 wire locations. In 
the figure, only the first eight locations (cycles) 
tested on the wire are shown. 

The retiming wave for regenerative pulse 
repeaters is usually recovered from the incom­
ing pulse train by filtering techniques. As a 

result, the amplitude and phase of the recov­
ered wave is a function of the actual pulse 
pattern being transmitted and the number of 
repeaters in tandem through which the pulse 
train has passed. A single repeater can be 
used to simulate many aspects of a chain of 
repeaters by delaying a long pulse train out­
put from the repeater and feeding the train 
back to the input in a self-timed closed loop. 

The wavef<?rm for Fig. 8 is an envelope plot 
of the change in phase position of one selected 
pulse out of a 7500-bit pattern circulating 
around such a loop immediately following a 
change of 778 of those bits from alternate 
pulses and spaces to all pulses. In this case, 
a measurement was made only once per 750 
usec round trip, and the envelope of the phase 
detector signal was fed directly to the A-D 
converter instead of to the sampling oscil­
loscope. Each vertical division represents 3.8 0

, 

and there are 14 round trips per horizontal 
division. 

The response spikes shown in Fig. 9 were 
obtained by direct conversion at a 40 kc rate 
of the output signal from a laser analyzing 
cavity (interferometer) as the cavity spacing 
was changed by applying a 20-cycle sawtooth 
control signal to a one-inch barium titanate 
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Figure 8. Example of direct A-D conversion at 750 
usec per sample without sampling oScilloscope. Starting 
transient phase variation of one pulse circulating 

around a closed pulse repeater loop. 
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Figure 9. Digitized output signal from laser analyzing 
cavity as the cavity spacing is slowly changed. 40,000 

direct A-D conversions per second. 

cylinder with a mirror cemented to one end. 
Only the initial set of spikes is shown.4 
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HYBRID SIMULATION OF A LIFTING RE-ENTRY VEHICLE 
A. A. Frederickson, Jr., R. B. Bailey, A. Saint-Paul 

Electronic Associates, Incorporated" El Segundo, Cali/oraia 

1. INTRODUCTION 

During the past ten years a great deal of re­
search and development work has been con­
ducted on various types of re-entry vehicles. 
Numerous techniques for guiding and control­
ling re-entry vehicles have been proposed. The 
purpose of this simulation is to evaluate the 
capability of a new flight control system for re­
entry vehicles which by its nature is simple, 
reliable and inherently insures a safe re-entry. 
The ensuing discussion explains the unique 
control system being studied, and includes a 
detailed· discussion of the simulation equip­
ment required and its programming. 

To obtain a better insight into the need for 
a simple yet reliable guidance and control sys­
tem for lifting re-entry vehicles, a brief dis­
cussion of the general re-entry problem follows. 

The re-entry vehicle utilized in the study is 
an unpowered lifting vehicle with wings, which, 
unlike its ballistic counterpart, is highly maneu­
verable and can be landed on conventional run­
ways. 

The lift and drag coefficients (CL and CD) of 
a typical high LID lifting re-entry vehicle are 
shown in Fig. 1 as a function of angle of attack, 
0:: • In addition, a plot of lift to drag ratio 
(LID or ~/CD) is shown since it is of im­
portance in determining the range of the re-en­
try vehicle. During the high velocity portion of 
re-entry flight the vehicle operates on the 
high ~ (large 0::) side of (LID) max. (15 0 < 
ex: < 65 0

). These larger lift coefficients yield a 
re-entry trajectory with lower dynamic pres­
sure, acceleration, and temperatures. Fig. 2 
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defines a simplified coordinate system and sym­
bols. During most of the vehicle flight 
ro + h:::::: ro and h:::::: O. Thus, the following ap­
proximate equations can be used: 

V2 L 
h::::::-g+-+- (1) 

ro m 

D SCD ) V:::::: --= -q- (2 
m m 

For a lifting re-entry vehicle the lift is large 
enough to allow the vehicle to fly along ail equi­
librium glide path where h :::::: o. Along the 
equilibrium glide path, 

L V2 seL -==g--=q--
m ro m 
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Figure 1 
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where q is the dynamic pressure (1f2p V2) and 
S is the wing area. Thus for a given CL there 
is a unique altitude-velocity profile. Fig 3 
shows the altitude-velocity profile for two dif­
ferent equilibrium glide lines and the bounda­
ries of the re-entry corridor. The lower bound­
ary of the corridor is determined by the tem­
perature and load limits of the vehicle and the 
upper boundary by the recovery ceiling. The 
recovery ceiling is defined as the maximum alti­
tude (with altitude rate, h = 0) from which 
the vehicle can recover without exceeding the 
temperature and load limits of the vehicle. 

One of the primary re-entry problems is to 
control the vehicle so that temperature and 
load limits are not exceeded and a smooth equi­
librium glide is established. The heavy tra­
jectory shown in Fig. 3 is a typical uncon­
trolled re-entry with its familiar skipping oscil­
lations which cause the vehicle to approach 
dangerously close to the heat limits. The tem­
perature rate control system being simulated 
was developed to eliminate these skipping oscil­
lations and reduce the peak temperatures dur­
ing re-entry. 

Another re-entry problem is to manage the 
energy of the vehicle as it re-enters so that the 
desired terminal point is reached. The range 
capability of the re-entry vehicle can be de­
termined quite readily in the re-entry portion 
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of flight since the vehicle is near equilibrium 
glide where h ::::; O. If both sides of Eq. 2 are 

divided by Lim or g- V2 the following is ob-
ro 

tained: 
v D 

ro 

If V dV is substituted for V: 
dR 

(4) 

dR = (LID) roVdV (5) 
V2_r og 

If this is integrated from an initial velocity to 
zero, the range is obtained: 

(6) 

Thus, during the re-entry portion of flight the 
range is a function of velocity and LID. Range 
control is accomplished by varying LID, i.e., 
by varying angle of attack. From Eq. 6 it also 
should be noted that the range is very sensi­
tive to initial velocity when the velocity is 
nearly equal to orbital velocity yrog. For the 
re-entry studies made to date on the simulation, 
the sensitivity of range to initial velocity error 
is approximately 300 NM/fps. 

Lateral maneuverability is obtained by bank­
ing the re-entry vehicle so that the aerodynamic 
lift vector is rotated, thus providing a lateral 
acceleration. Fig. 4 shows an energy manage­
ment footprint for a typical re-entry flight. 
The lines of constant 0: and p., bank angle, show 
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what attitude must be maintained to reach a 
particular landing site. The dashed lines show 
temperature limits. This large maneuverability 
of a lifting re-entry vehicle requires a reliable 
guidance system which will perform accurately 
over· the long re-entry and minimize errors at 
the desired terminal point. The temperature 
rate control system is being simulated to dem­
onstrate its compatability with different types 
of guidance systems. As will be pointed out 
in the next sections the TRFCS acts as a filter 
to the guidance signals to insure the safety of 
the vehicle at all times. 

2. THE STATEMENT OF THE PROBLEM 

2.1. Problem Background 

The temperature rate flight control system 
(TRFCS), developed by the AC Spark Plug 
Division of the General Motors Corporation, 
is based upon the use of temperature sensors 
instead of conventional inertial instruments to 
provide both short-period stabilization and long­
term guidance during the re-entry flight.l The 

mathematical formulation of the re-entry prob­
lem was furnished by AC Spark Plug. 

The new control system introduces several 
significant advantages: 

(1) Overall vehicle safety during re-entry. 
In the TRFCS design, successful effort 
has been made to separate safety of the 
vehicle from the task of accurate navi­
gation. Because of the inherent nature 
of temperature rate feedback and cer­
tain selected limits on the control au­
thority, the control system minimizes 
skin temperature peaks. The maximum 
"g's" and dynamic pressure are inde­
pendent of initial conditions and 
maneuvers performed. This safety 
aspect of the TRFCS performance is en­
tirely independent of the guidance com­
mands and in fact, the TRFCS serves es­
sentially as a filter for them. 

(2) Simple, reliable hardware. This sepa­
ration of control and guidance also re-
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suIts in more reliable hardware. Simple 
thermocouple temperature sensors re­
place the conventional gyros and ac­
celerometers. These sensors are used to 
control the flight path as well as the 
short-period oscillations in pitch and 
yaw. The only additional sensor re­
quired, besides the temperature sensors, 
is a vertical reference gyro, which, for 
the safety aspects of the re-entry, can 
be quite inaccurate. 

(3) Both manual and automatic modes. In 
case of automatic guidance system fail­
ure, the TRFCS can be controlled manu­
ally. The manual flight program to he 
followed- by the pilot, is very simple and 
the resulting temperature peaks, dy­
namic pressure, and "g" loads compare 
favorably with those obtained in the 
fully automatic mode. 

During past years, extensive simulation 
studies were conducted by AC Spark Plug to 
design the control system. A rather conven­
tional simulation program was pursued: First 
analog simulations were performed to gain 
qualitative knowledge of the system, and to 
determine the practibility of this approach. 
N ext, digital techniques were used to check 
the validity of the analog and to demonstrate 
the accuracy of the guidance through TRFCS. 

In the analog simulation, a three degree of 
freedom simulation of the mass center of the 
vehicle was combined with equations describ­
ing the short-period pitch dynamics of the ve­
hicle. Pitch axis controls and trajectory con­
trols in three dimensions included an approxi­
mate, simple lag representation of the lateral 
response of the vehicle. A cockpit was used 
in the simulation to aid in the design of the 
manual system as well as the fully automatic 
system. 

Another small analog simulation was used to 
study the uncoupled lateral dynamics for chang­
ing flight conditions and the lateral stabilization 
signals required from the TRFCS. This simu­
lation also provided the simple lag representa­
tion used in the larger cockpit simulation study 
previously mentioned. 

The reason for separating the simulation of 
the pitch dynamics and trajectpry control from 

the simulation of the lateral dynamics was to 
enable a better understanding of the pitch sys­
tem alone and lateral system alone and to de­
velop the TRFCS without the use of an exten­
sive amount of equipment. 

With the design and evaluation of the TRFCS 
completed for the simplified pitch plane and 
lateral plane the next logical step was to evalu­
ate the system with a complete six-degree-of­
freedom simulation. This would allow the in­
vestigation of cross-coupling between the pitch, 
lateral and roll dynamics of the vehicle. 

In considering a six-degree-of-freedom simu­
lation the question arises as to what computer 
or computers should be used. Past experience 
has shown that the conventional all analog or 
all digital approach has severe shortcomings. 
The previous all analog simulation suffered 
from a lack of repeatability (50 miles in range) 
and excessive day-to-day setup and checkout 
time. The digital simulation proved to be ex­
tremely slow even on a large high speed com­
puter. Even for narrow ranges, determined by 
previous analog simulation, digital simulation 
was too time consuming, and therefore too ex­
pensive to optimize parameters. Reduction of 
the digital data to more graphic forms also 
proved to be a problem. 

2.2 Problem Objective 
The main objective of the problem is to evalu­

ate a TRFCS controlled re-entry both in auto­
matic and manual modes of operation. To 
fully explore the ability of the TRFCS to con­
trol the short period attitude of the vehicle 
throughout the re-entry, a complete six-degree­
of-freedom simulation is required. To evaluate 
the ability of the TRFCS to guide the vehicle 
during re-entry to the desired terminal point, 
an accurate and repeatable simulation is re­
quired. Economy of analysis should be con­
sidered, especially in the automatic guidance 
studies where faster than real time simulation 
can be employed. 

2.3 Computational Requirements 
In order to attain the above problem objec­

tive, the following set of rigid computational 
requirements must be met: 

(1) High accuracy in trajectory calculations 
for the evaluation of the guidance capa­
bility of the TRFCS. 
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(2) Very fast computing capability to faith­
fully simulate the high frequency pa­
rameters for the short-period dynamics 
of the vehicle. 

(3) Real time and faster than real time 
simulation for evaluation of the control 
system in both manual and automatic 
mode. (For economical evaluation of 
the control system in automatic mode, 
the time scale should be as high as pos­
sible) . 

(4) Rapid day-to-day setup and checkout. 

On the basis of experience gained during past 
simulations, it was concluded that these re­
quirements can only be satisfied by a hybrid 
digital-analog computer. Such a computer 
would allow the programmer to choose either 
analog or digital solution for different portions 
of the problem, trading fast processing for 
high resolution etc. 

A hybrid system makes high demands on both 
the digital and the analog elements as well as 
on the control section. The tasks to be per­
formed by the control section, however, cannot 
be over ~mphasized. Some of these tasks are 
the basic timing, control operations, logic de­
cisions and conversions which preferably are 
parallel with other computations. Only in this 

231 R-V DOS 350 

I 1 

way can the programmer truly utilize all ele­
ments of the hybrid to the fullest. To achieve 
these complex tasks, the "control center" should 
consist of programmable logic elements, such 
as flip-flops, counters, shift registers, parallel 
memory and converters. The EAI HYDAC 
2400 system enabled the programmers to realize 
these desirable features as shown in the fol­
lowing sections. 

3. HYDAC 2400 SYSTEM DESCRIPTION 
In order to facilitate the understanding of 

the programming aspects of the re-entry prob­
lem on the HYDAC 2400 discussed in the 
next section, a brief description of the system 
is given here. 

The HYDAC 2400 computer system is a 
successful integration of general-purpose ana­
log and digital computers. It consists of three 
computers: the 231R-V analog computer, the 
DOS 350, and the 375 (3C DDP-24) digital 
computer. (For system block diagram, see 
Fig. 5) In the following material, a short out­
line is given of each section of the HYDAC 
2400, and the communication between sections. 

3.1 231R-V Analog Computer System 

The 231R--V analog computer consists of 
standard computing components under control 
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of a versatile, highly sophisticated control sys­
tem. The heart of this control system is the 
analog memory and logic system (MLG). The 
MLG system adds a capability for programmed 
multiple time base and multispeed repetitive 
and iterative computer operation. The system 
utilizes electronic mode control and high-speed 
analog memory in order to maintain the ac­
curacy necessary for "real-time" operation. 
Various forms of analog memory (microstore, 
track and store amplifiers) are essential for 
simple and efficient data transfer into the ana­
log computer. The separate patchboard allows 
the controls to be pre-patched, or control com­
mands from external dIgital computing equip­
ment may be introduced to vary the program 
during problem solution. These control signals 
may affect the operation of the analog com­
puter or some of its components many different 
ways: 

(1) change mode of operation 
(2) change time constant of integrators 
(3) control analog memory 

(4) set or monitor a potentiometer or other 
components 

( 5) make logical decisions 

The high accuracy solid state multipliers, re­
solvers, and function generators are also im­
portant contributors to the overall system per­
formance. 

3.2 375 Digital Computing System 

The 375 is a high-speed, all solid state general 
purpose digital computer with 24-bit word 
length and sign-magnitude binary number rep­
resentation. The size of the random access 
memory can range from 4,096 words to 32,768 
words, with a memory cycle time of 5 micro­
seconds. The 10 p. sec. addition and 31 p. sec .. 
mUltiplication times are typical of the speedbf· 
the arithmetic unit. 

Standard input/output capabilities include 
four data input/output channels: a buffered 
character input channel, a buffered character 
output channel, a parallel 24-bit input channel 
and a parallel 24-bit output channel. Auto­
matic interrupt may be used in connection'with 
any channel desired. In addition, 16 sense 
lines and 16 output control lines are provided 

for efficient control signal communication as 
will be described later. 

3.3 The DOS 350 Digital Operations System 

The DOS 350 is the control and communica­
tion center for the HYDAC 2400. Its modu­
lar, functional structure of digital computing 
and conversion components satisfies the strin­
gent requirements established by the basic dif­
ferences of the parallel analog and the sequen­
tial digital computers. 

The logic building blocks, counters, and arith­
metic elements provide an extremely high speed 
parallel counting, decision making, control, and 
arithmetic capability that cannot be satisfac­
torily provided elsewhere in the system. The 
same is true for the optional storage units that 
may be included in the DOS 350. 

The communication system provides for the 
flow of information throughout the system. 
The information handled can be classified as 
either whole word data or as bits or signals that 
must be communicated between the sections. 
The conversion of whole word data is per­
formed by the analog-to-digital and digital-to­
analog converters. The appropriate channels 
for ~onversion are selected and sampled by the 
multiplexer. 

In addition to the transfer of whole word 
data, provision must be made for the communi­
cation of logic and control signals. The sense 
lines enable the DOS 350 to exercise control 
over the digital program. The 375, through 
the use of a specific test instruction (SKS) is 
able to determine their status and make conse­
quent decisions. When the DOS must have im­
mediate access to the 375, an interrupt line 
has to be activated. When this happens, the 
375 is forced to store its present computation 
and proceed to a program designed to handle 
the interrupt situation.. The system has up to 
eight interrupt lines each of which has a speci­
fied priority in relation to the others. Similarly, 
the 375 also has the ability to transmit signals 
to the digital section. Output control pulses 
are generated by the 375 and terminated on 
DOS 350 patch panel. 

The control signal exchange between the 
231R-V and DOS 350 computers is accom­
plished by the use of analog comparators and 
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the digital-analog (DA) switches. The analog 
comparator permits the DOS 350 to be made 
aware of the occurrence of certain events with­
in the analog section. This circuit generates a 
logical ONE on the DOS 350 patchboard when 
the algebraic sum of two selected input voltages 
exceeds zero. The DA switch is basically an 
analog gate under DOS control, by which the 
path of an analog signal may be open or 
closed. Thus the logical program is able to 
accomplish numerous functions, such as chang­
ing parameters, providing automatic rescal­
ings, etc. 

While the above description of the HYDAC 
2400 is extremely brief, it is hoped that it would 
aid the reader in understanding subsequent 
discussions. More detailed writings on the 
systems are available from numerous EAI pub­
lications. 

4. PROBLEM MECHANIZATION 

All advantages of the hybrid computer are in 
vain, unless very careful consideration is given 
to the programming of the phyiscal system 

231R-V DOS 350 

under study. This phase of the simulation 
transforms the general purpose computer into a 
simulator of the specific physical system. 

4.1 Allocation of Tasks 

The first step towards a successful hybrid 
program is the allocation of tasks on the com­
puter. The underlying philosophy is to sub­
divide the physical system into sections, and 
assign these to various parts of the computer, 
where their speed and accuracy needs are best 
satisfied. 

The assignment of these sections to various 
elements of the HYDAC 2400 is shown in Fig. 
6. The attitude control loop, consisting of the 
vehicle rotational dynamics, the TRFCS and 
the short period sensor equations, are pro­
grammed on the analog section. In addition, 
the displays and cockpit simulator are tied into 
the analog since continuous analog signals are 
required. The translational equations of mo­
tion, long period heat sensor equations and 
guidance equations are programmed on the 375 
because of the stringent accuracy requirement. 
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The DOS 350 provided the master timing, data 
conversion, function generation, and reaction 
jet control logic. 

The DOS 350 timing and control is essential 
because of the operational differences between 
the analog and digital sections. The analog is 
a parallel continuous computer with computing 
time independent of problem size. The digital 
is a serial, discrete interval computer with com­
puting time directly dependent on the size of 
the problem. The DOS, through its timing 
and controls, synchronizes the calculations on 
each computer and controls the flow of informa­
tion between sections. Function generation and 
the reaction control jet logic are ideally suited 
to the DOS since these operations can be per­
formed rapidly in parallel with the 375-general 
purpose digital computer, so that the digital 
computation time is minimized. 

4.2 DOS 350 Program 

Fig. 7 shows a detailed block diagram of the 
DOS program. The DOS performs the five fol­
lowing functions: 1) Timing, 2) Mode Control, 
3) Data Transfer, 4) Function Generation, and 
5) Reaction Jet Control Logic. These functions 
are described in the following sections. 
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4.2.1 Timing 

Timing is required on a hybrid computer for 
the following reasons: 

( 1 ) To synchronize the calculation time in 
the digital program to the physical time 
scale used on the analog computer. This 
synchronism is accompHshed by sending 
a periodic master time pulse T1 which 
initiates the calculations for each step in 
the digital computer. 

(2) To time information transfers between 
the analog section and the digital section. 
Not all transfers are at the same rate, 
since the serial memories of the DOS are 
used for function generation of aerody­
namic moment and force coefficients. 
These variables must be transferred at 
a high rate, since the functions are used 
in the short period rotational dynamics 
of the system. On the other hand. those 
variables relating to long term trajec­
tory variations are transferred to the 
analog section at a lower sampling rate. 

The general timing- of the simulation is 
shown in Figure 8. Timing is controlled fron1 
the DOS by a BCD counter called the master 
timer. This counter counts 25 accurately timed 
pulses occuring every 2 ms. resets, and repeats 
jndefinitely. The reset signal which occurs 
every 50 ms is the master timing signal T1 
which is used to synchronize the analog and 
digital. The timing- for the A to D and D to A 
conversion is obtained by decoding the ap­
propriate states of the master timer . 
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4.2.2 Mode Control 

A very important function of the DOS 350 is 
to control the modes of operation of the system. 
Communication between the DOS and the 375 
occurs through 16 sense lines which are set 
from the DOS and sensed on the digital section. 
In the other direction, eight flip-flops on the 
DOS can be set from the 375 with special OCP 
instructions (output control pulses). Of these, 
four can also be reset from the digital console. 

All modes are controlled by pushbuttons from 
the DOS 350 and the following list summarizes 
the state and function of the analog and digital 
sections when the indicated pushbutton is de­
pressed. 

(1) IC (initial condition) 

a. 231R in IC 
b. 375 in IC 
In IC 375 goes through all computations 
with the exception of the integration 
routine. 

(2) TYIC (type in initial conditions) 

a. 231R in IC 
b. 375 is ready to accept new initializa­

tion data from the typewriter. From 
this mode the program returns auto­
matically to the IC loop. 

(3) TYTI (type titles), 

a. 231R in Ie 
b.The 375 types out title block and line 

headings for the 26 variables chosen 
for print out. 

(4) TRA (transfer only) 

a. 231R in IC 
b. 375 in Ie 
This mode is for single stepping through 
the D to A and A to D transfers and was 
found very useful for problem checkout. 

(5) TDAC (transfer D to A check) 

a. 231R in Ie 
b. In the 375 a fixed block of data con­

sisting of positive and negative maxi­
mum values (corresponding to ± 100v 
on the analog) is transferred· con­
tinuously. This was found very con­
venient for a quick check on the D to 
A conversions. 

(6) OP (operate) 

a. 231R in operate 
b. 375 in operate 
This is the normal mode of operation of 
the system. 

(7) TS (time scale) 

a. 231R in operate 
b. 375 in operate 
This pushbutton changes time scales, 
there being two arbitrary time scales 
available, i.e., real time and twenty times 
real time. 

(8) HOLD 

a. 231R in hold 
b. The 375 performs all the calculations 

contained in the operate loop except 
those in the integration routine .. 

(9) DUMP 

a. 231R in hold during actual dump op­
eration otherwise in IC or operate as 
previously selected. 

b. 375 gOes to output routine at periodic 
intervals determined by TP, the print­
out time interval. The digital jumps 
to the output routine and types out 
the present values of the 26 variables. 
The DUMP command can be given in 
either Ie, HOLD or OP and the sys­
tem resumes in which ever mode it 
was in at the time of exectuion. 

4.2.3 Data Transfer 

The data transfer for this problem is very de­
manding since two basic sampling rates. are re­
quired, one for the short period aerodynamic 
functions and the other for the long period 
trajectory variables. The data transfers will 
be discussed in two parts: 1) the analog-to­
digital conversion and 2) the digital-to-analog 
conversion. 

1) Analog-to-Digital Conversion 
Two variables, a: and8E are converted eviery 

5 milliseconds since they are used on the DOS 
for function generation. Once every 50 milli­
seconds a, {3, and p. are converted and trans­
ferred to the 375 for use in the long period tra­
jectory calculations. Fig. 8 in the previous sec­
tion -shows the timing for these two different 
types of conversions. 
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Upon command from the master timing pro­
gram on the DOS, the ADC control logic incre­
ments the multiplexer to the proper channel and 
sends a convert signal to the AD converter. 
When the conversion is complete, the converted 
data is either loaded into a serial memory on 
the DOS for use in the function generation pro­
gram or sent on to the 375 for use inthe digital 
calculations. 

2) Digital-to-Analog Conversion 
Updated values of the aerodynamic force and 

moment coefficients which are generated on the 
DOS are transferred to the analog every 5 
milliseconds. The trajectory variables (alti­
tude, temperature, guidance errors, etc.) are 
transferred from the 375 to the analog once 
every 50 milliseconds. Fig. 8 in the previous 
section shows the timing of these transfers. 

The digital-to-analog transfers are initiated 
by the DOS control logic upon command from 
the master timer. If data is to be transferred 
from the 375 the DOS sets the output channel 
ready flip-flop on the 375. The 375 will then 
output information to the buffer register and 
the DAC logic on the DOS loads it into the 
proper DA converter. To minimize digital com­
puter time on the 375, four data words are 
loaded into the four DAC's (under the control 
of the DOS) and while this data is being con­
verted and demultiplexed on the analog under 
control of the DOS, the 375 is formating the 
next four words to be transferred. By use of 
this technique, the total processing time con­
sumed for the transfer operation (except for 
formating) is only 200 p. secs. The force and 
moment coefficients are transferred by loading 
the four DAC's from the serial memories which 
store the latest computed values of these co­
efficients. The data is then converted and de­
multiplexed on the analog computer. The proc­
ess is then repeated for the last four coefficients. 

4.2.4 Function Generation 

The present simulation requires the genera­
tion of eight aerodynamic force and moment 
coefficients. Among these are four functions of 
one variable (Cn{3(a), V 1/3 (a) , CnSa(a), CISa 
(a) ), and four functions of two variables, 
(Crn(a,SE), CL(a,M), CD(a,M), and CY /3(a,M». 
a, M, and BE are angle of attack, mach number, 
and elevator deflection respectively. These 

functions are generated on the DOS for the fol­
lowing reasons: 

(1) The functions of two variables are ex­
tremely difficult to generate in the ana­
log section and would at best require a 
number of sums and products of func­
tions of one variable. The functions of 
one variable could be generated on the 
analog but were programmed on the 
DOS because of· the ease of setup and 
the speed at which the functions could 
be changed to study other vehicle con­
figurations. 

(2) The functions are also very difficult to 
generate on the 375 because of the fast 
sampling rate required. The sampling 
rate of the functions should be at least 
10 samples per second since they are 
used in the short period attitude loop of 
the vehicle. Thus in the twenty times 
real time mode, the functions should be 
sampled at least every 5 milliseconds. 
To meet this requirement the 375 would 
have to be interrupted to compute these 
functions a great number of times dur­
ing the major computation cycle. (In 
this problem the major computation 
cycle is 50 milliseconds). It is estimated 
that the computation time required to 
compute these functions on the 375 is 
about 4 milliseconds; therefore, if the 
program is stopped every 5 milliseconds 
for function generation, only one milli­
second of the five millisecond interval 
can be spent on the solution of the long 
period problem. Hence the major com­
putation cycle would be 5 times longer 
and twenty times real time runs would 
be impossible. 

The function generation is accomplished on 
the DOS by the use of 2 serial memory units 
which allow 32 curves with 16 points each to 
be stored: Linear interpolation between points 
is utilized, and for the functions of two vari­
ables, several curves are used with linear inter­
polation between them. For the present problem 
the four functions of one variable utilize 1 
curve each, and the remaining four funtcions 
of two variables are generated with 7 curves 
each. 
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Each function is computed once every 5 msec 
so that in a 20 times real time run this would 
correspond to 10 samples per second. 

4.2.5 Reaction Jet Control System 

Since portions of the flight are outside the 
atmosphere in regions where the dynamic pres­
sure is too small to make use of aerodynamic 
surfaces for control, a reaction jet system is 
required. To make the reaction jet control 
easier, a pulse width modulation scheme is used 
which makes the moment proportional to the 
error signal. To prevent continuous pulsing of 
the jets even for small errors a deadzone is also 
built into the controller. 

The logic operations required to decode the 
commands to activate the proper jets, and to 
simulate the pulse width modulator are per­
formed on the DOS in parallel with all other 
operations in the digital section. The simula­
tion of such a system by conventional analog 
techniques is a formidable task ( dozens of 
switches and relays would be required). The 
use of the 375 for such an operation would re­
sult in a significant increase in digitalcompu-
tation time because of the large number of 
logic operations and the fast sampling rate 
required. 

TRANSUTIOMAL EQUATIONS of 1II0TION 

VI = fA. + (~$If\A) VM-(SCO$ .A)r 
"M= .. +91l-CSS1fl.n.}VI -.n. y 
y = fjW.- 9" + . cos..a.) VI. +Jl. Vol 

-,+.3 Digital Calculation on the 375 

The digital program was written to make the 
digital calculation time as small as possible and 
to stay within a memory capacity of 4,096 
words. The material which follows gives a 
description of the equations which are solved 
on the 375 and the details of the digital com­
puter programming. 

4.3.1 Summary of the Digital Calculations 

Fig. 9 shows the block diagram of the system 
of equations to be solved on the 375. 

The translational equations of motion are 
solved in a local horizontal coordinate system 
with axes along the north, east, and radial di­
rections. The gravity and altitude calculations 
are based upon an oblate model of the earth, 
and the U.S. Standard Atmosphere, 1962, was 
stored in table form on the· 375. Most of the 
equations are conventional and quite straight­
forward, with the exception of the heat trans­
fer, temperature, and guidance equations which 
will be discussed in more detail. 

The heat transfer and temperature equations 
are calculated on the 375 because of the large 
number of complex functions required (i.e., 
cosine, log, exponential, square root, etc.) as 

CALCULATION 

Figure 9 
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illustrated by a few of the equations which 
follow. Fortunately these equations describe 
slow-varying trajectory dependent quantities so 
that the slower serial computation on the digital 
is acceptable. 

qcs = 2.70898 V q (~)'2 
VR 104 

(7) 

( V)17 qRS = 144.9 R p1.57 -

104 
(8) 

(9) 

qcs and qRS are the conductive and radiative 
heat transfer rate at the stagnation point. T s 

is the temperature at the stagnation point. 

Because of their critical accuracy require­
ments, the guidance calculations are also per­
formed on the digital section. These can be 
separated into two parts: (1) the determination 
of the range-to-go, (RTG) , heading angle to 
target, (UT) , cross range-to-go, (CRTG), and 
heading error, and (2) the generation of down 
range and cross range errors (DRE and CRE ), 

which are sent to the TRFCS and subsequently 
controlled to zero. The r~nge-to-go, cross­
range-to-go, and heading angle to the target are 

TRA.lECTORY,----1 

determined from spherical trigonometric rela­
tions. The down range error is the difference 
between the range-to-go and the desired range­
to-go. The cross range error is calculated in 
a like manner. The desired range-to-go and 
cross-range-to-go are stored as functions of 
relative velocity. 

4.3.2 General Description of Digital Program 

In addition to solving the translational tem­
perature, and guidance equations, the digital 
program must accept :mode control and thl1il1g 
commands from the DOS, seale variables as 
they are transferred in and out of the digital 
section, and finally, provide various input-out­
put functions as described in the DOS section. 

Fig. 10 shows the flow diagram of the digital 
program. The executive program is discussed 
in detail in the section that follows. The 
dashed lines in the diagram link together the 
calculations which are performed when the IC 
mode of operation is selected. All operations 
are performed except the Runge-Kutta integra­
tion shown in block 9. When the operate mode 
is selected, the integration loop is entered, and 
four passes around the loop are made (see de­
scription of numerical integration which fol­
lows). At the end of four passes, the positions 

2 
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Figure 10 
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Figure 11 

and velocities, temperatures and guidance func­
tions are updated, and the analog-to-digital and 
digital-to-analog transfers are made. The ex­
ecutive loop is then re-entered, and the cycle 
continues until a different mode is selected. 
The following section discusses this executive 
loop in detail. 

4.3.3 Digital Executive Program 

The main media of communication, through 
which the 375 receives the mode commands and 
timing from the DOS 350, is the digitaFexecu­
tive program. (See Fig. 11). This program 
is essentially a chain of test instructions, 
through which the digital section interprets 
the DOS 350 commands and executes them by 
jumping to the respective portion of the stored 
program. 

Since some of the symbols are not identified 
in Fig. 11, a short explanation of the executive 
program follows. The first test determines 
whether fast or slow time scaling is requested. 
If fast time scale is requested the increment 
size for integration (DLT) is set equal to 

1 sec; otherwise it is set to 0.05 sec. The sub­
sequent two test instructions simply switch the 
digital program into the TYIC or TYTI modes 
as so commanded by the mode control logic. 
(See Section 4.2.2 for a definition of these 
modes) . The T > TT decision determines if it 
is time for the periodic dump of pre-selected 
digital parameters. The variable TT holds the 
time for the next dump, say 20, 30, 40 etc. sec­
onds. TP is the printout time interval and in­
crements TT when the dump time is reached. 
If the dump switch is on and T > TT, the out­
put dump is performed; if not, the program 
proceeds to the next decision. The next test 
keeps the entire digital program under the tim­
ing control of the master timer. The 375 can­
not proceed further until the next Tl pulse in­
dicates the beginning of the next computational 
cycle. Further testing takes place only after 
the Tl pulse arrives. The TDA test enables 
the programmer to place the digital program 
into a loop where only DA transfer is per­
formed. The IC test is self explanatory. The 
next two tests are used to sense the end of run, 
produce a printout of the final conditions, and 
then put the digital computer in the hold mode 
waiting for a mode command from the DOS. 
The last few tests are self-evident and require 
no explanation with the exception of the seeni­
ingly superfluous second test for dump. The 
test for dump in hold mode makes it possible 
to dump any time by putting the computer in 
hold mode prior to the dump request, in addi­
tion to or in lieu of periodic dumps. In this 
manner the programmer can determine param­
eter values with digital accuracy at any time 
during the simulation. 

4.3.4 Numerical Integration 

Unquestionably one of the most complex and 
time-consuming parts of the digital program is 
the solution of the six simultaneous differential 
equations which provide the position (altitude, 
latitude, and longitude) and the velocity (radius 
rate, velocity east, velocity north) of the ve­
hicle. 

The numerical technique selected for this cal­
culation was the fourth order Runge-Kutta 
method. The basic method as applied to a single 
differential equation is described briefly. 
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Let dy == f (x, y) represent any first order 
dx 

equation and 

Kl == hf (xn, Yn) (10) 

h Kl 
K2 == hf(xn+-, Yn+-) (11) 

2 2 

h K'2 
K3 == hf(xn+-, Yn+-) (12) 

2 2 
(13) 

1 
Ay == - (K1 +2K2+2K3+K4 ) (14) 

6 
then Xn+1 == xn+h and Yn+1 ==Yn+Ay 

The increment for the second interval is com­
puted in a similar manner by means of the 
same formulae. The preceding technique was 
extended to a system of six equations in an ob­
vious manner. The fourth order Runge-Kutta 
method was chosen since it is self starting, ac­
curate, and will allow the use of large time 
steps in the integration. The self starting fea­
ture simplifies the· programming and reduces 
the memory requirement imposed to start other 
numerical integration techniques. The error 
of the fourth order Runge-Kutta method is of 
the order h 5, where h is the step size, and will 
allow the use of large time steps. While the 
processing time is considerably more than sec­
ond order techniques the increase in allowable 
step size more than compensates for it. 

While preparing the digital program an effort 
was made to combine the calculations due to 
the integration with other necessary calcula­
tions to minimize the processing time as well 
as the memory space requirements. This ap­
proach makes it difficult to trace the integra­
tion on the flow diagram of the digital program 
(Fig. 10). For example, the Runge-Kutta con­
stants are determined in block 6 and the varia­
bles are incremented for the calculation 
of the next constant in block 9 (such as 

"{T Kl V . 
V'''E + - ~ E) etc., and the equatIons are 

2 
evaluated with the incremented variables in 
blocks 3, 4, 5, 6, and 7. The new value of the 
integral at the end of each period is calculated 
in block 9. 

4.3.5 Utility Programs 

In order to satisfy the various data handling 
needs (type in, type out, punch tape, convert 
binary to decimal, etc.) an excessive amount of 
digital programming must be done. Fortunate­
ly, all these programs are already available, 
tested, and clearly described in the 375's "soft­
ware package". This is no small feat as one 
considers that the above programs, together 
with the numerous subroutines, normally add 
up to about 75% of all digital programming 
required. 

4.4 Analog Section 

The analog computer is the one link of the 
HYDAC 2400 system ideally suited for control 
system simulation by virtue of its capability for 
high speed, parallel computation and its input­
output flexibility. Output data can be dis­
played in a multitude of forms such as X-Y 
plots, strip chart plots, oscilloscope displays, 
auxiliary meters, etc. Special purpose input 
equipment can easily be adapted for compatible 
operation with the analog computer. 

The block diagram of Fig. 12 delineates the 
mechanization of the analog program. 
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As previously mentioned the TRFCS and ro­
tational dynamics were programmed on the 
analog due to their rapidly varying characteris­
tics. When the vehicle is in the atmosphere, 
the vehicle attitude is controlled by aerody­
namic control surfaces. The aerodynamic con­
trol moments are calculated from the surface 
deflections and the moment coefficients gener­
ated on the DOS 350 and transferred to the 
analog where the moments are produced and 
fed into the angular acceleration equations. 
The angular rates, generated from the angular 
acceleration equations, are used to calculate the 
Euler angles () and cpo These angles are used 
to resolve gravity into the body axis for use in 
the ex: and f3 equations. 

The redundant force equations for ex and f3 
are computed on the analog since they are re­
quired in the short period sensor equations 
which follow. The aerodynamic force coeffi­
cients in the ex: and f3 equations are generated 
on the DOS 350. 

The short period sensor equations are: 

T == Ts (1 - .1875 ex'2) - .375 ex: ex: Ts (15) 

~T == .021 (Ts f3 + Ts f3) (16) 

T is the temperature rate at the no~p. ~p.n~or ~ 
and LlT is the temperature- rat~.diff~;~ntial-b~~ 
tween the two wing sensors. The stagnation 
point temperature information Ts and Ts which 
is used in these sensor equations is calculated 
in the digital section. The T and ~ T are used 
in the TRFCS control equations shown below: 

BE == fl (T) (17) 

B'a == Kl (p, - fJ.c) + K2P + K3 BR (18) 

BR == f~ (LlT) + K4 Ba (19) 

fJ.c == f3 (T) (20) 

The T and ~ T terms supply damping to the 
control equations alleviating the heating prob­
lems associated with and undamped trajectory. 
Closed loop guidance is achieved by adjusting 
the pitch axis controls with a compensated down 
range error, DRE , and adjusting the p,c to com­
pensate for the cross range error, CRE • The 
pilot can manually control the range by adjust­
ing his temperature rate profile to eliminate the 
displayed down range and cross range errors. 

A cockpit simulator was utilized to evaluate 
the TRFCS in the manual mode, and is trunked 

directly to the analog computer. Computer 
outputs drive display meters on the TRFCS 
CONTROL PANEL which monitor the vehicle 
temperature rate, attitude, accelerations, con­
trol surface position and range errors. 

As seen in the analog program block dia­
gram, many of these parameters are trans­
ferred from the digital section. Some of the 
parameters, though not necessary for control, 
indicate trajectory status and therefore main­
tain the pilots confidence in his control infor­
mation. The above parameters and other per­
tinent data are recorded on strip charts and 
X -Y plots for permanent record of each flight. 

5. CONCLUSION 

A large number of test trajectories were used 
to evaluate the performance of the hybrid simu­
lation. An extensive check of the digital tra­
jectory calculatons with integration time step 
sizes from 0.05 sec to 2.0 sec was made. Com­
parison with trajectories calculated on an IBM 
7094 revealed errors less than 100' in altitude, 
0.1 fps in velocity, 1NM in range in the worst 
case (a 45 minute orbit transfer case). Re­
peatability tests on the complete system includ­
ing the flight control system were also made on 
unguided re-entry trajectories using the 
TRFCS to hold a fixed angle of attack (except 
for small excursion for damping). The range 
dispersion at the terminal point ·was found to 
be less than 1.5 nautical miles. When this is 
compared to the open loop sensitivity of range 
to angle-of-attack (365 NM/degree) it indi­
cates that the angle-of-attack error (including 
analog and conversion) is less than 0.004. This 
corresponds to less than 20 mv error in equiva­
·lent analog voltage. 

The true test of the simulation program is 
the overall performance and cost compared to 
other simulation techniques. For this purpose 
a careful study of the equipment complement 
required for an all analog and all digital was 
made. Table I shows the equipment comple­
ment for the hybrid simulation and an estimate 
for the all analog and all digital methods. 
Table II shows the cost comparison of the three 
simulation methods. The cost per hour is based 
on the relative purchase price of the equip­
ment. The analog equipm2nt is 1.5 times the 
hybrid and the digital .75 times the hybrid. 
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TABLE I. EQUIPMENT COMPLEMENT FOR HYBRID, ANALOG AND 
DIGITAL SIMULATION 

HYBRID ANALOG DIGITAL 
-------------------------------------------------------------

1-231R-V with 3-231R-V's with I-DCS 375 with 
205-amplifiers 600-amplifiers 8K-memory 
150-servo set pots 350-servo set pots 16--sense lines 
38-1,4 square multo 90-1,4 square multo 8-0CP lines 
3-electronic resolvers 30~servo set diode 2-interrupt lines 

(each contains function generators 
4_1,4 sq. multo 10-electronic resolvers I-DOS 350 with 

I-counter field 
2-logic fields 
I-Input-Output field 
I-AD converter 
I-multiplexer 

2-sine-cosine gen.) (each contains 

1-DOS-350 with 
l-serial memory field 
1--counter field 
I-arithmetic field 
3-logic fields 
I-Input-Output field 
I-AD converter 
I-multiplexer 

4-1,4 sq. multo 
2-sine-cosine gen.) 

4-DA converters 

1-DCS 375 with 
4K-memory 
16--sense lines 
8--0CP lines 
2-interrupt lines 

The cost comparison is made on the basis of 
100 hrs of running time on the hybrid system. 
It is estimated that half this time was run at 
real time and one half at 20x faster. While 
both the hybrid and analog are capable of 20x 
real time operation the digital is capable of 

20-DA converters 

only 2x real time. This is based on a digital 
calculation time for the short period of 40 
milliseconds, which allows 10 samples per sec­
ond for the short period when running 2x fast. 

From Table II is seen that the hybrid simu­
lation of the re-entry problem reduced costs 

TABLE II. COST COMPARISON BETWEEN HYBRID, ANALOG, AND DIGITAL 

ITEM HYBRID ANALOG DIGITAL 

ReI. Cost/hr of operation. 1 unit 1.5 units .75 units 
(assured to be directly proportional to 
purchase price) 
Cost of Real Time Runs 50 75 37 

Cost of Fast Time Runs 50 (20x fast) 75 (20x fast) 375 (2x fast) 

Cost of Day to Day Setup, checkout & 10 (10%) 50 (30%) 20 (5%) 
Downtime 

Total Cost 110 200 432 

Total ReI. Cost 1 1.82 3.93 
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over an all analog method by 50 % and over an 
all digital by 75 %. This saving can be attri­
buted to the high accuracy digital calculation, 
high speed analog computation, rapid auto­
matic setup and checkout features, concurrent 
2-variable function generation, and high speed 
logic operations available in the HYDAC 2400 
system. The operational and cost saving fea­
tures of the hybrid system add to its status as 
a powerful simulation tool. 
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