
CONfERENCE
PROCEED\ NGS

VOLUME 26

'964
fALL jO\Nl
CO MPU1ER

CONfERENCE

The ideas and opinions expressed herein are
solely those of the authors and are not
necessarily representative of or endorsed
by the 1964 Fall Joint Cf)mputer Conference
Committee or the American Federation of
Information Processing Societies.

Library of Congress Catalog Card Number: 55-44701

Copyright © 1964 by American Federation of Information Processing
Societies, P. O. Box 1196, Santa Monica, California. Printed in the
United States of America. All rights reserved. This book or parts
thereof, may not be reproduced in any form without permission of
the publishers.

Sole Distributors in Great Britain, the British
Commonwealth and the Continent of Europe:

CLEAVER-HUME PRESS
10-15 St. M~irtins Street

London W. C. 2

ii

CONTENTS

Preface

PROGRAMMING TECHNIQUES AND SYSTEMS
CPSS-A Common Programming Support System
Error Correction in CORC
The Compilation of Natural Language Text into

Teaching Machine Programs
Method of Control for Re-Entrant Routines
XPOP: A Meta-Language Without Metaphysics

EXPANSION OF FUNCTION MEMORIES
A 10Mc NDRO BIAX Memory of 1024 Word,

48 Bit per Word Capacity

Associative Memory System Implementation
and Characteristics

2Mc, Magnetic Thin Film Memory
A Semi-Permanent Memory Utilizing Correlation Addressing
A lOu Bit High Speed Ferrite Memory System-

Design and Operation

NEW COMPUTER ORGANIZATIONS
An Associative Processor

A Hardware Integrated General Purpose
Computer/Search Memory

A Bit-Access Computer in a Communication System

Very High Speed and Serial-Parallel
Computers HITAC 5020 and 5020E

IBM System 360 Engineering

iii

Page

D. BORETA 1

D. N. FREEMAN 15

L. E. UHR 35
G. P. BERGIN 45

M. 1. HALPERN 57

W. 1. PYLE 69
R. M. MACINTYRE
T. E. CHAVANNES

J. E. McATEER 81
J. A. CAPOBIANCO

R. L.·KoPPEL
E. E. BITTMANN 93

G. G. PICK 107
H. AMEMIYA 123

T. R. MAYHEW
R. L. PRYOR

R. G. EWING 147

P. M. DAVIES
R. G. GALL 159

E. U. COHLER 175

H. RUBINSTEIN
K. MURATA 187

K. NAKAZAWA
J. L. BROWN 205

P. FAGG
D. T.·DoODY

J. W. FAIRCLOUGH
J. GREENE
J. A. HIPP

MANAGEMENT APPLICATIONS OF SIMULATION
UNISIM-A Simulation Program for

Communications Networks
The Data Processing System Simulator (DPSS)

The Use of a Job Shop Simulator in the Generation
of Production Schedules

DIGITAL SOFTWARE FOR ANALOG COMPUTATION
HYTRAN-A Software System to Aid the Analog

Programmer
PACTOLUS-A Digital Analog Simulator Program

for the IBM 1620
MIDAS-How It Works and How It's Worked

INPUT AND OUTPUT OF GRAPHICS
The RAND Tablet: A Man-machine Communication

Device
A System for Automatic Recognition of

Handwritten Words
A Laboratory for the Study of Graphical Man­

Machine Communication
Operational Software in a Disc-Oriented System

Image Processing Hardware for a Man-Machine
Graphical Communication System

Input/Output Software Capability for a Man­
Machine Communication and Image
Processing System

A Line Scanning System Controlled from an
On-Line Console

MASS MEMORY
A Random Access Disk File with Interchangeable

Disk Kits
The Integrated Data Store-A General Purpose

Programming System for Random Access
Memories

The IBM Hypertape System
Design Considerations of a Random Access

Information Storage Device Using Magnetic
Tape Loops

iv

L. A. GIMPELSON
J. H. WEBER
D. D. RUDIE

M. 1. YOUCHAH
E. J. JOHNSON
D. R. TRILLING

W. OCKER
S. TEGER

R. D. BRENNAN
H. SANO

H. E. PETERSEN
F. J. SANSOM

R. T. HARNETT
L. M. WARSHAWSKY

M. R. DAVIS
T. O. ELLIS

P. MERMELSTEIN
M. EDEN

E. L. JACKS

M. P. COLE
P. H. DORN
C. R. LEWIS

B. HARGREAVES
J. D. JOYCE
G. L. COLE
E. D. Foss
R. G. GRAY

R. A. THORPE
E. M. SHARP
R. J. SIPPEL

T. M. SPELLMAN
T. R. ALLEN
J. E. FOOTE

F. N. KRULL
J. E. FOOTE

E. C. SIMMONS

C. W. BACKMAN
S. B. WILLIAMS

B. E. CUNNINGHAM
A. GABOR

J. T. BARANY
L. G. METZGER
E. POUMAKIS

Page

233

251

277

291

299

313

325

333

343

351

363

387

397

411

423
435

TIME-SHARING SYSTEMS
The Time-Sharing Monitor System
JOSS: A Designer's View of an Experimental

On-Line Computing System
Consequent Procedures in Conventional Computers

COMPUTATIONS IN SPACE PROGRAMS
The Jet Propulsion Laboratory Ephemeris Tape System
JPTRAJ (The New JPL Trajectory Monitor)
ACE-S/C Acceptance Checkout Equipment
Saturn V Launch Vehicle Digital Computer and

Data Adapter

The 4102-S Space Track Program

HYBRID/ANALOG COMPUTATION-METHODS
AND TECHNIQUES

A Hybrid Computer for Adaptive Nonlinear
Process Identification

The Negative Gradient Method Extended to the
Computer Programming of Simultaneous Systems
of Differential and Finite Equations

Quantizing and Sampling Errors in Hybrid Computation

NON-NUMERICAL INFORMATION PROCESSING
Real-Time Recognition of Hand-Drawn Characters
A Computer Program Which "Understands"
A Question-Answering System for High School

Algebra Word Problems
The Unit Preference Strategy in Theorem Proving
Comments on Learning and Adaptive Machines

for Pattern Classification

HARDWARE DESIGNS AND DESIGN TECHNIQUES
FLODAC-A Pure Fluid Digital Computer

Design Automation Utilizing a Modified Polish
Notation

Systematic Design of Cryotron Logic Circuits

Binary-Compatible Signed-Digit Arithmetic

HYBRID/ANALOG COMPUTATION­
APPLICATIONS AND HARDWARE

A Transfluxor Analog Memory Using Frequency
Modulation

The Use of a Portable Analog Computer for Process
Identification, Calculation and Control

Progress of Hybrid Computation at United Aircraft
Research Laboratories

A Strobed Analog Data Digitizer with Paper
Tape Output

Hybrid Simulation of Lifting Re-Entry Vehicle

v

Page

HOLLIS A. KINSLOW 443
J. C. SHAW 455

D. R. FITZWATER 465
E.J. SCHWEPPE

E. G. OROZCO 477
N. S. NEWHALL 481

R. W. LANZKRON 489

M. M. DICKINSON 501
J.B.JACKSON

G. C. RANDA
E. G. GARNER 517

J.OSEAS

B. W. NUTTING 527
R. J. Roy

A. I. TALKIN 539

C. R. WALLI 544

W. TEITEL MAN 559
B. RAPHAEL 577

D. G. BOBROW 591

L. Wos 615
D. CARSON

G. ROBINSON
C. H. MAYS 623

R.S.GLUSKIN ff31
M. JACOBY

T. D. READER
W. K. ORR 643

J. M. SPITZE
C. C. YANG 651

J.T.Tou
A. A VIZIENIS 663

W. J. KARPLUS
J. A. HOWARD
L. H. FRICKE
R.A. WALSH

G. A. PAQUETTE

R. L. CARBREY

A. A. FREDERICKSON, JR.
R. B. BAILEY

A. SAINT-PAUL

673

685

695

707

717

CPSS
A COMMON PROGRAMMING SUPPORT SYSTEM

Dushan Boreta
System Development Corporation, Falls Church, Virginia

INTRODUCTION

Over the years many computer software sys­
tems have been developed to serve the program
production process. These systems, variously
known as "production" systems, "utility" sys­
tems, or "support" systems, are designed and
produced for the same purpose: to provide pro­
grammers the tools required to produce com­
puter programs. Beyond this common purpose
these systems have little in common and, in
fact, are unique systems individually tailored
to a particular application. In each system
much of the tailoring occurs because of the par­
ticular computer configuraton, operational sys­
tem support requirements, computer manufac­
turer's software characteristics, experience of
the designers, schedule pressures, and style
preferences of the programmers producing the
system. The tailoring is reflected in the design
of each program production system and is evi­
dent. in many features, for example, the pro­
gramming languages used, the computer oper­
ating procedures, the programmer's inputs, the
outputs provided to the programmer, and the
program organization in the system.

In examining program production systems,
most are found to have functional capabilities
for generating code, code-checking the object
programs, and maintaining magnetic tapes con­
taining programs.

In some instances these capabilities are of the
most rudimentary sort. In other instances, very
sophisticated and complete capabilities exist.

1

What this paper describes is a program pro­
duction system, CPSS, that should assist pro­
grammers and managers in the performance of
their tasks. The principle characteristics of
CPSS provide for programmers an efficient and
effective means for producing their programs.
For managers, CPSS provides for the minimi­
zation of costs for producing programs, and a
relatively inexpensive means for achieving an
effective and efficient program production capa­
bility.

The CPSS characteristics that make' these
claims a reality are: first, it provides to pro­
grammers the attributes of higher order lan­
guages in each program production task; sec­
ond, that both the functions of CPSS and its
computer programs largely are transferable;
and third, the totality of functions of a com­
prehensive program production system is pro­
vided in CPSS. Further, the design features
embodied in CPSS should afford the minimiza­
tion of its maintenance costs, reduction in the
possibility of programmer errors, and simplifi­
cation of the programming task itself.

Additionally, the design of CPSS provides
for its "common" applicability. It may be used
in "open-" or "closed-shop" operations in sup­
porting the development and production of sys­
tem, non-system, and "one-shot" programs.

Effectively, its design characteristics, lan­
guage power, scope of applicability, and trans­
ferability make CPSS an off -the-shelf program
production system.

2 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

CPSS is programmed in a subset of the JO­
VIAL language, and in design is compatible
with the full JOVIAL language. Currently,
CPSS is implemented on an IBM 7090 and is
being used to support the development and pro­
duction of a computer program system. This
installation and continued testing will be the
source for refinements to CPSS's design as the
system continue& under development.

CPSS DESIGN CRITERIA
AND REQUIREMENTS

Providing "off-the-shelf" capability is a dif­
ferent type of programming problem than nor­
mally is encountered. The problems in providing
CPSS with the "off-the-shelf" capability stem
from the class of computers on which it may
be installed; the nature of the transferability
task; some aspects of the programmer training
tasks; the CPSS maintenance task; the pro­
gramming language it provides; and the scope
of its applicability to the operational system
development process.

Class of Computers

CPSS is directly applicable to medium- and
large-scale computers. The computer configu­
ration should have, but need not be restricted
to, a word size of 30 bits, a 32K one-instruction­
per-word or a 16K two-instruction-per-word
core memory, peripheral storage units consist­
ing of four tape drives (or three tape drives
plus drum or disc units), an on-line printing
device, an on-line input device, and some ex­
ternal switches or keys.

The computer configuration need not be de­
fined explicitly in that there are many possible
trade-offs between the computer's characteris­
tics, the programming conventions and tech­
niques used in CPSS, and the capacity of the
system. For example, by altering the labeling
convention used in the coding of CPSS~ the
class of computers could be expanded to include
machines with a word size of 24 bits.

The Transferability Task

The transferability of a program production
system is important for many reasons. The cost
of installing a program production system is
minimized. For applications employing a va­
riety of computers, there is a standard system

and methodology that contributes to program­
mer transferability. The difficulties and costs
inherent in the transition from one computer
to another are reduced. And, a bench mark is
identifiable from which further technology de­
velopment may progress.

The goal, transferability of programs, usually
is interpreted as requiring a program coded
and operating on one computer to be operable
on a different computer and still retain the
capability to perform its functions. The trans­
fer should be completed at least semi-automati­
cally, utilizing clerical or junior personnel and
fixed procedures. The current state of the art
does not afford 100 per cent transferability.
Therefore, we have interpreted this goal to
mean that CPSS is to be transferable with only
a minimum of known code change. In order
that CPSS be transferable, the functions and
services provided by CPSS also must be trans­
ferable. Additionally, the CPSS documentation,
program and system tests, operating proce­
dures, transferability techniques, and transfer
procedures are designed to be transferable.

It must be emphasized that the transferabil­
ity task being discussed is that of getting CPSS
to run on another computer, different from its
current application (the IBM 7090). CPSS is
designed to be transferred as a system. Al­
though it is modular, the transferability of any
module is a distinctly different task from that
of transferring the whole of CPSS.

One natural design feature of a transferable
system is its independence from machine char­
acteristics. It must be noted that machine in­
dependence is a two-way street. Not only is the
code of CPSS to be machine-independent, but
the functions performed by the code also must
be machine-independent. For example, pro­
grams making transfers to and from storage
should not assume some given unit availability,
transfer rate, segmentation of the transferred
data, unit positioning, or even that it is the only
user of a unit. In CPSS, this example of ma­
chine-independence (transferability) is pro­
vided by a central I/O program in the CPSS
Computer Operations Subsystem (the design of
which is discussed later in this 'paper).

It will be difficult to measure how trans­
ferable CPSS is until it has been transferred

CPSS-A COMMON PROGRAMMING SUPPORT SYSTEM 3

across several computers. The system's trans­
ferability could be measurable in several di­
mensions, for example, in time elapsed from
start to installation, in dollar costs for each
economic factor involved in the transfer, in
amounts and types of computer time required,
in the amount of code to be altered per program
and per function, and in the number of errors
discovered in each phase, including installation
and post-installation. Detailed records should
be maintained that identify the transfer costs
and the factors that influenced the cost. Some
of these factors are: the differences in the ma­
chine instruction word format and addressing,
the types and quality of programs available on
the "new" machine, the frequency of occurrence
and amount of down-time per occurrence of
machine failure, and the location and availabil­
ity of the staging and target computers.

'/

Some of the principal technical problems that
will arise in transferring CPSS to other com­
puters lie in the sophistication of the design
embodied in the system, the power of the lan­
guage provided by the system, the systerriiza­
tion of the CPSS design, and the broad class
of computers to which CPSS may be applied.
For example, consider the problem of designing
CPSS so that it will operate on a four-tape
drive computer configuration. The task of com­
piling a JOVIAL program can use (1) an input
device for the source program, (2) an input
device for the library tape, (3) an input device
for the system Compool, (4) a temporary stor­
age device for the intermediate language, (5)
a permanent storage device for the object pro­
gram, (6) an output device for the listings, and
(7) an output device to communicate with the
computer operator (as will be noted later, a
compilation may require other additional "stor­
age devices"). Further complicate the task and
allow the programmer to generate a test case
and operate his program on the test case, and
allow all this to occur in an uninterrupted sin­
gle job. This problem is resolved in the design
of the CPSS executive and I/O functions (dis­
cussed later in the paper). In essence, the I/O
problem was resolved by constructing a central
I/O program that provided machine-independ­
ent I/O functions for the remainder of CPSS.
The control problem was resolved by allowing
p:ogrammers the freedom of directing CPSS

via control card inputs (functionally oriented
to the program production tasks).

All the tasks related to transferability are
not involved in subsequent transfers of CPSS.
Consider the input card; once we have coded
routines to accept floating-field cards and have
levied no special format requirements on the
card, the card input processing functions are
totally independent of the machine. The in­
formation processed from card inputs in one
application need not appear on cards in another
application but could be processed from other
input media in a different input form, e.g.
punched paper tape or teletypewriter.

The methods employed in achieving trans­
ferability, or machine-independence, vary de­
pending on the function being performed in the
program. Some of the more commonly applied
techniques were: the parameterization of cer­
tain machine characteristics (word length,
number of characters per print line, number of
print lines per page, etc.) ; the establishment
of programming conventions regarding the use
of constants and tags; the use of floating-field
card formats; and the use of "all-core" indexing
to relocate data and to compute addresses. In
many instances, special methods were required
to achieve transferability. Some of these are
discussed later in the paper during the discus­
sions of the various CPSS subsystems.

Programmer Training

One of the principal benefits achieved by em­
ploying a higher order language and requiring
transferability in CPSS is in the potential re­
duction of programmer training costs.

When a programmer is transferred from one
application to another, a training or learning
period is required to familiarize him with the
particular computer and the program produc­
tion system he will use. This retraining period
varies from a week to a month-and-a-half or
more. During this period a programmer's ef­
fectiveness is almost nil; and thereafter, it is
less than it should be until the programmer be­
comes expert in the use of the "new" computer
and system.

CPSS should afford a reduction of training
and retraining costs by permitting program­
mers to code and test their programs in a higher

4 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

order language. If CPSS achieves a broad
patronage, these costs are further reducible
since CPSS is designed to reflect a stable form
regarding its interfaces with the programmer.
In effect, CPSS could become a means for
achieving some level of programmer transfera­
bility.

CPSS Maintenance
In producing CPSS, a primary concern has

been maintenance costs. These costs are related
to error correction, program improvement, aug­
mentation of the system's capability, program
and system documentation, and product release.
The design of CPSS provides for the minimi~a­
tion of such costs by isolating, identifying and
documenting the program- and system-type
functions that comprise CPSS.

The system and program documentation are
designed to facilitate the maintenance task. A
CPSS program's documentation consists of a
heavily commented program manuscript, a de­
tailed flow chart, a functionally organized flow
chart, a program description document contain­
ing descriptions of data referenced, each rou­
tine coded, each procedure used, the input data
formats and structures, the output tables, items
and messages, and the function served by the
program. Another document describes each
machine dependency contained in the program.
Also, a system design document describes each
program function and the interfaces between
programs.

CPSS is designed and documented to facili­
tate the maintenance task. Also, the system is
capable of maintaining itself or of producing
itself.

The Programming Language

Perhaps the most significant decision made
in the CPSS project was the selection of a lan­
guage for the programming of CPSS. The de­
sign of each function contained in a program
production system is influenced by the language
provided by the system. Therefore, certain de­
sign features are required to assure that the
program production system is capable of re­
sponding to the operational system's program­
ming needs. In a sense, a transferable program
production system must be "overdesigned". The
design must reflect the current capability of the

language being provided, and also needs to pro­
vide for logical extensions of the language. Con­
sider the situation that exists with CPSS.

There are three levels of JOVIAL represented
in CPSS which form a hierarchy of language
that is upward compatible in language power
and in the language processing algorithms. The
formal JOVIAL, J-3, is subset into two levels:
J-S, being a subset of J-3; and J-X, being a
subset of J-S. The program generation subsys­
tem is coded in J-X and processes programs
that are written in J-S. All other subsystems
are coded in J-S and perform their functions
compatibly with J-3.

The decision range as to which level of lan­
guage capability is to be provided in the pro­
gram production system is bounded on the
upper end by the formal definition of the pro­
gramming language, and on the lower end by
the language capability provided by the pro­
gram generation subsystem.

In the program generation subsystem, the
language capability to be provided is influenced
by such factors as the subsequent use of the
language, the design of the compiler, the level
of transferability desired, and the expected
characteristics of existing languages and com­
pilers having the same generic name.

Other factors influencing the decision in
CPSS were the transferring procedures and
techniques, the testing techniques established to
test the system, and the availability of com­
puters with JOVIAL compilers.

CPSS-Scope of Applicability

CPSS serves programmers and managers in
their performance of several tasks related to
the system development process. Figure 1.
shows a simplified representation of the system
development process that has beeen employed
for several systems, both large and small. The
scope of CPSS is indicated by its applicability
to the program production process, which en­
compasses parts of the program design, pro­
gram genera~ion, program test, and assembly
test stages.

Figure 2. is a simplified representation of
the program production process as served by
program production systems. The programs of

CPSS-A COMMON PROGRAMMING SUPPORT SYSTEM 5

r - -. - - PROGRAM PRODUCTION PROCESS- - --,

PROGRAM PROGRAM ASSEMBLY I SYSTEM

TEST

SYSTEM

OPERATION
SYSTEM

DEFINITION

SYSTEM

DESIGN

PROGRAM
DESIGN I GENERATION TEST TEST

I DEFINE
ESTABLISH

I CODE AND
TEST

I OPERATIONAL PROGRAM INDIVIDUAL

MISSION SYSTEM

I
TRANSLATE PROGRAMS

DESIGN CODE CHECKING
REQUIREMENT

(OP SPECS)
PROGRAMS

PARAMETER

I r --t-- ·w 1
TEST) PROGItAM

1 , INTEGRATION
AND

ASSEMLY
SYSTEM

ESTABLISH

~
ESTABLISH TEST

TURNOY1[R AND
DETERMINE OPERATIONAL DATA BASE

DESIGN PRODUCE --,- J€} PERFORMANCE

~ ~
INDIVIDUAL ... rr SYSTEM SYSTEM DESIGN
PROGRAM

ASSEM.LY
_ ,.TEST IN THE

REQUIREMENT DESCRIPTIDN AND DATA
TESTS TESTS OPERATIONAL

(05D) I ACQUISITION MISSION

1 1 , ~-~l·-· -.J
PRODUCE

r SYSTEM

I TESTS

,I
ESTABLISH

I I DESIGN DESIGN I DESIGN

PROGRAM INDIVIDUAL ASSEM.LY SYSTEM
SYSTEM II PROORAMS

TESTS REQUIREMENTS

I I TESTS

II L ___________ ---I

Figure 1. Program Production Process in the System Development ProGess

the production system are designed to assist
programmers and managers in their perform­
ance of these four tasks: program generation,
program test, system· generation, and assembly
test.

The principal product derived from the pro­
gram production process is the operational pro­
gram system master tape. Other products are
a system data dictionary (referred to as a
Compool) with its documentation and listings,
the program system documents, listings, test
plans, and test results, and the programs that
comprise the program system with their docu­
ments, listings, test plans, and test results.

A maj or task, related to the system genera­
tion task, is the acquisition and management of
a data base. This paper will not delve into the
data base tasks except where such tasks di­
rectly interface with the program production
system.

Figure 3. depicts the information and data
flow provided for in CPSS. The flow of data

between the various functions is automatic. The
execution of the functions is controlled by the
programmer. The four program production
tasks, program generation, program test, sys­
tem generation, and assembly test are served by
this data and information flow.

The preceding figures, ,Figure 1., Figure 2.,
and Figure 3., depict the scope of applicability
for CPSS in the system development process.

Program Generation. The programmer, em­
ploying the JOVIAL language, encodes a pro­
gram to satisfy the program design specifica­
tions. The code, the symbolic programming
language statements (the source program), is
input to the compiler which translates the code
into machine instructions. During the compila­
tion, the source program is appropriately aug­
mented by routines from the procedure library
tape and by system data descriptions from the
Compool.

The principal output from the compiler is a
binary program (object program). The re~

Figure 2. Program Production Process

6 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

r-------------T-----------=-----------------r-'
I I I
I I
I I
I r------ - I
II I

r--++ I
I I
I
I

I
I
I
I
I
I
I
I I I L __ ..J, ____ ... ___________ • ___________ ~ _______________ .I

Figure 3. Program Production Process, Information and Data Flow

mainder of the outputs provide information to
the programmer (and to other parts of CPSS)
that facilitate the testing and correction of the
program. The process of compilation in the
early phases of program coding sometimes is
referred to as "grammar-checking"-where the
result of the grammar-checking is a "good" pro­
gram; that is, one that is syntactically correct.

Program Test. In order to test a program­
that is, validate that the program performs its
functions correctly-the programmer must de­
fine a test case. A test case is comprised of a
simulated data environment for the program,
recording controls to retrive .data from the pro­
gram's environment, and any program modifi­
cations required to correct the program as
shown by previous tests.

The test Gase is input to CPSS which trans­
lates the programmer's inputs into a test en­
vironment. When requested, CPSS loads the
test environment and the object program into
the computer for operation. During the opera­
tion of the test, data is recorded as requested
by the programmer in the test case. After the
operation of the test, the recorded data is proc­
essed to provide, as outputs, the hard copy test
results.

CPSS appropriately interprets data descrip­
tions from the program Compool or the system

Compool to translate the test case inputs and
process the recorded data. Essentially, the sys­
tem Compool and the program Compool are the
significant means through which CPSS affords
the programmer the ability to test a program
at a language level comparable to a higher order
programming language.

This loop, the program test phase, is repeated
for as many test cases as are required to satisfy
that the program performs its functions cor­
rectly.

The two tasks discussed so far, program gen­
eration and program test, are common to all
program production processes-whether the
programs are system programs or independent
programs. In this light, the applicability of
CPSS is extended to include both system and
non-system programming tasks.

System Generation. One of the principal
tasks in building a system is to define the system
data dictionary, more commonly known as a
Compool. Essentially, the Compool is the means
for defining the data that comprises a system's
data base. A Compool can be thought of as be­
ing a central repository of data descriptions
used both by programmers and programs.
Usually, a Compool exists in two forms. The
first is a document containing descriptions of
the system's data environent, data structures,

CPSS-A COMMON PROGRAMMING SUPPORT SYSTEM 7

data organizations, some commentary related to
the reasons why the data exists in the system,
and a description of the usage of the data. The
second form is a binary tape containing infor­
mation describing data structures, and data or­
ganizations. The binary Compool, in some cases
(including CPSS) , contains information that is
usable in the constructing of the Compool docu­
ment. The program production system itself is
a principal user of the binary Compool in that
it retrieves data descriptions from the Compool
during the various phases of the program pro­
duction process.

The Compool, being a central collecting point
for system data descriptions, serves as an in­
tegrating device in the program production
process. In this manner the Compool provides
to program system managers a means for con­
trolling a system's data environment.

CPSS provides both for the building of the
binary Compool and for the Compool documen­
tation. A programmer employing the appro­
priate data descriptors, encodes data descrip­
tion statements that des c rib e the data
comprising the data base. These statements
are interpreted by the Compool generator which
produces a binary Compool. Other outputs pro­
vided by CPSS are quality analysis aids, and
data description listings.

The tape file maintenance function provides
the means for building tapes containing pro­
grams. Further, the function provides for modi­
fying, correcting, cataloguing, and in general
maintaining computer tapes.

Assembly Test. The assembly test task, func­
tionally, is similar to the program test task.
The purpose of the assembly test task is to pro­
vide a means for testing a complex of programs
that form a system or a logical subset of a sys­
tem. In other words, the purpose served in as­
sembly testing is to validate that a complex of
programs acting in concert perform a system
function correctly. Assembly testing can be
thought of as a hierarchy of testing-ranging
from simple program interface tests to complex
full system tests.

Figure 3. depicts an assembly test as being
performed in a controlled environment. The
system control parameters, initializing data,
simulated inputs, and recording controls are

prepared as a test case via an assembly test sys­
tem. The test case is run against the appropri­
ate complex of programs during which record
ing is performed. A'fter operation on the test
case, the recorded data is processed via a data
reduction and test analysis subsystem which
provides the hard copy test results. This loop,
assembly testing, is performed for as many test
cases and test levels as are required to validate
that the program system performs its functions
correctly.

Although CPSS is not designed explicitly to
serve the assembly test task, it does contain
programs that are usable in an assembly test
system; for example, the data recording, data
reduction, and data generation programs. With
very minor modifications to the test environ­
ment load and data reduction programs, CPSS
further could be used to provide a very sophisti­
cated string test (program interface test) capa­
bility.

The reason for not explicitly providing an
assembly test capability in CPSS is that the
higher' levels of assembly testing usually re­
quire programs that reflect the design of the
operational program.system-(such as height
reply message simulators, and radar correla­
tion analysis programs) .

CPSS PROGRAM DESIGN

One of the principal design characteristics
of CPSS is the functional modularity embodied
both in CPSS and its programs. CPSS has been
separated logically into subsystems, in general,
corresponding to the common program produc­
tion functions: program generation, data en­
vironment simulation, data recording, data
reduction, test environment load, computer op­
eration, Compool generation, and tape file main­
tenance. These subsystems are comprised of
programs which further are partitioned into
functional subroutines. An attempt was made
to isolate each system function and each pro­
gram function into an identifiable subpart of
CPSS. Some of the common program-type
functions have been programmed as JOVIAL
procedures and loaded onto the CPSS procedure
library tape. Additionally, the CPSS programs,
tables, items and the Compool itself are defined
in the Compool. Thus, CPSS is an integrated
system constructed of modules, each of which

8 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

are program-type or system-type functions,
which are organized as 22 major programs, 35
library procedures, 10 common executive en­
tries, 25 system tables with 330 items, and 53
parameter items. The size of CPSS is approxi­
mately 20,000 JOVIAL statements that result
in approximately 65,000 IBM 7090 machine in­
structions.

Program Generation Subsystem

The program generation function is provided
in CPSS by the JOVIAL language and a JOV­
IAL compiler. With the development of CPSS,
a powerful and comprehensive subset of the
JOVIAL language was developed that should
be sufficient to produce most computer software
systems. This subset, the JOVIAL core-subset
language, J-S, is the language employed in the
programming of CPSS. The power of J -S is
demonstrated by the fact that the programming
of CPSS did not require the totality of J -So

The principle reasons for developing J-S, and
the goals achieved by this development were:

(1) The definition of a "comprehensive mini­
mum" JOVIAL language that is suffici­
ent for producing most computer pro­
gram systems.

(2) The definition of a JOVIAL subset lan­
guage that affords the production of
transferable programs.

(3) The design, development, and production
of a JOVIAL compiler that can be pro­
duced on shorter schedules than more
comprehensive J-3 compilers.

(4) The improvement of the language proc­
essing speed of a JOVIAL compiler.

(5) The retention of the significant language
and compiler features normally expected
of JOVIAL, for example: Compool sen­
sitivity, procedure library capability,
partitioning of programs into procedures
and closed routines, memory allocation,
packing of items into tables, processing
of packed data, grammar checking, sub­
scripting and indexing, bit and byte
addressing, machine assembly language
coding, logical and arithmetic opera­
tions, and program "debug" listings and
aids.

In general, the differences between the J-S
and J-3 languages should be more than offset
by the improvements in the compiler design
and its compatibility to CPSS. It should be
noted that J-S is a proper subset of JOVIAL,
i.e., that the programs coded in J-S are legal
and valid inputs to J-3.

Some of the significant design features of the
J-S compiler are:

(a) The J-S compiler is a "two-pass" com­
piler. That is, a program is processed
twice to produce a binary output. First,
in the JOVIAL language form; and sec­
ond, in an intermediate language form.
The principal result of having only two
passes is that compiling speed has been
significantly increased.

(b) The J-S compiler provides an "alter­
mode" of recompilation. That is, the
programmer can add modifications to
the source program during compilation
without altering the original source pro­
gram. The compiler will produce an up­
dated version of the source program as
one of its selectable options.

(c) The J-S compiler produces a program
Compool. That is, the J-S compiler pro­
duces a Compool containing complete
data descriptions of all data and labels
referenced or declared by the program.
The program Compool is usable inter­
changeably with the system Compool
throughout CPSS and is compatible in
form and structure with the system
Compool.

(d) The J-S compiler is capable of being
expanded to incorporate additional lan­
guage capability. The practical limita­
tion on this expandability is the size of
core memory.

Additionally, the programmer can select the
outputs he wants, override the Compool, specify
the Compool he wants used, and in general, ex­
ercise those options that specifically control the
inputs to and the outputs from the compiler.

In general, the CPSS program generation
subsystem provides the language power, com­
piler speed, and flexibility of use that affords a
programmer the ability to generate almost any
program conceivable.

CPSS-A COMMON PROGRAMMING SUPPORT SYSTEM 9

Data Environment Simulation Subsystem

The data environment simulation function is
provided in CPSS by a computer program that
processes data assignment statements. The
program produces data records containing the
programmer specified data, and control infor­
mation that is used by the test environment
load subsystem.

The programmer specifies his data environ­
ment requirements in a POL-type language. The
program employs either a program Compool or
a system Compool as selected by the program­
mer. The programmer also may identify the
data being produced, thereby affording future
selective use of the data. The program is com­
patible with the JOVIAL J-3 data forms and
data structures.

The data itself can be coded as floating-point,
fixed-point, integer, Hollerith, Standard Trans­
mission Code, and status-variable, where such
data is organized and structured as tables,
items, strings, or arrays. Subscripting and in­
dexing also is allowed.

The program allows the programmer to set
values into any variable defined or referenced
by his program if the program Compool is used.
If a system Compool is used, the programmer
may set values into any variable defined in the
system Com pool. The program imposes no
limits on the volume of data it processes. It
does perform legality checks on the program­
mer's inputs to determine the compatibility of
the inputs with the defined data environment.

Data Recording Subsystem

The data recording function in CPSS is sep­
arated into two parts, where the actual data
recording is provided under the CPSS computer
operation subsystem. The CPSS data recording
preparation function is performed by a com­
puter program that processes recording request
statements. The program produces a data rec­
ord containing control information for use by
the computer operation subsystem, the test en­
vironment load subsystem, and the data reduc­
tion subsystem.

The programmer describes his recording re­
quests in a fully symbolic language. The CPSS
program employs either a program Compool or
a system Compool as selected by the program-

mer. The programmer also may identify the
recording that would be performed per his re­
quests, thereby affording future selective use of
the recording controls produced by the CPSS
program.

The programmer may select the data to be
recorded under any name defined in the pro­
gram Compool or system Compool and/or any
block of memory. The location in his program
at which recording is to take place can be speci­
fied symbolically (if a program Compool is se­
lected) .

The programmer may request a memory
register change survey, or dumps before, dur­
ing, and/or after his program's operation. The
dumps may be formatted as octal, machine lan­
guage instructions, floating-point, and/or al­
phameric.

Data Reduction Subsystem

The data reduction function is provided in
CPSS by a SUbsystem of computer programs
that process either CPSS recorded data or mis­
cellaneous data formats. There are four general
classes of printouts produced by CPSS: Com­
pool-defined data, memory dumps, survey
dumps, and tape dumps.

Compool-defined data is processed and ap­
propriately formatted entirely dependent upon
the Compool definition. CPSS interrogates
either the system Compool or program Compool
to determine the appropriate formatting. The
information in a printout reflects the page num­
ber, table name, recording identity, recording
location, table size, entry number, data name,
data type, the converted data, and a security
classification.

Memory dump processing is performed in any
of four formats: octal, machine language in­
structions, floating-point, and/or alphameric. A
printout contains the page number, security
classification, recording location, recording
identity, the beginning and ending locations of
the dump, the contents of the addressable ma­
chine registers, and the contents of the com­
puter words dumped. The page formatting is
determined by the program and is printed as
four or eight words per print line.

The survey dump processing is similar to the
memory dump processing. The significant dif-

10 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

ference is that those memory locations which
contain changed values are printed. The dumps
to be compared are made by the CPSS record­
ing program before and after the operation of
a program in a test. A printout contains the
page number, security classification, the record­
ing identity, the beginning and ending locations
of the survey area, the contents of the addressa­
ble machine registers in the "before" and
"after" states, and a print-line for each changed
computer word containing the address and both
values.

In the tape dump function CPSS provides the
means to print out any tape. The format of the
printout is similar to the memory dump format,
except that the addressable machine register
print lines are not output.

The programmer can request that his data
reduction be performed in either of three
modes: recording, general, or binary.

The recording mode is used to process data
recorded by CPSS. The programmer can select
a subset of the data to be processed, or he can
allow CPSS to process the data automatically
per his recording requests. Processing selection
is performed in exactly the same manner as
specifying recording requests.

The binary mode is used to process tape
dumps. The programmer can specify the "limits
of processing" and the print formats (octal,
floating-point, etc.). The limits of processing
bounds the range of tape that is to be processed.

The general mode is used as a mixture of the
recording and binary modes. All the controls
available to the programmer under these two
modes are available under the general mode.
Further, if a tape containing records similar
to CPSS-type records is to be processed, the
general mode may be used to reduce the data
per Compool definitions even though the tape
was not built by the CPSS recording program.

Test Environment Load Subsystem

The test environment load function is pro­
vided in CPSS by a computer program that
loads a test case into the computer for opera­
tion.

The CPSS test environment load subsystem
provides for loading recording patches to a pro-

gram; loading a data environment; loading
octal correctors to a program; and loading the
program that is to be tested (currently, on the
IBM 7090, CPSS is capable of loading and op­
erating a 25,000 register test case).

Computer Operation Subsystem

The computer operation function is per­
formed in CPSS by a subsystem of programs
that provide for the uninterrupted operation of
the computer.

The functions performed by the computer op­
eration subsystem can be grouped into four
classes: system control, operator communica­
tion, test control, and I/O monitor.

System Control. The system control function
provides for the continuous operation of CPSS.
It interrogates programmer supplied control
"cards" to determine which function (or sub­
system) is required. The system operates on
stacks of jobs (usually prestored on tape in the
sequence desired) where each job may be com­
prised of many dissimilar requests. For ex­
ample, a job may be to compile a program,
specify several sets of recording controls,
specify several data environments, to load and
execute the compiled program in various test
environments, and to process the data recorded
in the several program runs. The sequence of
CPSS's operation is specified by the ordering
of the programmer supplied control cards. In
addition to the sequence control function, sys­
tem control provides the normal control-type
functions such as position tapes, clear core, job
error recovery, loading of octals to cycling sys­
tem programs, etc. Essentially, the system pro­
vides uninterrupted operation as long as there
are jobs to be processed, and a test program
does not loop or write into "permanent" core.
Controls are provided through which the com­
puter operator (or the programmer in one spe­
cial case) may interrupt the computer's opera­
tion.

Operator Communication. The operator's
communication function provides three methods
for interrupting the system's operation, (1) at
each I/O operation, (2) between control cards,
and (3) recovery from test program loops,
halts or other errors. When the operator has
completed his tasks, he may recover the sys-

CPSS-A COMMON PROGRAMMING SUPPORT SYSTEM 11

tem's operation, as appropriate, in any of five
ways, (1) skip forward in the job to the next
control "card", (2) skip forward to the next
job, (3) skip forward to a specified job, (4)
reinitialize the system, or (5) continue from
the point of interruption. Recovery may be per­
formed automatically by CPSS as a result of
the operator's request, or the operator manually
may enter the system as he desires. While the
system is interrupted, the operator. may reas­
sign I/O units, list the I/O unit/file allocation,
take dumps, position to a particular job, or per­
form other similar tasks. The operator may
perform his tasks in response to programmer­
supplied instructions (as printed by CPSS or
otherwise), messages printed by CPSS relating
to the system's needs, or recognizable error
conditions requiring his actions.

CPSS provides a method .for programmers to
'/

"simulate" certain computer operator actions.
They may specify I/O allocations, list the I/O
unit/file allocations, or perform other operator
type tasks. By the judicious use of control cards
the programmer may "directly" communicate
with the computer operator to effect the job
desired.

Program Test Control. The program test con­
trol provides for the operation of a test case
loaded by the test environment load subsystem.
Also, the program test control function exe­
cutes the recording program for dumps and sur­
veys, and loads system recovery type p~ogram
modifications to the object program. The inter­
facing between the test environment load sub­
system and other computer operation functions
provides to programmers almost complete flexi­
bility in the running of tests. CPSS allows any
one of its functions to be run independently or
in any sequence. Some of the types of computer
runs a programmer might make are:

(1) Compile only
(2) Load and execute his program
(3) Compile, load, and execute his program
(4) Generate test data
(5) Specify recording requirements
(6) Load his program, recording controls,

test data and execute his program
(7) Reload data and re-execute his program
(8) Load a different program, its recording

controls, and execute the "new" program
on the "old" data environment

(9) Re-execute his program

Effectively, CPSS imposes no operating re­
strictions on the programmer in the generation
or testing of a program. In this manner the
programmer is able to selectively test subparts
of his program, his whole program, or strings
of programs all as one job or independent jobs.

I/O Monitor. The principle function per­
formed by the CPSS central I/O program is to
provide machine-independent I/O operations
for other programs. The I/O program performs
all the I/O operations required by the programs
comprising CPSS. The program provides a
comprehensive set of I/O operators: Read,
Read-search, Write, Position, Position-search,
Close, Wait (for a specific file), Wait (on all
files), Repeat (the preceding request), Rewind
(initialize the file), and File-status (feed back
the current status of the file). Additionally, the
program provides some elementary data con­
version and manipulation functions in conjunc­
tion with requested I/O transfers, i.e., transfer
to or from packed or unpacked BCD data im­
ages, convert data to or from "standard trans­
mission code", convert data to or from BCD,
and/ or combinations thereof. Also, the pro­
gram will transfer data to or from specific lo­
cations or standard locations. The program will
either wait for a transfer to be completed or
return immediately as requested.

A program requests I/O operations by set­
ting items in a CPSS communication table and
transferring control to the I/O program. These
items specify the name of the file on which the
operation is requested, the operation to be per­
formed, a wait or no wait condition, and other
information related to the operation such as
data conversion and manipulation, location of
the data to be transfered, amount of data to be
transferred, etc.

Upon completing the operation, the I/O pro­
gram automatically enters information into the
communication table relating to the requested
operation and returns control to the requesting
program. This information is usable to deter­
mine the status of the file, file addressing, status
of the requested operation, amount of data
transferred, etc.

In essence the I/O program determines the
appropriate device, record fragmentation (or

12 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

accumulation), labeling, unit positioning, and
other functions to effect a transfer of data to
or from memory via an I/O device. The pro­
gram monitors each transfer to determine the
validity of the transfer and takes whatever
corrective action is appropriate. The manner
in which these functions are performed pro­
vides CPSS programs their independence from
a machine's .I/O and yet allows the referencing
programs to perform "efficient" I/O.

C ompool Generation Subsystem

The Compool generation function is provided
in CPSS by a subsystem of computer programs
that build and interpret a Compool. The CPSS
Compool subsystem provides for a comprehen­
sive definition of data. The inputs to the Com­
pool assembler contain the normal type of data
definitions, and a variety of supplementary data
descriptive information (see Appendix B).
Further the Compool assembler provides for
assigning data addresses symbolically, and
allocates core memory for data or program stor­
age. Effectively, the Compool assembler pro­
gram provides the ability to define data for sys­
tem applications, normal utility type needs, and
for the programmer's information needs. It
facilitates the data description task by accept­
ing a fully symbolic input. In that the contents
of a Compool usually are operational system­
dependent, the Compool assembler program
provides for the definition of the Compool's con­
tent. The program interrogates a series of
legality matrices to determine the acceptability
of data, the validity of the input, and the com­
pleteness of the data definition. In this manner
the Compool constructed by CPSS can be tail­
ored to the operational system's needs.

Also, the Compool subsystem contains a pro­
gram whose function is to retrieve the informa­
tion contained in the Compool. This retrieval
program provides two levels of information:
first, that information which is required for the
normal utility type functions, and second, all
the information contained in the Compool. In
the first case the data is printed in alphabetical
order, and in the second case is alphabetized by
data class. The third function provided by the
CPSS Compool subsystem is a quality analysis
of the information contained in the Compool.

The program performs a tag analysis func­
tion that checks for duplicated tags and ambigu­
ous cross-reference tags. The program also
determines the validity of the memory alloca­
tion by checking for violations of reserved
areas, and overlapped allocations of data. In
addition the program performs a capacity anal­
ysis by checking for unallocated addresses, and
by tallying each data occurrence by data type
and amount of memory required. Essentially,
CPSS provides a Com pool that is tailored to a
system by its content and the tools needed to
build, interrogate and provide quality control
on a Compool.

Tape File Maintenance SUbsystem

The tape file maintenance function is pro­
vided in CPSS by a computer program that
performs those functions necessary to maintain
tapes produced by or for CPSS. Further, the
CPSS program is capable of performing the
same set of functions on almost any tape re­
gardless of format or structure.

Some of the more significant characteristics
of the CPSS program are: it can duplicate, re­
format, position, read, write, close, skip, back­
space, rewind, compare, list the contents of, and
load octals to tapes containing programs, Com­
pools, files, records or any combinations thereof.

The CPSS program interrogates control
cards containing information that describes the
operation to be performed, the units on which
the CPSS program will operate, and the struc­
ture of the data stored on the unit. The CPSS
program provides for labeling of each transfer,
and thereby can handle overlaid and inter­
spersed files of varying structures.

The CPSS program is designed in modules
such that each operator, and each modifier to
the operator are procedures or closed routines.
With this design the CPSS program easily can
be modified to delete, add or modify the tape
file maintenance functions as the particular ap­
plication requires.

The tape file maintenance program estab­
lishes information in "dummy entries" for use
by the CPSS central I/O program. In this man­
ner the only machine-specifics in this program
lie in its processing of binary cards .

CPSS-A COMMON PROGRAMMING SUPPORT SYSTEM 13

APPENDIX A

CPSS Control
The sequence of the tasks performed by CPSS

is dictated by the ordering in the programmer's
job deck. A job deck is comprised of system
control cards, and data and/or function con­
trol cards. Data and function control cards im-

'ASSIGN, INPUT, unit $
'CLEAR, area to be cleared $
'COMMENT $ commentary
'COMPILE $
'COMPOOL, ANALYSIS, control informa-

tion $
'COMPOOL, ASSEMBLE $
'COMPOOL, AUDIT $
'COMPOOL, DISASSEMBLE, control infor­

mation $
'COMPOOL, LIST, control information $

'ENDJOB $
'GO, address $
'JOB $
'LOAD, control information $
'OCTAL $
'OPSIM $
'POSN, file name, control information $
'PROCESS, control information $
'RECORD, control information $
'RETURN, address $

'TABSIM, control information $
'UTILITY $
'WAIT $

APPENDIX B

CPSS Compool

The CPSS Compool assembler builds a Com­
pool from information coded on data declara­
tion "cards". The program processes nine data
declarator types which are used to define a sys­
tem's data base, i.e., Program, Table, Item,
String, Array, Free Item, Constant, File, and
Task declarations. Also, the program processes
four declarator types that are used in the build­
ing of a Compool, i.e., Ident, Locate, Reserve,
and End declarations.

1. I dent. The Ident declaration is used to iden­
tify the Compool itself.

mediately follow their related system control
card in the job deck. The first card in a job
deck is the 'JOB card and the last card is an
'ENDJOB card.

The system control cards acceptable to CPSS
are listed below and summarize some of the
system's capabilities.

Pairs the CPSS INPUT file to the given unit.
Clears the given area of core to plus zero.
The comment is printed.
Initialize the program generation subsystem.
Analyze a Compool as requested.

Assemble a Compool from the data cards.
Legality check the Compool data cards.
Format and print the binary Compool specified.

Format, order, and print the Compool specified
with commentary added.

The end bracket for a job deck.
Transfer control to the given address.
The begin bracket for a job deck.
Load the environment specified.
Load and save octals for CPSS programs.
Initialize the operator "simulation" function.
Position the given file as directed.
Format and print the data as directed.
Prepare recording parameters as directed.
Load a transfer to the CPSS executive at the

given address.
~repare a data environment as directed.
Initialize the tape file maintenance subsystem.
Stop the system's operation.

2. Locate. The Locate declaration is used to
pair address labels to core memory ad­
dresses. These labels are usable in lieu of
actual memory addresses. In this manner,
the programmer is able to allocate memory
and define data addresses in a completely
symbolic method.

3. Reserve. The Reserve declaration is used to
prevent the allocation of data to certain core
memory areas.

4. End. The End declaration terminates the
program's processing of declarations.

The type of information the programmer
may use to describe data is quite comprehen-

14 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

sive. For example, a program description may
contain the program name, mod, length, mem­
ory location status (absolute, relocatable, or
dynamically relocatable) , memory location, pro­
gram type (closed or open, system program,
parameterless subroutine, or parameterized
subroutine), storage location (unit, label, unit
addressing) , subsystem name, title, related
commentary, and input and output parameters.

BIBLIOGRAPHY

The following represents a collection of gen­
eral material on the subject of "program pro­
duction" type systems and supplementary ref­
erences for CPSS and JOVIAL.

1. BARNETT, N. L., FITZGERALD, A. K., "Op­
erating System for the 1410/7010-360
philosophy", Datamation, Vol. 10, No.5,
pp. 39-42, May 1964.

2. BLATT, J. M., "Ye Indiscreet Monitor",
Communications of the ACM, Vol. 6, No.8,
pp. 506-510, September 1963.

3. BORETA, D., "Introduction to CPSS", (soon
to be published as a System Development
Corporation tech memo, TM-WD-800/
002/00) .

4. BOUVARD, J., "Operating System for the
800/1800-admiral", Datamation, Vol. 10,
No.5, pp. 29-34, May 1964.

5. HOWELL, H. L., The Q-32 JOVIAL Oper­
ating System, System Development Cor­
poration, TM-1588/000/00, Nove m b e r
1963.

6. OLIPHINT, C., "Operating System for the
B5000-Master Control Program", Data­
mation, Vol. 10, No.5, pp. 42-45, May
1964.

7. PERSTEIN, M. H., The JOVIAL Manual,
Part 2, The JOVIAL Grammar and Lexi­
con, System Development Corporation,
TM-555/002/02, March 1964.

8. SCHWARTZ, J. 1., COFFMAN, E. G., WEISS­
MAN, C., A General-Purpose Time-Sharing
System, Proceedings Spring Joint Com­
puter Conference, Washington, D. C., pp.
397-411, April 21-23, 1964.

9. SHAW, C. J., "A Specification of JOVIAL",
Communications of ACM, Vol. 6, No. 12,
pp. 721-735, December 1963.

10. SHAW, C. J., The JOVIAL Manual, Part 1,
Computers, Programming Languages and
JOVIAL, System Development Corpora­
tion, TM-555, Part 1, December 1960.

11. SHAW, C. J., The JOVIAL Manual, Part 3,
The JOVIAL Primer, System Development
Corporation, TM-555/003/00, December
1961.

12. STEEL, T. B., Jr., "Operating Systems­
boon or boondoggle", Datamation, Vol. 10,
No.5, pp. 26-28, May 1964.

13. SUTCLIFFE, W. G., Program Production
System User's Manual (1604-A JOVIAL
Compiler-OASIS Utility), System De­
velopment Corporation, TM-WD-402/000j
00, January 1964.

14. SWANSON, R. W., SPASUR Automatic
System Mark 1, Utility System Users
Manual, System Development Corporation,
TM-WD-28, July 1964.

15. VER STEEG, R. L., "TALK-A High-Level
Source Language Debugging Technique
with Real-Time Data Extraction", Com­
munications of the ACM, Vol. 7, No.7, pp.
418-419, July 1964.

16. CO-OP Manual, Control Data 1604 User's
Group, Control Data Corporation, No.
067a, December 1960.

17. Cosmos IV Manual, System Development
Corporation, TM-LX-81/001/00, October
1963.

18. H 800 Survey Guide, Honeywell, Elec­
tronic Data Processing Division.

19. IBM System/360 Special Support Utility
Programs, IBM Corporation, File No.
S360-32, Form C28-6505-0, 1964.

20. IBM System/360 Programming Systems
Summary, IBM Corporation, File No.
S360-30, Form C28-6510-0, 1964.

21. IBM 7090/7094 IBSYS Operating System,
System Monitor (lBSYS), IBM Corpora­
tion, File No. 7090-36, Form C28-6248-1,
1963.

22. Phil co 2000 Operating System SYS Ver­
sion E, Philco Corporation, January 1963.

23. RCA 5Ql Electronic Data Processing Sys­
tem, EDP Methods, Radio Corporation of
America, Technical Bulletin No. 16.

24. SCOPE/Reference Manual, CDC 3600,
Control Data Corporation, August 1963.

ERROR CORRECTION IN CORC,

THE CORNELL COMP.UTING LANGUAGE
David N. Freeman

IBM General Products Division Development Laboratory
Endicott, New York .

I. INTRODUCTION

CORC, the Cornell Computing Language, is
an experimental compiler fanguage developed at
Cornell University. Although derived from
FORTRAN and ALGOL, CORC has a radically
simpler syntax than either of these, since it was
designed to serve university students and
faculty. Indeed, most of the users of CORC are
"laymen programmers," who intermittently
write small programs to solve scientific prob­
lems. Their programs contain many errors, as
often chargeable to fundamental misunder­
standings of the syntax as to "mechanical
errors." A major objective of CORC is to re­
duce the volu~e of these errors. This objective
has been achieved to the following extent: the
average rate of re-runs for 4500 programs sub­
mitted during the fall semester of 1962 was
less than 1.1 re-runs/program.

Three features of CORC have enabled it to
achieve this low re-run rate:

(1) Inherent simplicity of the syntax;
(2) Closed-shop operation of the Cornell

Computing Center on CORC programs,
including keypunching, machine opera­
tion, and submission/return of card
decks;

(3) A novel and extensive set of error­
correction procedures in the CORC
compiler /monitors.

The CORe language is briefly described be­
low; it is more fully documented elsewhere.1

15

The current paper describes the error-correc­
tion procedures in greater detail.

II. THE CORC LANGUAGE

CORC was designed by a group of faculty
and students in the Department of Industrial
Engineering and Operations Research at Cor­
nell. This group has coded and tested two
similar compiler /monitor systems, one for a
medium scale decimal computer an9 the other
for a large binary computer.

During the definition of the language, the de­
sign group surrendered potency to simplicity
whenever the choice arose. Certain redun­
dancies have been incl~ded in CORC, serving
two functions: to facilitate error-correction dur­
ing source-deck scanning, and to aid novice
programmers' grasp of compiler-language syn­
tax. Excepting these redundancies, CORC is
quite frugal with conventions. For example, all
variables and arithmetic expressions are carried
in floating-point form, avoiding the confusing
notion of "mode." At the same time, program­
mers are spared all knowledge of floating-point
arithmetic.

Each CORC card deck is divided into three
required sub-decks plus an optional sub-deck of
data cards:

(a) The preliminary-description cards sup­
ply heading data for each page of the
output listing.

16 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

(b) The dictionary cards declare all varia­
bles used in the program, simple as well
as subscripted.

(c) Each statement card may have an in­
definite number of continuation cards.
Statements may bear labels having the
same formation rules as variables. Con­
tinuation cards may not be labelled.

Variables, ,labels, numbers, reserved words,
and special characters comprise the symbols of
CORC. Each symbol is a certain string of at
most eight, non-blank characters. Numbers may
have up to twelve digits; decimal points may
be leading, trailing, or imbedded in the num­
bers. There are forty-three reserved words in
CORC, e.g., LET, and ten special characters:
+ - * / $ = () ., The character string defin­
ing each label, variable, or reserved word is
terminated by the first blank space or special
character. The character string defining each
number is terminated by the first character
that is neither a digit nor a decimal point. Each
special character is a distinct symbol. There
are forty-six legal characters in CORC: letters,
digits, and special characters.

A subset of the reserved words is the set of
fifteen first-words: LET, INCREASE, INC,
DECREASE, DEC, GO, STOP, IF, REPEAT,
READ, WRITE, TITLE, NOTE, BEGIN, and
END. The first symbol in each statement
should, if correct, be one of these first-words.

There are eight executable-statement types,
plus a NOTE statement for editorial comments
on the source-program listing. (NOTE state­
ments may be labelled; in this case, they are
compiled like FORTRAN "CONTINUE" state­
ments.) To simplify the description of the state­
ment types, single letters denote entities of the
CORC language:

V a variable, simple or subscripted

E an arithmetic expression, as de-
fined in FORTRAN

L a statement label

B a repeatable-block label (see below)

R one of the six relational operators:
EQL, NEQ, LSS, LEQ, GTR, and
GEQ. A relational expression is a
predicate comprising two arith-

metic expressions separated by a
relational operator, e.g., 2*X NEQ
0.9.

The statement types are as follows:

(1) LET V = E, and two variants IN­
CREASE V BY E and DECREASE V
BY E. (INCREASE may be abbrevi­
ated to INC, DECREASE to DEC.)

(2) IF El R E;!

THEN GO TO Ll
ELSE GO TO L:!, and two variants

IF Ell Rl El:!
AND E21 R2 E22

AND E~l R~ Ex:!
THEN GO TO Ll
ELSE GO TO L2

(3) GO TO L.

IF Ell Rl E12
OR E:!l R2 E22

OR E~l R~ EX2
THEN GO TO Ll
ELSE GO TO L2.

(4) STOP, terminating execution of a pro­
gram.

(5) READ Vl' V2 , ••• , bringing in data cards
during the execution phase. Each data
card bears a single new value for the
corresponding variable.

(6) WRITE VI' V2 , ••• , printing out the
variable names, the numerical values of
their subscripts for each execution of
the WRITE statement, and the numeri­
cal values of these variables.

(7) TITLE (message), printing out the re­
mainder of the card and the entire state­
ment fields of any continuation cards.

(8) REPEAT B ... , comprising four vari­
ants
(8a) REPEAT BETIMES,
(8b) REPEAT B UNTIL Ell Rl E12

AND E2l R2 E22

AND E~l Rx E x2,
(8c.) REPEAT B UNTIL Ell Rl E12

OR E2l R2 E22

(8d) REPEAT B FOR V = E 1 , E 2 , ••• ,

Eb E j , E k), ••• , where (E i , Ej, E k)

is an iteration triple as in ALGOL.

Closed subroutines-called repeatable blocks
in CORC-are defined by two pseudo-statements
as follows:

B BEGIN

BEND,

where the "B" labels appear in the normal label
field. A repeatable block can be insert~d any­
where in the sub-deck of statement cards; its
physical location has no influence on its usage.
It can only be entered under control of a RE­
PEAT statement (with a few erroneous-usage
exceptions) .

Repeatable blocks may be nested to any rea­
sonable depth. Any number of REPEAT state­
ments can call the same block, although the
blocks have no dummy-variable calling se­
quences. All CORC variables are "free vari­
ables" in the logical sense, which avoids
confusing the novice programmer no less than
it hampers the expert programmer.

III. ERROR ANALYSIS IN CORC

In the CORC compiler/monitor, the author
and his colleagues have attempted to raise the
number of intelligible error messages and
error-repair procedures to a level far above
the current state-of-art for similar systems.
The success of these messages and procedures
is measured by three economies:

(a) reduced re-run loads,

(b) reduced costs of card preparation, and

(c) less faculty/student time devoted to tedi-
ous analyses of errors.

The detection of each error invokes a mes­
sage describing the relevant variables, labels,
numbers, etc.; why they are erroneous; and
what remedial actions are taken by CORC. Ex­
hibiting errors in detail has improved student
comprehension of the CORC syntax. Of course,
certain errors defy detection, e.g., incorrect
numerical constants.

ERROR CORRECTION IN CORC 17

A principal tenet of the CORC philosophy is
to detect errors as early as possible in:

(1) c"haracters within symbols,

(2) symbols within expressions,

(3) expressions within statements, e.g., the
left and right sides of an assignment
statement, and

(4) statements within the sequencing of
each program.

An explicit message for each error is printed
on the output listing. This listing is the only
output document from a CORC program; all
programs are compiled and executed, and ma­
chine code is never saved on tape or punched
cards.

After detecting a statement-card error,
CORC always "repairs" the error by one of the
two following actions:

(a) CORC refuses to compile a "badly
garbled" statement. Instead, CORC re­
places it with a source-program "mes­
sage statement" reminding the pro­
grammer oJ the omitted statement.

(b) CORC edits the contents of a "less
badly garbled" statement into intelligi­
ble source language. The edited state­
ment is subsequently compiled into
machine code.

Errors in cards other than statement cards are
repaired by similar techniques.

Thus, the machine code produced by CORe
is always executable, and compilation-phase and
execution-phase error messages are provided
for every program. By continuing compilation
in the presence "of errors, CORC provides diag­
nostic data simultaneously on structural levels
(1)-(4) cited above. By also executing these
programs, CORC detects additional errors in
program flow, subscript usage, improper func­
tion arguments, etc.

The correction of a programming error is de­
fined to be the alteration of relevant source­
language symbols to what the programmer
truly intended. Under this operational defini­
tion, many errors are incapable of "correction,"
e.g., the programmer may have intended a
statement or expression not even offered in
CORC. Other errors are capable of "correc-

18 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

tion" by the programmer himself but by no
critic unfamiliar with the complete problem­
definition; an incorrect numerical constant is
again an example.

A third class of errors can be corrected by
an intelligent critic after scanning the source­
deck listing, without recourse to the problem
definition. Some errors in this class require a
profound use of context to elicit the program­
mer's true intention. Other errors in this class
can be detected and corrected with little use
of context, e.g., the omission of a terminal right
parenthesis.

The author defines a corrigible error to be
one whose correction is automatically attempted
by the CORC compiler/monitor. Thus, this
definition is by cases, for a specific version of
CORC. CORC may correct one error and fail
to correct a second, nearly-identical error.
Error correction is a fundamentally probabilis­
tic phenomenon; the CORC error-correction
procedures attempt to maximize the "expected
useful yield" of each program by strategies
based on a priori probabilities associated with
the different errors. ~*

The majority of corrigible errors are detected
during the scanning of source decks by the
CORC compiler. A few corrigible errors are
detected during the execution of object pro­
grams. For each error, one or more correction
procedures have been added to CORC, repre­
senting certain investments in core memory
and operating speed.

The following paragraph discusses the selec­
tion of corrigible errors, and section IV cata­
logues these errors. The catalogue will be
somewhat peculiar to the structure of CORC,
a population of novice programmers, and the
operation of a university computing center.
However, the discussion of control-statement
errors, arithmetic-expression errors, and mis­
spellings is relevant to most compiler languages.

The author has roughly ranked various error
conditions by two criteria: a priori probabili­
tiest of their occurrence, and a priori probabili­
ties of their correction (if correction is at-

* References 2 and 5 also propose probabilistic cor­
rection of misspellings.

t Probabilities in the sequel are estimates based on
human scrutiny of several hundred student programs.

tempted). Correction procedures were designed
for some errors, while other chronic errors had
such low a priori probabilities of correction
that only explicit error-detection messages were
printed out. For example, omission of a sub­
script is a common error which is difficult to
correct, although easy to detect and "repair."
CORC "repairs" a subscript-omission error by
supplying a value of 1.

On the other hand, misspellings are com­
mon errors whose a priori probabilities of cor­
rection are high if sophisticated procedures are
used. The author hopes to achieve at least 75
percent correction of misspellings with the cur­
rent procedures; many have not yet been tested
in high-volume operation.3!

IV. ERROR CORRECTION DURING
SCANNING

First, the general procedures for card scan­
ning will be described. The second, third, and
fourth subsections deal with dictionary cards,
data cards, and statement cards, respectively.
The last subsection describes the error-correc­
tion phase which follows scanning, i.e., after the
last statement card has been read but before
machine code is generated by the compiler.

A. CARD SCANNING

Each CORC source deck should have all cards
of one type in a single sub-deck:

(1) Type 1, preliminary description cards

(2) Type 5, dictionary cards

(3) Type 0, statement cards

(4) Type 4, data cards (if used).

The type of each card is defined by the punch
in column 1 (although CORC may attempt to
correct the type of a stray source card).

At the beginning of each new source pro­
gram, CORC scans the card images (usually
on magnetic tape) for the next type 1 card,
normally a tab card bearing any non-standard
time limit and page limit for this program.
(The tab cards are used to divide the decks,
facilitating batch processing and other han­
dling.) This scanning procedure skips any
extraneous data cards from the previous pro-

:j: Damereau has achieved over 95 % cOl'l'ection of mis­
spellings in an information-retrieval application.

gram deck. If the preceding deck was badly
shuffled, misplaced dictionary cards and state­
ment cards will also be skipped.

An indefinite number of type 1 cards may be
supplied: CORC inserts data from the first two
cards into the page headings of the output list­
ing. This serves to label all output with the
processing date and programmer name, avoid­
ing losses in subsequent handling.

The problem identification should be dupli­
cated into each deck; any deviations from this
identification generate warning messages. The
serialization of cards is checked, although no
corrective action is taken if the cards are out of
sequence. If the serialization is entirely
omitted, CORC inserts serial numbers into the
print-line image of each card, so that subse­
quent error messages can reference these print
lines without exception.

The. general procedure on extraneous or
illegal punches is as follows: illegal punches
are uniformly converted to the non-standard
character "*"; extraneous punches are ignored
except in non-compact variable/label fields and
in the statement field of type 0 cards, where all
single punches are potentially meaningful.
Rather than discard illegal punches, CORC re­
serves the possibility of treating them as mis­
spellings. Likewise, any non-alphabetic first
character of a variable/label field must be
erroneous and is' changed to "*," furnishing a
later opportunity to treat this as a misspelling.
All hyphen punches are converted to minus
signs during card reading; the keyboard confu­
sion of these two characters is so chronic-and
harmless-that CORC even refrains from a
warning message.

B. DICTIONARY CARDS

Although the dictionary and data cards are
processed in entirely different phases of a
CORC program, their formats are identical­
with the exception of column I-and common
procedures are used to scan them.· As men­
tioned in the preceding subsection, non­
alphabetic first characters are changed to "*."
Embedded special characters are similarly
changed with the following exception: char­
acter strings of the form "(I)" or "(I ,J)" are
omitted. Fixed-column subscript fields have al-

ERROR CORRECTION IN CORC 19

ready been provided and students consistently
and correctly use them. However, a common
student error is to supply redundant paren­
thesized subscripts in the label field; these are
ignored by CORC, although a \-varning message
is supplied.

N on-numeric characters in the subscript
fields and the exponent field are changed to
"I"s. Vector subscripts can appear in either
the first-subscript field or the second-subscript
field. These subscripts need not be right-justi­
fied in their respective fields. After an array
has been defined, subsequent subscripts of ex­
cessive magnitude are not used; the correspond­
ing data entries are put into the highest legal
cell of the array.

C. DATA CARDS

All of the foregoing procedures apply with
these exceptions: if a data card has its vari­
able field blank or, in the case of subscripted
variables, its subscript fields blank, the data
can still be entered with a high probability of
correcting the omission. Information in the
READ statement overrides incorrect or miss­
ing entries on the corresponding data cards.
CORC insists on exact agreement of the varia­
bles and subscripts if warning messages are to
be avoided. Symbolic subscripts may be used
in READ statements, but their execution-phase
values must agree with the numeric subscripts
on the type 4 cards.

D. STATEMENT CARDS

Correction of erroneous statement cards is
a complex technique-and the most fruitful of
those currently implemented in CORC. State­
ment cards comprise over 80 % of student
source decks, on the average. Students commit
the overwhelming majority of their errors in
communicating imperative statements to a
compiler, rather than header statements, de­
clarative statements, or data cards. Statement­
card errors fall into two major categories:
those detectable at compilation time and those
detectable only at execution time. The second
category is discussed in section V. Some of
the most useful correction techniques for the
first ca.tegory-tested and modified during the
past two years of CORC usage--are described
in the following eight sub-sections.

20 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

(1) Misspellings4 ,5

At the end of Section III, misspellings were
cited as a class of errors that both occur fre­
quently and have attractively high a priori
probabilities for correction. Accordingly, CORC
now contains a subroutine that compares any
test word to any list of words (each entry be­
ing denoted a list word), determining a "figure
of merit" for the match of each list word to the
test word. Each figure of merit can be con­
sidered as the a posteriori probability that the
test word is a misspelling of this particular list
word. The list word with the highest figure of
merit is selected as the spelling of the test word
"most likely" to be correct.

Various categories of misspelling are defined
in CORC; to each category is assigned an a
priori probability of occurrence. When the test
word and a list word maUrh within the scope
of a category, i.e., the test word is some par­
ticular misspelling of the list word, the a priori
probability for this category is added to the fig­
ure of merit for this list word. Actually, the
figures of merit are integers rather than prob­
abilities; they can be converted to probabilities
by the usual normalization, but this is unneces­
sary-they are used merely to rank the possible
miss pellings.

All increments used in misspelling analyses
reflect the number N of non-blank characters
in the test word, as follows: a certain base­
value increment is specified for each misspell­
ing; if a match is found, this base value is
multiplied by the ratio N/8, then added to the
corresponding figure of merit.

(a) A concatenation misspelling occurs when
a delimiting blank is omitted between
two symbols, e.g., "LET X ... " is a con­
catenation misspelling of "LET X ... "
When such a misspelling is detected,
any relevant list of words is compared
against the concatenated symbol. The
increment to the figure of merit for each
list word is computed as follows:

(i) If the list word and the test word
do not have at least their initial
two characters in common, the in­
crement is o.

(ii) For every consecutive character in
common with the list word (after

the first character), an increment
of 2 is added to the figure of merit.

Example: Assume that the test
word is ENTRYA and that two of
the list words are ENT and EN­
TRY. The corresponding figures
of merit are 6 and 10, respectively.
The higher figure reflects the more
exact agreement of ENTRY to
ENTRYA.

(b) Single-character misspellings provide
four different increments to the figure of
merit, corresponding to mutually exclu­
sive possibilities:

(i) A keypunch-shift misspelling oc­
curs when the IBM 026 keypunch
is improperly shifted for the
proper keystroke, e.g., a "1"-"U"
error. There are fourteen possible
misspellings of this type, corre­
sponding to the seven letter-num­
ber pairs on the keyboard. The
special character row, including
"0," does not seem susceptible to
misspelling analysis, since special
characters are always segregated,
never imbedded in symbols.

For each list word which agrees
within a single keypunch-shift
misspelling with the test word, an
increment of (20N/8) is added to
the corresponding figure of merit,
where N is the number of non­
blank characters in the test word.

(ii) An illegal-character misspelling
occurs either (a) when a variable/
label has previously required a
"single-letter perturbation" using
the character "-=1=" or (b) when an
illegal punch in the card is changed
to "-=1=." Single-letter perturba­
tions are used when the same sym­
bol occurs at both a variable and
a label, or when a reserved word
is used as a variable or label. In
either case, conflicting usage can­
not be tolerated, and CORC ap­
pends "-=1=" to the symbol for the
current usage. In subsequent
searches of the symbol dictionary,
one may wish to recognize the orig-

inal spelling. Thus, for each list
word which agrees within a single
illegal-character misspelling with
the test word, an increment of
(20N/8) is added to the cor-
responding figure of merit, where
N is as above. This increment is
higher than that for a random
misspelling, reflecting the peculiar
origins of the character "=1=."

(iii) A rresemblance misspelling occurs
whenever any of the following
character pairs is confused: "1"­
"1," "0" (the letter) -"0" (the
number) and "Z"-"2." For each
list word which agrees within
a single resemblance misspelling
with the test word, an increment of
(40N /8) is added to the corre­
sponding figure of merit, where N
is as above.

(iv) A rrandom misspelling occurs when
any other single character is mis­
punched in a symbol. For each list
word which agrees within a single
random misspelling with the test
word, an increment of (10N/8) is
added to the corresponding figure
of merit, where N is as above.

(c) A permutation misspelling provides a
single increment to a figure of merit
whenever the test word matches the cor­
responding list word within a pair of
adjacent characters, this pair being the
same but permuted in the two words,
e.g., LTE is a permutation misspelling
of LET. For each list word which
agrees within a single permutation mis­
spelling with the test word, an incre­
ment of (20N/8) is added to the corre­
sponding figure of merit, where N is as
above. Other permutations may deserve
consideration at some future date, but
adjacent-pair permutations seem to have
the highest a priori occurrence prob­
abilities.

(d) Simple misspellings of the foregoing
types have high probabilities of success­
ful correction insofar as the following
conditions are met:

(i) The list of words does not contain

ERROR CORRECTION IN CORC 21

man y near ly -identical entries.
Otherwise, there will be many
reasonable misspelling possibilities
from which the program may se­
lect only one.

(ii) Neither test words nor list words
are single-character symbols. The
program excludes such list words
from consideration during a mis­
spelling analysis; experience has
shown that only a small propor­
tion-perhaps 10 percent-of sin­
gle-character symbols are success­
fully corrected.

(iii) Context can be extraordinarily
helpful. Associated with each list
word is a set of attributes such as
the count of its usage in the cur­
rent program, its function (vari­
able, label, constant, reserved
word, etc.) , and any peculiar
usages already detected (such as
being an undeclared variable) .
Certain misspelling possibilities
can be immediately discarded if
the context associated with the
corresponding list words does not
match the context of the test word.
For example, if an arithmetic
statement is being analyzed, any
test for misspelled· variables can
immediately discard all misspelled
label possibilities.

The first two ·of these three conditions
are controlled by the vocabulary of the
source-deck programmer; CORC gives
far better assistance to programs using
only a few variables and labels of highly
distinctive spelling with at least three
characters apiece.

(e) The increments corresponding to dif­
ferent misspellings were arbitrarily
selected; they can be readily raised or
lowered as experience indicates. The
current values reflect the following
observations:

(i) The weakest communication link
is between the handwritten coding
sheets and their interpretation by
the keypunch operator. Hence, the

22 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

largest increment is assigned to
resemblance misspellings.

(ii) In lieu of exact information, per­
mutation misspellings and key­
punch-shift misspellings have been
judged equally probable.

(iii) Illegal punches in a card image
arise from three sources: illegal
hole patterns, improper use of a
character (e.g., non-alphabetic
character beginning a first word,
or the duplicate use of a symbol as
two entities), and card-reading
failures. Lacking other evidence,
the author considered the incre­
ment to be approximately the same
as in (ii).

(iv) Other single-character misspell­
ings seem only half as likely to
occur.

Examples of the current CORC misspelling
analyses may be found at the end of subsection
E on Post-Scanning Spelling Corrections.

(2) Subscripts

Correction attempts for subscript errors
have low success probabilities, on the whole.
Isolated omission of one or both subscripts
seems almost hopeless. CORC edits such an
omission by appending" (1)" to a vector vari­
able and "(1, 1)" to a matrix variable. Like­
wise, if a matrix variable has other than two
subscripts, CORC uses primitive editing tech­
niques to produce executable machine code. Ex­
cessive commas are changed to "+" signs, and
"(E)" is changed to "(E, 1) ," where "E" is
the arithmetic expression for the first subscript
of a matrix variable.

Missing right parentheses are supplied and
extra right parentheses are deleted as neces­
sary, although not always correctly.

Definition of new array variables after the
dictionary is complete (Le., after all type 5
cards have been processed) is an attractive­
if difficult-error-correction procedure. Most
algebraic compilers scan source decks several
times; they have a leisurely opportunity to ac­
cumulate evidence for undeclared array vari­
ables. If such evidence is overwhelming, i.e., if
every usage of a certain variable is immediately

followed by a parenthesized expression, these
compilers could change the status of this vari­
able before the final code-generation scan.

To reduce compilation time, the current ver­
sion of CORC scans each source statement once
and must make an immediate decision when it
finds a left parenthesis juxtaposed to a sup­
posedly simple variable: should "V (...)" be
changed to "V* (. ..) ," i.e., implied multiplica­
tion, or should it be treated as a subscript (and
re-designate "V" as an array variable)? The
present error-correction procedure is to encode
"V (...)" into the intermediate language with­
out change; special counters for usage as a vec­
tor /matrix variable are incremented, depend­
ing on one/two parenthesized arguments. At
the conclusion of scanning, these usage coun­
ters are tested for all "simple" variables. Any
variable used preponderantly as a vector vari­
able causes CORC to test for the misspelling
of some declared vector variable. Failing this,
CORC changes the status of the variable to a
vector of 100 cells. Any variable used prepon­
derantly as a matrix variable causes CORe
to test for the :rpisspelling of some declared
matrix variable. Failing this, CORC changes
the status of the variable to a matrix of 2500
cells, comprising a 50 X 50 array.

If a variable is infrequently juxtaposed to
parenthesized expressions, CORC treats these
juxtapositions as implied multiplications. De­
ferral of this decision necessitates a procedure
for inserting the mUltiplication operator during
the conversion of intermediate language to
machine code, together with the appropriate
message. This error-correction procedure is
one of the few in the code-generation phase.
The message appears at the end of the source­
deck listing rather than adjacent to the offend­
ing card image; the gain in error-correcting
power seems to justify deferring the message.

The a priori probabilities of omitted array­
variable declarations and implied multiplica­
tions are both high. Since the two possibilities
are mutually exclusive, CORC bases its choice
on the percentage occurrence of the ambiguous
usage. If the usage is chronic, i.e., comprising
more than 50 percent of the total usage of some
variable, an undeclared array variable seems
more probable. If the ambiguous usage is a

small percentage of the total usage, implied
multiplication seems more probable.

(3) Arithmetic and relational expressions

The rules for analyzing and correcting arith­
metic expressions are as follows:

(a) Extraneous preceding plus signs are de­
leted, and preceding minus signs are
prefixed by zero, i.e., H - E" becomes
"0-E."

(b) Thereafter, u+," "-," "*," and "/"
are all binary operators. If an operand
is missing before or after a binary oper­
ator, the value "1" is inserted. This
merely preserves the coherence of the
syntax; to correct this error seems hope­
less.

(c) If an expression using two binary opera­
tors might be ambiguous (irrespective
of the formal syntax), CORC prints out
its resolution of the ambiguity, e.g.,
"A/B*C IS INTERPRETED AS
(A/B) *C."

(4) LET, INCREASE-BY, and DECREASE­
BY

Four components are essential to each cor­
rect statement in this category: the first-word,
the assigned variable, the middle symbol, and
the right-hand-side (RHS) arithmetic expres­
sion.

(a) The first-word of the statement has been
identified by a generalized pre-scan of
the statement. If "LET" has been
omitted but "=" has been found, CORC
furnishes the former symbol.

(b) The assigned variable may be sub­
scripted; if so, CORC supplies any miss­
ing arguments, commas, and right pa­
rentheses when" =" or "BY" terminates
the left-hand-side (LHS) of the state­
ment. If other symbols follow the as­
signed variable but precede "=" or
"BY," they are ignored.

(c) "EQU," "EQL," and "EQ" are errone­
ous but recognizable substitutes for
,,- "

(d) Any arithmetic expression is legal for
the RHS.

ERROR CORRECTION IN CORC 23

(5) GO TO, STOP, and IF
(a) With one exception-(b) just below­

all unconditional branches begin with
"GO," followed by an optional "TO."

(b) STOP is a complete one-word statement.
Also, it may be used in the conditional­
branch statement, e.g., "IF ... THEN
STOP ELSE GO TO "

(c) A conditional branch always follows one
or more relational expressions in an IF
or REPEAT statement. For IF state­
ments, the first incidence of "THEN,"
"ELSE," "GO," "TO," or "STOP" ter­
minates the last relational expression;
missing operands, commas, and right
parentheses are then inserted as needed.
Thereafter, the two labels are retrieved
from any "reasonable" arrangement
with two or more of the above five
words.

Missing labels are replaced by dummy
Hnext statement" labels, which later in­
hibit the compilation of machine-code
branches. Thus, if an IF statement
lacks its second label, the falsity of its
predicate during execution will cause no
branch. At the end of scanning, certain
labels may remain undefined; here also,
CORC inhibits the compilation of ma­
chine-code branches.

(6) REPEAT
(a) If the repeated label is omitted,e.g., in

the statement REPEAT FOR ARG = 2,
CORC scans the label field of the follow­
ing source card. Programmers often
place repeatable blocks directly after
REPEAT statements using these blocks:
Hence, any label on this following card
is likely to be the missing repeated
label: it is inserted into the-REPEAT
statement. If no such label is found,
CORC creates a dummy label for the
repeatable block. During the execution
of the program, usage of this erroneous
REPEAT statement can be monitored
by this dummy label.

(b) If the REPEAT-FOR variant is used,
CORC tests for three components in
addition to the repeated label:

(i) The bound variable, i.e. ARG in
the example in 6 (a) .

24 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

(ii) The character "=" or its errone­
ous variants "EQU," "EQL," and
"EQ."

(iii) Any collection of iteration triples
and single arithmetic expressions,
separated by commas. In any iter­
ation triple, CORC will supply a
single missing argument with
value "1."

(c) As in IF statements, an iIi definite num­
ber of relational expressions can be used
in REPEAT-UNTIL statements.

(7) BEGIN and END

REPEA T statements and repeatable blocks
require consistent spelling of labels and match­
ing BEGIN/END pseudo-statements. Through
misunderstanding or carelessness, novice pro­
grammers commit grie.yous errors in using
REPEAT statements and their blocks. CORC
attempts to correct a certain subset of errors
whose correction probabilities are attractively
high:

(a) If the label of a BEGIN pseudo-state­
ment is missing, the preceding and fol­
lowing cards are tested for clues:

(i) if the preceding card was a RE­
PEAT statement using a yet­
undefined label, this label is
supplied to the BEGIN pseudo­
statement.

(ii) If (i) fails to hold and if the fol­
lowing card is labelled, this label
is shifted to the BEGIN pseudo­
statement.

(iii) Otherwise, a dummy label is sup­
plied, awaiting further clues to the
identity of the repeatable block. If
such clues never appear, the block
is closed by a CORC-supplied END
pseudo-statement after the last
statement card of the deck.

Should an unpaired END
pseudo-statement be subsequently
found, the dummy label (on the
BEG I N pseudo-statement) is
changed to match this unpaired
END label.

(b) If the label for an END pseudo-state­
ment is missing, CORC tests for the

existence of a "nest" of unclosed blocks.
If so, the label of the innermost unclosed
block is used in the current END pseudo­
statement. Otherwise, the card is
ignored.

(c) If the label in an END pseudo-statement
does not match the label of the inner­
most unclosed block, the current label is
tested against the labels of the entire
nest of blocks. If a "crisscross" has
occurred, i.e.,

A • BEGIN

B • BEGIN

A END,

CORC inserts the END pseudo-state­
ment for block B before the current
END pseudo-statement for block A.

(d) If the preceding test fails, CORC again
tests the current label against the nest,
looking for a misspelling. If the current
label is misspelled, procedure (c) is
used. If the misspelling tests fail, CORC
ignores the END pseudo-statement.

(e) If the student has programmed an ap­
parent recursion, CORC prints a warn­
ing message but takes no further action.
Although unlikely, there may be a legiti­
mate use for the construction:

A BEGIN

REPEAT A ...

A END.

In this situation, CORC makes no at­
tempt to preserve the address linkages
as a truly recursive routine would re­
quire. Thus, the program is likely to
terminate in an endless loop.

(8) READ and WRITE

Only simple or subscripted variables can ap­
pear in READ statements. The subscripts can

be any arithmetic expressions. If a label ap­
pears in the argument list of a WRITE state­
ment, the current count of the label usage will
be printed. Constants, reserved words, and spe­
cial characters are deleted from the argument
lists of READ jWRITE statements.

E. POST-SCANNING SPELLING
CORRECTIONS

The misspelling of labels and variables is
corrected-insofar as CORC is capable-after
scanning an entire deck, with the exceptions
mentioned in section D. After scanning, much
usage and context data have been accumulated.
CORC attempts to resolve suspicious usages by
equating two or more symbols to the same en­
tity.

When the implementation of CORC was
originally under study, heavy weight was given
to the potential benefits from correcting mis­
spellings. Efficient correction of misspellings
seemed to require one of the following similar
strategies:

(a) Two or more complete scans of the
source deck, the first serving primarily
for the collection of data on suspicious
usages such as possible misspellings.

(b) Encoding' of the source deck into an in­
termediate language which is tightly
packed and substantially irredundant
but which also permits re-designation of
labels and variables after misspelling
analyses.

A third alternative to these strategies was to
compile the source deck directly into machine
code, then attempt to repair this code after de­
termining the set of corrigible misspellings.
However, this procedure seemed less flexible to
use and more difficult to program than the first
two strategies; it was rejected from considera­
tion.

The second alternative was selected and ap­
pears in both current implementations of
CORC. Details of the strategy are as follows:

(a) Each new simple variable entered into
the dictionary is paralleled by a pointer­
cell containing the address of a second
cell. This address is ordinarily used
during machine code-generation to rep-

ERROR CORRECTION IN CORC 25

resent the variable in question. Since
any misspelled variable is equated to a
properly-spelled variable after scanning
but before code generation, CORC cor­
rects the misspelling merely by giving
the variables identical pointer-cell con­
tents.

(b) Each new array variable is paralleled by
a pointer-cell containing the base address
of the array. As for simple variables,
only one pointer cell is changed if this
variable is equated to another array
variable.

(c) To each label corresponds a pointer-cell
containing a branch instruction to the
appropriate machine location (when the
latter becomes defined during the gen­
eration of machine code). For an unde­
fined label equated to some other label,
its cell is filled with a branch instruc­
tion to the pointer-cell for the other
label. Thus, execution of GO TO
LABELA, where LABELA is a defined
label, requires two machine-language
branch instructions; if LABELA is an
undefined label equated to LABELB,
three machine-language branch instruc­
tions are required.

The penalty in cor.npilation speed for using
the intermediate language is modest: the aver­
age time to complete compilation for CORC
programs-after the last statement card has
been read-is less than one second; few decks
require more than two seconds.

(1) Correction of misspelled labels

If a label has been referenced but never de­
fined in a label field, it is tested for being a
possible misspelling of some defined label. The
defined label with the highest figure of merit is
selected and the following message is printed:

LABELA IS CHANGED TO LABELB,

where LABELA and LABELB are the unde­
fined and defined labels, respectively. If no de­
fined label has a non-zero figure of merit with
respect to the undefined label, the following
message is printed:

LABELA IS UNDEFINED

Subsequently, all references to this label dur­
ing the generation of machine language are

26 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

treated as "next-statement" branches. At exe­
cution time, any GO TO or REPEA T state­
ments referencing this label cause the follow­
ing messages, respectively:

IN STATEMENT ,
GO-TO NOT EXECUTED.

IN STATEMENT ,
REPEAT NOT EXECUTED.

(2) Correction of misspelled simple variables

(a) If an undeclared variable is never used
in suspicious juxtaposition to parenthe­
sized expressions (cf. subsection D (2)
above), CORC attempts to find a de­
clared simple variable meeting the fol­
lowing criteria:

(i) The undeclared variable is a poten­
tial misspelling of the declared
variable.

(ii) The LHS-RHS usage of the de­
clared variable is complementary
to that of the undeclared variable.
By LHS-RHS usage is meant the
following two frequencies:
(aa) Usage on the LHS of an as­

signment statement, in a
READ statement, or in the
initial dictionary. This us­
age corresponds to assigning
the variable a new value.

(bb) Usage on the RHS of an as­
signment statement, in a re­
lational expression, or in a
WRITE statement. This us­
age corresponds to using the
current value of the variable.

The motivation for LHS-RHS analysis
is the following: if two variables are
spelled almost identically, if one has a
null RHS usage and the other a null
LHS usage, then the a priori probability
that the programmer intended a single
entity is higher than the probabilities
for most alternative misspellings.

CORC does not use LHS-RHS analy­
sis alone to determine the best misspell­
ing possibility. Instead, an increment of
5 is added to the figure of merit of each
declared variable whose null usage com­
plements any null usage of the current
test word, i.e., undeclared variable. Un-

declared variables can be equated only
to declared variables, not to other un­
declared variables.

(b) If a declared variable has a null RHS
usage, it may be an erroneous dictionary
spelling of some variable which is there­
after consistently spelled. However,
CORC will announce that the dictionary
spelling is "correct" in this case, after it
detects the misspelling; all "misspelled"
incidences of the variable are equated
to the declared variable.

(3) Examples

Four groups of nearly-matching symbols are
illustrated in Table 1. In. the first group, the
label ABC requires testing for misspelling. The
label ABCDE is a concatenation misspelling,
figure of merit (FOM) = 6. The label ABD is
a random misspelling, FOM = 3. The label BAC
is a permutation misspelling, FOM = 7. The
label AB+ is an illegal-character misspelling,
FOM = 7. Thus, CORC would choose at ran­
dom between BAC and AB+ for the defined
label to which ABC should be equated.

In the second group, the defined label DEI
has FOM = 15 with respect to the undefined
label DEL

In the third group, three simple variables
have not been declared in the dictionary and
require testing for misspelling. One should re­
member that only declared simple variables,
i.e., XYZ and XYU, are eligible for identifica­
tion with the undeclared variables. With re­
spect to XYV, XYZ has misspelling FOM = 3;
to this must be added the null-RHS increment
of 5, making a total FOM = 8. Since XYU has
only the misspelling FOM of 3 with respect to
XYV, XYV is equated to XYZ.

With respect to YXZ, XYZ has a misspelling
FOM of 7, plus the null-RHS increment of 5,
making a total FOM of 12: since XYU has a
zero FOM for YXZ, CORC equates YXZ to
XYZ.

With respect to YXW, neither XYZ nor
XYU has a positive FOM; thus, YXW is not
equated to a declared variable.

In the fourth group, GHI was invariably
used as a vector variable. Since it is a res em-

ERROR CORRECTION IN CORC 27

TABLE 1. SAMPLE PROBLEMS IN POST-SCANNING SPELLING CORRECTIONS

Symbol Type
Declared/
Defined?

LHS
Usage

RHS
Usage

Usage as
Vector

Usage as
Matrix

Total
Usage

ABC
ABCDE
ABD
BAC
AB=i=

DEl
DEI

XYZ
XYU
XYV
YXZ
YXW

GHI
GH1
GHJ
GHK

label
label
label
label
label

label
label

simple variable
smp. var.
smp. var.
smp. var.
smp. var.

vector variable
smp. var.
smp. var.
smp. var.

no
yes
yes
yes
yes

no
yes

yes
yes
no
no
no

yes
yes
yes
no

blance misspelling of the declared vector vari­
able GHI, it is equated to this variable and its
status changed to a vector. GHJ was used 67
percent of the time as a vector variable; since
it is a random misspelling of GHI, it is equated
to the latter. GHK has a positive figure of
merit with respect to each of the three preced­
ing entries. However, GHK was never used as
a vector variable. Since the GHJ and GHI have
been set to vector status, GHK can no longer
be equated to either of them; it thus remains a
distinct, undeclared variable.

V. ERROR MONITORING DURING
EXECUTION

CORC prefaces each compiled statement by
a sequence of machine language instructions to
monitor object-program flow. Additional "over­
head" instructions for monitoring appear in
four types of statements: labelled statements,
statements containing subscripted variables,
REPEAT statements, and READ statements.
The monitoring effort has three objectives:

(a) Prevent the object program from over­
writing the CORC compiler/monitor or
itself;

1
2
1
o
o

2
2
1
2

o
1
1
1
2

2
2
2
2

o
o
o
o
o

4
4
2
o

o
o
o
o
o

o
o
o
o

1
3
2
1
2

4
4
3
4

(b) Continue the execution phase through
untested code when the flow of the ob­
j ect program becomes confused (through
misuse of REPEA T statements or in­
complete GO TO, IF, and REPEAT
statements) ;

(c) Provide explicit diagnostic messages for
each error detected at execution time,
followed by an unconditional post­
mortem dump of simple-variable values
and other helpful data.6 §

A. THE GENERAL MONITOR

(1) CORC accumulates a count of all state­
ments executed, the statement count.
This count is printed in the post-mortem
dump, together with the number of er­
rors committed during the entire pro­
gram and the total elapsed time for the
program. The statement count has two
minor functions: to aid debugging of

§ Many debugging languages such as BUGTRAN
(cf. 6) furnish trace and snapshot information if re­
quested by the programmer. CORC furnishes such
diagnostic information unconditionally; the overhead
instructions cannot be suppressed after programs are
debugged.

28 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

(2)

short programs in conjunction with the
"label tallies" (see (3) below) and­
looking towards future CORC re­
search-to exhibit the different speeds
of execution for various programs, e.g.,
with/without heavy subscript usage.
The per-statement overhead of the state­
ment count is 13.2 microseconds, com­
prising a single "tally" instruction.

Before executing each statement, its
source-card serial number (converted to
a binary integer) is loaded into an index
register. Execution-phase messages re­
sulting from this statement retrieve the
serial number and print it as an intro­
ductory phrase to each message, e.g.,

IN STATEMENT 1234, THE PRO­
GRAM IS STOPPED.

Each load-index instruction requires 3.3
microseconds. The percentage of execu­
tion time devoted to items (1) and (2)
is usually less than 3 percent; see (5)
below.

(3) The execution of each labelled statement
is tallied, by label. These tallies are
printed in the post-mortem dump; they
show the progress of the program,
which branches were never taken, end­
less loops, etc. Each tally instruction
requires 13.2 microseconds.

(4) At each labelled statement, a two-posi­
tion console switch is interrogated. In
the normal position, the switch has no
effect on program flow. If set, the
switch causes the program to terminate
at once, printing the message,

IN STATEMENT , THE
PROGRAM IS MANUALLY INTER­
RUPTED,

followed by the usual post-mortem
dump.

Thus, any endless loop can be manu­
ally interrupted without stopping the
computer, although this is rarely neces­
sary. (Cf. the subsequent section on
Terminations.) The switch interroga­
tion is required only at labelled state­
ments, since endless loops must include
at least one label. Each switch "interro-

gation requires 7.2 microseconds. The
percentage of execution time devoted to
items (3) and (4) is usually less than
1 percent, as exhibited by the following
analysis.

(5) Assuming that 100,000 statements are
executed per minute, an average state­
ment requires some 600 microseconds.
Since items (1) and (2) aggregate 16.5
microseconds per stateTI?-ent, the over­
head for these items is 2.75 percent. As­
suming that every fourth statement is
labelled, items (3) and (4) are incurred
once every 2400 microseconds on the
average; since these times aggregate
20.4 microseconds, their overhead is
approximately 0.8 percent.

(6) No tracing features are offered in
CORC. If a student requires more diag­
nostic data than is already furnished,
he is encouraged to use WRITE and
TITLE statements generously. However,
he is also warned to print such data
compactly:

(7)

(a) If two consecutive pages print less
than 30 percent of the 14,400 char~
acter spaces available (2 pages X
60 lines/page X 120 characters/
line), CORC prints out the follow~
ing message:

-TRY TO USE MORE EFFI­
CIENT WRITE AND TITLE
STATEMENTS AND AVOID
WASTING SO MUCH P APER-

(b) A page-count limit is set for all nor­
mal programs; when this limit is
reached, the program is terminated
at once.

Each untranslatable source card has
been replaced by a TITLE card during
scanning, bearing the following mes­
sage:

CARD NO. NOT EXE~
CUTED, SINCE UNTRANSLAT­
ABLE.

These messages remind the programmer
of omitted actions during the execution
phase.

B. MONITORING ARITHMETIC ERRORS

CORC uses conventional procedures for
arithmetic overflow junderflow errors, but
somewhat novel procedures for special-function
argument errors. The machine traps of the
computer detect overflow junderflow conditions,
which are then interpreted into CORC mes­
sages:

(1) IN STATEMENT EX-
PONENT UNDERFLOW. (CORC zeros
the accumulator and proceeds.)

_____ , EX­(2) IN STATEMENT
PONENT OVERFLOW. (CORC sets
the accumulator to 1 rather than to some
arbitrary, large number. This tends to
avoid an immediate sequence of identi­
cal messages, allowing the execution
phase to survive longer before termina­
tion from excessive 'errors.)

(3) IN STATEMENT , DIVI-
SION BY ZERO. ASSUME QUOTIENT
OF 1.0.

For each special function error, CORC
creates an acceptable argument and proceeds,
instead of taking drastic action, e.g., immediate
program termination, as many monitor systems
do.

(4) IN STATEMENT , {' E~P t
SIN j

ARGUMENT TOO LARGE. THE RE­
SULT IS SET TO 1.

(5) IN STATEMENT , LN 0
YIELDS (or . . . LOG 0 YIELDS) 1.

(6) IN STATEMENT j LOG
/ LN }

, lSQRT

OF NEGATIVE ARGUMENT. THE
ABSOLUTE VALUE IS USED.

(7) IN STATEMENT , ZERO TO
NEGATIVE POWER-ASSUME 1.

(8) IN STATE ME-NT . , $-NEG-
ATIVE ARGUMENT. THE RESULT
IS SET TO 1.

C. TERMINATIONS

Two abnormal terminations were discussed
in the General Monitor section. Altogether,

ERROR CORRECTION IN CORC 29

there are five terminations, caused by the fol­
lowing events:

(1) Console switch set.

(2) Page count limit exceeded.

(3) Time limit exceeded. Overflow of the
real-time clock produces a machine trap
which is intercepted by CORC. For each
program, a time limit (ordinarily of
sixty seconds) is set. (The tab cards
separating the source decks can bear
any non-standard page-count and time
limits. I I) When this time is exhausted,
the program is terminated with the fol­
lowing message preceding the post­
mortem dump:

IN STATEMENT ___ , THE
TIME IS EXHAUSTED.

Endless loops are terminated by this
procedure, avoiding the necessity of
operator intervention with the console
switch.

(4) Error count too high. After each pro­
gram has been compiled, the total error
count is interrogated. When it exceeds
100, then or thereafter, the program is
terminated with the appropriate mes­
sage.

(5) Normal execution of STOP. The mes­
sage

IN STATEMENT ___ , THE
PROGRAM IS STOPPED

identifies which STOP statement-pos­
sibly of several such statements-has
been met. For all terminations, the post­
mortem dump includes the following:
(a) The final values of all simple vari-

ables. Since arrays may comprise
thousands of cells, CORC cannot af­
ford paper or machine time to dump
them too.

(b) The usage tallies for all labels.
(c) The first fifteen (or fewer) data

card images.
(d) The error-count, statement-count,

and elapsed-time figures.

II Ordinarily the tab cards are blank. A special re­
run drawer is used for programs which require unusual
output volume or running time; the computing center
inserts special tab cards with non-standard page-count
and time limits before these decks.

30 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

D. MONITORING SUBSCRIPTED
VARIABLES

One of CORC's most radical innovations is
the universal monitoring of subscripts. CORC
is attempting to trade execution efficiency for
two other desiderata:

(a) Protection of the in-core compiler/moni­
tor against accidental overwriting by
student programs.

(b) Provision of complete diagnostics on all
illegal subscripts: in which statements,
for which variables, and the actual er­
roneous values of the subscripts.

CORC's excellent throughput speed has de­
pended on infrequent destruction of the in-core
compiler /monitor; in the author's opinion, sub­
script monitoring is CORC's most important
protective feature.

Criterion (b) -full diagnostic information
on subscript errors-is also of significance,
since erroneous subscript usage comprises at
least 30 percent of all execution-phase errors.
Students quickly learn that these errors are
among the easiest to commit-although they
are spared the hardship of their detection and
isolation.

Subscript usage is monitored as follows:

(1) Each reference to a subscripted variable
incurs a load-index instruction corre­
sponding to the dictionary entry for this
variable. If subsequent troubles arise
in the subscripts, CORC can retrieve the
name and other particulars of the vari­
able by using this index register.

(2) The subscript is an arithmetic expres­
sion, whose floating point value is trans­
mitted in the machine accumulator to a
closed subroutine for un floating num­
bers.

(3) The latter subroutine checks for a posi­
tive, integral subscript.
(a) 0 is changed to 1 with the following

message:

IN STATEMENT , SUB­
SCRIPT FOR VARIABLE __
IS O. IT IS SET TO 1.

(b) Negative numbers are also changed
to 1:

IN STATEMENT , SUB­
SCRIPT FOR VARIABLE __
IS NEGATIVE. IT IS SET TO 1.

(c) If non-integral, the subscript is
rounded to an integer. If the round­
off error is less than 10-9 , no error
message is incurred; earlier calcula­
tions may have introduced small
round-off errors into a theoretically
exact subscript. If the round-off
error exceeds 10-9, the following
message appears:

IN STATEMENT , SUB­
SCRIPT FOR VARIABLE __
IS NON -INTEGRAL. IT IS
ROUNDED TO AN INTEGER.

(d) After verifying (or changing to) a
positive, integral subscript, the
closed subroutine for unfl.oating
subscripts returns control to the
size test peculiar to this variable.

(4) The subscript is tested for exceeding the
appropriate dimension of the array vari­
able. Thus, the first subscript of a
matrix variable is tested against the
declared maximum number of rows, and
the second subscript is tested against the
declared maximum number of columns;
a vector subscript is tested against its
declared maximum number of elements.
An excessive value incurs one of the
three following messages:

IN STATEMENT _____ _

IS THE {S~~~JD} SUBSCRIPT FOR
VECTOR

THE VARIABLE . SINCE
IT IS EXCESSIVE, IT IS REPLACED
BY THE VALUE __ _

The second blank in the message is filled
with the current execution-phase value
of the subscript. The. third and fourth
blanks are filled with the variable name
and its maximum allowable SUbscript.
This action serves to repair the errone­
ous subscript but hardly to correct it.

The overhead for each error-free
usage of a subscript is 85 microseconds.
With obvious waste of effort, this over­
head is incurred six times for the state­
ment:

LET A (I,J) = B (I,J) + C (I,J) .

Future versions of CORC may treat
such repeated usage of identical sub­
scripts with more sophistication. How­
ever, one must remember that "A," "B,"
and "C" could have different maximum
dimensions, in this example. A row sub­
script legal for "A" might be excessive
for "B," etc. Also, in statements such as

LET A(I) = A(I + 1),

one must corroborate the legal size of
"(I + 1)" as well as that of "I."

The per-program overhead of sub­
script monitoring varies between 0 per­
cent and 90 percent of the execution
time, as one might guess. An average
overhead of 15 percent has been meas­
ured for a representative batch of
programs.

E. MONITORING REPEATED BLOCKS

(1) Each repeatable block is legally used
only as a closed subroutine. Hence, the
exit instruction from the block-machine
code generated by its END pseudo­
statement-can be used to trap any
illegal prior branch to an interior state­
ment of the block. (One cannot enter
a block by advancing sequentially
through its BEGIN pseudo-statement.
However, one can illegally branch to an
interior statement of a repeatable block
from a statement physically outside the
block.) When the block is properly
entered by a REPEAT statement, the
address of the exit instruction is prop­
erly set; after the repetitions have been
completed, a trap address is set into this
exit instruction before the program ad­
vances beyond the REPEAT statement.

Thus, program flow can physically
leave and re-enter a repeatable block in
any complex pattern, as long as the block
has been properly "opened" by a RE­
PEAT statement and has not yet been

ERROR CORRECTION IN CORC 31

"closed" by completion of the repeti­
tions. In this respect, CORC allows more
complex branching than most compilers.

When the exit instruction traps an
illegal prior entry, CORC prints the fol­
lowing message:

IN STATEMENT , AN IL-
LEGAL EXIT FROM BLOCK __ _
HAS JUST BEEN DETECTED. IN
SOME PREVIOUS GO-TO STATE­
MENT, THE BLOCK WAS ILLE­
GALLY ENTERED. THE PROGRAM
CONTINUES AFTER THE END
STATEMENT OF THIS BLOCK.

(2) To protect against various illegal usages
of the bound variable in REPEAT-FOR
statements, CORC pr"e-calculates the
number of repetitions and conceals this
count from the repeatable block; the
count is fetched, decremented, and
tested only by the REPEAT statement.
This discussion is amplified in (d) below.

Consider the statement: REPEAT B
FOR V = (E1 , E;!, E3):

(a) If E 1 ::;:;:: E 3, the block is executed
once.

(b) Otherwise, if E2 is zero, CORC
prints the following message: IN
STATEMENT , IN RE­
PEAT-FOR TRIPLE, SECOND
ARGUMENT IS O. THE REPEAT
IS EXECUTED ONCE.

(c) Otherwise, if (E3 - E 1)/E2 is nega­
tive, CORC prints the following
message:

IN STATEMENT , IN
REPEAT-FOR TRIPLE, SECOND
ARGUMENT HAS WRONG SIGN.
THE REPEAT IS EXECUTED
ONCE.

(d) Otherwise, CORC uses the count

[
E3 - El] . E2 to determIne the num-

ber of repetitions. This count is re­
duced by 1 for each iteration, irre­
spective of the subsequent values of
"V," "E2'" or "E3." Novice pro­
grammers often manipUlate "V" in­
side repeatable blocks; CORC pre-

32 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

vents many potentially endless loops
by ignoring this manipulation.

F. MONITORING DATA-CARD INPUT

The reading and checking of data cards was
introduced in Section IV. In brief, a READ
statement causes the following steps to occur.

(1) A new card is read in; if it is of type 1,
CORC assumes it to be the first card of
the next source deck. Thereupon, the
following messages appear:

THE INPUT DATA HAS BEEN
EXHAUSTED. IN STATEMENT
___ , CORC SUPPLIES A
DATA CARD FOR THE VARIABLE
___ WITH VALUE 1.0.

Thus, CORC enters a value of 1 for the
READ variable and proceeds with the
program; subsequent READ statements
incur only the second message above.

(2) If the new card is neither type 1 nor
type 4 (i.e., the correct type), CORC
prints this message:

IN STATEMENT , THE
CARD IS ASSUMED TO BE A
DATA CARD.

(3) If the new card is type 4-possibly as
the result of (2) above-CORC checks
the variable field against the variable
name in the READ statement. If they
disagree, CORC considers the name in
the READ statement to be correct; the
following message is printed:

IN STATEMENT , THE
VARIABLE WAS READ
FROM THE CARD. THE VARI­
ABLE IN THE READ STATEMENT
WAS ___ _

(4) When the variable names have been
reconciled CORC checks for none, one,
or two subscripts on the card, as appro­
pria te to the READ variable. Missing
or erroneous subscripts incur the follow­
ing message:

IN STATEMENT THE
SUBSCRIPT (,) WAS
READ FROM THE CARD'. THE

SUBSCRIPT IN THE READ STATE-
MENT WAS (),

or

IN STATEMENT , THE
SUBSCRIPT () WAS READ
FROM THE CARD. THE SUB­
SCRIPT IN THE READ STATE-
MENT WAS ().

In every case, CORC uses the value in
the READ statement.

VI. CONCLUSIONS

A. EXPERIENCE IN PRACTICE

Throughout the 1962-63 academic year,
CORC was in "pilot project" status; in 1963-64
CORC was established as the fundamental com­
puting tool for undergraduate engineering
courses at Cornell. In the spring semester of
1964, over 15,000 CORC programs were run,
peaking at 2500 programs in one week.

The performance of CORC programmers far
surpassed the preceding years' performance by
ALGOL programmers at Cornell in such re­
spects as speed of language acquisition, average
number of re-runs per program, and average
completion time for classroom assignments.

Actual processing time can be evaluated from
the following figures, which are rough esti­
mates based on last year's experience with
CORC programs:

(a) Average processing time (tape/tape con­
figuration)-500 programs per hour.

(b) Average machine-code execution rate-
100,000 source-language statements per
minute, for a random sample of twenty
student programs.

(c) Average compilation time for CORC pro­
grams-less than two seconds.

(d) Turnaround time for programs-one
day or less, with rare exceptions.

The author has automated the operation of
the compi,ler/monitor to the following degree:
only a random machine malfunction can cause
the computer to halt. Since programming errors
cannot produce object code that erroneously
diverts control outside the CORC system, the

role of the machine operator is merely to mount
input tape reels and remove output tapes: the
computer console needs almost no attention.

A few error-detection procedures were
altered during 1962-64, primarily to make
diagnostic messages increasingly explicit. A
new CORC manual was prepared for instruc­
tional use in 1963-64; this manual omitted any
catalogue of errors, since the author expected
that the compiler/monitor systems could de­
scribe the errors-and the corresponding re­
medial actions-in satisfactory detail.

CORC has imposed a modest load on the two
computers at Cornell. The computing center
is satisfied that neither FORTRAN nor ALGOL
can lighten this load, which is rarely as much
as two hours of CORC runs daily. (FORTRAN
and ALGOL systems have greater capability
but require more' facility in programming. The
class of problems for which CORC has been
developed would not warrant the expenditure
of time required to program in the advanced
languages.) In the author's opinion, this small
commitment of resources is well-justified by
the educational value of the CORC project.

B. POTENTIAL UTILITY OF CORC

The author feels that many universities and
technical colleges can profitably utilize CORC
for introductory instruction. The designers of
CORC are convinced that a simple language is
well suited for initial study; many Cornell stu­
dents have already easily advanced to FOR­
TRAN or ALGOL after mastering CORC.

With respect to the error-detection and error­
correction features, CORC demonstrates the
modest effort required to furnish intelligible
messages and how little core memory and
machine time are consumed. Many CORC error­
monitoring procedures deserve consideration in
future implementations of compiler languages:
unconditional counts of statement labels (or
statement numbers), source-program citations
in diagnostic messages, and brief dumps fol­
lowing all program terminations. The monitor­
ing of subscripts would not be burdensome if
the latter were carried as integers-index
registers are used in most current compiled
codes. Ninety percent of the CORC subscript-

ERROR CORRECTION IN CORC 33

usage execution time is devoted to unfloating
numbers, and only ten percent is devoted to
testing these numbers for size.

C. POTENTIAL IMPROVEMENTS IN CORC

Four areas for significant improvements in
CORC are as follows:

(1) Identification of integer-mode variables
by their context. Index registers can
then be used for arrays and loop count­
ing as in FORTRAN.

(2) A problem-grading mechanism. Each in­
structor can assign a scale of penalties
for various errors. CORC will process
his batch of student programs and as­
sign the appropriate grades.

(3) A permanent file for tabUlating errors.
Each time that CORC programs are
run, an auxiliary output device-paper
tape or punched cards-will record the
serial number of each error committed.
Periodically, these tapes or cards will be
summarized. This data will furnish sta­
tistical estimates for the a priori occur­
rence probabilities of the errors.

(4) Remote consoles. These are much dis­
cussed in current computer literature,
and they hold unusual promise for high­
volume university operation. Students
would type in their programs from key­
boards distributed around a campus
covering hundreds of acres. Either these
programs would interrupt a large com­
puter programmed for real-time entry,
or they would be stacked on tape/disk
by a satellite computer. Perhaps results
could be printed/typed at these remote
stations by the satellite computer.

The author and his colleagues are well aware
of shortcomings in the language. However, they
intend to resist changes which increase the
power of the syntax at the expense of linguistic
simplicity. Changes on behalf of additional
simplicity or clarity are willingly accepted.
Continuing efforts will be made to improve the
clarity and explicitness of the djagnostic mes­
sages, so that classroom instruction can be
further integrated with output from the
computer.

34 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

VII. ACKNOWLEDGMENTS

The author is a former student of Professors
Conway and Maxwell; he gratefully acknowl­
edges their assistance to the error-correction
project.

Other contributors were R. Bowen, J. Evans,
C. Nugent, J. Rudan, and R. Sanderson.

VIII. REFERENCES

1. CONWAY, R. W., and MAXWELL, W. L.,
"CORC: The Cornell Computing Language,"
Comm. ACM, 6, 317 (1963).

2. DAMEREAU, F. J., "A Technique for Com­
puter Detection and Correction of Spelling
Errors," Gomm. AGM, 7, 171 (1964).

3. DAMEREAU, F. J., op. cit.

4. Ibid.

5. BLAIR, C. R., "A Program for Correcting
Spelling Errors," Inform. and Gtrl., March
1960, pp. 60-67.

6. FERGUSON, H. E., and BERNER, E., "Debug­
ging Systems at the Source Language
Level," Gomm. AGM, 6, 430 (1963).

THE COMPILATION OF N,ATURAL LANGUAGE TEXT

INTO TEACHING MACHINE PROGRAMS*
Leonard Uhr

University of Michigan
Ann Arbor, Michigan

Consultant, System Development Corporation
Santa Monica, California

Programmed instruction, via digital com­
puters, must be made as painless as possible,
both in the writing and the changing of pro­
grams, for the author of the programmed text.
Otherwise we will only slowly accumulate a
body of expensive programs that we will never
succeed in testing adequately. It is crucial,
given that we are investigating programmed
instruction at all, that it become easy to write
and re\vrite the programs.

A great deal of research is needed as to the
effectiveness of different types and sequences
of items; therefore, programs must be flexible
and easily changed. A large number of differ­
ent programs will be needed, from many dif­
ferent content areas. These programs should
be written by people whose competence is in
these content areas. Such people cannot be ex­
pected to learn about computers, or about pro­
gramming. Ideally, the problems of writing a
program for computer teaching of a course in,
for example, logic, French, botany, or computer
programming should be no greater than the
problems in writing a good book.

This paper describes a set of two programs
that have been written to (1) allow someone
to write a program in his content area without
having to learn anything new other than what

appears to be an acceptable minimum of con­
ventions, and then compile it (TMCOMPILE),
and (2) interpret the compiled program, thus
giving a running program that interacts with
students (TEACH).

In effect, then, this is a compiler-interpreter
for programs that are written in relatively un­
constrained natural language (no matter
which), so long as they are oriented toward
the specific problem of programmed instruc­
tion, in that they conform to the format con­
straints described below. It is thus similar in
spirit to problem-oriented compilers. Similar
compilers have been coded at IBM (referred to
in Maher3) and SDC (Estavan1

). Despite what
appear to be a significantly simpler logic and
fewer conventions that must be learned, the
present compiler, by means of its branching
features, appears to handle a larger set of pro­
grams than IBM's, uses a somewhat simpler
set of formatting rules, and offers the ability
to make loose, partially ordered andlor unor­
dered matches, to use synonyms, and to delete
and insert questions conveniently. Estavan has
written a program that assembles instructions
telling a student where to look in a pre-assigned
textbook. This program is restricted to multi­
ple-choice questions.

* The author would like to thank Ralph Gerard for bringing the magnitude of the practical need for such a
compiler to his attention, William Dttal for discussions of some of the features that such a compiler should have,
and Peter Reich for suggestions as to format.

35

36 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Description of the Program and the Inputs
It will Accept

If he wishes, the author of a programmed
text might sit down at the keypunch or flexo­
writer and compose in ihteraction with the
computer. Or he might retire to his study
and write down the set of information, ques­
tions, alternate possibilities for answers, and
branches that he wants, and ask a keypunch
operator to put these onto cards for compiling.
In either of these two modes he must follow a
few conventions, as described below. Or, if he
insists upon his freedom, he might simply be
asked to write his text in any way he desired,
subject only to the restriction that it follow the
very general format of containing only: (1)
statements giving information to the student,
and (2) questions about this information,
either (a) multiple-choice, (b) true-false, or
(c) correctly answerable in a concise way, with
the various acceptable crucial parts of answers
listed by the author right after the question
and acceptable synonyms listed in a synonym
dictionary. In addition, for each alternative
answer (or set of alternatives), the author
should say what question or statement of fact
the program should ask of the student next.
(Or, alternatively, if the author does not bother
to specify this, the program will simply go to
the next item-the next statement or ques­
tion-according to the order that the author
has given them.) A text written in such a way
could easily be formatted by the keypunch op­
erator who punched it onto cards.

In general, then, the type of text that the
author must write must be a set of strings
which are either statements (of information)
or questions. The questions must be followed
by the alternate possible answers, and each set
of alternate possible answers must be followed
by an explicit or implied branch to another
string in the text. Figures lA and 2A give ex­
amples of such texts.

If the author is willing to go to a little bit of
trouble, he will produce the texts of Figures lA
and 2A in a form that will be compiled di­
rectly. Figures IB and 2B show what these
texts would look like then.

If the author makes use of the computer as
he writes, he can delete strings that he would

like to change, by means of an instruction to
"erase string i,-" and then, if he wishes, write
in the new version of string i. He can also ask
the program to begin teaching him (or others) ,
to collect data on successes and failures, and to
give him a feeling of the program from the
student's point of view.

Rules for Format

A. The peculiarities of this language that the
user must learn are as follows:

1. A new item must be identified by
*NAME.

2. Items are composed of elements, and all
elements are bounded by slashes (I).

3. The following things are elements: (a)
the entire statement giving information
or advice, (b) the entire question, (c)
each alternative possible answer to a ques­
tion, (d) the branch to the next string to
be presented to the subject.

4. The branch element must start with an
asterisk (*).

B. If he so desires, the author can gain a
good bit of additional flexibility by using
the following additional features of the lan­
guage:

5. The NAME is optional: if none is given,
the program names this string with the
integer one greater than the last integer
name given. The name can either be an
integer (in which case care must be taken
that it is never automatically assigned by
the program) or a string of alphanumeric
character.

6. An "otherwise" branch (**) for the en­
tire question is optional, and goes at the
end of the answer portion of a question.

7. Partial matches between a student's an­
swer and an acceptable answer will be
accepted if they fulfill the following cri­
teria: (a) if a word in the answer is
listed in a synonym dictionary that has
been read into the program as equivalent
to a word that the student uses, (b) if
the correct answer is a connected sub­
string of the student's answer, (c) if a
correct answer is specified as a list of sub­
strings separated by commas and pe-

THE COMPILATION OF NATURAL LANGUAGE TEXT 37

A. In Need of Pre-editing.

TO TELL WHEl'HER AN OBrAINED DIFFERENCE IS SIGNIFICANT, YOU MUST KNOW

WHEl'HER IT IS IARGER THAN MIGHT ARISE FROM SAMPLING VARIABILITY. SAMPLING

VARIABILITY IS DUE TO ACCIDENTAL OR CHANCE FACTORS THAT AFFECT THE

SELECTION OF OBSERVATIONS INCLUDED IN THE SAMPIE. THESE CHANCE FACTORS

OBEY THE rAWS OF PROBABILITY; FROM THESE rAWS YOU CAN CALCUIATE HOW BIG

A DIFFERENCE MIGIn' BE EXPECTED BETWEEN TWO SAMPIES DRAWN FROM THE SAME

POPUIATION. THE rAWS OF PROBABILITY APPLY ONLY TO SAMPLrn THAT CAN BE

SHOWN TO BE RANDOM SAMPIES.

A RANDOM SAMPIE MUST BE SE~ IN A WAY THAT GIVES EVERY OBSERVATION IN

THE - BEING SAMPIED AN EQUAL CHANCE OF BEING INCLUDED.

ANSWER: POPUIATION.

WHEN THE NAMES OF THE STUDENTS IN A COLLEGE ARE WRITTEN ON IDENTICAL

SLIPS AND ARE DRAWN our OF A HAT BY A BLINDFOIDED PERSON, THE SAMPIE SO

DRAWN IS A - SAMPLE BECAUSE EACH MEMBER OF THE POPUIATION WOUID HAVE

AN - - OF BEING INCLUDED. ANSWER: RANDOM ••• ~UAL CHANCE.

A SAMPIE THAT IS Nor RANDOM IS BIASED. IF SOME OF THE STUDENTS'

NAMES WERE Nor IN THE HAT, THE SAMPLE DRAWN WOUID BE

ANSWER: BIASED.

B. Prepared for Automatic Compilation.

*/TO TELL WHETHER AN OBI'AINED DIFFERENCE IS SIGNIFICANT, YOU MUST KNOW

WHErHER IT IS IARGER THAN MIGHT ARISE FROM SAMPLING VARIABILITY. SAMPLING

VARIABILITY IS DUE '{'O ACCIDENTAL OR CKA..NCE FACTORS THAT A.FFECT THE

SELECTION OF OBSERVATIONS INCLUDED IN THE SAMPLE. THESE CHANCE FACTORS

OBEY THE lAWS OF PROBABILITY; FROM THESE rAWS YOU CAN CALCUIATE HOW BIG

A DIFFERENCE MIGHT BE EXPECTED BETWEEN TWO SAMPLES DRAWN FROM THE SAME

POPUIATION. THE lAWS OF PROBABILITY APPLY ONLY TO SAMPLES THAT CAN BE

SHOWN TO BE RANDOM SAMPIES/

*/A RANDOM SAMPLE MUST BE SELECTED IN A WAY THAT GIVES EVERY OBSERVATION

IN THE - BEING SAMPLED AN ~UAL CHANCE OF BEING INCLUDED/POPUIATION/

* /WHEN THE NAMES OF THE STUDENTS IN A COLLEGE ARE WRITTEN ON IDENI'ICAL

SLIPS AND ARE DRAWN our OF A HAT BY A BLINDFOIDED PERSON, THE SAMPIE SO

DRAWN IS A - SAMPIE BECAUSE EACH MEMBER OF THE POPUIATION WOUID

HAVE AN - - OF BErm INCLUDED/RANDOM. EQUAL CHANCE.=l/

*/A SAMPIE THAT IS Nor RANDOM IS BIASED. IF SOME OF THE STUDENTS'

NAMES WERE Nor IN THE HAT, THE SAMPLE DRAWN WOUID BE - /BIASED/

Figure 1. A Sequence Typical of Those Found in Programmed Instruction
Texts.

Figure la. In Need of Pre-editing.

Figure lb. Prepared for Automatic Compilatio~.

38 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

A. In Need of Pre-editing.

JOHN LIKES MARY BROWN.

WHO DOES JOHN LIKE? MARY BROWN. B • MARY. A.

A. MARY WHO? BROWN. B; OTHERWISE TO 1ST

B. Bur MARY LIKES PHIL AND PHIL LIKES BETTY.

DOES MARY LIKE BETTY? YES OR NO.O. DON'T KNOW. D.

C. YOU REALLY CAN'T KNOW FROM WHAT YOU'VE BEEN TOLD. IF ONE PERSON LIKES

A SECOND PERSON WHO LIKES A THIRD, IT'S NOT CERTAIN THAT THE FIRST PERSON

LIKES THE THIRD.

D. JOHN LIKES BETTY TOO, ALONG WITH JANE, AND CAROL.

WHO DOES JOHN LIKE? BErTY, MARY, JANE, OR CAROL.E. GIRLS, OR WOMEN.F.

E. GENERALIZE. WHAT DO BETTY, MARY, JANE AND CAROL HAVE IN COMMON?

JOHN LIKES - • G IRIS, OR WOMEN. F • WHO JOHN LIKES. G •

F. RIGHT. BUl' NOT NECESSARILY ALL. DO YOU THINK JOHN LIKES MOST G IRIS?

YES, OR MAYBE.H. NO, OR DON'T KNOW, OR NOT ENOUGH INFORMATION.I.

G. IT DOESN'T ADD MUCH TO SAY "JOHN LIKES THAT WHICH JOHN LIKES. tI SUCH A

STATEMENl' IS CALLED A TAUTOIOOY -- THERE'S NO POINT IN SAYING THE SECOND

HAlF ONCE YOU'VE SAID THE FIRST HAIF. I.

H. NO. THIS IS A VERY FALLIBLE AND UNLIKELY SORr OF INFERENCE TO DRAW.

FOR INSTANCE, JOHN CERrAINLY DOESN'T EVEN KNOW MOEn' GIRLS. GENERALIZATIONS

OF THIS SORT ARE RISKY AT BEST, Bur AT THE LEAS!' YOU MUS!' KNOW MUCH MORE

AOOtJr THE TarAL GROUP -- GIRIS -- AND ITS REIATION TO JOHN AND HOW THE

PARrICULAR EXAMPLES GIVEN WERE CHOSEN.

I. IT SO HAPPENS THAT JOHN DOES LIKE MOST OF THE GIRLS THAT HE KNOWS. msr

MEN AND OOYS DO. Bur THERE ARE AIHIAYS EXCEPl'IONS. FOR EXAMPLE, JOHN

DOESN'T LIKE ALICE. ON THE OTHER HAND, HE USUALLY LIKES THE GIRLS THAT

PHIL LIKES.

IS I'i' LIKELY THAT JOHN LIKES BETTY? YES. J • orHERWISE. K.

J. RIGHT. SINCE PHIL LIKES BErTY AND JOHN TENDS TO LIKE GIRLS AND TENDS

TO LIKE GIRLS THAT PHIL LIKES. L.

K. THERE IS SOME REASON TO THINK YES, SINCE PHIL LIKES BETTY.

L. READ PAGES 7-13 OF THE TEXT.

Figure 2. A Contrived Example Exhibiting Some Features of the Program.

THE COMPILATION OF NATURAL LANGUAGE TEXT 39

* / JOHN LIKES MARY BROWN/

*/WHO DOES JOHN LIKE/MARY BROWN/*B/MARY/*A/**l/

*A/MARY WHO/BROWN/*B/**l/

*B/Bur MARY LIKES PHIL AND PHIL LIKES BNrTY/

*/DOES MARY LIKE BETTY/YES/NO/*C/N.T.KNOW.=2/*D/

*C/YOU REALLY CAN'T KNOW FROM WHAT YOU',VE BEEN TOrno IF ONE PER.,~N LIKES

A SECOND PERSON WHO LIKES A THIRD, rr' S Nor CERTAIN THAT THE FIRsr PERSON

LIKES THE THIRD/

*D/JOHN LIKES BRrI'Y TOO, ALONG WITH JANE, AND CAROL/

*/WHO DOES JOHN LlKE/BETTY,MARY,JANE,CAROL,=O/*E/GIRLS,WOMEN,=O/*F/

*E/GENERALlZE. WHAT DO BEl'rY, MARY, JANE, AND CAROL HAVE IN COlIJIIJW/

* / JOHN. LIKES-/G IRIB, WOMEN, =0/ *Ii' /WHO. JOHN .·LIKES. =2/ '*G / **11
*Ii' fRIGHT. Bur Nor NECESSARILY ALL. DO YOU THINK JOHN LIKES MOOT GIRIB/

YES/MAYBE/*H/NO/DON'T KNOW/NOT ENOUGH INFORMATION/*I/

*G/I!!! DOESN'T ADD 'MUCH TO SAY ItJOHN LIKES THAT WHICH JOHN LIKES. Tf SUCH

A STATEMENr IS CALLED A TAurOIOOY -- THERE1'S NO POINT IN SAYING THE SECOND

HArF ONCE YOU'VE SAID THE FIRST HAIF/*I/

*H/NO. THIS IS A VERY FALLIBLE AND UNLIKELY SORr OF INFERENCE TO DRAW.

FOR INSTANCE, JOHN CERTAINLY DOESN'T EVEN KNOW MOST GIRIB. GENERALIZATIONS

OF THIS SORr ARE RISKY AT BEST, Bur AT THE !FAST YOU MUgI' KNOW ~H MORE ABOtJr

THE TOTAL GROUP -- GIRIB -- AND ITS REIATION TO JOHN AND HOW THE PARTICUIAR

EXAMPIES GIVEN WERE CHOSEN/

*I/rr SO HAPPENS THAT JOHN DOES LIKE MOST OF THE GIRIB THAT HE KNOWS. MOST

MEN AND BOYS DO. Bur THERE ARE ALWAYS EXCEPI'IONS. FOR EXAMPIE, JOHN

DOESN'T LIKE ALICE. ON THE OTHER HAND, HE USUALLY LIKES THE GmIB THAT

PHIL LrKFf3/
(Cont inued)

40 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

*/IS IT LIKELY THAT JOHN LIKES BFJJ!rY/YF13/*J/**K/

*J /RIGHT. SINCE PHIL LIKES BErrY AND JOHN TENDS TO .LIKE GIRIB AND TENOO

. TO LIKE GIRLS THAT PHIL LIKES/ *L/

*K/THERE IS SOME REASON TO THINK YES, SINCE PHIL LIKES mm'Y/

*L/READ PAGES 7-13 OF THE TEY:r/

Figure 2b. Prepared for Automatic Compilation.

riods, and ending with a number, e.g.,
/XX,XX,XX.XX.=N/, the program will
look for an unordered match of the sub­
strings terminating in commas, and an
ordered match (starting from the first
ordered substring) of the substrings ter­
minating in periods. It will count the
number of such matches it gets, and, if
this is greater than N, it will accept the
student's answer.

To summarize briefly, a new item must start
with an *. Its elements (statement of fact,
question, alternate answer, branch) must be
bounded by /. An item with more than one
element is treated as a question. An item can
have an optional numerical or symbolic name.
A branch for any set of alternate answers can
be specified by * , and an "otherwise" branch
by **.

The following is a short example:

*l/JOHN LIKES JANE,SALLY,JO,AND
BETTY./

*AIWHO DOES JOHN LIKE/JANE,SAL­
LY,BETTY,JO,=O/*B/GIRLS/*C/MA,SAN­
TA,MO,=O/* /**1/

* IDON'T BE IRRELEVANT/* AI

C/BE MORE SPECIFIC/ A/

*B/BILL L IKE S MARY,ANN,JANE,
RUTH,SALLY,AND JO./

*/NAME TWO GIRLS BOTH J9HN AND
BILL LIKE./JA,SA,JO,=l/* I**B/

DISCUSSION

Optional Modes of Operation

The program will automatically refrain from
asking a question that has previously been an­
swered correctly with a frequency above a tol­
erance parameter, t, or if the student, at the
time he answered the question correctly, also
said "*EASY*."

Several other features are optional, depend­
ent upon whether special flags have been raised
for the particular run. Thus, when desired, the.
program will print out any or all of the follow­
ing in response to a student's answer when a
set of answers is required: "YOU ARE RIGHT
TO SAY -" followed by the correct elements
of the student's answer, "YOU ARE WRONG
TO SA Y -" followed by the incorrect elements
of the student's answer, and "YOU SHOULD
HAVE SAID-" followed by those elements
that the student left unsaid.

The compiler and interpreter programs were
coded in SNOBOL (Farber2

) for the IBM 7090.
As presently coded, the interpreter program
handles only one student, accumulating the fre­
quency of his success and failure on each ques­
tion. If many consoles were used, each console
would have a name and the different students
would time-share the program. It s~emed futile
to add this to the present program (although it
would be trivial to do so), since SNOBOL has
no provision for reading in from on-line
sources.

THE COMPILATION OF NATURAL LANGUAGE TEXT 41

Figure 3 gives examples of a compiled pro­
gram and its interactions with a student.

Some Examples of Types of Material
That Can Be Handled

The person writing the text to be compiled
has a great deal of latitude in formatting his
material. The present set of programs will
handle a wide variety of question and statement
formats, including multiple-choice, true-false,
fill-ins (either connected or disconnected, or­
dered or unordered), short answer questions,
and essays. The limitations of the short an­
swer type of question lie in the ability of the
people who specify the alternate acceptable an­
swers and the synonym dictionary. The key
parts to the answer might be very loosely
stated. A statement might impart information,
or make a comment about the student's per­
formance, or it might command the student to
read a certain section of a certain book or per­
form a certain series of exercises. A branch
might be to a question that underlies, forms a
part of, or supplements the question missed (or
got). Separate branches can be established for
different answers with different implications
and for different partial answers.

With such programs the distinction between
teaching, testing and controlling the student be­
comes an arbitrary one. Thus a compiled pro­
gram might be used to train the student in
some content area, to simultaneously train and
test, to give a final examination, or to run an
experiment that explored the student's abilities
under some specified conditions and treatments.

Possible Extensions to the Present Program

The program that has been coded is a simple
first attempt toward what might be done, such
as the following.

A. Rather than branch to a single string, the
strings could belong to one or more classes, and
the branch could then be to a class that con­
tained several strings. For each particular ex­
ecution of the branch, a random choice could
be made; or, better, this choice could be a func­
tion of the difficulty of the different members of
the class.

B. Frequencies of successes and failures
could be collected for (1) each student, (2) all

students, (3) given types of students (e.g., high
IQ, impulsive). Then the choice of the particu­
lar branch could be a function of the appro­
priate individual and/or group information as
to what is likely to benefit this student.

C. The decision as to what group to put a
student into could be made by the program, if
it compared the patterns of successes and fail­
ures across students, and put students with
similar patterns into the same group (e.g., by
Kendall's tau).

D. The decision as to what string to branch
to after each string could be made by the pro­
gram, by some rule such as the following: (1)
branch to a string who.se success-failure fre­
quencies are similar to this string's, (2) branch
to a string whose answer is a substring of the
answer to this failed string, (3) branch to a
string whose answer contains this correctly an­
swered string.

E. Weights of specific strings can be not
merely functions of success-failure of them­
selves, but also functions of success-failure of
other strings that are related to them by, for
example, (1) equivalence-relatedness as speci­
fied by the author in a simple equivalence dic­
tionary, (2) connectedness in the sense of the
graph formed by the branches cycling through
the strings.

F. At least simple methods could be pro­
grammed for taking an ordinary book, break­
ing it up into a set of statements, interspersing
questions composed by the program) and then,
by pretesting with human experimental stu­
dents, winnowing the questions down to a good
set (e.g., (1) non-redundant, (2) suitably dif­
ficult, (3) reliable, (4) valid).

G. Answers could be recognized by addi­
tional partial and loose matches that would
allow for a wider variety of alternate forms,
for example, misspelled words, than can be rec­
ognized at present.

H. The program could systematically collect
alternate answers (e.g., from students that it
judges to be pretty good) and occasionally ask
its teacher whether these would in fact be ac­
ceptable alternates. It would then add these to
its memory. It could similarly augment its
synonym dictionary.

42 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

*/SUPPOSE WE HAVE TWO SENTENCES, 'A' AND 'e'. THEN THE SENTENCE
'(A)V(B)' IS CALLED THE DISJUNCTION (OR ALTERNATION, OR LOGICAL
SUM) OF THE SENTENCES 'A' AND 'B'.I
*1 A SENTENCE SUCH A.S t (C)V(D)' IS CALLED THE LOGICAL SUM, OR
ALTERNATION, OR ------ ./DISJUNCTION/*I**11
~(-AI WE AGREE THAT THE DISJUNCTION' (A)V(B)' IS TRUE IF AND ONLY
IF AT LEAST ONE OF THE TWO SENTENCES 'A' AND 'B' IS TRUE, I.E.,
I F E I THE R tAt I S TR U E, 0 R t B' 1ST RUE, 0 R BOT H 0 F THE 1','1 ARE T RUE • I
*81 IF IT IS NOT KNOWN WHETHER 'A' IS TRUE, CAN' (A)V(B)' BE
TRUE/Y.E.S.=l/*I**AI
C/IF 'A' IS FALSE, CAN' (A)V(Sl' BE TRUE/YESI1(-/-*,AI
*DI IF 'A' AND 'B' ARE FALSE, CAN '(A)V(R1V(C)' BE
TRUE/(CA1N.T.SA(Yl.=2/*F/**GI
*EI YES, IN FACT IT CAN. BUT THIS DOES NOT YET FOLLOW FRO~ WHAT
YOU HAVE BEEN TOLD.I
*FI YOU ARE RIGHT IN SAYING THAT YOU DONT KNOW IF YOU MEAN
THAT THIS IS NOT YET DECIDED.I
*GI IN FACT IT CAN. BUT THIS HAS NOT YET BEeN STATED EXPLICITLY IN
THE SYSTEM BEING ~EVELOPED FOR YOU.I
*rll THE SIGN 'V' dF DISJUNCTION CORRESPONDS WITH FAIR EXACTNESS
TO THE ENGLISH WORD 'ORt IN THOSE CASES WHERE 'OR' STANDS BETWEEN
TWO SENT[NCES AND IS USFD (AS IT MOST FREQUENTLY IS) IN THE
NON-EXCLUSIVE SENSE.I
*11 WITH WHAT COMMON ENGLISH WORD DOES THE SIGN 'V' CORRESPOND
HOST CLOSEL Y ICR/1~/*i~HI
~-J/GOOD. 'OR' IS CORRECT. CONGRATULl~,TIONS ON FINISHING
THIS LESSON.I

Figure 3. A Short Example of a Computer Run That Demonstrates Some Simple Uses of the Partial Match Features.

Figure 3a. Listing of the Program to be Compiled.

THE COMPILATION OF NATURAL LANGUAGE TEXT 43

INTERACTlONS WITH STUDENTS FOLLOW.

IIIIFORMA1:LON- SUPPOSE wE HAVE TWO SE;IlTEIIICES, '0.' AIIID 'B'. 'tA)V(rl)' IS CALL~D THE DiSJUNCTIO\l IL1R ALTER\jATION, OR llJGICAL SU,") UF TH
E SENTENCES 'A' AND 'B'.!

QlJESTION- A SENTENCE SUCH liS 'IC)V(O)' IS CALLED THE LOGICAL SUr-,· 0". AU[;{;Ilf,T10., U~ ------ •

SrlJDENT ANSWERED- 'SUM'
NI1I, WRONG.

IIIIFORMATI.ON- SUPPOSE WE HAVE TWO SENTE\lCF.S, '/I' AIIID 'B'. '(A)VI!;)' IS CALLED THE OISJU,'KTION IUR ALTER'~ATION, OR LOGICAL SUM) OF TH
E 9EIHENCES 'A' AND '8'.!

QUESTlON- A SENTENCE SUCH AS 'IC1V(D)' IS CALLED THl: LOGICAL SUM. OR ALTERNATlO,\j, OR ------ •
STlJDfNT AN5WERED- 'DISJUNCTION'

RPGHl'. A GOOD ANSWER IS-- DISJUNCTION

INFORMATION- WE AGREE THAT THE DISJUNCTION 'IAIVISI' IS TRUE IF A;IlD ONLY IF AI' LEflST ONE UF TH~ r..O SE,\jTENCES 'A' A:\jfl 'tl' IS TRUL,
I.E •• IF EITHER 'A' IS TRUE, OR 'B' IS TRUE, OR BOTH OF THEM ARE TRUE.!

QIJESTHIN- IF IT IS NOT KNOWN WHE1HER 'A' IS TRUE, CAN 'IAIVIB)' BE TRUE
STlJDfNT ANSWERED- 'NO'

NID, WRONG.

INFORMAtI.ON- WE AGREE THAT THE DISJUNCTION' (A)VIB)' IS TRUE IF AND ONLY IF AT LEAST ONE OF THE TWO SENTE'JC~S 'A' A.-J'1 'tl' IS TRUE,
I.E •• IF EITHER 'A' IS TRUE, OR 'B' IS TRUE, OR BOTH· OF THEM ARE TRUE.!

QllESTION- IF IT IS NOT KNOWN WHETHER 'A' IS TRUE,. CAN 'lAIV(BI' BE TRUE
S TIJDENT ANSWERED- 'Y AS'
R~GH1'. A GOOD ANSWER IS-- YES

QUESTION- IF 'A' IS FALSF, CAN '(AlVIS)' BE TRUE
SWDENT ANSWERED- 'WHY SHOULDN'T I SAY IT IN FRENCH- MAIS OUI, CERTAINEMENT'

R)GHT. A GOOD ANSWER 15-- YES OUI

QUESTlON- IF 'Ar AND 'B' ARE FALSE, CAN' IAIVIBIV(C)' BE TRUE
STIJDENT ANSWERED- 'THAT CAN'T REALLY BE SAID'
R)GHT~ A GOOD ANSWER IS-- CAN T SAY

INFORMATI.ON- YOU ARE RIGHT IN SAYING THAT YOU DONT KNOW IF YOU MEAN THAT THIS IS NOT YET DECI01OO./

ItIIFORMATI.ON- IN FACT IT' CAN. BUT THIS HAS NOT YET BEEN STATE!) EXPLICITLY IN THE SYSTEM BEING D~VELUPED FUR YOU.!

IIIIFORMATION- THE SIGN 'V' OF DISJUNCTION CORRESPONDS WITH FAIR EXACTNESS TO THE ENGLISH WORD 'a'" I~ THOSE CASES WHERE 'OR' STAN[JS
BETWEEN TWO SENTENCES AND IS USED lAS IT MOST FREQUENTLY IS) IN THE NON-EXCLUSIVE SENSE.!

Q~E5T'rCN--" ~r,TH WHAT COMMON ENGLISH WORD DOES THE S!GN 'V' CORRESPOND MOST CLOSELY
STUDENT ANSWERED- 'AND'

NlI, WRONG.

JIIIFORMATLON- THE SIGN 'V' OF DISJUNCTIO'l/ CORR[SPO'lflS WITH FAIR EXACTNESS TO THE EIIIGLISH ."UK!) 'OR' IN THOSE C,\SES WHERE 'OR' STANDS
BlETW8EN TWO SENTENCES AND IS USED (AS IT MOST FREQUENTLY IS) IN 1'I-IE NON-EXCLUSIVE S~NSE.!

QUESTlON- WITH WHAT COMMON ENGLISH WORD nOES THE SIGN 'V' CORRESPOND MOST CLOSELY
S TIJDENiT ANSWERED- 'NON-EXCLlJS I VE 'OR"

R)GHT. A GOOD ANSWER IS-- OR

INFfj)RMATLON- GOOD. 'OR' IS CORRECT. CONGRATULATIONS 0\1 FINISHING THIS LESSO, •• !

Figure 3b. Printout of Interactions with a Simulated Student.

1. It could further try to boil down sets of
equivalent alternate answers, by finding things
in common among them, composing a summa­
rIZIng statement, and asking its teacher
whether this new statement is equivalent to all
the specific alternates it is presently storing. It
could then substitute this new statement for
the alternates that in fact were equivalent, and
now look only for this common element in stu­
dents' future answers.

J. It could have various methods for com­
puting branches when appropriate to the prob­
lem domain; for example, (1) using a trans­
form dictionary to analyze mistakes in logic or

arithmetic, (2) using similarity between sub­
strings to analyze types of mistakes in spelling.

K. The program could itself compute the cor­
rect answer, rather than having this answer
stored in memory. It might then also do such
things as check the sequence of a student's an­
swer (which it would get simply by command­
ing the student "GIVE YOUR ANSWER
STEP BY STEP") and try to analyze at what
point the student went astray. It could then
generate a new question either on the basis of
such an analysis or as a function of the stu­
dent's present level of competence.

44 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

L. Some simplifications in the basic format­
ting rules could be implemented with relatively
little trouble. For example, the program might
accept several alternative identifications for
questions; e.g., "*,, could be replaced by "*Q"
or "*QUESTION" or ""QUESTION""; "."
could be replaced by ""THEN""; "," could
be replaced by " "AND" "; "/" in the answer
section could be replaced by " "OR" "; the "*"
that marks the branch by " "GO TO" "; the "-"
that designates erase by ""ERASE"". Ex­
periments might be run to see which form is
preferable. If, as seems likely, the presently
implemented form is somewhat harder to learn
at first, but slightly faster to use once learned
(if only because fewer symbols need be typed),
novices could be trained on the form that looks

more English-like and then given the option of
using the shorter, more cryptic symbols.

REFERENCES

1. ESTAVAN, D. P. "Coding for the class les­
son assembler." FN-5633. Santa Monica,
Calif.: System Development Corp., 1961.

2. FARBER, D. J., GRISWOLD, R. E., and POLON­
SKY, 1. P. "SNOBOL, a string manipula­
tion language." J. Assoc. Compo Machinery,
Vol. 11, No.1, Jan. 1964, 21-30.

3. MAHER, A. "Computer-based instruction:
Introduction to the IBM research project."
RC-1114. Yorktown Heights, N.Y.: IBM,
1964.

METHOD OF CONTROL FOR RE-ENTRANT PROGRAMS
Gerald P. Bergin

Programming Systems
International Business Machines Corporation

New York, New York

INTRODUCTION

The use of multiprogramming and multi­
processing raises a question as to the number
of copies of a routine, needed in memory for
multiple concurrent use. In the case where two
or more scientific programs are in core at the
same time, each needing the use of a SINE
routine, a private copy can be provided for
each program's own use, or one copy can be
loaded for all to use. A message processing
program that services multiple terminals can
run into a situation where message A inter-
rupts the processing of message B and because
of priority consideration~, .. message A must be
processed immediately by~he program. Again,
the question of how many copies of the pro­
gram are required in core occurs. Finally, a
multiprocessing configuration with two or more
computers sharing a common core memory may
each be using the FORTRAN compiler. Each
computer could have its own copy of the com­
piler or a single copy of the compiler could be
executed by all computers concurrently. Intui­
tively, the provision of one copy of the routine
or program appears more elegant.

Assuming the use of only one copy of each
routine, the possibility that a cQPlmonly used
routine may not run to completion pefore being
entered again must now be considered. A rou­
tine which permits unlimited multiple entrances
and. executions before prior executions are com­
plete is called a re-entrant routine. This paper
describes a method of controlling these routines
and sets forth conventions that must be fol-

45

lowed to produce a routine that satisfies the
requirements of re-entrability.

The terms used in this paper are defined to
eliminate possible misinterpretation.

routine-an ordered set of computer instruc­
tions which is entered by an explicit call

program-a set of routines and associated
data areas

context-the information which a routine
needs to perform its functions

instance-the execution of a routine with a
particular context

read-only routine-a sequence of machine in­
structions which is not self modifiable or
modifiable by others

re-entrant routine - a read-only routine
which accepts and uses the context asso­
ciated with an instance of a routine, such
that multiple entrances and executions can
occur before prior executions are com­
pleted

subexecution-an instance of a re-entral)t
routine

task-a set of one or more routines which
define a unit of work, and which can com­
pete independently for computer time

job-a collection of tasks organized and sub­
mitted by a user under a single accounting
number

LIFO-Abbreviation for Last In, First Out.
This pertains to the retrieving of data in
the reverse order in which it was stored.
Also called a push-down, pop-up list

46 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

SCL-Abbreviation for Single Cell available
space List

A TQ-Abbreviation for Active Task Queue
TCL-Abbreviation for Task Control List
SCB-Abbreviation for Subexecution Control

Block
BAL-Abbreviation for Block Available space

List

RE-ENTRANT PROBLEMS

The biggest problem a re-entrant routine
poses is that of referencing proper context. The
routine can be made to conform to a well­
defined set of conventions for its references to
input, output, and working storage-this solves
only part of the problem. The remainder must
be resolved through the use of a monitor capa­
ble of associating context with each instance
of the re-entrant routine, ancl, of accepting re­
sponsibility for providing context reference
during re-entrant executions.

The amount of control information which a
lTIonitor must create and maintain is a func­
tion of:

1. The number of unfinished instances of
each re-entrant program

2. The number of unfinished sub-executions
(or current levels down) for each pro­
gram instance

3. The number of context pointers to data
for each unfinished subexecution.

In addition, each routine requires working
storage and data areas associated with a
given instance. To pre-allocate all the space
required for some maximum activity seems
unreasonable in a dynamic environment.
When activity is minimal, a large number of
cells would be unusable for other purposes,
and any change in the size of data blocks
would require re-assembly of the system.

Dynamic space allocation will circumvent
some of these problems; space can be allocated
as needed. When the space for a sub execution
is no longer required, it is returned to available
space and can be used by other subexecutions.

To provide dynamic space allocation, both a
single cell and block allocation scheme were
considered essential. A small block of space
is pre-linked and constitutes the Single Cell

available space List (SCL). This space is
available for use by the monitor only. The
Block Available space List (BAL) permits
blocks of space of variable size to be allocated
for both program and monitor storage needs.
A description of the Space Allocation scheme
is contained in Appendix A.

RE-ENTRANT CONTROL

Functions

The monitor functions discussed are not in­
tended to be all inclusive even for re-entrant
routines. Functions such as I/O and interrupt
control are virtually ignored since they are of
little concern in this paper.

The monitor functions which are of impor­
tance for re-entrant control include:

1. Obtaining and returning single cells and
blocks of cells needed for control
information

2. Determining priority of tasks and task
queuing

3. Creating and terminating tasks
4. Maintaining context for each unfinished

instance

5. Maintaining the data structures which
reflect the activity of the re-entrant
routines

6. Handling all inter-routine and intra­
routine communication

Structure

To perform these functions, the monitor must
have control information organized in some
manner. The following data structures are,
therefore, the basis of achieving the required
monitor control.

Job Description Block (JDB)
Pertinent information about each job is con­

tained in a set of contiguous locations called a
Job Description Block. One JDB is created for
each job. These blocks are the source of all
activity to be done in regard to job processing,
especially the sequence of tasks to be accom­
plished within each job. The set of all JDBs
need not reside permanently in core although
information pertaining to some tasks may be
used frequently enough to dictate its presence.

METHOD OF CONTROL FOR RE-ENTRANT ROUTINES 47

The major concern this paper has with JDBs
is that they exist.

Active TCLsk Queue (ATQ)
The Active Task Queue is a list of the tasks

which are in some phase of execution in the
computer. There is a scheduling procedure ap­
plied to this list to determine the next task to
be activated or reactivated when interrupts
occur or when a subexecution relinquishes
control.

The A TQ is a simple list structure composed
of cells obtained from the SCL. The monitor
adds or inserts an entry to the list when a new
task is to become a candidate for processing in
the multi program environment. An entry is
deleted from the queue when a task is ter­
minated, and the cell is returned to the SCL.

Each entry in the ATQ contains status in­
formation, task identification, priority number,
pointer to the associated task control list, and
a link to the next entry in the A TQ.

TCLsk Control List (TCL)
Associated with each ATQ entry is a Task

Control List. This list is used to establish and
associate context for each level of subexecution
within a task. When a task is added to the
ATQ, a TeL is created for it. The first entry
contains the name of the associated JDB and
the second entry points to a Subexecution Con­
trol Block (SCB) . This SCB contains the
pointers to the context needed for the execu­
tion of the main control routine of the task.
When the execution of the control routine is
initiated, each level of descent into nested sub­
executions causes an entry to be added to the
TCL which points to the associated SCB. When
a sub execution terminates, returning to the
prior level of execution, its entry is removed
from the TCL. It should be noted that all trans­
fer of control to and from subexecution is
through the monitor.

The TCL is a push-down, pop-up (LIFO) list
with entry to the list through a header cell­
the cell containing the name of the JDB. The
header cell and push down cells are obtained
from (and later returned to) the SCL. New
entries to the LIFO list are added to the top
of the list with prior entries pushed down. Ter­
mination of a subexecution results in the LIFO

list being popped up and the cell returned to
the SCL (also returning the SCB space). When
the control section terminates, its entry in the
TCL, the TCL header, and the entry in the
ATQ are deleted thereby terminating the
task. The job description may get updated at
this point.

The first entry of the TCL contains a pointer
to and the name of the JDB, and a link to the
top of the LIFO list. Each entry on the LIFO
list points to a SCB, links to the previous entry
on the list, and contains the name of the
subexecution.

Subexecution Control Block (SCB)

Each Subexecution Control Block contains
the context or references to context associated
with its related unfinished subexecution. The
monitor creates an SCB when a subexecution is
called. The pointer to the SCB is pushed down
on the TCL as explained earlier. As a sub­
execution requests more space or asks for data
pointers, the monitor uses the proper SCB to
store or fetch the necessary information. When
space is returned, the monitor updates the
proper SCB appropriately. Termination of a
subexecution results in its SCB being returned
to available space along with the space no
longer needed by the calling subexecution.

An SeB is a block of contiguous cells ob=
tained from the block-space pool. The number
of cells per block may vary depending on the
anticipated requirements of the subexecution.
A minimum number of cells will always be
allocated to contain immediate data and point~
ers to normal data requirements.

There are two types of entries in an SCB:
immediate data entries and data pointers. Im­
mediate data consists of "save console" infor~
mati on when a subexecution is entered, and
"save console" and other program status infor­
mation when an interrupt occurs that does not
return to the interrupted code after its servic~
ing. Data pointers are used to define the loca~
tion of input, output, working storage blocks,
extension of the SCB, etc. Each data pointer
contains the name of the data block, the loca~
tion of a cell which points to the cell containing
the upper and lower boundaries of the block,
the register to be loaded witI). a boundary, and
information concerning the return of the space
which is being pointed to.

48 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

RE-ENTRANT CONTROL EXAMPLE

Table I shows five jobs which are known to
the system. Each job has a Job Description
Block (JDB) which was created when the job
entered the system. Within each JDB is the
list of Tasks to be done.

The monitor has scheduled three Tasks,
which in this case are from different jobs. The
ATQ shown in Table II indicates that Task
"MSG Processor T" is waiting for I/O to com­
plete, Task "MSG Proc.essor T" (a different
instance of the previous Task) is in execution,
and Task "GO" is pending and will be executed
when both instances of "MSG Processor T"
Terminate or cannot proceed.

Each entry in the ATQ points to a TCL,
shown in Table III. Task "MSG Processor T"
points to the Header cell K which contains the
name of its JDB (Terminal A) and points to
the top of its LIFO list, k2i. The "T control"
routine has "called" the routine "Update 3"
which will resume when its wait condition
Terminates.

Task "MSG Processor T" (2nd instance)
points to its TCL entry S. The Header cell
names the JDB (Terminal N) and points to the
Top of the LIFO list S4. The main routine "T
control" is three levels down in routines "Inter­
pret," SCAN, and SCAN (SCAN has re-entered
itself once). The Tasks at locations E1 and E2
of the A TQ are both using program "MSG
Processor T" with the first using the context at
WI and W 2, the second using the context at Xl
through X-/. Task "GO" is associated with
TCL U. Its Header cell names the JDB (Job­
B) and points to the top of its LIFO list Ua. A
program "Integrate" has been loaded and is
now ready for execution with context at Y 1.

Each entry on a LIFO list points to an SCB
which associates context with the instance of a
routine. A minimum of m cells has been allo­
cated for each SCB. Table IV shows the content
of the SCB for one instance of a routine.

If another task can be accommodated by the
computer, a task will be chosen from the Job
Description area. The following example shows
what occurs to this new contender for computer
time. The scheduler selects Task "Load" of
J ob-C whose priority has changed to 4.

The monitor gets a cell from the SCL (cell
E4). This cell is inserted in the ATQ by chang­
ing the link of cell El to El and putting E:! in
the link of cell E-/. The console information
associated with task "MSG Processor T" (of
Terminal N instance) is saved in its SCB (X4),

and its status in the ATQ is set to P. The
name of the Task (Load), its priority (4), and
the status (E) are inserted in cell E-/. Two
more cells V and VI are obtained from the SCL
to establish the TCL at V. A block of space is
obtained for the SCB of the main routine of
"Load." The initial context for the task is then
entered in the SCB beginning at Zl and Load
is then executed. Table V is a graphic repre­
sentation of the structure created in the preced­
ing example.

RE-ENTRANT ROUTINE CONVENTIONS

By definition, a re-entrant routine is read­
only in nature. Address calculations, internal
indicators, subroutine parameters, and similar
information must be stored and used external
to the routine. The association of context to an
instance of the routine is a function of the
monitor and has already been treated. The
following conventions are those considered im-,

TABLE I. JDB'S (AUXILIARY OR MAIN STORAGE)

Job-B Terminal N Job-C Terminal Q
Terminal A Load Compile MSG Proc- MSG Proc-

Load MSG Proc- essor T
Go essor H

Go essor T I MSG Proc-
Compile MSG Proc-

Print essor R
Go essor R

I Print

METHOD OF CONTROL FOR RE-ENTRANT ROUTINES 49

TABLE II. ACTIVE TASK QUEUE (ATQ)

Location Link Status

E1~E2 W

E2~Ea E

Ea ° P

W = waiting status due to I/O, etc.

P = pending

E = in execution

portant at present to get, use, and store the
external data (context) required in any routine.

1. All routines must be called through the
monitor.

2. Parameters requir~d for inter-routine
communication are contained in the call­
ing routine's context. Return of control
to the higher level routine is through the
monitor also, so that return can be con­
sidered an implied call. To call a routine,
the monitor is entered indicating:
a. The name of the routine being called

(or returned to)
b. The name of the register which con­

tains the pointer to the required con­
text (if necessary).

TABLE III. TASK CONTROL LIST (TCL)

Routine Pointer
Location Link Name toSCB

Ky(k' Terminal A loco of JDB

k1 ° T control W1

k2 k1 Update W2

S S4 Terminal N loco of JDB

>0 T control Xl

S2 Sl Interpret X2

S3 S2 Scan X3

S4 Sa Scan X4

u/u1 Job-B loco of JDB

U1 10- Integrate Y1

Pointer
Priority to TCL Name

3 K MSG Processor T

6 S MSG Processor T

7 U Go-Integrate

3. To· get a new block of cells for use, the
monitor must be entered indicating:
a. N arne to be assigned to the block

allocated
b. N umber of contiguous cells needed
c. N arne of the register to be used (if

any)
d. Value to be put in the register (either

upper or lower boundary)
e. Return location or action if space is

not available.
4. To re-establish a pointer in a register

whose contents have been changed, the
monitor must be entered indicating:
a. N arne of the block
b. Value to be used (either upper or

lower boundary)
c. N arne of the register to be used if

other than the previously associated
register (if named, the previous asso­
ciation is lost).

5. To drop a register from use as a context
pointer so that it can be used for other
purposes, the monitor must be entered in­
dicating the name of the pointer.

6. To return block space to the available
space pool the monitor must be entered
indicating the name of the block to be
returned or the name of a list containing
the blocks to be returned.

7. The responsibility of returning space
rests with the routine which obtained the
space. The termination of a subexecu­
tion will, however, result in all space
requested for private use being returned
to the block allocation pool.

50 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

TABLE IV. SUB-EXECUTION CONTROL BLOCK (SCB) FOR THE TASK "INTEGRATE"

I

Pointer to loc. pointing to Data ! I Location Control Name Register

IN 1
I

Y1-0 1 a f3
I

-1 IN 2

-2 2 OU 1 c 3

-3 OU 2

-4 1 WS 1 d

-5 WS 2

-6 SCB

-7 CONS

(immediate data

Y l -7 + i CONI

(immediate data

-m

Control 1
2
3

can be returned
Returned
common data base
INPUT
OUTPUT
Working storage

IN
OU
WS
SCB
CONS
CONI

Additional SCB for additional space if required
Console save data
Console save data plus program status information at an interrupt

SUMMARY
Association of context for an instance of a

routine has been achieved through the use of
control information created by the monitor or
furnished to the monitor via program con­
ventions. The organization of the control in­
formation is in the form of a list structure
for ease of inserting and deleting new data.

The Active Task Queue is a list, ordered on

priority, used primarily for task sequencing.
The Task Control Ljsts are LIFO lists which
relate context in the Subexecution Control
Blocks to routines which are associated with
Tasks in the Active Task Queue.

This method of control, in conjunction with
the conventions that a routine must follow,
allows multiple entrances and executions of a
routine before prior executions are completed.

TABLE V. GRAPHIC REPRESENTATION OF THE MONITOR DATA STRUCTURE

ATQ TCL SCB

Pointer
Location Link Status Priority to TCL Name Location Link Name Pointer to SCB I Location

El E4 W 3 K MSG Processor T K j,kz Terminal A Location of JDB

.------~ ~Wl-O~
0 T Control W,-- : (CB Data

Wl-m

kl Update 3
~W2-0t

W,- : (CBData
W2-m

P 6 S MSG Processor T S 84 Terminal N Location of JDB

---------~ / ~XcOt ~

0 T Control
M

X, : (CB Data f-3
P=1

Xl-m 0
tj

_X2-0) 0

Interpret
~

X, : \ 8CB Data 0
0

Xz-m Z
f-3

_X3-0 t ~
0

S2 Scan
X, x;-m j 8CB Data

~

~
0
~

_____ X.-O} ~
M

S4 . S3 Scan X4 --- : SCB Data
I

M

~ X4-m
~

P 7 U~U/U, Job-B Location of JDB >
~Yl-O~

Z
f-3

U l 0 Integrate Y, : j8CB Data ~
0
q

Yl-m f-3
1-1

E4 Ez E 4 V Load V/V, Job-C Location of JDB Z
M

~Zl-O{ W.

Vl 0 Load Z,- : 18CB Data
Zl-m I 10"1

~

52 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

APPENDIX A
SPACE ALLOCATION

The structure of the control data needed for
re-entrant and recursive routines is based on
list-structure concepts. The use of a list struc­
ture approach requires being able to obtain and
return space dynamically. Part of the space
needed must be prestructured or linked in the
IPL-V (Newell, Simon and Shaw) * manner.
Availability of space in blocks of contiguous
cells is also required to gain a compromise for
efficient use of core storage.

The following is a description of a s~ngle cell
and block allocation scheme that was developed
and implemented on the IBM 7094 by Mr. M. R.
Needleman of WDPC-VCLA.t

SINGLE CELL ALLOCATION

A relatively small number of contiguous
cells are linked together to fornl the Single Cell
available space List (SCL). A fixed cell is
maintained which always points to the next
available cell on the list. Table A-I shows this
construction.

The allocation routine allocates a cell by giv­
ing the requestor the name of a cell (the ad­
dress a) and updates the link of A to point to
the next available cell on the list which is f3.
Table A-II shows the result of allocating 1 cell.

When a cell T is returned to the available
space list, it is inserted at the top of the SCL
as follows:

1. Cell A, which contains the pointer to the
next available cell on the SCL, is modified
to point to T.

2. The former pointer f3 is put into the link
portion of the cell T.

Table A-III shows the results of this process.

* The Rand Corp., Santa Monica, Calif., Newell A.
Editor, "Information Processing Language-V Man­
ual," Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1961.

t Western Data Processing Center, University of
California, Los Angeles 24, California. The scheme was
developed by WDPC under contract with the Advanced
Research Projects Agency (Contract No. SD 184), Office
of Director of Defense, Research and Engineering,
Pentagon, Washington, D. C.

TABLE A-I. SINGLE CELL AVAILABLE
SPACE LIST (SCL)

Location Link Information

A (fixed loc.)

f3 y

o

BLOCK ALLOCATION

The second type of space allocation is called
block allocation. A block of contiguous cells is
reserved for this type of allocation. Two lists
are used to identify the space available and
space allocated. Cells for both lists are ob­
tained from the Single Cell available space List.

Each entry in the block allocation list con­
tains: a flag indicating whether or not the
block is currently available; a pointer to the
cell containing the addresses of the first and
last locations of the block; and a link to the
next cell on the Block Allocation List. The first
cell on the list (header cell) always links to the
last cell put on the list. Table A-IV shows the
block allocation list after three requests for
space.

Each cell on the block-limits list contains the
address of the first and of the last cell allocated
as a block by the block allocation routine and
is in one-to-one correspondence to the Block

TABLE A-II. SINGLE CELL AVAILABLE
SPACE LIST (SCL) AFTER ALLOCATING

ONE CELL

Location

A (fixed loc.)

f3
y

Link Information

f3

o

METHOD OF CONTROL FOR RE-ENTRANT ROUTINES 53

TABLE A-III. SINGLE CELL AVAILABLE
SPACE LIST (SCL) AFTER RETURN

OF ONE CELL

Location Link Information

A (fixed loc.)

f3
T

y

T

o
f3

TABLE A-IV. BLOCK ALLOCATION LIST
(BAL)

Location Link Flag Pointer

a ~ 0 f3
y 0 1 D-

B y 1 e

~ B 1 'l}

Flag = 0, block is available
Flag = 1, block is being used

BLOCK LIMITS LISTS (BLL)

Location

f3
D-

e

'l}

First Last
Location Location

10K 20K
40K + 1 45K
30K + 1 40K
20K + 1 30K

SPACE POOL MAP

10K
15K
20K
25K
30K
35K
40K
45K

Available

Z 3

Z 2

Z 1

(Allocated
to)

(available)
(Zl)
(Z2)
(Z3)

Allocation List. An example of this list used
in conjunction with the Block Allocation List
(BAL) . and a core map of the block allocation
space pool is shown in Table A-IV.

The method of block space allocation is best
illustrated by some examples. The first is a
request for a block which is immediately avail­
able, the second is the return of a block, and
finally a request for space which exceeds the
length of anyone available block. These ex­
amples will assume the previous state of the
lists and blocks allocated and indicate only the
allocation routine action. The monitor is the
implied user. The first example starts with
Table A-IV state.

In general, the user requests a block of N
cells. The allocator assigns space and returns
to the user via the monitor. The monitor sets
the address of the cell containing the address
of the first and of the last cell assigned in the
SCB and places the base value in the register
specified. To return space, the user indicates
the name of the block, via the monitor, to be
returned to the block space pool by the space
allocation routine.

Example 1

A user (Z 4) requests 3000 cells of block
storage. The block allocation routine goes
through the following sequence.

1. From cell a (in the BAL), get the limits
cell f3 and the subsequent limits. In the
rare case where the block is in use (Flag
= 1) the coalescing of blocks, as outlined
in Example 3 is done first.

20 Determine the number of cells available
and determine if the request can be filled.
(In this case assume the affirmative.)

3. Decrease the upper limit in cell f3 by the
number of cells needed.

4. Get two cells «(), L) from the Single Cell
available space List (SCL).

5. Insert cell () in the BAL with a link of
~ (obtained from cell a) and pointer to L.

The address of () is put in the link field
of a and the flag of () set to 1.

6. Set the block limits in cell L equal to
17,001 and 20,000 respectively.

7. Return to the user with the address of
cell L.

54 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE. 1964

Table A-V shows the result of requesting a
block of cells.

Example 2

User (Z 2) returns the block of space whose
limits are found in cell e. The address of this
cell is used to search the BAL for the pointer
to this cell. As can be seen in Table A-VI, only
the flag of the cell (8) which contains the
pointer to the block limits returned is changed
(from 1 to 0). The block limits list is not
altered.

Example 3

User (Z 5) requests 15,000 cells of block
storage. The block allocation routine does the
following.

1. Using cell a (in the BAL) the contents
of cell f3 are obtained. The number of

'/

TABLE A-V. BLOCK ALLOCATION LIST
(BAL)

Location Link Flag Pointer

a e 0 f3

y 0 1 ~

8 y 1 e

~ 8 1 1]

e ~ 1

BLOCK LIMITS LIST (ELL)

First Last (Allocated
Location Location Location to)

f3 10K 17K (available)
Do 40K + 1 45K (Z 1)
e 30K + 1 40K (Z 2)

1] 20K + 1 30K (Z 3)

17K + 1 20K (Z 4)

SP ACE POOL MAP

10K Available
15K
20K Z 4
25K

Z 3
30K
35K Z 2
40K
45K Z 1

TABLE A-VI. BLOCK ALLOCATION
LIST (BAL)

Location Link Flag Pointer
--

a e 0 f3

y 0 1 ~

8 y 0 e

~ 8 1 1]

e ~ 1

BLOCK LIMITS LIST (BLL)

First Last (Allocated
Location Location Location to)

f3

~

e

1]

10K 17K (available)
40K + 1 45K (Z 1)
30K + 1 40K (available)
20K + 1 30K (Z 3)
17K + 1 20K (Z 4)

SP ACE POOL MAP

10K Available
15K
20K Z 4
25K

Z 3
30K
35K Available
40K
45K Z 1

cells available is determined to be less
than the number requested.

2. Link through BAL putting the limits
pointer of each "in use" entry (Flag = 1)
on a push down list. Each entry with a
Flag = 0 (space returned) is returned
to the single cell available space list along
with its associated limits cell. The BAL
cell returned is also deleted from the
BAL list. The push down list cells are
obtained from the Single Cell available
space List. The entries in the list are
now ordered such that the name of the
cell containing the highest block limits is
last on the list (therefore 1st off) and the
name of the cell containing the lowest
block limits is first on the list (therefore
last off).

METHOD OF CONTROL FOR RE-ENTRANT ROUTINES 55

3. The method to coalesce available blocks
is as follows. Move each used block up
in core so as to pack them to the upper
boundary of the space pool. This will
push any scattered available space
further and further down in core until it
is engulfed by the limits of {3; i.e., all un­
used space is in one block at the lower
boundary of the space pool. To imple­
ment the coalescing, the pointers to the
used space limits are popped-up and lim­
its are changed to reflect data movement

which is done when each new block of
unused space is encountered. Table
A-VII shows the results of coalescing
space. Since the user points to a pointer
to the block, the block can be moved and
the pointer to it changed without concern
by the user.

4. If the request for space can now be filled
from the space available limits at {3, the
method of allocating the block is the same
outlined in Example 1.

TABLE A-VIII. BLOCK ALLOCATION
LIST (BAL)

Location Link Flag Pointer

a () 0 {3

y 0 1 Ll

~ y 1 YJ

() ~ 1

BLOCK LIMITS LIST (BLL)

First Last (Allocated
Location Location Location to)

{3 10K 27K (available)
Ll 40K + 1 45K (Z 1)

YJ 30K + 1 40K (Z 3)
27K + 1 30K (Z 4)

SP ACE POOL MAP

10K
15K Available
20K
25K
30K Z 4

35K
Z 3

40K
45K Z 1

XPOP: A MET A- LANGUAGE WITHOUT METAPHYSICS
J.7IJark I. Halpern

Research Laboratories
Lockheed Missiles & Space Co.

Palo Alto, California

INTRODUCTION

The XPO P programming system is a
straightforward and practical means of imple­
menting on a computer a great variety of lan­
guages-in other words, of writing a variety
of compilers. The class of languages it can
handle is not easy to characterize by syntactic
form, since the system permits syntax specifi­
cation to be varied freely from statement to
statement. in a program being scanned; the
permitted class includes the best-known pro­
gramming languages, as well as something
closely approaching natural language. We be­
lieve that this distinguishes the XPOP proc­
essor from the syntax-directed compilers,1,2,3
although it shares with them the fundamental
idea that the process of programming-language
translation can be usefully generalized by a
compiler to which source-language syntax is
specified as a parameter.

This paper describes only the more novel
features of XPOP; a fuller treatment is avail­
able elsewhere.4

DISCUSSION

XPOP consists of two major parts: (1) a
generalized skeleton-compiler that performs
those functions common to all compilers, and
(2) a battery of pseudo-operations for speci­
fying the notation, operation repertoire, and
compiling peculiarities of a desired program­
ming language. The programmer creates the
compiler for such a language not by program­
ming it from scratch but by using the XPOP

57

pseudo-operations to modify and extend XPOP
itself, which then becomes the desired compiler.

The use of these facilities involves the crea­
tion by the programmer of functional units
that superficially resemble the programmer­
defined macro-instructions of, for example,
IBMAP (and in fact include such macros as a
subset), but whose effects may be radically dif­
ferent from those obtained by use of conven­
tional macros. * An XPO P macro does not
necessarily generate coding; its possible effects
are so varied that it can best be defined simply
as an element of the source program that, when
identified, causes the processor to take some
specified action. That action may be any of the
following:

(1) The parameterization of XPOP's scan­
ning routine to make it recognize, either
for the remainder of the source program
or within some more limited domain, a
new notation

(2) The compilation of coding for immedi­
ate or remote insertion into the object
program

(3) The immediate assembly and execution
of any of the instructions compiled from
a source-language statement.

* By "conventional macros" we mean the user-defined
operators that some programming systems allow. The
definition of a macro consists essentially of the assign­
ment· of a name to a block of coding, after which every
appearance of that name as an operator causes the
system to insert a copy of that coding into the object
program.

58 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

(4) The preservation on cards and/or tape
of the language description currently in
use, in a condensed format that can be
redigested by XPOP at tape speed when
read back in; also the reading-in of such
a language from a tape file created
earlier in the same machine run or dur­
ing an earlier run

(5) The production by XPOP of a bug-find­
ing tool called an XRAY -a highly spe­
cialized core-and-tape dump giving the
programmer the tables and strings pro­
duced by the system in structured, in­
terpreted, and captioned form

In the illustrations of these features, some
conventions that require explanation will be
used. All programming examples offered are
exact transcripts of the symbolic parts of
actual XPOP listings. Lines prefixed by a dol­
lar sign are records output by the processor
as comments; these originate either as source­
program statements printed out as comments
for documentary purposes or as processor­
generated messages notifying the programmer
of errors or other conditions he should be
aware of. No attempt is made to illustrate
XPOP facilities by coding examples of any
intrinsic value. The examples used are merely
vehicles for the exhibition of those facilities
and are therefore generally trivial in size and
effect. The discussion that follows takes up the
chief features of the system in the order of the
five-point outline given earlier.

Notation-Defining Pseudo-Operations

Consider a macro, LOGSUM, created to store
the logical sum of two boolean variables, A and
B, in location C.

$LOGSUM MACRO A,B, C

$ CAL A

$ ORA B

$ SLW C

$ END

Having been defined, this macro may at once
be called upon in XPOP's standard form,
which requires that the macro's name be im-

mediately followed by the required parameters
with commas separating these elements and
the first blank terminating the statement. A
standard-form call on LOGSUl\1: would have
this appearance and effect:

$ LOGSUM,ALPHA,BETA,GAMMA
CAL ALPHA
ORA BETA
SLW GAMMA

Suppose we find standard-form notation unsat­
isfactory and want to call upon the function
LOGSUM in the following form:

STORE INTO CELL 'C' THE LOGICAL
SUM FORMED BY 'OR'ING THE BOOL­
EAN VARIABLES 'A' AND 'B'.

There are, from the XPOP programmer's
viewpoint, four differences between the stand­
ard and the desired form:

(1) The name of the function is no longer
LOGSUM, but STORE.

(2) The order in which parameters are ex­
pected by STORE differs from that of
LOGSUM.

(3) The punctuation required by the two
forms differs; in standard form, the
comma is the sole separator, blank the
sole terminator. In the desired form,
three kinds of separator are used:
(a) The one-character string 'blank'
(b) The two-character string 'blank-

apostrophe'
(c) The two-character string 'apostro­

phe-blank'
and one terminator
(a) The two-character string 'apostro­

phe-period'

(4) The desired form contains several
"noise words" -that is, character strings
present for human convenience but
which XPOP is to ignore.

In the following illustration, we use its
pseudo-ops to teach XPOP the new statement
form, then demonstrate that the lesson has
been learned by offering it the new form as in­
put and verifying that it produces the correct
coding. An explanation of each pseudo-op used
follows the illustration.

XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 59

$STORE MACRO A,B,C

$ LOGSUM B,C,A

$ END

$

$ CHPUNC

$NEW PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT

$

$
$ CHPUNC 3S1 2 '2' 1 T2'.

$NEW PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT

$
$ CHPUNC 1S2.. 1 Tl.

$NEW PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT

$

$
$

NOISE 4INTO 4CELL 3THE 6LOGICA 6FORMED 2BY 60R'ING 6BOOLEA

$
$

NOISE 6V ARIAB 3AND 3SUM

$
$

STORE INTO CELL 'GAMMA' THE LOGICAL SUM FORMED BY 'OR'ING THE ...
BOOLEAN VARIABLES 'ALPHA' AND 'BETA'.

CAL ALPHA

ORA BETA

SLW GAMMA

The definition of STORE with which the
above illustration begins deals with the first
two of the four differences noted betw.een the
desired and the standard statements. It causes
XPOP to recognize STORE as an operator
identical in effect to LOGSUM, and specifies
that the parameter expected as the third by
LOGSUM will be expected as the first by
STORE. The pseudo-op CHPUNC (CHange
PUNCtuation) deals with the third difference.
Its first use, with blank variable field, erases all
punctuation conventions from the system; the
comma is no longer a separa tor nor is the
blank a terminator. Having thus wiped the
slate clean, CHPUNC is used again to specify
the required punctuation. The variable field
that follows this second CHPUNC may be
read: "Three separators-the one-character
string blank, the two-character string blank­
apostrophe, and the two-character string apos­
trovhe-blank; also one terminator-the two-

character string apostrophe-per'iod." (The ad­
ditional punctuation specified by the third
CHPUNC was introduced because the signal to
XPOP that a statement is continued on the
next card is the occurrence, at the end of each
card's worth, of a separator immediately fol­
lowed by a terminator; here the programmer
wanted to use the string , ... ' for this purpose.
A separate CHPUNC was necessary simply
because the additional punctuation came as an
afterthought.) The fourth and last difference
is dealt with by means of the pseudo-op
NOISE, which permits the programmer to
specify character strings to be ignored by the
processor. Since strings longer than six char­
acters are taken as noise words if their first
six characters are identical to any noise word,
such strings as VARIABLE, VARIABLES,
and VARIABILITY are effectively made noise
words by the definition of 6V ARIAB as an
explicit noise word.

60 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

With these pseudo-ops given, XPOP has
been taught the desired statement form, as
proof of which it generates correctly parame­
terized coding when used as input. That state­
ment was created, of course, only for illustra­
tive purposes; few programmers would care to
use so many words to generate three lines of
machine-language coding. For an application
in which documentation was an unusually im­
portant requirement, however, so elaborate a
statement might serve a useful purpose-and
real macros would average closer to 100 in­
structions than to 3.

The most important property of this tech­
nique for describing a notation to a processor,
though, is the flexibility with which a notation
so specified may be used. All that the XPOP
programmer has explicitly defined is a number
of individual words and punctuation marks,
with no constraints on their combination; they
may be used to form any statement that makes
sense and conveys the necessary information
to the processor. The programmer will often
have a particular model statement in mind
when specifying the vocabulary he wishes to
use in calling for some function, but he will
find that in implementing the model he has in­
cidentally implemented an enormous number
and variety of alternative forms.

If we add to our list of noise words the two
strings OF and AS, we can use any of the
following to generate the required coding:

(a) STORE INTO GAMMA THE SUM OF
ALPHA AND BETA.

(b) STORE AS GAMMA THE LOGICAL
SUM OF A.LPHA AND BETA.

(c) STORE AS LOGICAL GAMMA THE
SUM OF THE VARIABLES ALPHA
AND BETA.

(d) STORE LOGICALLY INTO GAMMA
'ALPHA' AND 'BETA.'

(e) STORE GAMMA ALPHA BETA.

(f) LOGICALLY STORE INTO 'GAMMA'
THE VARIABLES 'ALPHA' AND
'BETA.'

(g) INTO GAMMA STORE THE SUM OF
ALPHA AND BETA.

As (f) and (g) indicate, both noise words
and operands may precede the operator, pro­
vided only that they are not themselves mis­
takable for operators. If, for example, INTO
were an operator as well as a noise word (such
multiple roles are possible arid sometimes use­
ful) , statement (g) would be misunderstood
as a call on INTO. Excepting such uncommon
cases, the operator and operands in a state­
ment may float freely with respect to noise
words, and the operator may float freely with
respect to its operands; the sole constraint is
that the operands must be given in the order
specified when the operator was defined. Even
this last constraint will be relaxed when the
QWORD feature is fully implemented. A
QWORD is a noise word that, like an English
preposition, identifies the syntactic role of the
word it precedes; its use enables the program­
mer to offer operands in an order independent
of that specified when the operator is defined.
Applied to the statement type dealt with so
far, the QWORD feature might be used thus:

STORE MACRO $INTO$C,A,B
CAL A

ORA B

SLW C
END

The string $INTO$C informs the system that
if the QWORD "INTO" appears in a call on
STORE, the first operand following it is to be
taken as corresponding to the dummy variable
C. The use of the QWORD would override the
normal C,A,B order and enable the user of
STORE to write, as another alternative:

(h) LOGICALLY STORE THE SUM OF
ALPHA AND BETA INTO GAMMA.

Practically all notation-defining pseudo-ops
may be used within macros as well as outside
them, and the difference in location determines
whether the conventions thereby established
are 'local' or 'global.' If such pseudo-ops are
given at the beginning of a macro definition
that includes some non-pseudG-op lines as well,
they are taken as local in effect. They will
temporarily augment or supersede any nota­
tional conventions already established, and be

XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 61

nullified when the macro within which they
were found has been fully expanded. 'Local'
notation-defining pseudo-ops will be put into
effect in time to govern the scan of the very
statement that calls on their containing macro.
Such internally defined statements need respect
the earlier conventions only to the e~tent nec­
essary to permit their operators to be isolated.
When pseudo-ops constitute the sole contents
of a macro, they are taken as applying to the
rest of the program in which they appear; the
effect of calling on such a macro-ful of pseudo­
ops is as if each pseudo-op were giyen as a
separate input statement. Insofar as the nota­
tion a programmer requires is regular and self­
consistent, then, it may be described in a single
macro whose name might well be that of the
language itself, and which would be called on
at the beginning of any program written in
that language. Statement forms that have spe­
cial notational requirements in conflict with
any global conventions would include the nec­
essary local conventions within the bodies of
their macro definitions. The local-notation
feature will be illustrated in the next section.

As should be evident at this point, it is
possible to teach XPOP to recognize an enor­
ll10US nurnber of logically identical but nota­
tionally different statements by means of a
few uses of just those pseudo-ops introduced
so far. It should be possible, in fact, to define
a programming language empirically-that is,
to treat a language as a cumulative, open-ended
corpus of those statement forms that experi­
ence shows to be desirable. The full set of
notation-defining pseudo-ops, of which about
one-third is exhibited here, permits the de­
scription of the notations of FORTRAN,
COBOL, and most other existing compiler
languages.

Compilation-Control Pseudo-Operations

The compiler designer also needs, of course,
various kinds of control over the compilation
process. One requirement is for the ability to
call for remote compilation. To meet this need
XPOP provides the pseudo-ops WAIT and
W AITIN. Both signify that the part of any
macro lying within their range is to be ex-

panded as usual-that is, parameters substi­
tuted for dummy variables, system-generated
symbols inserted where called for, and so on­
but that the resulting coding is not to be in­
serted into the object program yet. Instead,
these instructions are put aside, to be inserted
into the object program only when a source­
program statement is found bearing the state­
ment label specified by the WAIT or W AI TIN.
(The label to wait for is specified in the pseudo­
op's variable field, where it may be given as a
literal constant or-more likely-represented
by a dummy to be replaced by a parameter.)
In any case, all instructions waiting for such
a label will appear just after those resulting
from the translation of the statement so
labeled.

The instructions waiting for a label may have
come originally from several various macros,
or several uses of the same macro; if so, the
one difference between WAIT and W AITIN
will make itself felt. If, for example, a group
of instructions lay within range of WAIT
ALPHA, they would be appended to the
threaded list of those already waiting for
ALPHA; if the pseudo-op were WAITIN, they
would be prefixed to it. Those groups of in­
structions made to wait by W AITIN's will,
therefore, appear in the object program in the
inverse of the order in which they occurred
in the source program-hence "W AITIN"
(WAIT INverse). If the label for which a
batch of instructions is waiting never appears,
the instructions do not appear in the object
program. If no label is specified, they appear
at the very end of the object program.

The following example shows the use of
W AITIN in a simplified version of FORTRAN's
"DO" ~ne that permits only the special case
of subscripting that is formally. identical to
indexing. First, the source program that de­
fines "DO" to XPOP, and then uses it in a two­
level-deep DO nest: *

* Note that XPOP can process algebraic expressions.
These may be used as source~language statements or
within macros; when used within macros, they may
contain dummy variables to be replaced by parameters
when the macros are used, and those parameters may be
arbitrarily long subexpressions. SUbscripts, not now
allowed, are being provided for.

62 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

J
K

EQU 2
EQU 4

DO
)A

15

CHPUNC 4S1=11,2, 1T2
MACRO A,B,C,D,Ol

{ definition
AXT C,B
WAITIN A
TXI *+l,B,Ol ~

of "DO"

TXL)A+1,B,D
END

DO 15 J=1,3)
DO 15 K=2,20,2 ~
PHI,J=RHO,J +BETA,J ("DO" nest
TAU,K=PHI,J +4)
END

And below, the object program produced by the above:

J
K
$
$
$NEW
$
$DO
$)A
$
$
$
$
$
$
$
)0001
$
$
)0002
$

$15
15

EQU 2
EQU 4

CHPUNC 481 1 = 1,2, 1 T2
PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT

MACRO
AXT
WAITIN
TXI
TXL
END

DO 15 J=1,3

A,B,C,D,Ol
C,B
A
*+l,B,Ol
)A+1,B,D

AXT 1,J

DO 15 K=2,20,2
AXT 2,K
PHI,J=RHO,J +BETA,J
CLA BETA,J
FAD RHO,J

STO PHI,J
TAU,K=PHI,J+4
CLA =4
FAD PHI,J
STO TAU,K
TXI *+1,K,2
TXL) 0002 + 1,K,20
TXI * +l,J,Ol
TXL) 0001 + 1,J,3
END

XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 63

Another obvious use for WAIT or W AITIN
is the handling of closed subroutines. The
programmer will frequently want a macro to
generate only a calling sequence to a closed
subroutine, with the subroutine itself appearing
only once in the object program, at the end.
To secure this effect, the programmer would
define the macro in question as starting with
the calling sequence; then he would incorporate
a WAIT with blank variable field, a ONCE
pseudo-op, and then the subroutine. If the
macro were not used in a given source pro­
gram, the subroutine would not be made part

$DO
$
$)A
$
$
$
$
$
$
$

MACRO
CHPUNC
AXT
WAITIN
TXI
TXL
END

DO 15 J=1,3

A,B,C,D,01
4S1 1=1,2,
C,B
A
*+1,B,01
)A~i,B,D

1T2

CHPUNC 4S1 1 = 1,2, 1 T2

of the obj ect program. If used, the first such
use would output the calling sequence normally,
and the subroutine as waiting instructions to
be put into the object program at its end.
Subsequent uses of the macro in that program
would cause the compilation of the calling
sequence only, the ONCE pseudo-op reminding
XPOP that it had already compiled the sub­
routine. The following examples will illustrate
uses of W AI TIN, ONCE and local notation-de­
fin,ing pseudo-ops. The first is the pseudo-DO
with its punctuation defined within its own
body:

$
$NEW
)0001

PARAMETER-STRING PUNCTUATION ADOPTED AT THIS POINT

$
$
)0002
$

$15
15

AXT 1,J

DO 15 K=4,48,TWO
AXT 4,K
PHI,J=RHO,J +BETA,J
CLA BETA,J
FAD RHO,J
STO PHI,J
TAU,K=PHI,J +4.
CLA =4.
FAD PHI,J
STO TAU,K
TXI *+l,K,TWO
TXL) 0002 + 1,K,48
TXI *+1,J,01
TXL)0001+1,J,3
END

A use of ONCE is shown next. ONCE may
be used in either of two ways, depending upon
whether its variable field is blank or not.
When the macro in which it occurs is being
expanded and a ONCE with blank variable
field is encountered, the name of the macro is
searched for in a table. If it is found, the rest
of that macro is skipped; if not, it is entered

in the table to be found on later searches and
expansion continues. The procedure followed
if a symbol is found in the variable field differs
only in that the symbol found is used rather
than the name of the macro being expanded.
This type of use permits copies of a subroutine,
a set of constants, or a storage reservation to
be incorporated into the definitions of many

64 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

different macros, with assurance that they will
appear in the object program if and only if
one of the macros is used, and not more than
once no matter how many of them are used.
It is this second type of use that is now shown:

$FIRST
$
$
$
$
$
$
$
$
$SECOND
$
$
$
$
$
$
$
$

$
$

$

MACRO A,B,C
CLA A
ADD B
ONCE M
STO C
END

MACRO X,Y,C
LDQ X
MPY Y
ONCE M
STO C
END

FIRST,ALPHA,BETA,GAMMA
CLA ALPHA
ADD BETA
STO GAMMA

SECOND,PHI,RHO,GAMMA
LDQ PHI
MPY RHO

END

Last among the compilation-control pseudo­
ops that will be discussed here is XPIFF,
which permits the programmer to specify con­
ditions whose satisfaction is a prerequisite to
the compilation of the next line of coding. (It
is, of course, a direct development of the IFF
familiar to users of the FAP-IBMAP family
of assemblers.) The IFF is almost entirely re­
stricted to testing conditions involving source­
program symbols; the direction in which
XPIFF is being developed is that of greater
range of reference. The conditions upon which
XPOP compilation may be made contingent
will include many referring not to source­
program symbols but to the system itself.
When fully developed, this facility should bring
within the compiler-writer's reach the means

of specifying as much object-program optimiz­
ation as he wishes, short of that which, like
FORTRAN's, depends on a flow-analysis of the
entire compiled program.

The kind of optimization available through
XPIFF in its present state is indicated by the
following illustration, where it is used to avoid
compiling loop-initializing and -testing instruc­
tions where they are unnecessary.

$MOVE MACRO A,B,O
$ XPIFF O,X,X
$ MOVMOR A,B,O
$ XPIFF O,X,Y
$ MOVEL A,B
$ END
$
$
$MOVMOR MACRO Q,E,D
$
$)A
$
$
$
$
$
$MOVEL
$
$
$
$
$
$
$
$

$
$
$

)0002

$

AXT D,4
CLA Q+1,4
STO E+1,4
TIX)A,4,1
END

MACRO L,M
CLA L
STO M
END

MOVE,ALPHA,BETA
XPIFF O,X,X
XPIFF O,X,Y
CLA ALPHA
STO BETA

MOVE,ALPHA,BETA,5
XPIFF 5,X,X
AXT 5,4
CLA ALPHA + 1,4
STO BETA+1,4
TIX) 0002,4,1
XPIFF 5,X,Y
END

XECUTE Mode-A Compile-Time Execution
Facility

The XPOP processor may at any point in a
source program be switched into XECUTE
mode, in which succeeding source-language

XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 65

statements are not only compiled but assem­
bled and executed. The programmer switches
into this mode by using the pseudo-op
XECUTE, and reverts to normal processing
by using the pseudo-op COMPYL; the' coding
between each such pair is assembled as a batch,
then executed. XECUTE mode may be used
with great freedom. The programmer may
enter and depart it within a macro; while in
the mode he may use macros (with full nota­
tional flexibility), algebraic expressions, and
everything else that XPOP normally processes
except certain pseudo-ops that would be mean­
ingless at compile time. XECUTE mode was
originally implemented by those' working on
the XPOP processor for their own use in main­
taining and developing that program, and has
proved itself better for such tasks than any
other method we know. It enables us to patch
XPOP in a symbolic language practically iden­
tical to the F AP language in which the proc­
essor itself is written, and to cause these
patches to become effective at such points dur­
ing a compilation as we choose-not neces­
sarily at load time. The effectiveness of any
such patch can be made contingent on results
of program execution thus far, so that tests
otherwise requiring several machine runs can
be accomplished in one. A F AP-like assembly
listing is produced by XPOP \vhile in XECUTE
mode, and the symbolic language employed is
so nearly identical to F AP that the very
cards used for XECUTE-mode patches can
later be used for F AP assembly-updating. *

But this facility is by no means usable only
by those working on the processor itself. It
has the further role of giving the compiler­
designer working with XPOP the ability to
specify pseudo-ops for his compiler, and make
it perform any compile-time functions it re­
quires that are not built into XPOP-building
special tables, setting flags, and so on. It en­
ables the designer to make his system, to any
extent he wishes, an interpreter rather than
a .compiler, or a monitor /operating system
rather than a language processor.

Compile-time execution makes a great va­
riety of special effects readily available to the

* We have produced a subroutine, entirely independ­
ent of XPOP, equivalent to XECUTE mode, and hope
soon to announce its general availability.

programmer. For example, it allows any macro
to be used recursively: just before calling on
itself, such a macro switches into XECUTE
mode, makes whatever test is required to de­
termine whether further recursion is indicated,
then switches back to compile normally either
at or just after the internal call, depending on
the outcome of that test. Another useful facil­
ity it affords is that of trapping any source­
language statement type for such purposes as
counting the number of uses made of it, taking
snapshots of its variables before their values
are changed, or debugging by testing the values
of a procedure's variables just before exiting
from it. Such trapping could be done even at
the machine-language level. If the programmer
wanted to trap all TRA instructions, for ex­
ample, he would define TRA to be a macro,
enter XECUTE mode within that macro to
take the desired compile-time action, then re­
turn to normal processing. (The psuedo-op
ULTLEV-ULTimate LEVel of expansion­
would be used within such an op-code/macro
to prevent the taking of a TRA instruction
within the TRA macro as a recursive call,
with resulting infinite regress.)

One purpose of replacing op codes by macros
of the same name might be to cause each such
extended operator to step a programmed clock
at execution time (as well as executing the
original op code, of course), so that the pro­
grammer can learn exactly how long his rou­
tines take to run-a critically important mat­
ter in real-time applications, which require that
programmed procedures fit into time slots of
fixed size. This capability, together with its
notational-flexibility and immediate-execution
features, makes XPOP particularly suitable
for command and control programming. 6

Language-Preserving Pseudo-Operations

XPOP provides the programmer with a
group of three pseudo-ops that enable him to
order, at any points in his program, that all
macros so far defined be punched onto binary
cards, written onto tape, or both. The use of
any of these- pseudo-ops preserves all macros
then in the system in a highly compact form
(binary-card representation takes about one­
sixth the number of cards that symbolic takes)
and, more important, a form that can be read

66 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

into the system at tape speed on any later
XPOP run, without the time-consuming proc­
ess of scanning and compressing the symbolic­
language definitions. Notation-defining macros
may, of course, be preserved on cards and/or
tape along with code-generating macros. The
tape and/or card deck produced may thus con­
tain a complete programming language of the
programmer's own design in both vocabulary
and notation. This language may then be
changed in any respect during the course of
any ordinary production or debugging run.
Functions may be added or deleted, notation
elaborated or simplified. Because any of these
pseudo-ops can be used as often as desired in
a single program, it is possible to preserve suc­
cessively larger sets of macros, each set con­
taining its predecessors as subsets, as well as
any macros defined since. Each time macros
are punched or written out by means of any
of these pseudo-ops, a report is generated, giv­
ing a-n alphabetized list of the macros pre­
served and the percentage of the system's
macro capacity they occupy.

Another two pseudo-ops are available for
ordering, either during a later XPOP run, or
later in the same run, that predefined macros
be read in either from the input tape (if they
had been preserved on cards) or a reserved
tape (if they had been preserved on tape).
Sets of preserved macros may be read into the

$ WMDT TEST,~6

system at any point in any program, making
it possible to switch languages in mid program.
This greatly facilitates the consolidation into
one program of sections written by several pro­
grammers using different XPOP-based lan­
guages-each section simply begins by reading
into the system the language in which it was
written.

The five pseudo-ops, and their exact effects,
are given in Table 1.

As is shown in the following example, the
programmer may override XPOP's built-in as­
sumptions about the tapes that WMDT,
W APMD, and RMDT refer to. He does so
simply by specifying, either by logical or by
FORTRAN tape designation, the unit he
wishes to address. He may also assign a name
to each file when he creates it, and later re­
trieve it by name; this permits many languages
to be stacked on a tape while sparing the pro­
grammer any concern over the position of the
one of interest to him. In the example below,
the programmer has used WMDT to write his
language onto logical tape A6 under the name
'TEST'. His language consists of three macros,
whose names are then listed by XPOP. (Since
the amount of available core storage used by
these three was less than one-half percent, it
is given as zero percent.) He then read this
language back in again, this time addressing
the tape by its FORTRAN designation, 11.

$THE FOLLOWING MACROS HAVE BEEN OUTPUT ON TAPE
$ TEST2
$ TESTER
$ TESTXC
$ 00 PER CENT OF AVAILABLE SPACE HAS BEEN USED
$ RMDT TEST,ll
$ALL PREVIOUS MACROS HAVE BEEN DESTROYED BY THE USE OF RMDT

Debugging Tools-The XRA Y

XPOP provides one unconventional tool for
finding bugs that our experience has shown
to be highly useful, and which might readily be
incorporated into other systems. This is the
XRA Y -a structured, interpreted, and cap­
tioned dump of core memory and the output
tape. It prints out the chief buffers, tables,
and character-strings in the system in mean­
ingful format and (where one exists) external
representation, as well as all the program com-

piled so far (whether still in core or already
on tape), and a standard octal dump of as
much of core memory as the programmer may
require. In case of system trouble or source­
program trouble not covered by one of XPOP's
50-odd error messages, the first thing the
XPOP programmer will want to check is that
the macro definitions were properly accepted
and packed away, and these definitions are
accordingly converted back to original input
form and exhibited first. Because these defini-

XPOP: A META-LANGUAGE WITHOUT METAPHYSICS 67

TABLE 1 THE LANGUAGE-PRESERVING PSEUDO-OPERATIONS

Pseudo-op

WMDT

PMDC

WAPMD

RMDT

RMDC

Meaning

Write Macro-Definition tape

Punch Macro-Definition Cards

Write and Punch Macro Defini­
tions

Read Macro-Definition Tape

Read Macro-Definition Cards

tions, as seen in an XRAY, have undergone
both compression into internal form and ex­
pansion back into input form, the programmer
who can recognize his macros there can feel
some assurance that they were properly digest­
ed by XPOP. He will next want to see how the
system has scanned the last statement it saw;
for this purpose he is given a print-out of the
table that shows what symbols XPOP ex­
tracted from that statement as the parameters,
and how it paired them off with dummy vari­
ables. Following this he is shown that part
of the compiled program still in the system's
output buffer, then that part already written
out onto tape. Finally, the XRAY will present
as much of core memory in standard octal
dump format as the programmer may have
specified in the variable field of the XRAY
pseudo-op that triggers this output.

XRA Y s can be obtained in two ways. One
is to use the pseudo-op explicitly at whatever
points trouble has shown up in a previous run,
or is to be feared; the other is to order compila­
tion in XPER (eXPERimental) mode, which
may be started at any point in the program by
use of the pseudo-op XPER. In this mode,
the detection by XPOP of any error in the
source program or the system itself causes the
generation of an XRAY-and one will be gen­
erated at the end of the program in any case.
The two methods may be combined, the pro­
grammer calling explicitly for XRAY s at some
points as well as compiling all or parts of his

Action Caused

Writes definitions and associated informa­
tion in binary on logical tape A5

Writes definitions and associated informa­
tion in card-image format on system
punch tape

Causes both tape files described above to
be written

Reads in from logical tape B5 a binary
file created by a 'WMDT' or 'WAPMD'

Reads in from the input tape binary rec­
ords representing a deck produced by a
'PMDC' or a 'w APMD'

program in XPER mode. The information
presented by an XRA Y as presently consti­
tuted is not fully adequate (hence the selective
octal dump as a backup), and additions to it
are being made, but experience indicates that
the gain in intelligibility of information pre­
sented in XRAY form over that given in octal
dumps is great enough to mark a step forward
in bug-finding methods, as we think that
XECUTE mode does in bug-correction. The
joint power of the two source language facili­
ties suggests the possibility of some experi­
ments in on-line debugging; we hope to report
on these later.

ACKNOWLEDGMENTS

The general macro-instruction concept, as
well as many details of format, are derived
from the BE-SYS systems created at Bell Tele­
phone Laboratories and generally associated
with the names D. E. Eastwood and M. D.
McIlroy.

Three projects similar at least in spirit to
XPOP but which came to the author's attention
too late to play any part in the XPOP design
are the Generalized Assembly System (GAS)
of G. H. Mealy,' the Self-Extending Translator
(SET) of R. K. Bennett and A. H. Kvilekval,8
and the Meta-Assembly Language of (presum-
ably) D. E. Ferguson.!) .

At Lockheed Missiles & Space Company the
author's principal debt is to B. D. Rudin, W. F.

68 PROCEEDINGS~F ALL JOINT COMPUTER CONFERENCE, 1964

Main, and C. E. Duncan for steady faith and
support over long bleak stretches. Much of the
coding of the processor and most of the daily
problems fell to W. H. Mead, Marion Miller,
M. Roger Stark, and A. D. Stiegler.

The author is grateful to C. J. Shaw of Sys­
tem Development Corporation for an acute
critique of XPOP that has helped to improve
the presentation and to pinpoint the areas in
which further development is most needed.10

Thanks are also due to P. Z. Ingerman of
Westinghouse Electric Corporation for useful
discussions on the relationship between XPOP
and syntax-driven compilers, and for the op­
portunity to read part of his forthcoming book
on such compilers.3

REFERENCES

1. IRONS, E. T., "A Syntax Directed Compiler
for ALGOL 60," Communications of the
ACM, January 1961, pp. 51-55.

2. FLOYD, R. W., "The Syntax of Program­
ming Languages - A Survey," IEEE
Transactions on Electronic Computers.
EC-13, August 1964, pp. 346-353.

3. INGERMAN, P. Z., A Syntax Oriented Trans­
lator (New York: Academic Press, to be
published) .

4. HALPERN, M. I., An Introduction to the
XPOP Programming System, Lockheed
Missiles & Space Co., Electronic Sciences
Laboratory, January 1964.

5. , "Computers and False Economics,"
Datamation, April 1964, pp. 26-28.

6. , A Programming System for Com-
mand and Control Applications, Technical
Report 5-10-63-26, Lockheed Missiles &
Space Co., July 25, 1963.

7. MEALY, G. H., A Generalized Assembly
System, Memorandum RM-3646-PR, The
RAND Corporation, August 1963 (2nd
printing) .

8. BENNETT, R. K., and A. H. KVILEKVAL,
SET: Self-Extending Translator, Memo
TM-2, Data Processing, Inc., March 3,
1964.

9. FERGUSON, D. E., "The Meta-Assembly
Language," address presented before the
Special Interest Group on Programming
Languages, Los. Angeles Chapter of ACM,
July 21, 1964 [information taken from the
announcement] .

10. SHAW, C. J., "On Halpern's XPOP," Sys­
tem Development Corporation, unpub­
lished, undated [early 1964].

A 10 Me NDRO BIAX MEMORY OF 1024 WORD,
48 BIT PER WORD CAPACITY

William I. Pyle
Theodore E. Chavannes
Robert M. MacIntyre
Philco Corporation

Ford Road, Newport Beach, California

INTRODUCTION

Most of the approaches to fast read access
memories in the past have been centered about
the achievement of either faster conventional
destructive switching, or the use of various
non-destructive readout techniques and storage
devices. Many of these techniques have in­
herent drawbacks for very fast read operation,
such as the necessity for rewriting, in the case
of conventional switching approaches, or the
lack of truly non-destructive properties. The
memory system described in this paper solves
these problems by utilizing the BIAX memory
element, with its inherently non-destructive
readout properties, in a system organized to
minimize circuit delays and utilize transmis­
sion line properties for the various signal
paths. In this manner it is possible to achieve
random read access times of 85 nanoseconds
maximum since most inductive components are
incorporated into the various transmission
lines with the lines being terminated in their
characteristic impedance. Not only is the
memory designed for very high readout rates
in the non-destructive mode, but it is electri­
cally alterable with conventional linear select
methods in five microseconds or less.

The sections which follow will describe the
system design concepts, operation of the BIAX
memory system, and the circuit and packaging
designs which were used to achieve the system
performance.

69

SYSTEM DESCRIPTION

System Design Goals
The basic goals of the memory program

were to design and construct an operating
model of a 1024 word, 48 bit per word memory
capable of 10 Mc. random access non-destruc­
tive readout (NDRO) while being electrically
alterable with a write cycle time of five micro­
seconds. Although the performance require­
ments were of prime concern it was neverthe­
less necessary to utilize state-of-the-art
components to insure that a practical system
would ultimately result. Table I outlines the
system characteristics which resulted.

System Organization
The organization of any memory system is,

in general, related to the desired speed of
operation. If the primary design goal is the
achievement of very short read access time it
is usually mandatory that parallel operation of

• CAPAOTY: 1024 WORDS, 48 BITS PER WORD

• REPETITIVE READ CYCLE TIME: 100 NANOSECONDS

• READ ACCESS TIME: 85 NANOSECONDS (MAXIMUM)
(RANDOM ACCESS)

• REPETITIVE WRITE CYCLE TIME: 5 MICROSECONDS

• REPETITIVE WRITE/READ CYCLE TIME: 10 MICROSECONDS

Table 1. Memory System Characteristics.

70 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

many parts of the memory be employed. The
block diagram of Figure 1 shows how this type
of parallel organization is employed to achieve
10 Mc. NDRO operation. In this diagram it
is seen that the flow of information for a typi­
cal readout operation is through the input
buffer, read decoder, interrogate drivers, BIAX
array, sense amplifiers, and output register.
To achieve the goal of 85 nanoseconds read
access time, the propagation delays through
the functional parts of the system as shown in
Figure 2 1 were necessary.

'The achievement of these propagation de­
lays necessitated the use of certain specific
organizations of the circuitry within the mem­
ory read system. These organizational factors
and how they were applied to the 10 Mc.
NDRO memory are listed below.

1) Every signal path involved in the read
operation, including interconnections,
must be considered in terms of its trans­
mission line characteristic impedance and
propagation delay. This is especially
true in the BIAX array where the in­
ductance of wires passing through many
elements is substantial.

2) When the array signal transmission
paths are portions of transmission lines,
the total array delay is approximately
the sum of the interrogate line delay plus
sense line delay. Therefore the minimum
total array delay usually results when
the number of array words is approxi­
mately equal to the number of bits per
word. In this memory, the 256 word by
192 bit per word array organization per­
mits achievement of near minimum delay
within the array.

Figure 1. 10 Me. NDRO BIAX Memory Organization.

~---------------------------

NANOSECONDS

Figure 2. 10 Me. BIAX NDRO Cycle.

100
CYQ.E
TIME

3) Read address decoding must be accomp­
lished at as low a signal level as prac­
tical, with high level gating kept to a
mInImum. In order to effeetively ac­
complish this end it is necessary to use
one interrogate driver per array word
and a 1 of 256 decoder. Although 256 in­
terrogate driver circuits are used each
circuit is simple since it drives a trans­
mission line terminated in its character­
istic impedance.

4) The BIAX output signals produced by
the interrogation of a word must be
strobed at the earliest possible time fol­
lowing the interrogation. In this mem­
ory it is accomplished by strobing the
sense amplifier with timing pulses de­
rived from the array itself. By using
these array-derived strobing pulses each
sense amplifier output is strobed at an
optimum time and variation in signal de­
lays due to physical location of the word
within the array or degradation of the
interrogate pulse rise time is automati­
cally compensated for.

5) All circuits associated with the NDRO
portion of the memory must be located
as close as possible to the array to mini­
mize interconnection delays. In the
memory this is accomplished by arrang­
ing the read circuits on two sides of the
array, and making interconnections via
twisted pair lines.

M emory System Design and Operation
The memory described here has two basic

modes of operation, non-destructive readout
and, a writing mode, both of which utilize
linear or word select techniques for address
selections.

NDRO Mode
The basic concept employed to achieve non­

destructive readout in the BIAX element is

A 10MC NDRO BIAX MEMORY OF 1024 WORDS 71

DIMENSIONS IN MlLLI.INCHES

Figure 3. Nominal BIAX Physical Characteristics.

one involving crossed or quadrature magnetic
fields in a common volume of square loop
magentic material. 2-5 The BIAX element used
in the 10 Mc. memory is a pressed block of
ferrite material having two non-intersecting
orthogonal holes. The physical dimensions are
approximately 50 x 50 x 85 milli-inches (mils)
with two circular holes, one 30 mils in diam­
eter, the other 20 mils in diameter (Fig. 3).
Information is stored by saturating the mag­
netic material around the 30 mil hole (the
storage hole). 'The storage hole contains the
windings necessary to write into the memory
element and to sense signal output. The inter-

.... AX II.IIIIIIn FLUX PA TTIIN

IIf PUll

rogate hole contains a single conductor for
interrogation of the memory element.

Interrogation of the element is accomplished
by applying a current producing flux in the
same direction as flux already established
around the interrogate hole. The current
causes the domains in the common volume to
be re-oriented toward the direction of the flux
linking the interrogate hole. This reorientation
decreases the flux linking the storage hole and
thereby gives rise to a dcp/ dt voltage on the
sense winding passing through the stor.age
hole. The polarity of this voltage is dependent
on the orientation of the flux linking the stor­
age hole, consequently, a selected polarity of
element output voltage will be observed for a
ONE and the opposite polarity for a ZERO
(See Figure 4C). Upon termination of the
interrogate pulse, the domains in the common
volume revert back to their original permanent
flux condition and a true non-destructive read­
out is achieved. Several advantages result
from the use of this principle as employed in
the BIAX memory element. First, the interro­
gate process introduces no measurable delay in
the read operation and is therefore quite appli­
cable to very high speed reading. Secondly,
since the interrogation process involves only
shuttling of flux around the interrogate hole,
the inductance of the wires passing through a

Figure 4. The BIAX Principle.

72 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

number of elements is sufficiently linear to
permit low loss wide bandwidth transmission
lines to be constructed using the BIAX element
inductance and the associated array capaci­
tance. By using the array construction tech­
niques described later in this paper, it was pos­
sible to achieve transmission line impedance
as low as 200 ohms while propagating pulse
rise times less than 5 nsec.

NDRO operation of the memory is initiated
upon receipt of a clocked read command after
the address levels have stabilized. The ten
address bits and their complements are con­
verted by the input buffer to levels required by
the read address decoder. The decoder selects
one unique path of the possible 256 and acti­
vates the interrogate driver connected to the
decoder output. The actual decoding process
starts with the occurrence of the clocked read
command and proceeds through the various
levels of the decoder at a rate limited only by
the response of the circuits in the path corre­
sponding to that address. Figure 5 shows the
functional breakdown of the input portion of
the memory. To accomplish the required 1 of
256 decoding, it is seen that two decoders, a 64
place, and a 4 place, are used. The primary
advantage of this method is that it minimizes
the number of gating levels since the decoders
operate in parallel. The 4 place decoder is a
clocked unit, while the 64 place is unclocked
and the outputs of the two decoders are com­
bined at the input of the interrogate driver

circuits with another level of gating. Since
the memory array is organized as 256 words
of 192 bits, only eight of the ten address bits
are required for decoding at the input to the
memory, with the remaining two address bits
being employed to select the desired 48 bits (of
the 192 available) to be transferred to the 48
hit memory output register.

When a particular interrogate driver has
been activated, it is necessary to extract the
stored information from the array within 10
nanoseconds if the total memory read access
time of 85 nanoseconds is to be achieved. To
understand the difficulty of achieving the 10
nanosecond array delay with conventional con­
stant current techniques, consider the follow­
ing calculations: Assume that each interrogate
line consists of approximately 200 elements,
each exhibiting an inductance of 30 nanohen­
ries. By lumping all the inductances, a total
inductance of 6 microhenries would result.
U sing conventional constant current drive
techniques, to achieve 80 rna. within 10 nano­
seconds would require the following voltage:

'L~I
E== ~T

6-10-li (80-10-3)

E 10-8

E=48 V

(1)

(2)

(3)

It was felt that not only would a 48 volt cur­
rent source be impractical since 256 were re-

TO WRITE CIROJITS

~

J
~

READ COMMAND INHIBIT INPUT
BUFFERS

WRI TE COMMAND

~

.. 6" PLACE ..
6 BITS r DECODER -

ADDRESS DECODER
INPUTS ~ OUTPUT "AND"
10 BITS GATES AND

TO BIAX ..
2 BITS INTERROGATE ARRAY

DRIVERS
2 BITS .-..I~

~ READ COMMAND" ..
"PLACE
DECODER

r
SYSTEM CLOCK DECODE .. I ADDRESS .1 TO "T" GENERATORS

CLOCK .. ~ FLIP FLOPS I
r GENERATORI 1(2) -

Figure 5_ 10 Me. BIAX NDRO Memory Input Block Diagram.

A 10MC NDRO BIAX MEMORY OF 1024 WORDS 73

IHTERIIDGAT!

DRIVER

Figure 6. Simple BIAX Interrogate Line Equivalent
Circuit.

quired, but it also would introduce reactive
transients which would seriously limit the
maximum interrogation rate. In order to bring
the required interrogate drive voltage within
practical limits, and to minimize transients,
the terminated transmission line concept of
operation was employed in the memory array.
Figure 6 shows the schematic representation
of a simple BIAX transmission line. In this
figure, each lumped inductance is represented
by one BIAX element through which an inter­
rogate wire passes, and the capacitance is that
between the wire and the ground plane.

If one calculates the properties of the trans­
mission line 6, assuming an element inductance
of 30 nh per element, with elements spaced at
approximately 0.125 inch intervals and located
above the ground plane, the line will exhibit a
characteristic impedance of approximately 500
ohms. Were a line with such a high characteris­
tic impedance to be used for the memory inter­
rogate line, certain problems would be en­
countered. First the drive voltage required to
achieve 80 mao interrogate current would be
40V, and even with a constant voltage driver,
it is excessive from a practical circuit stand­
point. Secondly, such a large excursion in
voltage on the interrogate line introduces noise
onto the sense line by capacitive coupling
through the element, even though this capaci­
tance is only about 0.01 pf. per element.. Third,
if this transmission line consisted of 200 sec­
tions, corresponding to the required word
length in the array, the delay would be ap­
proximately 12 nsec. (Fig; 7). In order to
alleviate these problems, several steps were
taken to alter the electrical length, impedance
and driving characteristics of the lines. These
sfeps are described briefly below.

To reduce the driving voltage requirements,
the line impedance was. reduced by two means.
First, the elements were offset as shown in

...
~

I

! \
J 1
\ \

'-

/

I
I

: I
i
!

bJ.V

1".

I
1/

~~

TIME BASE"' 2D NSEClDlV
VERT. SCALE = 2V/DiV

LINE IMPEDANCE = !500 OHMS

Figure 7. Interrogate Pulse Propagation Through 200
Element Transmission Line.

Fig. 8 and treated essentially as two trans­
mission lines in parallel, and further split into
two additional parallel lines. Since each wire
passes through only half as many elements
(and inductance) per unit of capacitance as for
the single line, the impedance is reduced to 0.7
of the single line value. It should be noted that
the delay per section of line is actually greater
for the offset placement by a factor of ·1.4, but
since only half as many sections are employed
(by driving in parallel), the net propagation
delay is reduced to 0.7 of the single line value.
The second means employed to reduce the im­
pedance of the interrogate line is also shown
in Fig. 8. This method consists of introducing
a perforated metallic shielding mask around
each element between the two holes. This in­
creases the capacitance per section by approxi­
mately another factor of three, and brings the
characteristic impedance down to approxi­
mately 200 ohms.

The methods described above, employed to
reduce the transmission line characteritic im­
pedance, did reduce the drive voltage require­
ments to about 12 V and as a result, the capaci­
tive coupling to the sense line through the
BIAX element was reduced accordingly. Even
so, an objectionable amount of noise was still
observed due to the coupling. Two measures
were taken to eliminate this problem. The
offsetting of the elements as shown in Fig. 8
necessitated driving the two lines in parallel.
Because of the inherent properties of the
BIAX element, interrogation can be accomp­
lished with either polarity pulse, if it is in the

74 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

!LEMBn' PLACEMBn' • SIDE Yin

IMTEIIlOG.\TE
DIlIVO

ELBIINT PLACEMENT· TOPYID

Figure.~. Dual BIAX Interrogate Line-Physical Configuration.

same .direction as the previously established
flux around the interrogate hole. This property
of the BIAX element was used to reduce the
capacitively coupled noise to the sense line by
using pulses of equal amplitude and simultane­
ous rise times but of opposite polarity applied
to the offset lines. Since a given sense line
crosses both of these offset interrogate lines,
the total capacitive coupling is reduced to a
value proportional to the algebraic sum of the
opposite polarity interrogate voltages during
the rise time. Since this method did not. pro­
vide perfert cancellation of the capacitively

BIAX OUTPUT WHEN IHTERROGA TED

20 OHM STRIP TRANSMl6SlON LINES

SENSE LINE LOCALLIZED GROUND PLANES

coupled noise, an additional method was em­
ployed to provide partial cancellation of re­
maining noise on the sense line. In Fig. 9 it
is seen that the sense line is divided into eight
segments of 32 bits each. Within each seg­
ment, the electrical length of the line is short
compared to the interrogate pulse rise time,
and one end of each segment is returned to
ground. When capacitive noise is introduced
into the segment, it propagates to the grounded
end and is reflected back to the source in­
verted, providing effective cancellation of the
noise pulse.

SENSE AMPLIFIER

Figure 9. Sense Line Summing Equivalent Circuit.

A lOMe NDRO BIAX MEMORY OF 1024 WORDS 75

When an output is produced from an ele­
ment by interrogation, the isolation resistors
shown in Fig. 9 create, in effect, a constant
current source. The sense amplifier is then
designed with a very low input impedance to
provide compatibility with the sense line sum­
ming method. In the present memory, the
sense amplifier has an input impedance of ap­
proximately 15 ohms, and receives its input
from the array not more than 10 nsec after the
50 % point of the interrogate pulse.

When the signals are observed at the output
of the sense amplifier the time delay (relative
to the interrogate pulse) depends ~oth upon
the physical word location relative to the sense
amplifier and the location of the bit in the
word relative to the interrogate driver. In
the present memory, this delay ranges from a
minimum of essentially zero to a maximum of
ten nanoseconds, not including the delay
through the sense amplifier. This variation,
added to the variation in decoding delay, ren­
ders it difficult, if not impossible to strobe all
192 sense amplifiers reliably with a pulse fixed
in time while still maintaining the required
access time. To avoid this problem, the pulse
used to strobe the sense amplifier is derived
from the same region of the array as is the
information. This can best be understood by
considering Figure 10. Each group of 48

256 WORDS

sense amplifiers is accompanied by a 49th bit,
identical to the other 48, which provides the
input to a pulse generator ("T" pulse genera­
tor) the output of which is used to strobe the
48 sense amplifiers in that group. In so doing
the inherent time variations in signal output
due to word and bit location within the array,
degradation of the interrogate pulse rise time,
and variations in decoding time are automati­
cally compensated for. Figure 10 also shows a
function block called "8" clock generator. The
pulse from this generator, which is also de­
rived from the array, is used to set those out­
put register flip flops which do not receive a
reset input from the "T" gate. This technique
permits the use of simple one input or "D"
flip flops 7 in the output register.

The final operation which occurs in NDRO
is selection, by the two most significant address
bits, of the proper group of 48 sense amplifiers
whose strobed outputs are to establish the state
of the memory output register. This selection
is accomplished by permitting only one of the
four "T" generators to be activated at any time
thus producing an output on only one of the
four "OR" inputs to each of the memory out­
put flip flops.

Write Mode
It will be recalled that the organization of

the array for reading is as 256 words of 192

BIAX ARRAY

OUTPUT ReSISTER
C4 FLlP.flOPS)

C819

Figure 10. 10 Mc. NDRO BIAX Memory Output Block Diagram.

76 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

.ITICYCU

_WIITI
PULSIS

IIT.ITI
PUUIS

y
-'fttTI

UlIS

IIT TI LIllIS

Figure 11. BIAX Array Element Orientation and Write Current Program.

bits per word. For writing however, the
array is organized as 1024 words of 48 bits per
word, and conventional linear select techniques
a;e used. The elements are oriented and
wired in the array such that current pulses
pass in both the word and bit directions and
selective writing is accomplished by the coin­
cidence of a word oriented word write pulse
and bit oriented write pulse. The orientations
of the BIAX elements within the array and the

write current program are shown in Figure
11. The word write pulse currents consists of a
fixed sequence of two opposite polarity word
write currents, and a time-overlapping bit
current whose polarity depends upon the
binary state of the information to be stored.
In order to select the appropriate word of the
1024 for writing, a matrix of 16 word drivers
and 64 word switches, organized as shown in
Figure 12, is used.

TEWERATURE j {BIPOLAR BIT DRIVERS CONTROLLED
VOLTAGE ~ TO: WORD .1 DRIVERS
REGULATORS WORD.Q DRIVERS

ADDRESS
... ----1

10 BITS

WRITE CDlMAHD

DATAIMPUT

OBITS

ADDRESS
BUFFER

4 BITS

6 BITS

ARRAY
(ORGANIUnOM FOR WRlnMG)

~-.... • 024 WORDS
.. BITS PER WORD

Figure 12. Memory Write System Block Diagram.

A lOMe NDRO BIAX MEMORY OF 1024 WORDS 77

Receipt of the write command activates the
write cycle by starting the fixed sequence of
word current pulses and permitting the 48 bi­
polar bit drivers to generate currents in a di­
rection dictated by the data inputs (Figure
11). 'The portion of the write cycle during
which element switching occurs, if it occurs at
all, is determined by the information carried
by the bit current and the previous history of
the element. Both the bit and word currents
are temperature compensated to permit opti­
mum switching of the elements with minimum
disturb over a temperature range of ooe to
50°C. Nominal write system operating param­
eters for the memory are given in Table II.

MEMORY SYSTEM FABRICATION AND
PERFORMANCE

Fabrication and Packaging

The complete 1024 x 48 memory described in
the preceding portion of this paper was de­
signed, fabricated and tested. The completed
memory is shown in Figure 13. In this photo­
graph are identified the following essential
parts of the memory.

1. Array and Read Circuits

One of the four memory array planes is
visible in Figure 13. Note that the decoder
and interrogate driver circuits, located above
the array, and the sense circuits and memory
output circuits to the right of the array, both
are mounted as physical extensions of the main
array ground plane. This was done primarily
to minimize propagation times and to avoid .
ground noise problems. Each of the four array
planes is divided into eight sections as shown
in the photograph. This results from the re­
quired segmenting of the sense lines (refer to
Fig. 9), and because word write lines must be
terminated at 48 bi·t intervals. The allocation

TOTAL WRITE CYCLE TIME

WRITE. READ CYCLE TIME

WORD CURRENT AMPLITUDE FIRST (lIln)
(25°C) SECOND (lion)

BIT CURRENT AMPLITUDE
(25"C)

5" SEC MAX

10" SEC MAX

+200 ala

• 200 ala

± 95 ala

Table II. Write System Parameters.

Figure 13. 10 Me. NDRO BIAX Memory.

of spare word and bit lines is made so that
each of the eight sections contains two word
spares and two bit spares and a spare for the
'''T'' line. Therefore each section contains 34
x 52 or 1768 elements. Since each section is
identical, each array plane contains 14,144
BIAX elements and the entire memory array
consists of 56,576 elements. Figure 14 shows

Figure 14. Detailed View of 10 Me. NDRO Array.

78 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

a detailed view of one section of the array.
From this photograph can be seen the dual
interrogate lines, offset to permit straight wire
looming. The element-to-element spacing in
both the horizontal and vertical directions is
0.125 inches. A shielding mask can be seen,
positioned between the holes of the BIAX
element forming the ground plane for the in­
terrogate transmission line. In the lower
center of Figure 14 in the gap between the
shielding masks 'are the sense lines with their
isolation resistors, and the bit lines. Seen near
the top of the picture are the twisted pairs
which connect to the interrogate drivers, the
word write lines and word select diodes.

2. Write Circuits
The write circuits used in the memory can

be seen in Fig. 13 mounted in two card racks
below the array. These circuits are of con­
ventional design and are the same type of cir­
cuits -used in other BIAX memory systems.

3. Power Supplies and Cooling Fans
Power supplies and blowers occupy the

lower regions of the memory cabinet, and are
of standard off-the-shelf variety. All power
supplies have voltage regulation of 0.170 or
better and are current limited to provide pro­
tection to the memory circuits.

M emory System Performance
The 10Mc. NDRO memory has been exten­

sively tested to determine its performance
characteristics. Figures 15 and 16 show wave­
forms at various locations in the memory for
NDRO operation. Figures 15A through F

I('(If
rr II..

" = '!CV!~v.

fJ

'" r"-'i'\
ERT. =5Y/DIV.

J
....... 1-" -ERT. = 'lV/DIY.

ERT.:: 2V/DlY.

E,CEPT AS HOTEl> TIME lASE = 1II "SEC/I"
YERT, SCALE = 7¥/DI¥

\J
I\..~

""

J

\
II. MEMORY SYSTBI CLOCK

I, SLOWEST ADDRESS lIT

I
C. INTERIOGATE PULSE

:'\ ([\ (
\l!\J U

I>- SE"SE AMPLIFIER OUlPUT

I\..r
./" ~.,.;"

oJ E. TillE STROlE ("T") GATE OUTPUT

\
f ... BIOIY OUTPUT IEGISTER FLIP.flOP

Figure 15. 10 Mc. NDRO BIAX Memory Read Cycle
Timing Waveforms.

show the read operation from the beginning of
decoding, through the decoder and interrogate
driver selection, and through the sense ampli­
fier and time strobing, and to the memory out­
put register. Figure 16 shows detailed photo­
graphs of read circuit waveforms. In Figures
16C and D are shown the access time measure­
ment from the 50 % point of the system clock
(negative going) to the response of the
memory output flip flop. This acces,s time rep­
resents the longest access time for any word
or bit in the memory.

The memory also underwent considerable
testing to determine its operating reliability
under various conditions of patterns and cycle
rates for both the NDRO and write/read
modes. To' facilitate th~ testing, a memory
exerciser which was capable of generating an
almost unlimited number of bit and word
patterns and error checking each pattern in
both NDRO and write/read, was employed. By

VIRT. = IIV/DIV. A. IIITIRIOGATI I'IILSI

~-~-"n .• "~' _Zi ;~ L ~:~~~,

L INTIRIOGATI I'ULSiS
(POSITIve AND MlGATlY!)
NOR. • !M SIC/DIY.
VlRT. = 2VIDIV.

Figure 16. 10 Me. NDRO BIAX Memory Read Circuit Waveforms.

A lOMe NDRO BIAX MEMORY OF 1024 WORDS 79

utilizing this exerciser, errors from any origin
caused the equipment to stop and indicate the
word and bit location of the error. During the
equipment checkout phase, tests representing
voltage and write current variations, as well
as worst-case patterns and cycle times, were
run as a matter of course. To demonstrate
that reliable system operation was being ob­
tained, each pattern was run for a ten minute
period of time; resulting in a total of 3.1011 bits
having been error checked. In this time, each
bit in the memory was error checked 6.106

times, and because of the memory organiza­
tion, had actually been interrogated 24.106

times. As an acceptance test for the memory,
fourteen patterns were each run for the re­
quired ten minute period, representing a total
of approximately 42.1011 error checks of stored
information. Each pattern was also run for
the write-read-error check mode for a thirty
minute period with a read-after-write error
check at a write-read cycle time of 9 micro­
seconds. 'The entire acceptance test procedure
involved approximately 40 hours of error free
system operating time.

FUTURE AREAS OF INVESTIGATION

Although work has been completed on the
memory system described in this paper, many
extensions of the techniques are possible. Be­
low are described a few of the more promising
approaches and areas in which further work
is being done.

Variations in Word Organization

Although the memory. described in this
paper is organized as 1024 words of 48 bits per
word, since the array is organized for reading
as 256 words of 192 bits per word, many varia­
tions in effective memory organization are pos­
sible. For example, a read organization of 256
words of 192 bits per word could be readily
achieved with minimum modifications. Simi­
larly, word lengths between 48 and 192 bits
can be achieved. In summary, many combina­
tions of word lengths and bits per word can be
realized for NDRO operation with the existing
array design, as long as the total storage ca­
pacity is not exceeded, although with the pres­
ent array, writing must still be performed on
a 48 bit per word basis.

Access Time Reduction
In Figure 2 at the beginning of this paper,

it was noted that the BIAX array contributed
only about 10 nanoseconds to the 80 nanosecond
typical access time. In view of this it appears
quite feasible to reduce the access time sub­
stantially by appropriate circuit design effort,
as the NDRO operation of the BIAX element
is not a limiting factor.

Faster Read Cycle Times
In the same way that the access time can be

reduced, it is quite possible to increase the
reading rate to 20 Mc. or more while still using
the same array and system organization prin­
ciples.

Increased Storage Capacity
The present memory capacity of 1024 words

in no way represents the practical limit for
this fast NDRO technique. It seems quite
likely that word capacities of two or four times
the present memory could be achieved with
perhaps a 120 nanosecond access time.

Reduced System Volume
No effort was made to minimize the physical

size of the present memory, rather it was de­
signed specifically for physical access to the
array. By appropriately folding the array and
repackaging the circuits, the physical size of
a system should be consistent with other· core
memories of similar capacities.

Airborne Applications
The BIAX element and its low power non­

destructive readout properties are particularly
well suited for airborne applications. For this
reason, BIAX elements for use at temperatures
from -55°C to+100°C have been developed
by Aeronutronic and are being employed in
various systems. 'The techniques used in the
10 Mc. NDRO BIAX memory can be readily
applied to this type of element to produce very
fast NDRO operation over a wide range of
temperature.

MicroBIAX Applications
The BIAX element used in the 10 Mc. NDRO

memory employed elements developed before
the start of the memory project. A major in­
house program is now underway to develop a
MicroBIAX element having outside dimensions
of 30 x 30 x 50 mils. These elements offer

80 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

greatly improved characteristics, particularly
for write cycles of 1-2 JJ. sec. In addition,
faster NDRO operation, better performance
over wide temperature ranges, simpler array
wiring configurations, as well as the obvious
sIze advantages are offered by the MicroBIAX
element. The potential applications for this
class of new elements is almost unlimited, and
it is expected that MicroBIAX elements will
be employed in most of the new memory sys­
tems which are developed in the future.

ACKNOWLEDGMENT
This work was sponsored in part by ·the De­

partment of Defense. Many people in addition
to the authors have contributed to the success
of the program, but in particular the efforts of
C. M. Sciandra in preparation of elements and
C. L. Cantor and M. J. VanZanten in the de­
sign and testing of the system are greatly
appreciated.

REFERENCES.
1. J. A. RAJCHMAN: "Magnetic Memories;

Capabilities and Limitations", Computer
Design, September 1963.

2. C. L. WANLASS and S. D. WANLASS, "BIAX
High Speed Computer Element", WES­
CON, 1959.

3. DUDLEY A. BUCK and WERNER 1. FRANK,
"N ondestructive Sensing of Magnetic
Cores", AlEE Technical Paper 53-409,
October 1953.

4. ATHANASIOS PAPOULIS, "The Nondestruc­
tive Read-Out of Magnetic Cores", Proceed­
ings of the IRE, Vol. 42, pp. 1283-1288,
August 1954.

5. U. F. GIANOLA and D. B. JAMES, "Ferro­
magnetic Coupling between Crossed Coils",
Journal of Applied Physics, Vol. 27, No.5,
pp. 608-609, June 1956.

6. JACOB MILLMAN and HERBERT TAUB, Pulse
and Digital Circuits (Mc Graw-Hill Book
Co., Inc., New York, 1956), Chap. 10, pp.
291-295.

7. MONTGOMERY PHISTER, JR., Logical Design
of Digital Computers, (John Wiley & Sons,
Inc., New York, 1958), Chap. 5, p. 126.

ASSOCIATIVE MEMORY SYSTEM

IMPLEMENTATION AN D CHARACTERISTICS
J. E. McAteer and J. A. Capobianco

Hughes Aircraft Company, Ground Systems Group
Fullerton, California

and
R. L. Koppel

Autonetics Division of North American Aviation
Anaheim, California

1. INTRODUCTION

The implementation of a new system utilizing
state-of-the-art technologies requires a careful
engineering evaluation of all parameters affect­
ing such a design. In particular, when new sys­
tem concepts are needed and the available de­
vices for mechanization have been designed for
a different class of system, the problems become
much more severe. Such is the case with As­
sociative Memory (AM) systems where an en­
tirely new system organizational concept places
exacting requirements on the existing technol­
ogy of information storage, as is evidenced by
the many techniques which have been proposed
for implementation. 2- 8

It has been determined through study and
evaluation of storage media that the BIAX*
element,l a rYlultiaperture ferrite core, possesses
the most desirable characteristics for imple­
menting an associative memory today. The
utilization of the BIAX element in the mechani­
zation of an AM is not limited to -one con­
figuration. The repertoire of possible methods
consists of one-BIAX-per-bit and two-BIAX­
per-bit schemes, and, within each of these areas
there exist different ways of utilization. Th~

* Registered Trademark, Philco Corp.

81

choice of the mechanization methods is depend­
ent on the application and would be a result of
detailed system analysis and tradeoff studies.
The first part of this paper details the mechani­
zation techniques of an associative memory with
the BIAX element. In particular, a new mode
of use of the BIAX element is presented which
enables extremely fast search times to be real­
ized. The number of functions which an AM
can perform are many and varied. These func­
tions may be broadly classified in the following
way:

1. Search Functions
2. Write Functions
3. Readout Functions

The functions which are provided in a given
system are, as mentioned, dependent on the ap­
plication. In addition, the methods of perform­
ing some of these functions, in particular the
searching types, are dependent on the speed re­
quirements. These in turn will, to some extent,
determine the mechanization method chosen.
The second part of this paper details the vari­
ous functional characteristics an associative
memory might have. A chart is presented
which delineates the pertinent characteristics
as a function of the mechanization technique.

82 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

The last part of the paper shows the results
obtained from a demonstration model of an AM
which utilizes the BIAX in the new mode of op­
eration mentioned above.

2. BIAX IMPLEMENTATION OF ASSOCI­
ATIVE MEMORIES

2.1.0 Normal BIAX Operation, Using Two­
BIAX-Per-Bit

The BIAX is a rectangular block- of ferrite
having two orthogonal holes: the storage (in­
formation) hole and interrogate hole are as
shown in Figure 1. Also shown in the figure
are the read and write wave shapes and the
readout signal produced by the BIAX element
when operating in the normal mode. Note that
the sense signal is bipolar and occurs during
both the rise and fall time of the interrogate
current and that the phase of the signal is in­
formation dependent. THe sense signal is
caused by a domain rotation phenomenon which
results from the interaction of storage and in­
terrogate hole flux, in the material between the
holes, during interrogation. An AM imple­
mented with the normal mode of the BIAX op­
eration requires a serial-by-bit interrogation to
prevent possible cancellation of pulses on the
word-oriented sense lines.

WRITE
+1/3 I r- ___ ~'1': ___ """

W, ,
~~~--~( )~------, , 

-1/3 IW ~ - - - ~'O" - - - --' 

+2/3 'w 
ww 

-2/3 'w 
READ 
INTERROGATE 

,~--------------~~~------
SENSE "1" "~---------~v----
SENSE "0" f""\ 

~ ~---

Figure 1. Conventional BIAX Operation. 

Figure 2 depicts the technique used in the 
two-BIAX-per-bit method. The normal and 
complement of each word are stored. In order 
to decrease the required search time, the inter­
rogate currents are staggered by an amount 
equal to or greater than the rise time of the cur­
rent and left on until the last bit has been 
searched. This prevents the output signals 
produced by the trailing edge of the interrogate 
current from interfering with sense signals pro­
duced by subsequent interrogate pulses. 

If the sense signal polarities are as shown in 
Figure 1, and if the normal bit is searched when 
looking for 0 at a bit position and the comple­
ment bit is searched when looking for a 1, then 
the input to the sense amplifier will consist of 
a series of negative pulses for a matching word. 
This is due to the fact that all elements inter­
rogated would be in the 0 state. Should a mis­
match occur at a bit position, a positive pulse 
will occur on the sense line. For example, in 
Figure 2, drivers C1, N2, N3, and C4 wouJd be 
turned on. In Word No.1, several elements in 
the 1 state are interrogated resulting in a mis­
match (positive) signal, while in Word No.2 
all elements interrogated contain 0 and only 
negative pulses occur on the sense line. 

2.2.0 Operation of the BIAX in the Hughes 
Unipolar Mode 

2.2.1 Description of Operation 
In the course of the mechanization studies, a 

technique for using the BIAX which greatly en­
h~nces the search speed has been invented. This 
new mode of operation results in a signal for a 

WORD NO.3 

WORD NO.2 

WORD NO.1 

INTERROGATE 
DRIVERS 

Figure 2. Typical Search Operation. 



ASSOCIATIVE MEMORY SYSTEM IMPLEM.ENTATION 83 

stored 1 and no signal for a stored 0, with a 
very high element signal-to-noise ratio. Thus, 
unipolar rather than the conventional bipolar 
operation is obtained. This technique allows 
parallel-by-bit interrogation. Thus, the search 
time is not directly proportional to the number 
of bits per word, as in the serial-by-bit ap­
proach, but is proportional to the number of 
bits, per word divided by the number of ele­
ments interrogated simultaneously. 

Using the same criteria for selecting the nor­
mal or complement driver as before, it can be 
seen that for the matching word, no signal will 
occur on the sense line since all O's are' being 
interrogated. Therefore, if the lements are in­
terrogated simultaneously, only 0 noise buildup 
will be seen. For a word which mismatches 
(interrogation of an element in the 1 state), a 
large output signal will result. 

The number of elements which may be inter­
rogated simultaneously is a function of the sig­
nal-to-noise ratio of the elements. On a labora-

INTERROGATE 
HOLE 

FLUX DUE 
TO INTERROGATE 
HOLE RESULTANT 

FLUX 
VECTOR 

FLUX DUE TO 
STORAGE HO LE 

MATERIAL 

INTERROGAT~TWEEN HOLES 
FIELD 

RESULTANT 

tory basis twenty-bit words have been interro­
gated with resultant word signal-to-noise ratios 
(twenty 0 signals versus one 1 signal) greater 
than 3: 1 (see Section 7). In a practical sys­
tem, the number interrogated simultaneously 
would be smaller due to environmental condi­
tions and circuit tolerances. However, since the 
decrease in search time is directly related to 
the number of elements interrogated simultane­
ously, dramatic improvements result. 

The method of obtaining this mode of opera­
tion is shown in Figure 3. The element is first 
written to the 1 state by a current pulse large 
enough to saturate the storage hole (Figure 
3B) . This pulse is then followed by a smaller 
pulse of the opposite polarity which is the Word 
Write 0 current. If a 0 is to be written then, in 
coincidence with the Word Write 0 current, a 
current pulse (Bit Write 0) is produced in the 
interrogate hole and the flux around the storage 
hole is reduced to a very small value. If a 1 is 
to be written, the Bit Write 0 pulse does not 

WORD WR�TE----' 

"1" "1" 
BIT WRITE-----C\jJ...---

INTERROGATE---lJ1j 

"1" 
A "0" 

ELEMENT OUT-- y-""';"--

~RESULTANT 

.Lp---~~ 
REDUCTION 
IN STORAGE 
FLUX 

.",," I 
."""" I 

,," I 
-------~-~ 

~INTERROGATE 
INTERROGATION OF 
STORED "ONE." 

Figure 3. BIAX Element Operation in the Unipolar Mode. 



84 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

occur and the storage hole flux remains in a 
saturated condition. Part C of Figure 3 illus­
trates the technique by showing what occurs in 
the common volume of material between the 
two holes. 

This technique has one main disadvantage: 
Where writing into fields of words is desired, 
the disturb characteristics of the element in the 
o state result in a lowered signal-to-noise ratio. 
This is due to the fact that the flux around the 
storage hole of the unselected bits will "creep" 
to a higher value due to the word oriented dis­
turb currents and thus produce a larger output 
for the 0 state than is desired. However, the 
method has many advantages. One which has 
been mentioned is that of decreasing the search 
time. This reduction in the basic search time 
can be traded for hardware cost by permitting 
time-sharing of sense amplifiers and thus re­
ducing the number of circuits required. In ad­
dition, it can be seen from Figure 3A that all 
windings are orthogonal and thus the array 
noise problem is reduced and, since no woven 
windings are needed, the array fabrication is 
extremely simple. 

2.2.2 Ternary-State Reading 1'n the Hughes 
Unipolar Mode 

A significant aspect of the unipolar mode of 
operation is that by reversing the sense wind­
ing between the normal and complement words 
and using serial-by-bit interrogation, a ternary 
output results. That is, if a bit matches the 
search, then no output results; if a bit mis­
matches, then the output can be positive or 
negative dependent upon whether the normal or 
complemeht bit was interrogated. In this man­
ner it is possible to classify all words at one 
time as less than, greater than, or equal to the 
search word. 

This can be explained by Figure 2. Assume 
that an element in the 1 state (signal output 
during interrogation) in the normal word pro­
duces a positive output due to the reversed 
sense winding. If the same criteria are used 
as before for selecting interrogate drivers, 
Word No.2 will again produce no signal since 
it exactly matches the search word, and thus 
all elements interrogated are in the 0 state. 
However, vVord No.1 mismatches in the first 
bit position and, since the complement bit is in-

terrogated, will produce a negative output in­
dicating that Word No.1 is less than the search 
word. Word No. 3 agrees in the first bit posi­
tion with the search word and thus will pro­
duce no output for that interrogation. How­
ever, in the second bit position a mismatch oc­
curs and, since the normal bit is ~nterrogated, a 
positive pulse occurs indicating that Word No. 
3 is greater than the search word. Thus, (1) 
if a positive pulse appears on the sense line 
first, that word is greater than the input word; 
(2) if a negative pulse appears on the sense 
line first, that word is less than the word; and 
(3) no pulse on the sense line indicates an exact 
match. 

The technique described is quite significant in 
that the search time now is independent of the 
search type for these three searches and, with a 
tristable sense circuit, all words are classified 
simultaneously. With the conventional mode of 
operation described previously, only two sense 
signals may be derived: positive and negative. 
Therefore, in order to accomplish limit type 
searches, a stepping algorithm (see the section 
on Associative Memory Search Functions) 
which alters the search word between steps 
must be used or logic in the sense amplifier is 
necessary to determine if the first mismatch 
occurs when a 1 or a 0 is searched for (if the 
first mismatch occurs when a 1 is being 
searched for the search word is obviously 
larger than the stored word and vice versa). 

2.3.0 Operation Using One BIAX Per Bit 
Mechanizing an AM with one BIAX per bit 

requires a serial-by-bit interrogation. However, 
the method of accomplishing this interrogation 
can take several forms. 

One possible way to interrogate is to ripple 
through the bits serially and gate the sense sig­
nal logically at each amplifier against the in­
formation in the corresponding bit position of 
the input word. In this manner, mismatches 
can be detected and, if a tristable sense circuit 
is available, the limit searches (LESS THAN 
and GREATER THAN) can be directly im­
plemented without use of an algorithm. 

Another way to interrogate involves an inter­
rogate-priming cycle and does not require logic 
in the sense amplifier. Referring to Figure 1, 
it can be seen that the sense signals for a 1 and 



ASSOCIATIVE MEMORY SYSTEM IMPLEM.ENTATION 85 

o are out of phase for the same interrogation 
pulse. If the sense output were examined dur­
ing the rise time of the interrogate when 
searching for a 1 and during the fall time when 
searching for a 0, it can be seen that, if a match 
occurs, the pulses on the sense line would all be 
positive. If a mismatch occurs (for example, 
examining the output of an element in the 1 
state during the fall time of the interrogate 
pulse); then a negative sense signal occurs. 

The above process can be implemented in a 
straightforward manner by merely turning on 
(priming) all interrogate drivers which are 
to search for O's before rippling through the in­
terrogate cycle and turning them off at the 
proper time during the interrogate cycle. Fig­
ure 4 depicts the procedure for accomplishing 
the interrogation. 11 and Is are turned on dur­
ing the priming period since they are to search 
for 0 as indicated by the contents of the Data 
Register. In Word No.1, the corresponding 
bit positions contain a 0 and 1 respectively, and 
hence no output will appear on Sense Line 1 
during the priming period because of cancella­
tion. However, Word No. 2 contains 0 in both 
positions and therefore a double amplitude 
negative pulse will appear on Sense Line 2. Dur­
ing the interrogate period, a negative pulse ap­
pears on Sense Line 1 indicating that the word 
mismatches, while Sense Line 2 has all positive 
pulses which indicates a matching condition. 

INTERROGATE 
DRIVERS 

SENSE 
LINE -"'-----' 
NO.1 

SENSE 
LINE 
NO.2 

SENSE LINE 
NO.2 

SENSE liNE 
NO.1 

Figure 4. Interrogation Using One-BIAX-Per-Bit. 

The method of implementation described here 
is quite straightforward and is such that con­
ventional random access BIAX array windings 
with some modifications can be used. In addi­
tion, conyentional memory circuitry, with the 
exception of the word-oriented sense circuits, 
can be used, and data readout is provided with 
relative ease. This technique would, how-ever, 
be somewhat slower than the parallel-by-bit 
two-BIAX-per-bit scheme. Since the BIAX is 
operated in its normal mode, the disturb char­
acteristics and writing mode are such that al­
teration of arbitrary fields within a word can 
be provided. 

3. ASSOCIATIVE MEMORY SEARCH 
FUNCTIONS 

3.1.0 EXACT-MATCH Search 
There are a variety of search types which can 

be implemented in an associative memory.9,1'2 
These searches can be performed on an entire 
data word or on specified fields. The selection 
of fields is accomplished by having the ability to 
mask the data word. That is, any bit of the 
comparison word can be masked to a "don't 
care" state, and only those bits not masked will 
participate in the search. Thus, there is inher­
ently a ternary search characteristic (1,0, don't 
care) which may be taken advantage of in some 
cases to decrease the search time. A brief de­
scription of search types follows: 

The most commonly used search operation is 
the EXACT-MATCH search. This search, as 
the name implies, would locate all words in 
memory which have a one-to-one correspond­
ence with the bits of the search word. That 
is, any word in memory which mismatches the 
search word in one or more bit positions does 
not satisfy the search criterion. The search 
time is proportional to the number of bits in 
the word with the exception of the parallel-by­
bit techniques. 

3·2.0 Limit-Type Searches 
Under this category are included GREATER 

THAN, GREATER THAN OR EQUAL TO, 
LESS THAN, and LESS THAN OR EQUAL 
TO searches. The functions of these search 
types are fairly obvious. The time involved in 
performing these searches is dependent upon 
the method of mechanization. In the two-



86 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

BIAX-per-bit scheme, with the ternary output 
described previously, the search time is the 
same as an EXACT-MATCH search and no 
logic gating is required in the sense circuitry. 
In order for the other techniques to have a com­
parable search time, logical gating is necessary 
in the sense circuitry at each bit interrogate 
time. 

Another technique for accomplishing the 
limit-type searches is to have an algorithm 
which alters the search word and then looks 
for exact matches at each step. In its simplest 
form this would consist of incrementing or dec­
rementing a counter for each step and per­
forming an EXACT MATCH search. However, 
by taking advantage of the ternary character­
istics of the interrogation (1, 0, don't care), it 
is possible to reduce the number of steps re­
quired. With this method the maximum num­
ber of steps required is eqiial to the length of 
the field participating in the search and, on the 
average, will be one-half the length of the field. 
For example, if a 12-bit field were being used in 
a LESS THAN OR EQUAL search the maxi­
mum number of steps required to perform the 
search is 12 (contrasted to a maximum of 4096 
in the simpler counter approach). Thus, if any 
word matches at one of the steps, it satisfies the 
search criterion. This method, while not re­
quiring logical gating of the sense circuits, re­
sults in a significant increase in component 
count if the field.s are not restricted. The proc­
ess of finding all words in memory which lie 
between some specified bounds can be accom­
plished by the successive application of the 
GREATER THAN OR EQUAL TO and LESS 
THAN OR EQUAL TO searches to the same 
field with a change of the search word. A LESS 
THAN OR EQUAL TO search is performed on 
the upper bound search word which therefore 
eliminates all words greater than the upper 
bound. The GREATER THAN OR EQUAL TO 
search on the lower bound search word then 
leaves those words lying within the bounds in­
dicating a matching condition. A somewhat 
more efficient algorithm can be implemented if 
the upper and lower bounds are available simul­
taneously. 

3.3.0 Pattern Recognition 
Another useful function which can be pro­

vided in an associative memory is a form of 

pattern recognition. As an example, consider 
the case where it is desired to compare incoming 
patterns with stored patterns in the associative 
memory. 

An incoming pattern is normalized, sampled, 
and quantized at set intervals. These quantized 
samples then become the keys with which the 
search is conducted. Since exact pattern 
matches are impractical, there are two words 
stored in memory (two-BIAX-per-bit mechani­
zation is used) for a single pattern. The word 
outputs, which indicate match or mismatch, are 
OR'd together and "don't care" bits are written 
into the words in memory. That is, if a bit 
position is in the "don't care" state, no response 
will be obtained from the bit during interroga­
tion for a 1 or a O. This has the effect of per­
forming a BETWEEN LIMITS search in mem­
ory and thus effectively establishes an envelope 
about the desired pattern. For example, if there 
are 32 quantization levels and one sample point 
has the value of 23, then the words stored in 
memory might by 101XX and 110XX (where X 
indicates a "don't care" bit) thus allowing a 
match indication for that point if the incoming 
waveform has a value between 20 and 27. Thus, 
the tolerance allowable is accounted for in the 
memory and is subject to control. This is il­
lustrated in Figure 5. 

3.4.0 Supplementary Search Operations 
Ordered Retrieval-In some problems it is 

desired to retrieve information in an ordered 
manner. In a conventional system this can be 

a 

:::; 

30 

25 

~ 10 

QUANTIZATION POINTS 

Figure 5. Tolerance Envelope Used in Pattern 
Recognition. 



ASSOCIATIVE MEMORY SYSTEM IMPLEM.ENTATION 87 

a very time-consuming process. Using the ter­
nary characteristics of the associative memory, 
much more efficient ordering is possible. 10, 11, 13 

Minimum and Maximum Searches-In some 
applications it is desired to find the word in 
memory which has the minimum value, within 
the field, with respect to all other words in 
memory. The algorithm for accomplishing 
this is that which would be used for ordered re­
trieval. The algorithm would terminate when 
the first single response occurs. 

The maximum search would use the same al­
gorithm as for inverse ordered retriev~l. 

Nearest Neighbor-The capability of deter­
mining the nearest numerical neighbor above or 
below the value of the selected key can be im­
plemented by the use of an ordered retrieval 
algorithm. This is accomplished by using ei­
ther normal or inverse ordered retrieval start­
ing from the initial value of the key. A more 
complex algorithm can be implemented to ob­
tain the nearest neighbor on either side if it is 
desired. 

Composite Searches-In some instances it is 
desirable to perform searches on different keys 
and to specify a logical relationship between 
the separate key searches. Accordingly, only 
those ·words \vhich satisfy the logical relation­
ship and key searches are retained. For exam­
ple, if there are five keys, A, B, C, D, and E, it 
might be desired to perform an EXACT 
MATCH on key A, GREATER THAN OR 
EQUAL TO on key B, BETWEEN LIMITS on 
key C, and LESS THAN OR EQUAL TO on 
keys D and E. In addition, logical relationships 
such as ABCDE, ABC+DE, may be required. 
This type of search can be very useful in a vari­
ety of applications. The possibility of provid­
ing a match indication if a ·portion of the search 
keys match could also prove useful. 

4. AM WRITING FUNCTIONS 

As with the search functions there are a num­
ber of different writing functions which may 
be provided with an AM. As might be expected 
some of these functions are identical with the 
normal writing modes encountered in conven­
tional memories. However, there are also those 
modes which are peculiar to the AM organiza­
tion and which add to the power of the system 

and extend its range of usefulness. The writ­
ing functions which are provided in a system 
would be strongly application dependent. 

Sequential Load-In some applications, 
blocks of data may be transferred to the associ­
ative memory for use in subsequent searches. 
Sequential load starting from the first word lo­
cation is then useful as it allows the words to 
be loaded very rapidly by minimizing the con­
trols necessary while retaining a spatial rela­
tionship with respect to the source store. In a 
partial load, word locations not written into can 
be prohibited from responding to subsequent 
searches. 

Random Load-Another loading feature 
which is often useful is the random load. This 
is the same as for a conventional random access 
memory and requires that the physical location 
(address) to be written into be specified. 

Load First Empty Location-An associative 
memory can be implemented to keep track of 
its own empty locations, such that when a word 
is to be entered, it is automatically writtten into 
the first empty location. In a memory where 
the retrieval time is location dependent, this is 
very effective since all data is held at the 
"front" of the memory, thus minimizing access 
time. This data-packing feature can be very 
useful. 

W rite "Don't Care" Bit-Masking within the 
data word in the associative memory itself can 
be accomplished by writing a bit to the "don't 
care" state. With this technique bounds can 
be stored in the memory as described previ­
ously. This is one of the more interesting fea­
tures which should find great utility. The two­
BIAX-per-hit schemes are, at present, the only 
techniques which can be used to accomplish this. 

Field Alteration-The ability to alter a single 
bit or field of all words or selected words as a 
consequence of the result of a search is another 
writing characteristic which might be provided. 
This feature is particularly useful when using 
the memory as an aid to parallel computation. 
The element must be operated in the conven­
tional mode to implement thiB feature. This 
could also be termed "writing through a mask." 

Memory Partitioning-It is possible to parti­
tion an associative memory so that there effec-



88 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

tively exists "micro-associative memories" with­
in the main associative memory. This feature 
is useful when several types of data are stored 
and the access time needs to be kept to a mini­
mum. Thus, only that portion of the memory 
containing the data to be interrogated is ac­
cessed and the non-pertinent data for that 
search is bypassed. This of course assumes that 
the memory contains multiple planes and the 
normal search process consists of a sequential 
search of the planes (all words in a plane are of 
course searched in parallel) . 

5. AM READOUT FUNCTIONS 

As with the other characteristics of an associ­
ative memory, there are a number of different 
types of readout possible. The type of readout 
necessary is, of course, dependent upon the ap­
plication. 

Address Readout-In an application where 
the key or keys are well defined, the use of an 
associative memory with a conventional random 
access memory may be advantageous. In this 
mode, a block of keys is transferred from the 
conventional memory to the associative memory 
in a specified seq~ence so that the physical loca­
tion of the keys in the associative memory 
is spatially linked with data stored in the con­
ventional memory. Upon searching the associ­
ative memory, the output indicates the ad­
dresses of the words in the random access mem­
ory which satisfy the applied search criteria. 
This mode may be particularly useful where the 
ratio of the search key to the remaining data 
word is small, since at present the associative 
memory is expensive relative to conventional 
random access memory. 

Data Readout-The ability to read out the 
contents of an associative memory is another 
feature which is useful. The flexibility that 
this allows in a system can be significant, since 
any portion of the data word may be searched 
on, and the data word itself, or perhaps the por­
tion of the data word not searched, can be read 
out. 

Multiple Match Resolution-In any search the 
possibility of more than one word matching the 
applied criteria has to be contended with. The 
ability to retrieve all matching words is, in most 
cases, a necessity. This is usually accomplished 

by retrieving them sequentially through a com­
mutating network. An efficient design of the 
commutating network is necessary since it can 
be an important factor in the retrieval time. 

Yes-N o-In some applications a decision is 
made regarding the next course of action after 
interrogation of the memory, bas"ed only on in­
formation as to whether or not the search has 
been matched. The Yes-No operation is a rela­
tively easy feature to provide. 

Count Matches-When the memory is 
searched there is a possibility, dependent on the 
application, that a significant portion of the 
memory could respond to the search. In such 
cases, an indication of the number of matches 
which exists may be wanted before output oc­
curs. If the dump is excessive, then the search 
may be refined to reduce the number of re­
sponse. 

6. CHARACTERISTICS OF AM SYSTEMS 

The foregoing has been a brief description of 
some of the more salient features of AM mech­
anization techniques and functions. Table I 
lists the techniques mentioned and shows the 
relative performance of the mechanization 
schemes. It can readily be seen from the dis­
cussion above and Table I that an absolute com­
parison of techniques is not practical. For an 
absolute comparison, detailed knowledge of the 
system application would be required, so that the 
various factors and tradeoffs could be intelli­
gently evaluated. 

N one of the schemes shown in Table I re­
quires logical gating of the sense circuits for 
performing limit-type searches. Thus, for 
Schemes 11, 3, and 4, a stepping algorithm 
(similar to that in Ref. 11) is used for these 
search types and therefore the limit search time 
is a function of the length of the field used in 
the search. However, by providing logic in the 
sense circuit, the limit search time for these 
three schemes becomes proportional to M, the 
number of bits per word. The merits of pro­
viding this mode would be ascertained from the 
total system analysis. 

In the equations for the relative limit search 
time, the first term represents the time re­
quired for storage of intermediate results (con­
sidering one unit of time as the time between 



ASSOCIATIVE MEMORY SYSTEM IMPLEM.ENTATION 89 

Table 1. Associative Memory System Characteristics. 

Relative 
Exact Data Reading Wrih' 
Match (Additional Restriction IIDon't Care" 
Search Relative Limit Data Array On Fields For Bit 

Scheme Mechanization Time Search Time Writing Reauirements) L:ilJ11.t Search* Available 

1 Two-BIAX-per-bit E+~ Whole word Additional Fixed fields Yes - (ave) 
M 2 2k only. array windings only. 

Signal-no signal it 
3F + ~ (max) 

required. 

Binary sense k 
output 

2 Two-BIAX-per-bit Whole word Additional No restrictions Yes 
only. array windings (any combination 

Signal-no signal M M required. of bits selected 
by mask permis-

Ternary sense sable) 
output 

3 Two-BIAX-per-bit E+~ Unrestricted No new windings Fixed fields only Yes - (ave) 2 2 as to required. 
Signal-signal M 

3F + ~ (max) 
location and 
number of bits 

Binary sense 
output 

4 One-BIAX-per-bit 3F + ~ (ave) Unrestricted No new windings Fixed fields only No 
2 as to required 

Signal-signal M 
6F + ~ (max) 

location and 
number of bits 

Binary sense 
output 

:r..mEND: M Number of bits per word ilSee text.. 
k 
F 

Number of bits per word interrogated simultaneously 
Field length used in limit search 

successive interrogations). Thus, since the aver­
age number of steps (field interrogations) in the 
incrementing algorithm is one-half the field 
length, the number of storage cycles required is 
F /2 and, in the type of system being considered, 
the storage cycle is about three times the "rip­
ple" time, hence the term 3F /2 in Scheme 1. 
The second term represents the total "ripple" 
interrogate time. Since again F /2 steps are re­
quired on the average, and there are F /k ripple 
times, the total is F2/2k. Of course if k = 1 

(serial-by-bit interrogation) there results the 
equations shown in Scheme 3. In Scheme 4 the 
first term is increased due to the priming cycle 
and the need for sense amplifier recovery due 
to the priming cycle. 

The table attempts to compare systems of ap­
proximately· equal logical complexity, hence the 
restriction on the fields in the limit searches. 
Obviously, it is logically possible to have com­
pletely variable fields for the limit searches in 

I 



90 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

all Schemes at the expense of additional compo­
nents (which can be quite significant in num­
ber) . 

7. THE ASSOCIATIVE MEMORY MODEL 

Of the techniques for mechanization de­
scribed earlier, the only one which departs sig­
nificantly from the conventional use of the 
BIAX is that which produces signal-no signal 
operation. For this reason it was decided to 
verify the approach experimentally by the con­
struction of a model which utilized this new 
mode of operation. 

The block diagram of the model is shown in 
Figure 6. The array portion of the system con­
sists of 16 words of 10 bits each, and one word 
of 20 bits for purposes of signal-to-noise experi­
ments. Since both the normal and complement 

WORD WRITE 
DECODER 

CLOCK 
INPUT 

WRITE 

READ 

WORD WRITE 
DRIVERS 

WORD WRITE 
SWITCHES 

of information are stored, there are therefore 
340 bits in the array (the complement of the 
20-bit word is not needed for the experiments 
for which this word is intended). 

The block diagram of Figure 6 is not complete 
in every detail but shows the more pertinent 
features. The Data and Mask Registers con'­
sist of a bank of 10 manual switches each with 
the provision for patching the address counter 
into the Data Register to permit dynamic 
search and write operations. The model is also 
capable of performing "write" and "read" in a 
single step process by means of push button con­
trol. The search timing can be controlled to 
allow serial-by-bit operation or parallel-by-bit 
with k from two to ten. 

Figure 7 shows three photographs of the 
demonstration model. The top figure is inter-

SENSE 
AMPLIFIERS 

Figure 6. Simplified Block Diagram of Model of Associative Memory. 



ASSOCIATIVE MEMORY SYSTEM IMPLEMENTATION 91 

Figure 7. Photographs of Associative Memory Model. 

esting in that it shows that no woven windings 
are necessary in the array. This suggests an 
array structure with all elements in contact 
which provides highly compact and noise-free 
systems. The model proved that the technique 
is valid and could be applied to larger systems. 

Figure 8 shows waveform photographs ob­
tained from the 20-bit evaluation word. The 
write program is shown in part (a); part (b) 
shows the interrogate current waveform and 
the disturbed 1 output of a single element. 
Part (c) shows the 0 output of a single ele­
ment, which together with part (b) indicates 
SIN ~ 40. Part (d) shows the result of inter­
rogating a string of 20 elements, 19 of which 
have stored O's while the 20th has stored in it a 
1. Part (e) shows the result of interrogating 
the same string of 20 elements while all are in 
the 0 state. Comparison of parts (d) and (e) 
clearly indicates a sense winding output signal­
to-noise ratio of better than 3 :1, which permits 
relatively straightforward amplitude discrimi­
nation. 

The model has been operated at search clock 
rates of 2Mc (limited by external equipment) 
with simultaneous interrogation of all bits of 
the word (k = 10). 

8. CONCLUSIONS 

This paper has presented several techniques 
for the utilization of the BIAX in an associative 
memory system. The techniques presented have, 
in some cases, significantly different operating 
parameters. In addition, the influence of the 
various techniques on the search speeds has 
been pointed out. From this discussion it can 
be seen that the number of trade-off areas 
which exist, and the resulting influence on sys­
tem complexity and performance, make it neces­
sary to have an intimate knowledge of ultimate 
system utilization in order to effect a proper 
associative memory design. 

ACKNOWLEDGMENTS 

The work presented in this paper is the re­
sult of the contributions of many people. The 
authors would particularly like to acknowledge 
the contributions of L. H. Adamson and D. A. 
Savitt. 

REFERENCES 

1. WANLASS, C. L., and S. D. WANLASS, 
"BIAX High Speed Magnetic Computer 
Element," WESCON Convention Record, 
Part 4, pp. 40-54, San Francisco, Cali­
fornia, August 18-21, 1959. 

2. KrSEDA, J. R., H. E. PETERSEN, W. C. SEEL­
BACH, and M. TEIG, "A Magnetic Associa­
tive Memory," IBM Journal of Research 
and Development, Vol. 5, pp. 106-121, April 
1961. 

3. BROWN, J. R., Jr., "A Semi-Permanent 
Magnetic Associative Memory and Code 
Converter," Special Technical Conference 
on Nonlinear Magnetics, Los Angeles, Cali­
fornia, November 1961. 

4. LEE, E. S., "Solid State Associative Cells," 
Proceedings of the Pacific Computer Con­
ference, California Institute of Technology, 
March 15-16, 1963. 

5. SLADE, A. E., and C. R. SMALLMAN, "Thin 
Film Cryotron Catalogue Memory," Sym-



92 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

(A) 

WRITE PROGRAM 
UPPER TRACE WSI, WSO 
LOWER TRACE PWIO 

(8) 

UPPER TRACE - INTERROGATE CURRENT 
LOWER TRACE - DISTURBED "ONE" 
OUTPUT FROM SINGLE ELEMENT 

(C) 

LOWER TRACE - "ZERO" OUTPUT FROM 
SINGLE ELEMENT 

(0) 

LOWER TRACE -INTERROGATION OF 20 
ELEMENTS; A SINGLE DISTURBED "ONE" 
IN SERIES WITH 19 "ZERO'S" 

(E) 

LOWER TRACE - INTERROGATION OF 
20 ELEMENTS - ALLIN"ZERO"STATE 

200 MA/CM, 
ill SEC,CM 

400 MA. CM, 
IIlSECCM 

100 MA,CM, 
0.111 SEC CM 

50 MV, CM, 
O.ill SEC CM 

50 MV CM, 
O.ill SEC CM 

50 MV CM, 
O.ill SEC CM 

50 MV CM, 
0.111 SEC CM 

Figure 8. Waveforms Showing Unipolar Operation in the Associative Memory Model. 

posium on Superconductive Techniques for 
Computing Systems, Washington, D. C., 
May 1960. 

6. NEWHOUSE, V. L., and R. E. FRUIN, "A 
Cryogenic Data Addressed Memory," Pro­
ceedings of the Spring Joint Computer 
Conference, May 1-3, 1962. 

7. DAVIES, P. M., "A Superconductive Associ­
ative Memory," Proceedings of the Spring 
Joint Computer Conference, May 1-3,1962. 

8. ROWLAND, C., and W. BERGE, "A 300 Nano­
second Search Memory," Proceedings of 
the Fall Joint Computer Conference, N 0-

vember 1963. 

9. ESTRIN, G., and R. FULLER, "Algorithms 
for Content Addressable Memories," Pro-

ceedings of the Pacific Computer Confer­
ence, November 1963. 

10. SEEBER, R. R., "Associative Self Sorting 
Memory," Proceedings of the Eastern Joint 
Computer Conference, pp. 179-188, Decem­
ber 13-15, 1960. 

11. SEEBER, R. R., and A. B. LINDQUIST, "Asso­
ciative Memory with Ordered Retrieval," 
IBM Journal of Research and Develop­
ment, Vol. 6, pp. 126-136, January 1962. 

12. FALKOFF, A. D., "Algorithms for Parallel­
Search Memories," Journal of the ACM, 
Vol. 9, pp. 488-511, October 1962. 

13. LEWIN, M. H., "Retrieval of Ordered Lists 
from a Content-Addressed Memory," RCA 
Review, Vol. XXIII, No.2, pp. 215-229. 



A 16k-WORD, 2-Mc, MAGNETIC THIN-FILM MEMORY 
Eric E. Bittmann 

Burroughs Corporation 
Defense and Space Group 
Great Valley Laboratory 

Paoli, Pennsylvania 

INTRODUCTION 
Small magnetic thin-film temporary-data 

memories1
,2 have been in use in operational 

computers since mid-1962, when the prototype 
Burroughs D825 Modular Data-Processing Sys­
tem3

,4 was installed at the U. S. Naval Research 
Laboratory. To the present, some 43 additional 
D825 systems have been placed in use or or­
dered. The experience gained in the successful 
operation of these small thin-film stores has en­
couraged the more ambitious construction of a 
large, random-access memory for a modular 
processing system. 

Control of the memory module is effected by 
descriptor words containing 52 bits. The de­
scriptors originate at either a computer or I/O 
control module. A memory module can receive 
four descriptors during one request. 

Each memory module can perform a number 
of logic manipulations independently of other 
modules. A memory module can: execute the 
conventional read or write instructions on a 
single word, or on two, three, or four consecu­
tive words simultaneously; read n words, where 
n is a quantity contained in the descriptor; per­
form a block transfer operation from one area 
in memory to another, or to another memory 
module; or perform a search for a requested 
word or a requested digit, either in itself or in 
any other memory module, matching against a 
word or digit supplied. 

"Party lines" interconnect the memories 
with either computer or I/O. Each party line is 

93 

assigned a number. If two or more requests 
appear simultaneously on different party lines, 
the signal on the lowest-numbered line receives 
priority. A separate party line interconnects all 
memory modules, allowing communication from 
memory to memory. 

The memory module is physically divided into 
two cabinets, each storing 8,192 words of 52 
bits each, for a total capacity of 16,384 words. 
The 52-bit word contains 48 data bits, three 
control bits, and one parity bit. The control 
bits act as tags which tell the program whether 
or not the instruction has been executed. 

The read/write cycle of each memory is 0.5 
p,sec, and the access time is 0.3 p,sec. During 
the remaining 0.2 p,sec, the word is rewritten 
or replaced at the selected address. 

The two cabinets of a module can be tested 
independently of each other. Several test fea­
tures are built into each cabinet. A test word 
can be written into all addresses, or into alter­
nate addresses, or into a selected address. A 
continuous stop-on-error mode compares every 
readout with the test word. Operation halts on 
an error, and the faulty word and its address 
are displayed on the control panel. Single-cycle 
and single-pulse operation are also possible. 

MEMORY MODULE ORGANIZATION 

Figure 1 is a block diagram of one memory 
module; the interwiring in the memory stack 
is shown in Fig. 2. To keep the total sense 



94 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

PARTY LINES 

104 

1\ SPUT BIT CONDUCTOR EASY (BIT.FIELD) AXIS 

STROBE REFERENCE 1. .. \ ~(LDNGITUDINAL DIRECTION) 

STROBE ~ ~~ RECTANGULAR B·H LOOP 
BUFFER _ HARD (WORD· FIELD) AXIS 

(TRANSVERSE DIRECTlONl 
SQUARE B·H LOOP 

FILM SPOT WORD CONDUCTOR 

SENSE CONDUCTOR 

Figure 1. Memory Module, Block Diagram. 

delay and sense signal attenuation reasonably 
low, we organized the stack into a configuration 
of 4096 words, of 104 bits each, rather than 
8192 words, 52 bits each. This kept the total 
sense delay below 100 nsec for the worst-case 
address location. 

Film elements are deposited 768 per sub­
strate, in a 32 X 24 array. Five substrates 
in a row provide storage for 32 words, 120 bits 
each. A single five-substrate film word, there­
fore, can easily store two 52-bit computer lan­
guage words. Four such rows (or 128 words 
on 20 substrates) comprise a plane. A plane 
with certain associated circuit caras, connec­
tors, and structures is assembled as an integral 
plug-in unit called a frame; 32 frames comprise 
a 4096-word stack. 

A pair of computer words requires 105 bits, 
including two parity, six control, and one ref­
erence hit. The unused bits, or spares, are dis­
tributed through the stack for possible replace­
ment use. A row of spare bits can be easily 
wired into position to replace another row, if 
necessary. This is normally performed during 
testing of memory planes, prior to module as­
sembly. 

A descriptor word arriving at the control 
unit receivers initiates a memory cycle. The 
address data is transferred to the address 
registers, and a memory cycle is initiated. 

The address (6 bits) is decoded at the input 
of every word driver and at the input of every 
word switch. Selection of a film word occurs 
in a diode-transformer matrix. The matrix 
contains 4096 transformers and the selection 
diodes. The memory is addressed by the word­
organized (linear-select) scheme; each film 
word line is driven from a single transformer. 
The current from a selected word driver flows 
through the matrix to the selected word switch. 
The transformers have linear (not square-loop) 
characteristics, and the selected film word line 
receives a word current pulse. This current 
interrogates all the film bits, inducing signals 
into the sense amplifiers. 

Planar films remagnetize under the influence 
of two orthogonally opposed fields. (See inset 
in Fig. 1.) A word field applied parallel to the 
film's hard direction rotates the magnetization 
vectors from their rest position (easy axis) 
into the hard direction. (Vectors of a bit stor­
ing a ONE and a bit storing a ZERO rotate 
from opposite directions, each passing essen­
tially through 90°, to an almost common hard­
direction alignment.) This rotational switch­
ing induces a readout signal into the associated 
sense line. A second field, the bipolar bit or in­
formation field, applied parallel to the easy di­
rection (by a bit conductor lying in the hard 
direction), while the film is still magnetized 
in the hard direction, determines the future 



2-MC MAGNETIC THIN FILM MEMORY 95 

Figure 2. Memory Stack Interwiring. 

state of the cell after the word field has been 
removed. (Vectors fall back through 90° to­
ward either the ONE or ZERO orientation, 
along the easy axis.) 

Interrogation of a word occurs during the 
leading edge of the word current, and data is 
written into the films during the trailing edge 
of this current. Bit currents, present in all 
lines during word-current turn-off, ensure cor­
rect storage of data to be written. The polarity 
of each bit current determines the storage of a 
ONE or a ZERO. 

A reference bit in each film word (104 bits) 
was included for the following reason. The 
sense readout signal has a width of only 50 to 
60 nsec, and the delay in the stack can vary as 
much as 70 nsec for different address locations. 
To generate a variable time strobe pulse, a 
strobe reference bit, storing always a ONE, 
is included in the stack as the 105th bit. The 
strobe reference bit sense amplifier drives a 
clock buffer amplifier (strobe buffer) which 

supplies a 25-nsec-wide strobe pulse to the in­
formation register flip-flops. The strobe pulse 
sets each bit in the flip-flops to the data state 
represented by the sense signal passing at that 
moment through the corre'sponding sense am­
plifier. 

The bit current flows parallel to the sense 
conductor, and induces large inductive noises 
into the sense signal. Transposition of each 
sense line with the corresponding bit line by a 
crossover connection in the middle of the mem­
ory plane reduces this noise. This connection 
in every sense line is made after the glass has 
been sandwiched between the printed-circuit 
boards. Due to mechanical imbalance between 
each sense-line/bit-line pair, some noise (as 
much as 5 mV) remains. Further reduction 
of this noise is possible by manually adjusting 
the small sense end-around loop on the plane. 
Bit-noise cancellation prevents sense amplifier 
overloading, and ensures reliable operation at 
high speed. 



96 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

As an additional means of keeping noise in 
the sense lines at a minimum, we included an­
other feature in the design; during a write 
cycle, the flow of bit current is restricted to a 
single memory 'plane, rather than being per­
mitted to flow through the entire stack. Each 
information switch circuit is associated with 
one plane (32 per stack). One of the switches 
is enabled by the decoding of five address bits. 
The information (bit) drivers connect to the 
appropriate bit lines on each frame through a 
diode-transformer assembly (Fig. 2). Employ­
ing four (rather than two) diodes per trans­
former has the advantage that the bit switch 
circuit can be designed for single-polarity cur­
rent pulses even though bipolar bit currents 
flow in the plane. Also, the same amount of 
current flows through the switch, regardless of 
the information being written into the films, 
and only two conductors per bit are needed to 
interconnect the corresponding bit lines be­
tween frames. Sneak ground currents are also 
eliminated with a four-diode scheme. The in­
formation drivers see high impedances in every 
plane but the selected one. This arrangement 
eliminates the time delay in the bit current, be­
cause the bit lines are effectively connected in 
parallel. 

Words are stored 128 to a memory plane, on 
32 planes, rather than in the more conventional 
fashion of a plane storing one bit position for 
all words. Because of this geometry, and the 
restriction of bit currents to a single memory 

NAN~ 

INITIATE (CLOCKlPULSE 

ADDRESS REGISTER 

WoRO SWITCH{ 

100 

WORD GATE ~---""'I 

WORD DRIVER ~-.j..---I---"""1 

WORD CURRENT I----I-----!--­

SENSE SIGNAL I---..:....-.-+--~ 

SENSE AMPLIFIER ~-+-______ --"-~ 
STROBE PULSE ~_"':"-_-+-__ ....Ji 

INFORMATION REGISTER I----I----+----!--... ~ 

INFORMATION SWITCH ( 

plane, each plane is effectively a 128-word mem­
ory stack in itself, functionally isolated from 
other planes, during write. The sense lines, on 
the other hand, are series-connected through all 
bits in the stack, one line per bit position. 

MEMORY TIMING 

The memory timing waveforms are shown in 
Fig. 3; waveforms of actual word current, bit 
current, sense readout, and strobe pulse are 
shown in Fig. 4. 

Memory read operation begins with an initi­
ate pulse received from the memory control 
unit. Storing the address information in the 
address register requires 20 nsec. Address de­
coding occurs in a single gate level, and re­
quires an additional 20 nsec. The decoding en­
ables the selected word switch circuit, and also 
one of the 32 information switches. A word 
gate pulse turns on the chosen word driver at 
100 nsec. With a circuit delay in the driver of 
50 nsec, current flows in the selected word line 
at 150 nsec. The sense signals are induced on 
the sense lines during the word current rise, 
but, depending upon the location of the word in 
the stack, may be retarded at the sense ampli­
fier input by as much as 70 nsec. The earliest 
time at which a signal can appear at this input 
is at 160 nsec, the latest at 320 nsec. An am­
plifier delay of 40 nsec allows signals to arrive 
at the information register at between 200 and 
270 nsec. The strobe pulse clocks the informa-

300 400 500 

I 

~=-+-_--o<.:~ _____________ ~ 
",,-- wRiTE -NOrSE - - - - - - - ...... , 

Tr-"", -~-LA-TE-ST-S";;TROBE - - - - - - - - - - - - - -

INFORMATION GATE I-------!----!--~--_I__--V" 
RECOVER GATE 

INFORIIATION/RECOVER{ =='1~-t---t----t---;--t----:::=::4--....... 
CURRENT 

Figure 3. Memory Module Timing Diagram. 



2-MC MAGNETIC THIN FILM MEMORY 97 

Word Current: 200 mAl em vertical scale 

Bit Current, 
Write ONE: 100 mAl em vertical scale 

40 nsec I cm horizontal scale 

Word Current: 200 mAl cm vertical scale 

Bit Current, 
Write ZERO: 100 mAl cm vertical scale 

40 nsec I cm horizontal scalB 

Amplified Sense 
Signal, ONE Readout: 1 V I cm vertical scale 

Strobe Pulse: 2 V I cm vertical scale 

40 nsec I cm horizontal scale 

Amplified Sense 
Signal, ZERO Readout: 1 V I em vertical scale 

- f . ~ 
~-.; 

Strobe Pulse: 2 V I cm vertical scale 

40 'nsec I cm horizontal -scale 

• I : Amplified Sense 
Signal, ZERO Readout: 1 V/cm vertical scale 

-~-~ .. --- .. -----;~.----- _.- ~ 

~.-~-1-_ Strobe Pulse: 2 V I cm vertical scale 

O.llJ.Sec/cm horizontal scale 

Amplified Sense 
Signal, ONE Readout: 1 V I cm vertical scale 

Strobe Pulse: 2 V I cm vertical scale 

0.1 ,",sec I cm horizontal scale 

Figure 4. Waveforms: Word and Bit Currents, Sense Readout, and Strobe Pulse. 

tion register, which has a delay of 20 nsec. At 
the latest possible time of 290 nsec, the infor­
mation register contains the read data. 

The write operation begins at 300 nsec. The 
write cycle either replaces the data read out 
during the previous read (and contained in the 
information register), or enters new data into 
the selected word location, via information 
drivers. The new data is taken from the buffer 
register, and is substituted for the signals from 
the information register. With a circuit delay 
of 40 to 50 nsec in the information driver, bit 

current flows at 350 nsec for a duration of 100 
nsec. While the bit current is at its crest, the 
word current (which has continued to flow 
since initiation of read) is terminated. Termi­
nation of the word current allows the mag­
netization vectors of the films to rotate in the 
directions established by the bit currents, and 
the word is written. To eliminate magnetizing 
energy which would otherwise remain stored 
in the pulse transformers employed in the bit 
circuits, a recover pulse is selectively applied to 
bit lines. The recover pulse, opposite in polar­
ity to the bit current, and of about the .same 



98 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

duration, terminates at 550 nsec, to complete 
the write portion of the memory cycle. 

MECHANICAL CONSTRUCTION 

A single cabinet (Fig. 5) houses one stack 
and all associated circuitry; two such cabinets, 
one containing certain common circuitry (that 
shown in the middle of Fig. 1) make up 
a memory module. The front-opening door 
on each cabinet carries the control panel for 
that stack and permits full access to the in­
terior. The interior of the cabinet (Figs. 6 and 
7) contains two circuit-card racks which may 
be locked together, and can be swung either 
separately, or in unison, around a vertical 
hinge. The stack, mounted in the lower portion 

--.... _----
••• 

Figure 5. Memory Cabinet, Front Door and 
Control Panel. 

Figure 6. Memory Cabinet, Door Open and Racks 
Extended. 

of one of these racks, as shown in Fig. 6, has 
the following dimensions: height 30 in., width 
26 in., and depth 12 in. The stack housing is 
an integral part of the rear card rack, which 
can be swung completely out of the cabinet. 
The memory frames slide into the stack en-

. closure from the front, and engage with bit 
connectors located in the rear panel. The 32 
frames lie in the stack horizontally, with a 
frame-to-frame spacing of 0.7 in. The word 
driver and switch lines engage the frames 
through "side-entry" connectors located at the 
left side of the stack. Placing the word-driver 
cards and the word-switch cards to the left of 
the stack keeps the interconnecting wires quite 
short. (The address decoding matrix is con­
tained on the 32 memory frames.) 

The five rows of cards above the stack (Fig. 
7) contain, in bottom-to-top order, sense ampli­
fiers, information register, bit drivers, address 
register, and timing and control circuits. 

The separately hinged front rack (Fig. 6) 
includes space for five rows of logic cards for 
the party-line transmitters and receivers, input 



Figure 7. Memory Cabinet, Showing Rear Rack and 
Bit Switches. 

and output decoding, receiving and transmit­
ting registers, and parity-generating and check 
circuits. 

A magnetic shield surrounding the memory 
stack reduces the disturbing influence of the 
earth's magnetic field. 

A separate power supply is located in the 
rear of each cabinet, behind the card racks. 

The unit operates in a temperature range 
from 0° to 50° C. Fans, located in the top and 
bottom of the cabinet, provide air to cool the 
equipment. 

THE MEMORY PLANE 

The magnetic thin films employed in this 
system are produced by vacuum deposition of 
nickel-iron alloy onto glass substrates, while 

2-MC MAGNETIC THIN FILM MEMORY 99 

under the influence of a magnetic field. The 
films are 1000A thick; the glass measures 70 
by 43 mm, and is 0.2 mm (8 mils) thick. An 
etching process, applied after deposition, re­
moves the unwanted material from the glass. 
The 768 rectangular cells contained on one sub­
strate measure 30 by 80 mils each, spaced on 
50-mil and 100-mil centers, respectively. The 
easy direction of film magnetization is along 
the length of the cell, hard direction along the 
width, to accommodate shape anisotropy-the 
demagnetizing effect of the air return path is 
less significant in this orientation. Two sman 
registration holes, drilled into the glass prior 
to deposition, help in the alignment of the glass 
with the conductors during test and assembly. 

Each substrate stores 32 words of 24 bits 
each. Twenty such glass substrates are assem­
bled into one memory plane, as shown in Fig. 8. 
Arrangement of the substrates into five rows 
of four each provides storage for 128 words of 
120 bits each. (Each word includes 15 spare 
bits, which are distributed evenly, for possible 
later replacement of weak or faulty bits.) 

The glass substrates of each memory plane 
are sandwiched between two printed-circuit­
board assemblies which measure 20 in. in length 
and 9 in. in width. Three conductors address 
every memory cell: a word conductor, a sense 
conductor, and a bit conductor. The word con­
ductor, 20 mils wide, is parallel to the film easy 
direction, and lies orthogonally to the sense and 
bit conductors. (The p.elds associated with the 
conductors are, of course, orthogonal to the con­
ductors.) A split bit conductor, each half 20 
mils wide, and separated from the other by 50 
mils, embraces the 10-mil-wide sense conductor. 

Five printed-circuit boards, each with 24 bit 
and 24 sense conductors, bond to a single flat 
backing board 0.1 in. thick (Fig. 8). The 128 
word lines, printed onto 1-mil-thick Mylar, 
bond to the rigid sense-bit assembly. All con­
ductors terminate into tab connections on 50-
mil centers, located at the edges of the printed­
circuit boards. 

A 9-mil-thick glass epoxy spacer separates 
the two printed-circuit assemblies, and prevents 
excessive forces from pressing onto the glass 
substrates. A small amount of epoxy glue holds 
each substrate in its proper location. 



100 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Figure 8. Elements of Memory Plane. 

MEMORY FRAME CIRCUIT BOARDS 

A frame (Figs. 9 and 10) surrounds each 
completed plane. Three types of circuit boards 
mounted on the edges of the frame--the word 
selection matrix, five sense boards, and five bit 
boards-=-connect to the plane. (There are five 
rows of substrates in the plane.) The attach­
ment of connectors to the frames helps greatly 
during debugging and testing, and during re­
placement of faulty semiconductor components 
on the plane. (The circuits employed on these 
boards-for word selection, sensing, and bit 
selection-are described in greater detail in the 
next section. ) 

Word Selection Matrix 
The word selection matrix, which is part of 

the frame, contains 128 selection elements. 
Each element consists of a pulse transformer 
and three diodes. The transformer is wound 
with three windings-two primary windings 

and one secondary winding-with a turns ratio 
of 1: 1:1. To maintain balanced drive condi­
tions between the word drivers and the word 
switches, we included two selection diodes, one 
in each primary winding of the transformer. 
The third diode in the secondary circuit speeds 
transformer recovery (Fig. 11). The trans­
former reduces the capacitive noise induced 
into the sense signal from the word current, as 
well as the noise generated during transition of 
the address selection. Each word line is elec­
trically isolated from all other word lines. Re­
verse biasing of all diodes in a selection matrix 
prevents undesired sneak currents. During a 

Figure 9. Complete Memory Frame, Front. 



Figure 10. Complete Memory Frame, Back. 

memory cycle, this bias is removed from the 
row of diodes connecting to the enabled switch. 
In a matrix without transformers, a large volt­
age swing would be coupled into the sense line, 
because of the capacity which exists between 
word line and sense line. The capacitive cur­
rents would induce a normal-mode signal which 
cannot be removed in a differential input cir­
cuit. 

The memory operates at 2 Mc; this selection 
scheme, however, operates6 at speeds up to 
6 Mc. 

The word-drive and word-switch connections 
are made through "side-entry" edge-board con-

2-MC MAGNETIC THIN FILM MEMORY 101 

nectors. The 128 paired output terminals of the 
matrix, spaced on 50-mil centers, align with 
the film word lines, and connect to the word 
lines through welded-on jumper wires. Welded 
"end-around" connections jumper the far ends 
of the word lines on the plane, to complete the 
return path. The nominal word-current ampli­
tude is 400 rnA, with a tolerance of ±10 per­
cent. 

Sense Boards 
The five sense boards are located at one edge 

of the plane, and the five bit boards at the op­
posite edge. Therefore, all sense connections 
are made from the same edge. A small wire 
loop shorts the far ends of each sense line. The 
near end connects to the secondary winding of 
a transformer, as shown in Fig. 12. Each board 
contains 24 transformers. Each sense trans­
former contains three windings; one connects 
to the film sense line, and the other two connect 
to an edge-board connector. -Four output con­
nections. per sense line are required. The cO.n­
nector terminals are spaced on 50-mil centers. 

Bit Boards 
The bit-line selection spheme employed in this 

memory utilizes a transformer in every line 
(Fig. 13). The secondary winding connects to 
the corresponding bit_ line. A bit current of 
100 rnA is required to write a single bit. The 
printed-circuit end tabs on the bit boards mate 
with the edge-board connectors located in the 
backplane of the stack (Fig. 7). 

FROM 
WORD 

DRIVER 

&4 PAIRS 

~ ~Ir 
I~ 
~ 

'i 

TO WORD 
SWITCH 

TO WORD 
SWITCH 

'------,v,....-----' 
64 PAIRS 

t 
~I~ 

* 
II~ WORO UNE 
~ 

END-AROUND DIDOE 

Figure 11. Word Selection Matrix. 



102 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Figure 12. Sense Line'Interwiring. 

CIRCUIT DESCRIPTION 

Word-Current Drivers and Switches 
The word driver and word switch circuits 

which resemble those described by Bates and 
D' Ambra,6 can generate currents with 20-nsec 
rise and fall times when loaded by a small 
(128-word) memory, such as that employed in 
the computer module of the D825. The loading 
of the 4096-word selection matrix (Fig. 11) in­
creases the current rise time to 35 nsec, the fall 
time to 50 nsec. The driver supplies both a 
positive pulse and a negative pulse to the in­
terconnecting twisted pair of conductors. The 
balanced drive arrangement eliminates ground 
currents and radiating fields which can greatly 
add to the noise problem. The closeness of the 
driver and switches to the stack keeps the inter­
connecting wires short. The total delay (about 
10 nsec) from a driver to the word-line end­
around short is less than the current rise time, 
and does not deteriorate the current shape. The 
drivers and switches supply a current of 200 
mA to the selection matrix. The word trans­
formers in the matrix have a 1:1:1 turns ratio, 
and the output winding receives a current of 
400 mAo The drivers and switches connect to 
the stack through twisted-pair conductors, and 
both circuits have output impedances of 100 to 

150 ohms. Drivers contain a 7-input AND gate 
at the input, and the switches contain a 6-input 
AND gate. Delay in the circuits is 35 nsec. 

Sense Amplifiers 
The sense lines are effectively series-con­

nected through all of the bits in the stack. The 
sense transformer output windings of corre­
sponding bits connect together from plane to 
plane in series fashion. Every sense line con­
tains an end-around loop which shorts the far 
end of the line. This short reflects to the be­
ginning of the line connecting to the trans­
former. The sense signal which travels through 
a transformer on an unaddressed plane receives 
only a small attenuation after the short is re­
flected to the output winding. This reflection 
appears at the input after two line delays, and 
accounts for the signal delay in the stack. The 
pickoff is taken from the middle of each line, 
to halve the delay, as shown in Fig. 12. Signal 
attenuation for worst-case locations is 6 dB. 
Nominal sense output at the plane is 1.5 mY. 
The amplifier has a gain of close to 3000, and a 
delay of 40 nsec. The amplifier is tr~nsformer­
coupled into a differential input stage, which is 
succeeded by two amplifying stages. The am­
plifier digitalizes the signal, and sends both 
true signal and complement signal to the as­
sociated information register flip-flop. 

Information or Bit Drivers 
The bit drivers supply bipolar current pulses, 

100 nsec wide, to the stack. The bit-driver in­
put circuit contains the decision elements which 

Figure 13. Bit Selection Scheme. 



either copy the word stored in the information 
register or allow new data, obtained from the 
buffer register, to be written into the stack. In 
addition, the logic function which determines 
whether a ONE should be stored as a ONE or 
a ZERO is included. This is necessary because 
of the sense-line transposition in the center of 
every plane. The sense amplifier amplifies only 
single-polarity signals, and all ONEs stored in 
the stack must appear as negative signals at 
the input to the sense amplifier. Therefore, all 
ONEs are stored as ONEs in half of the stack , 
and as ZEROs in the other half. The reverse 
is true for the storage of ZEROs. 

The driver input contains two OR gates 
driven from four two-input AND gates. The 
bit driver delay is 35 nsec, and the output stage 
is transformer-coupled and has an output im­
pedance of 50 ohms. 

All lines connecting the stack to the back­
plane are impedance-matched. The bit drivers , 
located in the second and third rows, connect 
to the middle of the stack through five groups 
of coaxial lines, as shown in Fig. 7. On the 
frame bit connectors (hidden by wiring and 
c i r cui t s), corresponding bits interconnect 
through twisted pairs, with an impedance of 
150 ohms. A matching transformer connects 
the coaxial line to the twisted pair. 

The bit switches for the eight frames shown 
installed in Fig. 7 cover the coaxial bit lines. 
Each bit switch circuit is contained in a strip 
which aligns with the associated memory 
frame. One switch circuit handles the currents 
from one row of substrates. Five such circuits 
on a strip are driven from a common drive cir­
cuit (visible at the far right in the photo­
graph) . 

The bit line impedance on the frame is 10 
ohms. The nominal bit current is 100 mAo The 
bit transformer has a turns ratio of 2:2 :1, 
which requires 25 mA of current in the pri­
mary. The matching transformer which con­
nects the interconnecting twisted pair to the 
coaxial drive line has a 1:2 turns ratio. This 
transforms the impedance from 160 ohms to 40 
ohms, which is close enough to match the 50-
ohm coaxial cables. The current necessary 
from a bit driver, to produce 100 rnA of bit 

2-MC MAGNETIC THIN FILM MEMORY 103 

current in a plane, is 50 rnA. 

The total of 105 times 25 rnA of current is 
received by the selected information switch. 
The switch is divided into five individual cir­
cuits, operating in parallel, each handling a 
total of 500 mA; each circuit handles the bit 
currents in one substrate row. 

SUBSTRATE TESTER 

A substrate tester (Fig. 14) submits every 
bit on a substrate to a pulse test which subjects 
the bit to disturbing fields resembling worst­
case examples of those encountered during ac­
tualoperation. 

The films exhibit pronounced magnetic an­
isotropy; the B-H hysteresis loop along the 
film easy axis is rectangular, while that along 
the hard axis is linear. The films also exhibit 
various disturbing thresholds for fields applied 
in different directions. Because of the film's 



104 PROCEEDINGS~F ALL JOINT COMPUTER CONFERENCE, 1964 

linear loop in the hard direction, a low disturb 
threshold exists for fields parallel to the trans­
verse (hard) direction. (See Fig. 2.) 

The test fixture (Fig. 15) is assembled from 
circuit boards similar to those surrounding the 
memory plane in the actual memory stack. S ub­
strates are inserted and removed through a nar­
row slit located at the word end-around connec­
tions. Two pins through holes in the glass, used 
to register substrates and circuit boards in the 
actual memory-plane sandwiches, furnish simi­
lar registration ill the substrate tester. 

A relay rack contains the circuitry necessary 
to test the substrates. Indicators for alI" flip-flop 
circuits, located on a control panel, allow ob­
servation of the test, and help during opera­
tional maintenance. 

The worst disturb condition exists when a 
stored ONE bit is surrounded by all ZEROs, 
or when a ZERO is surrounded by all ONEs. 
The test word 10001000100 ... , disturbed by 
all ZEROs in adjacent locations, is tested for 
ONEs; the test word 01110111011. ~ .. , dis­
turbed by all ONEs in adjacent locations, is 
tested for ZEROs. 

At the beginning of an operation, the test 
word (ONEs) is written into all 24 bits of the 
first address. N ext, all ZEROs are written into 
the adjacent word location; the latter is re­
peated as many as 32,000 times. The rewrite 

Figure 15. Substrate Tester Test Fixture. 

process subjects the test word to transverse 
and longitudinal disturbing fields applied simul­
taneously. The test word is read after the com­
pleted disturb cycle, and its content compared 
with a program register. A match continues 
the test, by shifting the test word to the next 
bit (0100010 ... ), and the disturbing continues. 
After three shifts, every bit in the first address 
has been tested for ONEs. The test word for 
ZEROs follows. This test continues until all 
bits are checked for ONEs and ZEROs. The 
disturb word can be written to the right or to 
the left of the test word, alternatively to the 
right and then to the left, or parallel to the 
right and left. The parallel writing of two 
words which embrace the test. word constitutes 
a more than worst-case· condition-a condition 
that never occurs during memory operation­
but allows grading of the substrates. 

Substrates which pass the 32k disturb test 
are assembled into memory frames. These sub­
strates tolerate about 4k to 8k disturb pulses, 
when tested in the more-than-worst-case par­
allel mode. The test is fully automatic, and the 
output signal of the sense lines is not moni­
tored. The tester operates at a frequency of 1 
Mc; one disturb test requires 8 seconds if no 
error occurs. Evaluation of a good substrate 
requires about 30 to 60 seconds, because the 
substrate is also retested in the parallel mode. 
Operation stops on a bad bit, and panel indi­
cator lights display the location of the bad bit, 
and whether the failure represents a bad ONE 
or a bad ZERO. 

Film disturbance shows dependence upon 
current rise times. Slower current pulses tend 
to disturb less. Current rise and fall times of 
20 nsec are available in the tester, as compared 
with 35 nsec in the stack. The size and the 
larger number of selection elements reduce the 
current rise and fall times in the stack. 

Substrates which pass the- 32k disturb-pulse 
test also pass consistently a test of 4 million 
word and 250 million bit disturb pulses in the 
frame tester. 

FRAME TESTER 

Evaluation of fully assembled memory planes 
(frames) takes place in a frame tester (Fig. 
16). A relay rack houses the circuitry and 



power supplies. A specially designed fixture 
allows the frame to slide into the word connec­
tor in an upright position. This provides the 
connection necessary to address all 128 word 
lines. A movable rack, containing sense ampli­
fiers and bit drivers for the examination of 24 
bits, can slide vertically to the desired group 
of lines. Printed-circuit edge-board connectors 
mate with the appropriate conductors. With 
this mechanical arrangement, an equal con­
ductor length is consistently maintained during 
the examination of the five groups of sub­
strates, to correspond to the actual stack con­
struction. 

The evaluation consists of two phases: first, 
the bit-write noise is reduced by manual ad­
justment of the "end-around loops." Secondly, 
a disturb test, similar to that performed on 
the substrates, is run. The frame tester oper­
ates as a memory exerciser, with the capability 
of inserting worst-case patterns into the plane. 
The automatic program rewrites the disturb 
word up to 32,000 times; manual operation al­
lows any desired number of disturb operations. 

The tester operates at one of three different 
frequencies: 2 Me, 4 Mc, or 250 kc. Single-pulse 
operation is also available. Although substrates 
cannot easily be removed frOlTI an assembled 
plane, up to three bad bits can be tolerated in 
each of the five sense-bit groups. The spare 
lines can replace lines containing faulty or 
marginal bits, but a small wiring change is 
necessary. 

CONCLUSIONS 

The operation of this half-microsecond-cycle 
memory module represents a significant 
achievement in a program of magnetic thin­
film development for computer storage which 
was begun at these laboratories in 1955. Large 
numbers of substrates were processed and 
tested, and memory plane assembly ~nd test are 
now routine operations. 

Memory frames which contain 20 substrates 
(15,360 bits) can be assembled without great 
difficulty. The limitations were imposed by the 
printed-circuit boards, and were due to dimen­
sional tolerances. 

2-MC MAGNETIC THIN FILM MEMORY 105 

Figure 16. Frame Tester. 

Cost-per-bit reduction can be achieved by in­
creasing the number of bits contained in a sin­
gle pluggable unit, because the interconnections 
in the stack contribute significantly to the total 
memory cost. 

A shorter memory cycle can be made possible 
by reducing the total sense delay, and by the 
elimination of the bit recover pulse. The pulse 
transformers 'will be replaced by active solid­
state devices. A reduction of 150 nsec-50 nsec 
from a shorter sense delay and 100 nsec from 
elimination of the bit recover pulse-make a 
cycle time of 350 nsec, or 3-Mc operation, pos­
sible. 



106 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

The capacity and speed attained with this 
memory are clear indication that magnetic thin 
films have become the optimum storage ele­
ments for reliable, nonvolatile, fast-access 
memory. 

ACKNOWLEDGMENT 

The author wishes to express thanks ~o the 
many people at these laboratories who we:te re­
sponsible for the successful completion of this 
memory, especially to F. C. Doughty, A. M. 
Bates, P. A. Hoffman, J. W. Hart, J. S. Jami­
son, and L. N. Fiore, for their technical as­
sistance; J. H. Engelman and R. P. Himm~l 
for film fabrication; G. Sabatino, K. McCardell, 
and S. V. Terrell for film and memory testing; 
B. C. Thompson and F. Rehhausser for logic 
design; and R. E. Braun, G. J. Sprenkle, and 
G. J. Kappe for mechanical design. 

REFERENCES 

1. BITTMANN, E. E., "Thin-film memories: 
some problems, limitations, and profits," an 
invited paper presented at the International 

Nonlinear Magnetics Conference (INTER­
MAG), April 1963, and published in the 
Proceedings. 

2. RAFFEL, J. 1., et al., "The FX-1 magnetic 
film memory," Report: MIT Lincoln Labo­
ratories TR278, November 1962. 

3. ANDERSON, J. P., et al., "The D825: a multi­
computer system for command and con­
trol," AFIPS Proceedings, 1962 Fall Joint 
Computer Conference, December 1962. 

4. ANDERSON, J. P., "The Burroughs D825," 
Datamation, April 1964. 

5. THOMPSON, R. N., and WILKINSON, J. T., 
"The D825 automatic operating and sched­
uling program," AFIPS Proceedings, 1963 
Spring Joint Computer Conference, May 
1963. 

6. BATES, A. M., and D' AMBRA, F. P., "Thin­
film drive and sense techniques for realizing 
a 167-nsec read/write cycle," Digest of 
Technical Papers, 1964 International Solid­
State Circuits Conference, February 1964. 



A SEMIPERMANENT MEMORY UTILIZING 

CORRELATION ADDRESSING 
George G. Pick 

Applied Research Laboratory, Sylvania Electronic Systems 
A Division of Sylvania Electric Products., Inc. 

W alth.am, Massachusetts 

SummcLry: A mechanically changeable, semi­
permanent, random access memory with a 
16,384 twenty bit word capacity is described. 
This solenoid array memory is useful for stored 
programs and tables in computers, character 
generation and as a combined input and stor­
age device for special purpose computers. It 
utilizes an associative technique to allow ad­
dressing of any of its 1024 sixteen word data­
containing sheets, which completely avoids any 
need for electrical connections to the data-con­
taining sheets or for any ordering of the sheets 
wi thin the memory. Each sheet is a very thin 
printed circuit onto which data is entered by 
etching or punch-card controlled cutting. The 
data is inductively interrogated by means of 
solenoids which pass loosely through the sheets. 
The sheets are contained in loose-leaf notebook­
like magazines which fit into a file drawer. 

The present memory's access time is 0.7 
microsecond and its cycle is below two micro­
seconds. 

INTRODUCTION 

In recent years there has been an increasing 
interest in read-only random access memories. 
This class of memory has developed along two 
paths, those electrically alterable and those 
mechanically alterable. This device falls into 
the latter class. The solenoid array memory 
described here is a development which followed 
the solenoid array correlator and memories de-

107 

scribed in an earlier paper.l In previously 
reported work~' :>.1 inductive coupling was also 
used, but electrical connection had to be made 
to the stored data, or else the capacity was 
very limited. Some work:;' (i allowed use of 
connection less data containing media, but in 
each case, precise data alignment and interleav­
ing structures were needed. The described 
memory uses thin copper clad "Mylar" printed 
circuit sheets which are placed adjacent to each 
other with no interleaving of any sort. All cou­
pling, into and out of the data planes, is by 
inductive coupling from and to two respective 
solenoid arrays which pass loosely through 
holes in the data planes. 

The addressing solenoid array is driven by 
an input address which has been transformed 
into an error-correction type code. The address 
is simultaneously correlated or matched to the 
stored addresses on each data plane with the 
result that the autocorrelation on one plane is 
a voltage positive enough to exceed its diode 
conduction voltage, and on all unselected planes 
the cross-correlations result in voltages which 
are well below, or negative, to that voltage. 
In consequence, a current is allowed to flow in 
only the selected plane's data path, allowing 
only that plane's data to be sensed by the 
pick-up solenoids. 

This association between a coded address and 
its plane's data allows the mechanical flexi­
bility mentioned earlier. The data plane may 



108 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

be positioned anywhere along five inches of the 
solenoids' lengths, and as long as there is only 
one data plane in the stack with that address, 
it is uniquely accessible. 

Each sheet contains sixteen words or 320 
bits. To avoid the need for 320 amplifiers, the 
four lower order address bits are used to select 
the appropriate group of solenoids and connect 
them to the sense amplifiers. This technique 
allows the packing of many words on a single 
data plane, thereby efficiently multiplying the 
capacity of the memory and radically increasing 
its effective bit packing density on normal 
length words. Single data sheets of practical 
size can contain upwards of a thousand bits. 

The ease of data change and the low cost of 
the storing medium allow this memory to be 
considered for tasks where it acts not only as 
a memory, but as an input device as well. Maga­
zines, containing tens or even hundreds of 
thousands of bits, can be stored on a shelf and 
inserted into the memory when required with 
an ease comparable to changing a modern mag­
netic tape cartridge. Thus for some computing 
systems, mechanical input reading devices lnay 
be replaced by a rugged, mechanically static, 
semi-permanent memory of this type. 

Overall Description 

The solenoid array device described utilizes 
long, thin solenoids to provide a simple, non­
critical magnetic coupling between the data 
containing planes and the array memory struc­
ture. The memory is organized so that the 
data-containing planes need have no connec­
tions other than magnetic, and this realization 
required hyo basic functions-unique data plane 
drive and appropriate sensing of the driven 
plane for the selected stored data. These two 
functions are almost independent and are 
realized by a driver solenoid array and a sense 
solenoid array. The driver solenoid array is in 
essence a substitute for a 1024 line linear ad­
dressing matrix and the resultant connection 
pair that would be needed to each of the 1024 
data planes. 

The sense or pick-up array detects if the vari­
ous bit positions on each driven plane contain 
a one or zero. The sense solenoid outputs are 
connected so that appropriate gating can con-

nect the output of only one group of solenoids, 
a word group, to the sense amplifiers. The 
arrays are shown in Figure 1. 

The principle of operation of the solenoid 
array is based on the transformer. On any 
transformer, if a wire passes around its flux 
path, there is coupling, and if it bypasses its 
flux path, there is only stray or minimal cou­
pling. With solenoids, the same rules apply 
with little modification. 

In the memory, the drive array and the sense 
array are separate components which are only 
connected through the stored data planes. In 
series with this connection on each plane is a 
diode which acts as a switch that allows one 
and only one plane to be connected at one time 
during the interrogation. See Figure 2. 

The address is stored on each plane on that 
portion which slips over the addressing array. 
This matrix of mutual inductances which couple 
a digital input address word simultaneously to 
all the data planes perform a correlation or dot 
product operation. The operation thus per­
formed is given by 

15 

T j = ~WjkUk 
. k = 1 

j = 1, 2, ... 1024; where Uk and \V jk are the 
klh components or cells of the input address 
word U and the stored address word Wj, re­
spectively, and Tj are the simultaneous indi­
vidual output voltages generated on each plane. 

The correlation is formed by simultaneously 
energizing 15 solenoid pairs, in either the "zero" 

Figure 1. Solenoid Array Without Planes. 



A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 109 

Figure 2. Data Plane. 

or "one" positions-depending on the input 
address. The individual multiplications that re­
sult are shown in Figure 2A and these positive 
and negative voltages on each plane are 
summed together because all of the paths are 
in a series circuit. 

The right portion of the photograph in 
Figure 2 shows the addressing paths, plus bias 
positions to be described later. It may be noted 
that the loops on vertically adjacent aperture 
pairs always encircle one and bypass the other. 

At the bottom of the photograph is a small 
component, a diode, which "detects," and al­
lows current to flow only in that plane where 
the addressing correlation resulted in a posi~ 
tive voltage sum with respect to the diode con­
duction polarity. 

The described addressing operation is, as was 
explained earlier, a substitute for a connection 
pair to the left portion of the data plane, which 
stores the actual data. 

The data portion of the plane on the left side 
of Figure 2 is organized into 16 rows, each 
representing a 20 bit word. Two rows are 
paired into one major loop and there are eight 
loops on the plane, one above the other. The 
sense solenoids are not paired like the drive 
solenoids, hence the data for each bit is stored 
by cutting the path so that each solenoid, or 
bit, is either inside· or outside the enclosed area 
or loop. The distance between the two sides of 
each major loop is of little consequence, hence 

two rows or words can be placed on one loop. 
(The coupling loops are the paths starting on 
the right of the data portion, going to the left, 
up a short distance and returning to the right. 
All these loops are in series with all the others, 
the diode and the addressing array loops on 
the right.) 

Figure 2B shows the operation of the sense 
solenoids and the manner in which they pick 
up the stored data. In a later section the orga­
nization for solenoid selection switching will 
be described more fully, however, it should be 
clear that the interrogation of a data plane 
results in parallel output of all data bits on the 
plane. The selection switching circuit is used 
only to reduce the number of sense amplifiers 
and subsequent gating circuits. If each plane 
contained only one word, selection would be 
eliminated. 

.. o£L 

!::-D"i!Z 
INPUT 

a 

.. o.JL 

o LFTPUT 

/:: __ ~DZERO-+i!-+-Z_~~. _ -_ ---O~oOnTPUT 
'NM, :g-

"Z~ 

Figure 2A. Data Plane Driving Solenoid. 



110 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

I 

i_ 

---t---L---+-----"'~-DATA PLANE CURRENT -
.. ONE" OUTPUT 

·2 --O.f---+--+-...l...-_-" ZERO" OUTPUT 

2B. Addressing Solenoids Driving Stored Address. 

The error-correcting code's first function is to 
allow unique selection of Qne plane, thereby 
addressing many planes with a modest number 
of drivers and solenoids. The long "distance"* 
of the code brings with it the advantage of 
redundancy which results in high reliability and 
driver load sharing. (In practice, it has been 
found that degraded or missing drive pulses on 
a few drivers have little effect on memory 
operation.) 

The operation of the memory can be de­
scribed by Figure 3. The address is stored in 
the address register. The addresses' lower order 
bits are decoded into sixteen sub-addresses for 
selecting the appropriate sensing solenoid 
group. The higher order address bits are oper­
ated on by the coder to form a Hamming code 
which operates the addressing solenoids. When 
the addressing array is driven, current rises on 
the selected plane and the pick-up or sense sole­
noid array emits the selected word to a bank 
of sense amplifiers. 

Addressing by Correlation 
A solenoid array memory has previously been 

built in which the data planes were conduc­
tively connected and were addressed by a rela­
tively straightforward coincident voltage tech­
nique in rectangular matrix with a diode con­
nected in series with each plane's path at each 
crosspoint. Another memory was built in which 
a single solenoid was used to drive each single 

* In !1 coding sense. 

Figure 3. Block Diagram. 

data plane with a unique and orthogonal ad­
dress. The first memory required connections 
to the data planes, which was acceptable only if 
data was to be changed infrequently, and the 
latter memory was limited to a modest number 
of planes equal to a practical number of drive 
solenoids, namely, about fifty planes. 

Addressing by correlation provided an exit 
from these limitations. Well developed correla­
tion techniques were available 1 from which a 
correlator could be designed that would accu­
rately correlate a binary address and thereby 
achieve a form of connectionless associative 
addressing. However, the original solenoid ar­
ray correIa tor used air cored solenoids whose 
output voltages were too low to generate 
enough voltage to drive a data pla:Qe. Ferrite 
cored solenoids were designed which improved 
the coupling, allowing much higher drive volt­
ages to be delivered to the data planes. How­
ever, in spite of compensation, the cored sole­
noid's coupling to the data planes was much 
less uniform than that of the air cored units 
(e.g., 15 per cent versus 1 per cent), and, even 
wIth the high outputs available, single output 
voltages were too low for reliable operation. 
Hence, the need for load sharing and the re­
quirement for less critical drive voltage ampli­
tudes combined to recommend an error-correc­
tion type code. 

Use of a non-orthogonal code causes the re­
quirement for a nonlinear component which 
would detect the positive selection voltage and 
allow the drive current to flow in the plane-a 
diode. Since the diode could be a permanently 
prefabricated part of each plane, and a me­
chanical arrangement was found that did not 
increase the total thickness of a stack of planes, 
the diode was not considered objectionable. 

Applicable Error-Correcting Codes 
Mathematics recognizes many types of codes 

that could be applied to the present device. 



A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 111 

The memory field has seen the use of the usual 
binary codes and classes of orthogonal load 
sharing codes i for addressing or driving core 
memory selector matrices. In the case of the 
described memory, binary codes would be un­
satisfactory because the difference between a 
matched or selected correlation and the closest 
un selected one is too small, namely, one bit. The 
aforementioned orthogonal codes excel in that 
the selected address correlation would receive 
the sum of all or most of the driving bits, and 
all the unselected addresses would have no 
drive at all, by mathematical definition of or­
thogonality, but unfortunately, orthogonal 
codes always require at least as many bits as 
there are addresses. They would fulfill the de­
scribed memory's load sharing requirement, 
but would sharply limit the possible number of 
data planes. 

The error-correcting alphabets were designed 
to encode relatively long blocks of bits, hence 
the number of possible a~dresses is relatively 
large. The use of a diode detector removes the 
need for code orthogonality, and error-correct­
ing codes are inherently efficient in their use 
of redundant bits to achieve long coding dis­
tances or weights. 

Two codes were found that were easily 
applied to the addressing problem. The first is 
the well known Hamming code, in particular a 
code with 10 information bits, 5 redundant bits 
and a "distance" of 4 bits. A second code, even 
more attractive, is the Golay code, which for 
this application would represent 10 information 
bits, with 12 redundant bits and a distance of 
8 bits. Both codes can be conveniently gener­
ated by either shift register encoders or paral­
lel modulo-2-sum networks. Many variants of 
these codes are available for both larger or 
smaller addressing capacity requirements. 

For magnetic reasons to be discussed subse­
quently, correlating by means of single sole­
noids, where zero or one is represented by 
absence or presence of an input drive, is un­
desirable. A more practical arrangement is to 
drive pairs of solenoids in parallel, and to drive 
them with one polarity for a "zero," and the 
other for a "one." 

The effect of this arrangement is that the 
range of correlation outputs is extended from 

o to + N (N = number of bits) to a range of 
- N to + N, thereby doubling the distance or 
weight of the code. As a result, using the 
Hamming code, an autocorrelation is + 15 units 
of voltage, and the nearest cross-correlation is 
+7. In the Golay code, the respective figures 
are + 22 and + 6. This distribution of Ham­
ming code outputs, with no bias, is shown in 
Figure 4. 

The correlation outputs, as they stand, pos­
sess the necessary "distance" properties, but 
their absolute levels are not optimum for prac­
tical operation. The distribution of the unse­
lected outputs must be shifted so that a diode 
(or diode-Zener diode) detector on the plane 
can efficiently prevent current flow. (The rea­
sons for choosing either type of detector are 
discussed subsequently.) The output distribu­
tion shift is readily achieved by adding fixed 
bias in the form of additional solenoid drivers 
which always operate in the same polarity. 

Application of the Data Plane Addressing 
Techniques 

This section describes the technique of gen­
erating the codes, the circuitry of the solenoid 
drivers, the structure and design criteria of the 
drive solenoid themselves and the data plane 
detector considerations. 

Input Register and Coder 
The binary address of the desired data plane 

is entered into a buffer register. This address 
contains the data plane address along with the 
additional address bits "for the subselection of 
data within the plane. The data plane address 
bits, in ordinary binary code, are themselves 

I 
-15 I..y-I 

0.5 VOLT 
INTERVALS 

DISTRIBUTION FREQUENCY 
OF DRIVE OUTPU IS 

1 

J 
+7 +15 

Figure 4. Output Distribution on "Paired" Hamming 
Code. 



112 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

4 SHIFT PULSES AFTER OAT A ENTRY 

Figure 5. Shift Register Coder. 

used to each control a solenoid drive polarity; 
and redundant bits must be generated from the 
original bits by one of several common tech­
niques. 

The best technique for generating the codes 
is the shift register encoder as shown in Figure 
5. In this device, the original address is en­
tered as shown in shift register positions 2-11 
and the modulo-2 adder operates to set position 
1 accordingly. The register is shifted, a new 
bit generated and the operation is repeated 
until the data has been shifted to the left-most 
position. For a Hamming code with 5 redun­
dant bits, 4 shifts are necessary. This tech­
nique is simple to instrument, uses a small 
number of circuits and is most attractive with 
the following exception. The coding must be 
done before interrogation, hence the speed of 
this operation directly affects the access time. 
Thus for a given logic speed, the minimum 
access time is clearly limited by the time con­
sumed by the required shifting operations. 

The alternative is to generate all the redun­
dant bits in parallel. It can be shown~ that 
all redundant bits can be determined as mod­
ulo-2 sums of the original information or in­
put bits. Hence by instrumenting parallel mod­
ulo-2 adder logic (exclusive-or), all redundant 
hits were generated at once. This is shown in 
Figure 6. Unfortunately, efficient codes have 
little logical overlap between their redundant 
bits, hence the amount of circuitry is not in­
considerable. (Typically, a Hamming coder 
requires about 50 NAND circuits and a Golay 
coder about 110.) Alternative simplified cir­
cuits and magnetic configurations are available, 
but some degree of complexity remains. 

For the Hamming codes used in the de­
scribed memory, the code generation was paral­
lel. A second unit now under construction, 
uses a Golay code and its redundant bits are 
generated serially, with higher speed logic to 
partially compensate for the multiple logic 
cycles. In that unit, with modest access time, 
it was found more economical to supply a sepa-

MODULO - 2 - SUM 

rate, faster clock and control counter, all in­
strumented in higher speed logic, than to gen­
erate the Golay code in a parallel. 

Drive Solenoids 
The drive solenoids are operated in pairs, 

with their respective windings connected in 
parallel so that for one given drive polarity 
the solenoid flux polarities are opposite as 
shown in Figure 7. This balanged configuration 
achieves an approximation of a closed magnetic 
circuit without the need for an actual closure. 
Although, because of the air gaps, the mutual 
inductance between the two solenoids of a pair 
is not large, the superposition of the individual 
solenoid fields radically reduces the stray flux. 
Further, although the correlation used for ad­
dressing is very non-critical, the drive pattern 
sensitivity of individually driven solenoids 
would be unacceptable. Thus, to minimize the 
need for magnetic shielding between the drive 
and pick-up arrays, to minimize drive pattern 
sensitivity and to somewhat improve mutual 
coupling to the data planes, paired solenoids 
can be fully justified. 

As a bonus, as was mentioned earlier the . , 
availability of two bit positions on the plane 
allows the storage of positive and negative cor-

REDUNDANT 
BIT II 

DATA PLANE ADDRESS 

MOD 
2 

SUM 

I 

12 13 

MOD 
2 

SUM 

14 

Figure 6. Parallel Coder. 

15 



A SEMI-PERMANENT MEMORY UTILIZING 'CORRELATION ADDRESSING 113 

relation weights, thereby automatically dou­
bling the correlation distance, when the sole­
noids are reversibly driven for one and zero 
inputs. 

Magnetic Structure 
A solenoid using no ferromagnetic core has 

a very uniform coupling to a surrounding loop 
over almost its whole length as is shown in 
Figure 8. However, for a given number of 
turns, an air core solenoid has a relatively low 
self-inductance, therefore presenting a low 
impedance to its driver. Hence many turns 
must be used for practical air core solenoids 
with the consequence that the transformer step­
down turns ratio is large. To allow a smaller 
number of turns, larger diameter air cores or 
ferrite cores must be utilized to maintain a 
practical level of self-inductance. The resulting 
coupling to a loop unfortunately becomes very 

nonuniform as shown in Figure 9 by the dashed 
line, an undesirable situation since the drive 
voltages induced in the planes would vary de­
pending on the position of the plane along the 
solenoid. 

To compensate for the nonuniform coupling, 
two techniques were evolved. The simplest was 
to vary the turns density along the winding so 
that regions near the end were more densely 
wound than near the middle. For good results, 
this technique will require careful control of 
winding density, which will be easy to achieve 
on production machinery but is difficult to do 
in the laboratory. The alternative technique 
was to use a linear winding and to vary the 
ferrite permeability by using short ferrite rods 
butted against each other. Since the reluctance 
of the solenoid return path is relatively large, 
small air gaps between the rods were found 

SOLENOID DRIVERS 



114 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

L 
f OUTPUT 

I ~X 
I , 

~ 
DRIVE 

~SlTlON~ 

OUTPUT~ 
Figure 8. Air Cored Solenoid and its Relative Coupling 

to a Loop. 

quite unobjectionable. Figure 9 shows a sole­
noid constructed in this way with a middle rod 
of low permeability and the two end rods with 
higher permeability. It may be interesting to 
note that this technique bears a similarity to 
a triple-tuned bandpass filter with a broadly 
tuned middle section and more sharply tuned 
end sections. This techniqueiwas applied in the 
memory described. 

The question may reasonably be asked why 
it is necessary to use all these techniques and 
to pay the price of higher drive currents in­
stead of using a closed toroidal-like structure. 
The reasons are as follows: 

1. A very elongated thin-legged closed struc­
ture is likely to have high leakage flux 
between its long members when the leak­
age reluctance becomes comparable to the 
path reluctance. 

2. The need for an easy data exchange 
would require split cores whose alignment 
would need to be carefully maintained. 
Since this memory is intended to appli­
cations where data is frequently changed, 
precisely mated surfaces would require 
critical protection and very precise align­
ment mechanisms. 

Further, since the operating pulse widths are 
short because of access and cycle time require­
ments, the maximum drive currents remain at 
acceptable levels. 

To give the structure mechanical strength, 
the ferrites are inserted into a phenolic-paper 
tube and appropriately glued in, and the wind­
ings are laid into a shallow threaded groove 
cut on the outside of the tube. The entire as­
sembly is then appropriately varnished or 
epoxy coated. 

Solenoid Drivers 
The solenoid drivers are designed to supply 

a 16 volt, half microsecond long pulse to an 
inductive load of about twenty microhenries, 
with ample margin. They are also designed to 
withstand an inductive overshoot equal to the 
drive pulse, or about 32 volts peak. 

As was mentioned earlier, each solenoid pair 
is connected in parallel, as shown in Figure 7, 
so that the solenoids in each pair always have 
opposite polarities. A second consideration is 
that a "one" input should drive the pair one 
way, and a "zero" the other. In earlier designs, 
a transformer with two input drive windings 
of opposite winding polarity, one from each of 
two separate drivers, coupled to an output 
winding that was connected to the solenoid 
load. When "one" was asserted, one switch 
closed and drove the transformer, and when a 
zero was asserted, the other switch and wind­
ing drove the transformer, thereby generating 
opposite drives on the output winding for the 
two states. Unfortunately, the transformers 
were relatively bulky and somewhat inefficient. 

Instead, each driver solenoid wag cut with 
2 grooves instead of one to allow a bifilar wind­
ing, and one winding on each solenoid was 
driven for a "one," and the other for a "zero." 
Both of the respective pairs of windings on the 
solenoids were connected in parallel, in order 
to maintain opposite magnetic polarity on the 
solenoids for either drive. 

The drivers themselves are arranged to be 
controlled by the input address code. The state 
of the address turns on either of two currents 
II or 10 in the driver, which flow as soon as 
the input address code bits are set up. The cur­
rents are shunted to -18 volts by transistors 

• .. I ~ f '" .... t - ~ ". '- I.... ~.. • :! T; 8l "'!"' r-...; 

OUTpuTl~---~ 'oo~'_~ ~ x"_ FOR SINGLE 
UNIFORM ROC 

Figure 9. Ferrite Cored Solenoid and its Relative 
Coupling to a Loop. 



A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 115 

T 1 or T 2 which are saturated continually except 
during the drive pulse. T 1 and T 2 turn on as 
soon as power is applied to form a fail safe 
timing circuit for the solenoid drivers. Tl and 
T:! can only be shut off by a negative drive 
pulse to their bases, and the resistance-capaci­
tance time constant in their base input circuit 
is made long enough to allow them to open only 
slightly over the maximum desired drive pulse 
width. When either II or 12 flows, the opening 
of T 1 and T 2 shunts the current into T 3 or T 4. 

This turns on one drive transistor, causing the 
required drive voltage pulse. At the end of the 
drive pulse, T 1 and T 2 again saturate, rapidly 
shutting off the conducting transistor- with a 
low impedance drive. 

The fail-safe circuit of T 1 and T 2 is needed 
since the D. C. resistance of the solenoid circuit 
is very low, and the drive transistor would soon 
be destroyed if allowed to stay on. 

It should be noted, that when T 3 is switched 
on, the transformer coupling between the two 
solenoid windings causes the collector of T -1 to 
go to double the supply voltage. Similarly, when 
T -t is switched on, T/s collector rises. For this 
reason alone, the inductive overshoot clamp 
diodes on T;-; and T -t must be tied to almost 
twice the supply voltage. Thus, the inductive 
transient causes an overshoot approximately 
equal to the drive pulse both in amplitude and 
pulse width. (Volt-time areas are equal.) 

The large overshoot transient is desirable 
because it shortens the transient duration, but 
tends to produce other unwanted transients. 
These transient currents in the data planes 
occur after the data has been strobed, hence 
they do not affect data read-out, but they do 
require a few microseconds to settle, thereby 
lengthening the cycle time. These transients, 
and means to suppress them, are discussed 
later. 

Correlation Selection Techniques 

The addressing solenoid drive causes a paral­
lel correlation operation on all the stored ad­
dresses on each respective plane. Figure 10 
shows the outputs of one selected plane, and 
three typical outputs of un selected planes, the 
former being the positive drive pulse. A means 
must be provided to uniquely separate the se­
lected plane by allowing a current to flow in 

I : f' 
(\. / \ 

~ . .. . . . -

. - \ 

OUTPUT OF 
DRIVER CORRELATION 

2V /em 
0.5 fJS/ div 

Figure 10. Correlation-Coder Outputs. 

its path which is much larger than the linear 
sum of ALL the unselected data plane cur­
rents. t An ordinary silicon epitaxial diode has 
a forward-to-reverse resistance ratio of over a 
million to one. Its capacitance of a few pico­
farads in series with the data plane impedance 
of perhaps ten micro henries and three ohms 
allows only an extremely short transient cur­
rent in the un selected planes, and the sum of 
all these currents is still far exceeded by the 
select current over the drive pulse interval. 

The outputs of the stored address code corre­
lations may be represented by a distribution as 
shown in Figure 4 if no bias is applied. If a 
four or five microsecond memory is desired, a 
simple diode may be placed in series with the 
path on each data plane and additional solenoid 
drive bias of minus nine units may be added to 
shift the distribution to that shown in Figure 
llA. The diode characteristics in Figure lIB 
will allow current to flow in that addressed 
plane whose output is to the right of the origin. 

Unfortunately, after the data has been 
strobed out, and after the drive pulse is. ter­
minated, the overshoot reverses the distribution 
so that the unselected planes then go into con­
duction as shown in Figure llC. As a result, 
current flows in many planes for a few micro­
seconds with a period determined by plane in­
ductance~ resistance and diode conduction volt­
age drop. Due to less than perfect coupling 
from solenoids to planes, the sum of the cur­
rents is far less than would be expected in a 
good transformer, hence the solenoid flux col­
lapses rapidly. 

The technique used to prevent the flow of 
current during the overshoot period is as fol-

t This statement is actually a simplification intended 
to clarify. Actually, the differential of the desired cur­
rent flow over the interrogation period must greatly 
exceed the sum of all the un selected differentiated cur­
rents. Since the small, unselected' current transients 
are very short, their positive and negative differentials 
essentially cancel out during the first fraction of the 
driver pulse period. 



116 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

t 
FREQUENCY 

OF OCCURRENCE 

+7 

A. DISTRIBUTION OF OUTPUTS 
DURING DRIVE 

_OUTPUT 

B. DIODE CHARACTERISTIC 

C. DISTRIBUTION OF OUTPUTS 
DURING OVERSHOOT 

Figure 11. Distribution of Outputs for Given Drive and 
Diode Characteristic. 

lows. First, the drive bias is changed so that 
the distribution of outputs is that shown in 
Figure 12A. Second, a zener diode with a break­
down voltage VIis placed in series with the 
diode. Its voltage is chosen such that the sum 
of the diode forward conduction voltage drop 
and the zener breakdown voltage drop equals 
a voltage which is two units higher than the 
right limit of the distribution at + 11 as is 
shown in Figure 12B. Now, during drive, only 
the selected current flows just as before. How­
ever during the overshoot period, the distribu­
tion'is such that no current flows at all, as is 
shown in Figure 12C. Hence, a new memory 
cycle can begin in less than a microsecond. The 
oscillograph in Figure 13 shows the voltage 
sensed by a solenoid in an array loaded with 
fifty planes using simple diodes, and the oscillo­
graph in Figure 14 shows a similar output due 
to fifty planes utilizing the diode combination. 

t FREQUENCY OF OCCURRENCE 

A. DISTRIBUTION OF OUTPUTS 
DURING DRIVE 

I. 0100( - ZENER DIODE 
--~---"--~+~13--":'iy CHARACTERISTIC 

VI 

-19 

C. DISTRIBUTION OF OUTPUTS 
DURING OVERSHOOT 

Figure 12. Distribution of Outputs for G~v~n Drive and 
Diode-Zener Diode CharacterIstic. 

OUTPUT 
OF SENSE SOLENOIDS 

'50 my/em 
0.51'1/ div 

Figure 13. Worst Case "Ones" and "Zeros"-Diode 
Detector. 

The diodes are ordinary planar epitaxial 
types, but "gold bonded" germanium paint con­
tact types work almost as well. The zener diodes 
most commonly available have relatively high 
capacitance since they have large junctions de­
signed for high dissipation. The emitter-base 
junctions of a small silicon transistor such as 
a 2N706 have very sharp and uniform zener­
breakdown voltages, and low junction capaci­
tances on the order of a few picofarads. These 
transistors, used as zener diodes, may be seen 
in the photograph of the ~emory in Figure 15 
hanging from the sides of the data planes. How­
ever, the diodes are mounted integrally on the 
data plane in small holes, staggered around 
the planes' peripheries as shown in Figures 2 
and 16. In later units, where the zener diodes 
are needed, the diode-zener diode would be in 
one component mounted as the diodes are now 
mounted as shown in Figure 16. The dual com­
ponent is a commonly built one, and is in 
essence a transistor with no base lead connec­
tion, in which the usual collector j unction is 

- ,----

---/ ---- -

I) ~ ~-~~ '" ,,' , ~-
_.//\ ---./''''--' "\ '--

0.5 fJVdiv 

100 mV / em - SOLENOID OUTPUT 

0.5 fJl/ em - IN PLANE 

0.5 "./ div 

50 mV / em - SOLENOID OUTPUT 

0.5 AI div 

Figure 14. "One" and "Zero" Outputs for 3,as and 
1.5ps Cycle Time with Zener Diode-Diode Detector. 



A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 117 

the diode and the emitter j unction is the zener 
diode. Dozens of silicon epitaxial type transis­
tors were found to have the desired characteris­
tics, shown in Figure 12B, hence no problems 
are anticipated in obtaining these "integrated" 
circuits. 

Data Readout 
The device described up to this point of the 

paper constitutes a substitute for a pair of 
connections to each plane, with appropriate gat­
ing and drive circuitry. Little has been men­
tioned as to how the current in the plane is 
detected and used. The organization for data 
readout is the subject of the following 
paragraphs. 

The current ramp in the data plane consti­
tutes a primary drive to a multitude of long 
sense solenoids or transformers. Each loop or 
enclosure of a solenoid on a driven plane is a 
primary coupled to the solenoid secondary, or a 
"one" and each bypassed solenoid constitutes a 
"zero" when that plane is interrogated. A 
"one': causes a voltage output of one polarity, 
and a zero causes a smaller voltage of opposite 
polarity. 

Figure 17 is an oscillograph that shows the 
drive current in the data plane, and Figures 13 

and 14 the outputs of a number of "ones" and 
"zeros" from the respectively driven solenoids. 

Obviously, all bits on a plane are emitted in 
parallel, hence some gating is usually desirable 
to connect only the desired subset, or word, to 
the output amplifiers. The method of achiev­
ing this is quite simple. One terminal of each 
solenoid in a word group is tied together with 
the similar terminals of the solenoids in that 
group. This common terminal becomes the 
word-select control terminal. All the other 
word-groups of solenoids are similarly tied 
together. This is shown in Figure 18. 

In each word group, the other terminal of 
each solenoid representing each bit of the word 
is tied to all the other respective solenoids in 
the other words by means of diodes. All the 
common "word line" terminals are biased so 
that their respective diode switches are back­
biased except for those of the addressed word. 
The diodes on the addressed word's solenoids 
are forward-biased before the data plane is 
pulsed, hence effectively connecting the ad­
dressed solenoids to the preamplifiers before the 
interrogating pulse. Since a fraction of a micro­
second is needed for currents to change and for 
diodes to switch, this word preselection pro­
ced ure is timed ahead of the main pulse. 

Figure .15. Photograph of System. 



118 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Figure 16. Diode Mounting Close-Up. 

The solenoids themselves for most applica­
tions are air-cored. These are simply phenolic 
paper tubing which is wound with a helix of 
thin copper wire, typically, number 30 wire 
gauge. After winding, it is suitably coated to 
protect it with either varnish or epoxy coating. 

For applications where higher outputs .are 
. desired, ferrite cored solenoids, smaller in diam­
eter than those in the drive array (quarter inch 
diameter instead of three eighths) may be 
used. To minimize pattern sensitivity, they 
should either be paired and connected in series 
or spaced far apart. 

Output Circuitry 

The diodes used at the output of the solenoids 
could be matched to those on each bit line to 
allow the use of a direct coupled, single ended 

CURRENT IN PLANE 

100 mal em 
0.5 .,./ div 

Figure 17. Drive Current in Plane Due to Hamming 
Correlation. 

system. However, for signals below 100 milli­
volts, typical of the simpler air-cored pick-up 
solenoids, capacitor coupling is indicated. 
Hence the gated signal is amplified in a linear 
amplifier, along with any pedestal shifts due 
to word-line switching, and voltage restoration 
is applied. If the access time is to be short 
compared to the pulse width, keying or gating 
of the restoring voltage is required. If the 
access time is long compared to the pulse, an 
ordinary resistance-capacitance high-pass filter 
is adequate. 

The waveforms of the connectionless memory 
shown in Figures 13 and 14 require strobing 
for reliable operation, and it is timed to occur 
just before the end of the drive pulse. 

+v 

-v 

-v 

-v 

f 
SELECTION 
VOLTAGES 

BIT 2 BIT 3 

Figure 18. Word Pre-Selection Matrix. 



A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 119 

In the limit, with a pick-up array of paired 
ferrite-cored solenoids, which may deliver out­
puts of as much as a volt, output flip-flops 
could be strobed directly from the solenoids. 
In a more typical case, one or two transistors 
can be used for amplification, and another for 
slicing and strobing. For increased speed, a 
two-stage amplifier followed by the voltage re­
storing switch, followed by a slicer and output 
stage is desirable, and the memory described 
here used this system and is shown in Figure 
19. It should be emphasized, that in all cases, 
the amplifiers were single-ended and differen­
tial amplifiers were not required. 

Data Planes 

The data planes in the earliest work were 
simply thin wire, wound on plastic sheets with 
small bobbins attached. However, this tech­
nique did not allow for quick and easy exchange 
of individual circuits paths or planes. Copper­
clad Mylar was soon found to the applicable to 
the requirement. 

The tooling technique involves accurately 
drawing the printed circuit layout, drilling a 
master template which fairly accurately matches 
the layout, and having a stainless steel mesh 
"silk screen" fabricated from the printed cir­
cuit layout. 

To avoid critical alignment and fabrication 
problems, copper path widths are made about 
0.040" wide, distances between closest conduc­
tors are also 0.040" and the closest a copper 
path passes to a hole is nominally 0.060". The 
solenoid array base plate and the data planes 
themselves are drilled through the same tem­
plate, hence with only modest care, alignment 
is no problem. The holes in the planes are about 
0.1" larger than the solenoids; hence they fit 
quite loosely. 

WOlD SOL£NOID UNE 

Jr"7 ]f.' 
-\I' VOlTAG£· -0.7 

~ESTORATION 
DftMS 

Figure 19. Pre-Amplifier. 

OUT 

STROlE 

All data planes contain both alternate paths 
around the solenoids. In the laboratory, the 
data is entered by simply scraping off the etch 
resist before the planes are etched. The result 
of this operation can be seen in Figure 2. A 
machine has been constructed that mills away 
the copper path, under control of an ordinary 
punch card, at the rate of six bits per second, 
and this is shown in Figure 20, and can be 
seen operating on a large 1428 bit plane. 

The fabrication of the planes themselves is 
straightforward. Silk-screening, mass drilling 
under the template, data insertion and etching 
comprise the laboratory process. Screening, 
drilling and etching are the large scale process 
with subsequent data insertion by punching, 
scraping or milling on the aforementioned 
machine. In the field, the copper paths can be 
severed with a knife. 

The material used mostly so far has been 
one ounce copper (0.00135") on 2 mil Mylar 
(0.002") which has a total thickness of about 
0.004", allowing well over two hundred planes 
per lineal inch along the solenoid. 

Mechanical Considerations 
In a memory in which changes are not fre­

quent, it is simple enough to slide the planes on 
or off individually. For greater convenience, 
many planes can be prealigned to thin· base 

Figure 20. Punch-Card Controlled Cutter for 1428 Bit 
Planes. 



120 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

plates, covered with another thin sheet, and 
handled as magazines. In either case, the only 
disadvantage is that in removing data behind 
or below other data, which is inaccessible until 
the covering data is removed. 

A "file cabinet'" like mechanism has been de­
signed to avoid this problem. In this tech­
nique, shown in Figure 21, the solenoid array 
is fastened to the stationary back panel behind 
a drawer section, with the solenoids extending 
through the drawer when the file is closed. The 
solenoids are withdrawn from the drawer when 
the file is opened. Thus when the file is open, 
magazines can be removed or replaced indi­
vidually, and closing the file mates the data con­
taining drawer and the solenoid array. A unit 
such as this is now under construction. 

The magazines themselves contain one to two 
hundred planes each, which are aligned to the 
magazine by several pins. 

Changing one data plane requires opening of 
the drawer, opening of the magazine much as 
a loose-leaf notebook, finding the "page," and 
exchanging it. 

In some operations, entire programs or tables 
would be stored or shipped in magazines, and 
when the data was to be used, that magazine 
simply dropped into the drawer, and the drawer 
closed. 

Figure 21. "File Cabinet" Mechanism. 

Conclusions 

At present, a 360,000 bit memory has been 
built and about a hundred planes placed in it. 
The signal degradation in increasing the num­
ber of planes from a few to a hundred was very 
minor, hence extrapolation to full capacity ap­
pears justified. The unit built used a Ham­
ming code and has operated well. However, for 
the small increase in complexity, the Golay 
code more than doubles the selected current, 
hence a unit now under construction will use 
that code. 

A practical limit to this technique is about 
4,000 data planes since the practical but power­
ful Golay code is extendable to a 23-12 code. 
Physical dimensions also suggest that a stack 
of 4,000 planes, or about twenty inches, is a 
reasonable limit. Lengthening the solenoid 
causes linearly increased driver voltage require­
ments, and they show practical limits which are 
equivalent to between 2,000-4,000 planes, with 
presently available transistors. 

The limits on the number of bits per plane 
is also between 2,000 and 4,000, imposed by the 
limits of the correlation voltage output drives 
versus the data planes' path resistance and in­
ductance as well as the propagation time in 
the data planes' paths. 

In summary, the size limit per module is 
about 10 i bits, and 2 X 106 bits appears easy 
to reach. 

As to access and cycle times, the limits vary 
with module capacity, and for a 1 megabit 
memory 0.5 microsecond access and 1 micro­
second cycle probably are close to the limit, 
and twice this is relatively straightforward. De­
creases in memory capacity, particularly data 
plane bit capacity, should be followed linearly 
by access and cycle times down to a limit of 
about 0.25 and 0.5 microseconds respectively. 
Below this, directly connected data plane mem­
ories should be considered. 

The cost of these memories is low but highly 
variable since the associated electronics, input­
output buffers, coder, sense amplifier and word 
line selectors set up an "overhead" that is 
almost invariant over a range from under a 
hundred to a thousand planes, and goes up very 
slowly beyond that. The cost of the array, even 



A SEMI-PERMANENT MEMORY UTILIZING CORRELATION ADDRESSING 121 

in hand-made versions, amounts to only a small 
fraction of a cent per bit capacity. The data 
plane cost is between a quarter and one cent 
per bit, including data entry and all fabrica­
tion; and a full electronics complement can add 
anywhere from a quarter to two cents a bit 
depending on memory size and speed. In sum­
mary, this memory has a bit cost ranging from 
half a cent per bit for large memories to a few 
cents per bit for relatively small ones, with some 
downward revision when produced in quantity. 

It is believed that this type of memory will 
find application in digital computers where 
large, infrequently changed blocks of data are 
used, and other applications where the mem­
ory's rapid data change capabilities allow it to 
be used as an input device as well. 

ACKNOWLEDGMENTS 

The author would like to acknowledge the 
valuable'suggestions and discussions with many 
of the members of Sylvania's Applied Research 
Laboratory and particularly those of Messrs. 
Stephen Gray, Benjamin Eisenstadt, Allan 
Snyder, Gerald Ratcliffe; Doctors Donald Brick, 
Richard Turyn and Paul Johannessen and our 
Director, Dr . James Storer. 

REFERENCES 
1. PICK, G. G., GRAY, S. B., and BRICK, D. B., 

"The Solenoid Array-A New Computer 
Element," IEEE Transactions on Electronic 
Computers, Vol. EC-13, Number 1, Febru­
ary 1964. 

2. YOUNKER, E. L., et aI., "Design of an Ex­
perimental Multiple Instantaneous Response 
File," AFIPS Conference Proceedings, Vol. 
25, Washington, D. C., pp. 515-527, April 
1964. 

3. KUTTNER, P., "The Rope Memory, a Semi­
Permanent Storage Device," AFIPS Con­
ference Proceedings, Vol. 24, Las Vegas, 
Nevada, pp. 45-58, October 1963. 

4. BUTCHER, 1. R., "A Prewired Storage Unit," 
IEEE Transactions on Electronic Com­
puters, Vol. EC-13, No.2, April 1964. 

5. ISHIDATE, T., YOSHIZAWA, S., and NAGA­
MORI, K., "Eddycard Memory-A Semi­
Permanent Storage," Proc. of the Eastern 
Joint Computer Conference, Washington, 
D. C., December 1961, pp. 194-208. 

6. FOGLIA, M. R., McDERMID, W. L., and 
PETERSON, M. E., "Card Capacitor-A Semi­
Permanent Read-Only Memory," IBM J. 
Res. and Dev., Vol. 68, p. 67, January 1961. 

7. MINNICK, R. C., and HAYNES, J. L., "Mag­
netic Core Access Switches," IEEE Trans­
actions on Electronic Computers, Vol. EC-
11, No.3, June 1962, pp. 352-368. 

8. TURYN, R., "Some Group Codes," Internal 
Applied Research Laboratory Note Number 
404. 

9. DONNELLY, J. M., Card Changable Mem­
ories, Computer Design, Vol. 3, No.6, 
June 1964. 





A lOs. BIT HIGH ·SPEED FERRITE 

MEMORY SYSTEM - DESIGN AND OPERATION 
H. Amemiya, T. R. Mayhew, and R. L. Pryor 

Radio Corporation of America 
Camden, New Jersey 

INTRODUCTION 

With the advancement of computer tech­
nology in recent years, the demand for a very­
high-speed memory has greatly 'increased. 
Scratch-pad memories of smaller than 100 
words with cycle times faster than 500 nano­
seconds are commonly found in computers on 
the market. However, larger memories of the 
same speed range are not yet commercially 
available, due to the fact that the problems in 
building a large memory are much more com­
plicated than those in building a small memory. 
These problems center around the transients 
generated in the digit sense system. 

In order to understand these problems, a 
1024-word 100-bit memory was built. The stor­
age cells consist of ferrite cores (30 mils O.D., 
10 mils LD., 10 mils thick) used in a two-core­
per-bit arrangement in a linear organiz~d array. 
In order to simplify the core-threading work, 
only two conductors per core are used; one con­
ductor is plated, leaving only one wire to be 
threaded. 

As a new approach, digit lines are treated as 
a set of mutually coupled parallel transmission 
lines and are terminated accordingly. Recogni­
tion that different modes of wave propagation 
exist on digit lines was probably the most im­
portant step in obtaining the high-speed opera­
tion of the present memory. 

The word drive system uses a square selec­
tion matrix with transformer coupling to in-

123 

dividual word lines. This arrangement reduces 
the noise voltages that are coupled into the 
memory stack from the word drive system. 

The sense amplifier is a differential amplifier 
in which a delay line is used to minimize dc 
imbalances and level shift. A tunnel-diode 
strobe circuit is used to provide low-level 
thresholding and high-speed operation. 

Some portions of the electronics of the 
memory system are located very close to the 
memory stack. Interconnections are made either 
by cables or by microstrips. The use of these 
techniques has resulted in a memory cycle time 
of 450 nanoseconds for the, memory system. 

MEMORY CELL OPERATION 

Linear selection (word-organized memory) 
and partial switching1 , 2, 3, 4, 5, 6, 7 are the two 
techniques commonly. employed to achieve a 
cycle time of one microsecond for a high-speed 
ferrite memory. Linear selection offers the ad­
vantage that read currents of large amplitude 
(limited only by drivers) can be used to increase 
speed. This method contrasts with coincident 
current selection, where read currents are dic­
tated by the threshold characteristics of the 
ferrite cores used. 

As the memory speed is increased by narrow­
ing the width of the write and the digit pulses 
and subsequently the width of the read pulse, a 
point is reached where two-core-per-bit opera­
tion becomes necessary. There are two reasons 



124 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

for this: the sense signal generated on reading 
a ZERO becomes large as the rise time of the 
read pulse is decreased; and the sense signal 
difference between reading a ONE and reading 
a ZERO becomes small because the digit pulse 
in the presence of the write pulse switches only 
a small fraction of the core irreversibly. Figure 
1 illustrates these reasons qualitatively. The 
ZERO signal is due to reversible flux change, 
and the ONE signal is due to both irreversible 
and reversible flux changes, with the former 
contributing . to the net -signal difference be­
tween a ONE and a ZERO. 

Two-core-per-bit operation provides a means 
of cancelling the reversible flux contribution to 
the total sense signal. There are many schemes 
employing two cores per bit,8, 9, 10 but the one 
used in this memory is shown in Figure 2. Here, 
each core is threaded by two conductors, one in 
the word direction and the other in the digit 
direction. When writing, both core A and core 
B of the same bit pair receive a write pulse. In 
addition, either core A or core B receives a 
digit pulse depending on the information being 
written in. When reading, a read pulse is ap­
plied to both core A and core B in the direction 
opposite to that of the write pulse. Digit pulses 
are always applied through the cores in the 
direction which is the same as that of the write 
pulse, because the digit disturb threshold of a 
core becomes much lower if opposite~polarity 
digit pulses are used. 7, 9,10 

t­
:::> 
Q. 
t­
:::> o 

o 100 

Figure 1. Sense signals of one-core-per-bit memory at 
increased speed. 

CORE A 

WRITE ONE W+O 

WRITE ZERO W 

(b) 

R 

CORE B 

W 

W+O 

--------111 

--------111 

~ V.. ... TIE 

) 
ZERO 

(e 

Figure 2. Two-core-per-bit scheme: (a) basic read-write 
scheme, (b) magnetization applied to cores when 

reading, (c) net sense signals. 

The sense signals generated at core A and 
core B are added differentially in a differential 
sense amplifier, where the signal due to the 
reversible flux change is cancelled. Therefore, 
only the net signals as shown in Figure 2 ( c) 
reach the threshold circuit of the sense 
amplifier. 

This two-core-per-bit scheme has the follow­
ing features: 

1. Bipolar sense signals provide more reli­
able sensing compared to a unipolar sense 
signal. 

2. Word line impedance ·is constant regard­
less of the information pattern because 
each bit (a pair of cores) presents a con­
stant impedance to word pulses even if a 
ONE or a ZERO is stored. 

3. Read and write pulses may have loose 
tolerances. 

4. Balanced digit lines that are paired for 
one bit location offer a possibility of con­
trolling wave propagation inside a 
memory stack. This point will be de­
scribed in more detail later. 

The ferrite cores used in this memory have 
an outer diameter of 30 mils, an inner ,diameter 
of 10 mils, and a thickness of 10 mils. The op­
erating conditions are shown in Table I. A test 
has shown that the worst-case disturb pattern 
changes the sense signal by less than 10 per 
cent. 



A 105 BIT HIGH SPEED FERRITE MEMORY SYSTEM 125 

Table I 
OPERATING CONDITIONS OF THE FERRITE CORES 

CORE DIMENSIONS 30 mils O.D., 10 mils J.D., 10 mils thick 

DRIVE PULSES AMPLITUDE RISE TIME FALL TIME WIDTH (50% point) 

READ 630 ma +5% 80 nsec 30 nsec 80 nsec 
80 nsec 
75 nsec 

WRITE 220 ma +5% 40 
DIGIT 70 ma +3% 30 

SENSE SIGNAL FROM CORES 
KICKBACK VOLTAGE WHEN READING 

WAVE PROPAGATION IN THE MEMORY 
STACK AND TERMINATIONS 

It is a very basic requirement that a memory 
system· must be able to store any ,information 
pattern desired at any word location. Since 
some words are located close to the digit drivers 
and sense amplifiers whereas others are located 
far away from them, it is required that digit 
lines must be able to carry digit pulses and 
sense signals without distortion. These require­
ments make it essential that the wave propaga­
tion inside a memory stack be well under­
stood.n,12 The problem is complicated because 
many digit lines are parallel for a considerable 
distance and because many word lines cross the 
digit lines at right angles, with ferrite cores at 
the intersections. A relatively simple mathe­
matical analysis of this structure can be made 
if one assumes that the delay on the word lines 
is zero. Then, the presence of word lines may be 
considered as contributing only to the coupling 
between digit lines. With this assumption, the 
problem of two-dimensional wave propagation 
changes into that of one-dimensional wave 
propagation on multiple parallel transmission 
lines with mutual coupling. The mutual cou:' 
pIing now consists of two parts, namely, the 

Sl-

{

LINE n 
PAIR n 

LINE n' 

UNE k 

1...[ -

EQUAL 
COUPLING 

Figure 3. Equalization of coupling and differential 
mode. 

nsec 40 nsec 
nsec 30 nsec 

+50 mv 
0.25 v/bit 

inherent coupling due to digit lines running in 
parallel and the coupling due to word lines. 

To fulfill the requirement that digit lines 
carry digit pulses and sense signals without dis­
tortion, it is necessary that digit lines be lossless 
and that there be no interference among waves 
propagating on separate digit lines. The first 
condition is met approximately by a memory 
stack. The second condition is normally not sat.:. 
isfied because of mutual coupling. However, 
there is a wave mode that propagates on a pair 
of lines without interference, provided that i a 
certain manipulation of coupling is made. 

In Figure 3, line n and line n' belong to pair 
11, and line k is a line outside pair n. Assume 
that the coupling between line n and line k is 
made equal to that between line n' and line k. 
Then, the differential-mode propagation on pair 
n (Le., simultaneous propagations of same 
amplitude but of opposite polarities on lines 
nand n') does not induce propagation on line k, 
because of cancellation effect. In other words, 
if digIt lines are paired, each pair can have in­
dependent differential-mode propagation with­
out interference, provided that equalization of 
coupling is made. * The transposition method 
used in the stack to obtain equalization of cou­
pling will be explained later. 

Therefore, it is desirable to have all the 
propagations in differential mode. However, 
this is not the case with the memory being dis­
cussed here. In Figure 2 (a) it is shown that 
digit lines are paired, a result of the considera­
tion given above. But the digit pulses are not 
applied differentially because negative digit 

* Proof is given in the appendix. 



126 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

pulses are not permitted. Since either of the 
two lines of a pair is always driven by a digit 
pulse, whether a ONE or a ZERO is being writ­
ten in, digit pulse propagation can be regarded 
as a superposition of the differential-mode 
component and the common-mode component as 
shown in Figure 4, with current amplitude one­
half that of the digit pulse on each line. 

The differential mode component consists of a 
number of differential mode propagations, one 
for every digit line pair, that are made inde­
pendent of each other by equalization of cou­
pling. The common mode component obviously 
has no interference problem, since all the digit 
lines carry the same current pulses simultane­
ously. The information is carried by the differ­
ential mode component and not by the common 
mode component, as the latter merely serves as 
a fixed bias, independent of the information 
being written in. 

Digit lines are terminated to eliminate re­
flections, since undesired reflections reduce sys­
tem reliability and prolong cycle time. For 
instance, a proper termination is the only means 
to minimize the waiting time between writing 
and reading, as the digit pulses must be com­
pletely dissipated before sense signals can be 
detected. 

(a) 

PAIR [: >11 
Zc-Zd 

Z. • 2 

(e) 

PAI.{" n {Ii 
..11.. .IL.. 

{" 1.....1'" .l"""'\. 
11 Ci () 

1.....1'" .IL.. 

PA .. {" n 
{ I, {" .rt. .IL.. 

II (j () I 

n .IL.. ..It. 

AAIR {Ii {" {" - 1.....1'" .IL.. 
() Ii " 

(a) (b) Ie) 

Figure 4. Propagation of digit pulses: (a) digit pulses 
on digit lines, (b) differential mode component, (c) 

common mode component. 

The differential mode component and the 
common mode component require different im­
pedance for termination. As shown in Figure 
5, let Zd and Zc be the proper termination for 
the differential mode and the common mode, 
respectively. Zd is smaller than Zc,and the dif­
ference between the two is rather appreciable 
due to the effect of word lines. To terminate 
both modes, either a T network or a 7r network 
may be used, as shown in Figure 5 (c) and (d). 

(b) 

PAIR r:: :$:::: 
Z • 2ZcZd 

Zc-Zd 

(d) 

Figure 5. Digit line terminations: (a) differential mode termination, (b) common mode 
termination, (c) T termination (both modes), (d) 11' termination (both modes). 



A 105 BIT HIGH SPEED FERRITE MEMORY SYSTEM 127 

When reading, signals are sensed by differ­
ential sense amplifiers. It is noted that the net 
signal is propagated in the differential mode, 
and there is no interference problem. Since 
common-mode voltage is not sensed by the 
amplifiers, the common-mode termination is less 
critical than the differential mode termination. 
The fact that the digit lines are terminated 
means that only one-half of the raw sense sig­
nal reaches the sense amplifier. This seeming 
disadvantage is far outweighed by the advan­
tage of being able to control the wave propaga­
tion generated in the memory stack. 

Since the actual memory stack consists of 
eight memory planes, digit lines are folded. 
Figure 6 shows digit lines unfolded in order to 
show the transposition details. This transposi­
tion method equalizes coupling between any two 
adjacent line pairs if transpositwns are done at 
short intervals. Figure 6 also shows that the 
digit lines are terminated on both ends by T 
terminations and that digit drivers and sense 
amplifiers are connected to the mid-points of 
digit lines. This connection minimizes the digit 

line delay measured from the driving and sens- .. 
ing point. Yet, the digit line delay across 1024 
words of 40 nanoseconds requires two different 
timings for the read and write pulses. Digit 
pulses used have negative polarity and are ap­
plied through diodes. These diodes disconnect 
digit driver cables and digit drivers from digit 
lines to avoid loading the sense signals. The 
emitter followers are the first stage of a sense 
amplifier and work as impedance transformers. 
Thes~ diodes and emitter followers are mounted 
on the stack assembly. 

The effect of the new termination method on 
the digit pulse waveform and on the digit 
transient will be shown later. 

DESIGN OF MEMORY STACK 

In the memory, one of the two conductors 
that go through cores is a conventional wire and 
the other is a plated conductor. Figure 7 shows 
the plated conductor as well as how memory 
cores are assembled into a strip. Individual 
cores are first metallized by vacuum deposition 
and then inserted into a groove cut in the mid-

PAIR 

DIGIT DRIVER CABLES 

1=~!:i;~=iE~§~§~FROM DIGIT I DRIVERS 

SENSE AMPLIFIER 
FIRST STAGE 

TO SECOND 
'-----'(L _____ J STAGE 

Figure 6. View of unfolded digit lines showing trans-positions to obtain equalization of coupling and connec­
tions to digit drivers and sense amplifiers. 



128 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

INSULATOR 

Figure 7. Ferrite core strip. 

dIe of an insulator strip, with connecting con­
ductors already etched. Then the.strip is electro­
plated to improve contact and also to lower the 
over-all resistance of the conductive path.9 Since 
the connecting conductors on an insulator strip 
connect two neighboring cores on the same side, 
the resulting conductive path has a zig-zag 
pattern. 

Each ferrite core strip contains 128 cores, 
with each memory plane holding 200 strips. 
Since plated conductors are used as digit lines, 
each memory plane contains 128 words of 100 
bits each with 8 planes comprising a full 
memory stack. Plated conductors were used as 
digit lines because they permit pairing two 
neighboring conductors to form a bit pair. Such 
pairing is helpful in maintaining a good balo.: 
ance between the two lines of a pair and also 
to simplify transposition. If, on the other hand, 
the plated conductors are used as word conduc­
tors, it will be necessary to pair two nonad­
jacent digit lines because of the zig-zag pattern 
of the plated conductors. 

As shown in Figure 8, a memory plane con­
sists of a substrate and 200 ferrite core strips, 
of which 100 are mounted on the top surface 
and the remaining 100 on the bottom surface. 
This packaging technique causes the word lines 
to be folded into hair-pin shape to facilitate con­
nection to the word drive system. Two opposing 
sides are used for word line'; c:onnections; i.e., 
on each memory plane 64 word lines have their 
ends brought out to one side and the other 64 
word lines to the other side. Ground planes are 
provided on the top and the bottom surfaces 

Figure 8. Memory plane. 

of a substrate, over which ferrite core strips 
are placed. The ground planes are connected 
to the supporting structure on the four corners 
of the memory stack assembly. 

When eight memory planes have been assem­
bled, ferrite core strips are connected to form 
digit lines. Since each strip contains 128 cores, 
eight strips connected in series make up a full 
digit line. One group of 50 bit pairs (100 digit 
lines) is made up of core strips mounted on the 
top surfaces of the eight memory planes; 
another group of 50 bit pairs consists of core 
strips on the bottom surfaces of the memory 
planes. This packaging technique is shown in 
Figure 9. It is noted that these two groups have 
symmetry; i.e., (b) is obtained by rotating (a) 
180 degrees. The digit system is divided into 
two groups to make the best use of the. stack 
surface areas· for external connections, which 
include 200 transistors, 400 diodes, 600 ter­
mination resistors and 300 cable connectors for 
the digit system. (See Figure 6.) Figure 10 
shows the utilization of the memory stack sur­
faces for the digit and the word connections; 
all usable surfaces are being used. The top and 
bottom surfaces are actually the top surface of 
the top memory plane and the bottom surface 
of the bottom memory plane, and are not usable 
for external connections. 

In the construction of the present memory, 
bit sense signal testing was done after each 
memory plane had been completed with core 
strips. Bad cores were then replaced. The re­
sistance of the digit lines (plated conductors) 
across 1024 words was found to fall between 
1.6 and 2.0 ohms. 



MIDPOINT 

(a) 

A 105 BIT HIGH SPEED FERRITE MEMORY SYSTEM 129 

MEMORY 
PLANE 

SUBSTRATE 

"'==========---o END 

MIDPOINT 

1...=:=====---oEND 

( b) 

Figure 9. Methods of connecting ferrite core strips: (a) one group of 50 bit-pairs is 
obtained by connecting ferrite core strips on the top surfaces of all eight planes, and 
(b) the other group of 50 bit-pairs is obtained by connecting ferrite core strips on the 

bottom surfaces. 

WORD 
./ /""'- -- CONNECTIONS 

DIGIT //",-...---- // 512WORD~ 
CONNECTIONS /- I 
,., 50 BITS // I 

./// ------/1:::, 
f MEMORY STACK 

"" "" 1024 WORDS 
I ....... X 100 BITS ./' I // ./ I r:_ /--.... /// I 
I "................. . // ""--...... // DIGIT I 
I ~/ "( CONNECTIONS) 

I 50 BITS 
I I I / 
I I I / 
I I // 
I / 
~, I // 

"'" I /""-, I / -',1// ...... --....J.-/. 

Figure 10. Utilization of the memory stack surfaces for external connections. 



130 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

ELECTRONICS FOR THE 1024-WORD 
MEMORY 

Figure 11 is a block diagram of the memory 
system, which has four major portions: 

1. Memory stack assembly, 
2. Control system, 
3. Word system, 
4. Digit system. 

The memory stack has been described. The 
control system generates and supplies all timing 
pulses for the drive system and for transferring 
data. The word system at the command of the 
control system supplies the proper read and 
write current pulses to a selected word for 
reading and writing information out of or into 
the memory. The digit system is used in a dual 
fashion: to provide sensing of the information 
stored; and to write back into the memory, 
simultaneously with the write pulse, formerly 
stored or new information. Parts of both the 
word system and the digit system are packaged 
on the memory stack. 

WORD ADDRESS 
SYSTEM • l MEMORY ADDRESS REGISTER 

10 BITS 

CONTROL SYSTEM 

The control system is built of a logic building 
block,\Whichhasatypicalrtwo-leve~AND\-OR !logic 
delay of seven nanoseconds with fan-out of six. 
The system controls all the necessary timing 
pulses for each of three cycle types: 1) read 
cycle, 2) write cycle, 3) split cycle. The first 
two are standard for destructive random access 
memories, the first being the standard read-out 
operation which must be followed by regenera­
tion while the information is still in the memory 
register. The second is the standard means of 
getting new information into the memory, the 
read half of the cycle being used only to clear 
the memory while the strobe pulse is inhibited. 
The memory register is loaded with the new 
information which is then written into the 
memory. The only feature which is unusual is 
the split cycle. The first command for this cycle 
generates only a read operation accompanied 
by a strobe of the sense amplifier. The retrieved 
information is available for processing but is 
not regenerated since the entire memory cycle 
has been temporarily suspended. When the con-

t 
CONTROL 
SYSTEM 

,5 BITS 5 BITS 

COM!AND 

, , 
TIMING ·GENERATOR READ WRITE 

SWITCH DECODER DRIVER DRIVER 
4X8 DECODER ~CODER • 4X8 X8 ___ -r~ABLE; 1 1 TIMING 

PULSES 

I READ WRITE DIGIT DATA 
SWITCHES l 32 I DRIVER DRIVER SYSTEM 

32 32 

I MEMORY REGISTER o 100E- I 
J32 CABLES TRANSFORMER .J 32 CABLES 100 BITS 

MATRIX 
32 X 32 L _____ -, T • SENSE 

I 100 AMPLIFIER 
I CABLES SUCCEEDING 

TERMINATIONS I STAGES 
MEMORY STACK 

1024 WORDS ~ 
AND SE'NSE .J 100 DIGIT 
AMPLIFIER -, CABLES DRIVER ...... 

100 BITS FIRST STAGES ONE 

I 100 DIGIT 

I CABLES DRIVER 

MEMORY STACK AND ZERO 

SURROUNDING ELECTRONICS 

Figure 11. Block diagram of the memory system. 



A 10· BIT HIGH SPEED FERRITE MEMORY SYSTEM 131 

tinue command is given, the memory register 
is reset a second time to receive the newly proc­
essed information which is then stored in 
memory. Thus, the first half starts a conven­
tional "read" cycle which stops itself in the 
middle, upon later command to continue as a 
"write" cycle after clearing the memory regis­
ter. The time-saving features of this type of 
cycle are compatible with many of the common 
computer operations. The timing pulses gen­
erated by the control system for a read cycle 
are shown in their time relationships in 
Figure 12. 

WORD SYSTEM 

The word system is required, with the gen­
eration of minimum noise, to distribute a large 
read pulse, followed by a smaller write pulse 
of opposite polarity, to any of the 1024 words 
which happens to be addressed by the 10-bit 
address register. The bulk of this decoding is 
done in a bipolar diode matrix driven by 32 
pairs of read and write drivers along one side 

and 32 switches along the other side. The 1024 
intersections of this main matrix are trans­
former-coupled to the 1024 word lines of the 
memory stack. The dc level of the word line is 
restored by a diode-resistor network in the 
secondary of the transformer. Without this 
network a dc level shift will appear, as the read 
current pulse is greater in amplitude and dura­
tion than the write current pulse. The circuitry 
of the main matrix is shown in Figure 13. Each 
of the drivers and each of the switches has its 
own preamplifier channel complete with an 
AND gate having one negative and one posi­
tive input. The complete read and write driver 
channels are shown in Figure 14, and the 
switch channel in Figure 15. These driver and 
switch channels are arranged in three 4 X 8 
matrices. These matrices permit the selection 
of one of 32 switch channels and one each of 
32 read drivers and write drivers to select any 
word and drive it. 

The main problem encountered in designing 
a word drive system for a high-speed, high-bit-

READ COMMAND PULSE 
-1l~ ________________ __ 

ADDRESS TRANSFER PULSE 
-1' __________________ __ 

SWITCH TIMING PULSE ~ \ 

READ TIMING PULSE /I \~ 

WRITE TIMING PULSE /I ~\ 

DIGIT TIMING PULSE I , 
MEMORY REGISTER ..J\ 
RESET PULSE 

STROBE PULSE 
__________ ~f\~ ______________ _ 

DATA AVAILABLE PULSE ______ ----~f\~-------------
(COM MUN ICATION PULSE) 

CYCLE COMPLETE PULSE ------------------~ (COMMUNICATION PULSE) 

Figure 12. Timing diagram for a read cycle. Read and write timing pulses shift in time 
depending on the word address. (Solid lines show "Timing A" and broken lines show 

"Timing B"). 



132 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

W 

R 

WRITE 
DRIVER 
CHANNEL 

READ 
DRIVER 
CHANNEL 

WRITE 
DRIVER 
CHANNEL 

liB 
WORD LINE 

SWITCH SWITCH 
S CHANNEL S CHANNEL 

Figure 13. Portion of the 32 x 32 bipolar matrix. 

capacity memory is that of minimizing the 
noise introduced into the stack. As the elec­
tronics are a significant cost factor, it is desir­
able to use a bipolar diode matrix performing 
selection with drivers and switches; such a 
matrix reduces the cost of the word-system elec-

NEGATIVE 
"AND" 0-------, 
INPUT 

750pf 2N828 

POSITIVE 
"AND"~~"""'....I 
INPUT 30n 

NEGATIVE 
nANDn 0------, 
INPUT 

POSITIVE 
"AND·~~""""...J 
INPUT, 30n 

430pf 

430pf 

(a) 

(b) 

tronics for a 1024-word memory about ten to 
one. It has been our experience, however, that 
with all the types of bipolar matrices that we 
can devise, severe switching transients are in­
troduced on n lines of an n2 matrix when the 
switch selection is made. Moreover, it is found 

34.enlWt 1°/. 

OUTPUT TO 
BIPOLAR 

,..-~=--, MATRIX 

560n 

OUTPUT TO 
BIPOLAR 

___ -...-0 MATRIX 

Figure 14. Word drivers: (a) read driver channel, (b) write driver channel. 



A 105 BIT HIGH SPEED FERRITE MEMORY SYSTEM 133 

NEGATIV,E 
HAND" 
INPUT 

POSITIVE 
"AND" 
INPUT 

Figure 15. Switch channel. 

that the characteristics of the memory stack, 
both with conventional core memories and with 
our partially automated fabrication techniques, 
show much tighter capacitive coupling between 
the network of word lines and the network of 
digit lines than can be made to exist between 
either of these networks and a ground plane. 
The result is a tendency for the conventional 
word selection matrix to introduce a very siz­
able common-mode noise onto the network of 
digit lines. 

An analysis of the switch-noise injection pro­
cedure in the memory, where the word lines 
connected to a single switch are uniformly in­
tersected along the terminated digit line, shows 
that a voltage step on the selected switch cou­
ples via the 32 word lines controlled by the 
switch all along the digit line simultaneously. 
Thus, a step at the switch generates a common­
mode noise, the amplitude of which can be pre­
dicted from the inter-line and line-to-ground 
plane capacitances. The portion of this com­
mon-mode signal which the stack converts into 
the differential mode depends on the balance 
between the two digit lines of a pair and varies 
from one line-pair to another. 

A pulse transformer for each word line was 
used for capacitive decoupling between the 
word selection matrix and the memory stack. 
The interwinding capacitance of the trans­
former is a maximum of 7 picofarads, whereas 
the capacitance between a word line and all the 
digit lines connected together is about 60 pico-

farads, resulting "in a switching noise attenua­
tion of about 10 to 1. Starting with a 35-volt, 
30-nsec rise time step for switch selection, the 
half-selected word lines experience only a 3-volt 
step because of the isolatIon afforded by the 
transformer. " This condition in turn cal1-ses a 
0.5-volt common-mode spike to exist on the digit 
line. In the worst case this spike generates a 
differential noise signal almost as large in 
amplitude as a sense signal. This noise must 
be displaced in time from the. sense signal by 
causing the timing pulse for the switch to start 
earlier than the timing pulse for the read driver. 

As shown in Figure 12, the switch timing 
pulse is used to select a switch. This technique 
differs from normal practice, which does with­
out a timing pulse, with the result that at least 
one switch is turned on all the time. In the pres­
ent memory, a switch is turned on for a spe­
cific length of time to let the read and the write 
currents go through; otherwise, no switch stays 
turned on. The switch noise is appreciably re­
duced by holding the switches off until after the 
memory address register has completely settled 
from the address transfer transient, as other­
wise a spurious selection of switches during the 
address transfer transient will inject additional 
noise into the stack. By turning off the switch 
as soon as the write pulse is terminated, the 
problem of slow switch turn-off can be easily 
eliminated. 

Another closely associated problem is injec­
tion of noise via the half-selected word lines 



134 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

controlled by the same switch during the read 
pulse. This is due to the passage of the read 
pulse through the finite impedance of the switch 
circuit, with its mechanism of noise injection 
being very similar to the one described above. 
This type of noise is a threat due to the fact 
that it always coincides with the sense signal. 
It is obvious that this problem can be minimized 
by lowering the impedance of the switch cir­
cuit. A low switch impedance is also desirable 
from the standpoint of matrix operation be­
cause it permits unimpeded flow of the read and 
the write pulses. The problem was solved by 
avoiding cables for connecting the switch chan­
nels and the word selection matrix altogether, 
and instead packaging the output stages of the 
switch channels at the memory stack. Here 
again the isolation provided by the use of cou­
pling transformers alleviates the noise problem 
greatly. 

Another advantage in using coupling trans­
formers is the speed increase of the switch op­
eration due to the capacitive isolation afforded 
by the transformers. Actually, this speed in­
crease and the switch turn-on noise reduction 
brought about by the coupling transformers are 
closely related. The capacitive charging and 
discharging currents that must come from a 
switch when it is turned on and off are made 
small by the use of the transformers. Thus, 
the switch speed is increased. Since the switch 
noise is caused by the same charging current 
entering the memory stack, the noise is reduced 
by the transformers. 

As shown in Figures 6 and 12, the read and 
the write pulses have two different timings, de­
pending on the word address. This feature is 
necessary because the digit line delay of 20 
nanoseconds from the driving and sensing point 
to the termination is not negligible compared 
with the drive current widths. The problems 
here are basically that of aligning the read and 
the strobe pulses and that of aligning the write 
and the digit pulses. In the present memory, 
the strobe and the digit pulses are fixed and 
the read and the write pulses are shifted accord­
ing to the word address. The 1024 words of the 
memory are divided into two groups of 512 
words. One group is closer to the digit-driving 
and sensing points while the other group is 
closer to the terminations as showri in Figure 

6. The former group uses Word Pulse Timing 
A, and the latter group Word Pulse Timing 
B. Figure 12 shows that the read pulse of 
Timing A is delayed compared to that of Tim­
ing B, and the write pulse of Timing A is ad­
vanced compared to that of Timing B. The 
difference is 10 nanoseconds, which is one-half 
of the effective digit line delay. 

DIGIT SYSTEM 

The digit system (Figure 16) is composed 
of the circuits that are used to detect and to 
write or regenerate information in each of the 
one hundred bits of a selected word. The cir­
cuits include 100 sense amplifiers, 100 digit 
drivers and the 100 flip-flops that form the 
memory information register. 

Digit Driver 

During the write time, the digit driver pro­
vides a 70-milliampere current pulse into one 
of the two digit lines in a direction to add to 
the write pulse in one of the two cores of a 
memory bit. The digit driver consists of two 
identical current drivers which are under the 
dual control of the timing generator and the 
flip-flop in the memory information register. 
The width of the digit pulse, 75 nanoseconds, is 
controlled by the digit timing pulse. 

The first stage of the digit driver produces 
a gated 10-volt pulse. The pulse is produced in 
one of the current drivers by the coincidence of 
the positive digit timing pulse and a low voltage 
level from one side of the flip-flop in the 
memory information register. The second cur­
rent driver is inhibited by the positive level 
from the second side of the flip-flop. 

The gated pulse is applied to the second stage 
through a capacitor that is used to give the 
pulse a negative level shift so that at the input 
to the second stage the pulse goes positive to 
- 25 volts from a reference level of - 35 volts. 
The second stage is a double emitter follower 
which is used to provide a voltage drive for the 
output stage. 

The output stage is a nonsaturating current 
driver whose output current is determined by 
the resistance in the emitter circuit and the 
voltage swing at the base of the transistor. The 
output stage drives the center of the digit line 



A 10· BIT HIGH SPEED FERRITE MEMORY SYSTEM 135 

,DIGIT DRIVER - ~T -r -riE.MORY STACK- I SENSE AMPLIFIER- - --l 
I 

~,: I 
~~~I , 200 ~ I FIRST STAGE SECOND STAGE 

I I I
I i I
I I I
I I I I 30/10 CORES II 62 I
I 1·81<1

1 137 I 4.22 IIA I
I I CURRECTOR I
I TIMING I It(

~ '~i l' 1 I
I 133 ~~~ ,I 62 26 I
I +3V I
I ~ I I MEMORY

REGISTER
ZERO SIDE

I
f 2N708: -30 I
I IN3605 I TO MENORV t

J I REGISTER

I
L_

IK 200 2N96SA I
-I V V:'D ~ IN3605 1.Jl!.; 3.91(IK IIf3851 __ D«;t.:.~:.: 1- _____ ~ ~08E __ +~ _~ __ -.J

Figure 16. Digit system.

through a 100-ohm cable and a series diode, pro­
viding a 70-milliampere pulse into each half of
the digit line. The diode is used at the memory
stack to isolate the digit driver cable from the
digit line when the driver is not in use so that
low-level signals in the memory are not loaded
by the cable.

Sense Amplijier13, 14, 15, 16

The digit lines are terminated at both ends
in order to reduce the recovery time of the
memory stack. As a result, only half of the
difference signal from the two cores of a bit is
available at the sense amplifier input. The
difference signal is bipolar where one polarity
represents a ONE and the other polarity repre­
sents a ZERO. The sense amplifier amplifies
the difference signal and is strobed during a
portion of the read time. The polarity of the
sense signal at strobe time is sensed and if a
ONE is detected, the sense amplifier produces
a 3-volt negative-going output pulse which sets
a flip-flop in the memory information register.
If a ZERO is sensed, no change occurs at the
sense amplifier output. During the write time,
a negative digit pulse of approximately 20 volts

is applied to one of the two digit lines, depend­
ing on whether a ONE or a ZERO is being writ­
ten into the memory. The sense amplifier is
inhibited during the write time by the strobe
circuit and recovers in less than 50 nanoseconds
after the last difference-mode reflections from
the digit pulse have ceased to exist on the digit
lines.

The first stage of the sense amplifier consists
of two emitter followers which are connected
to the center of the digit lines as shown in
Figure 16and are used to provide a high input
impedance so that the sense amplifier does not
load the digit lines and does not interfere with
the termination of the lines. The emitter fol­
lowers and series diodes are physically mounted
near the center of the memory stack and are
connected to the plug-in board that contains the
regeneration loop circuits by means of a 125-
ohm shielded twisted-pair cable.

The twisted-pair cable is terminated at the
input to the second stage with resistors con­
nected to a decoupled power supply. When the
negative digit pulse is applied to one of the
digit lines, the corresponding emitter follower

136 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

is turned off and the transient at the input to
the second stage is limited to 300 millivolts,
since the currents in the cable termination are
reduced to zero. The diodes are used in series
with the emitter-follower outputs in order to
prevent the flow of current if the base-to-emitter
breakdown voltage is exceeded by the digit
pulse.

The second stage of the sense amplifier is a
differential amplifier, with the transistor collec­
tors connected together through a delay line.
This stage amplifies the difference between the
input signals and sums the inverted amplified
difference signal and the delayed amplified dif­
ference signal. This produces output voltage
waveforms at the collectors that do not have a
dc level shift with repetition rate variations.
The output waveforms are on a well-determined
reference voltage level which is determined by
the current in the large resistance in the emitter
circuit. Practically all of the emitter current
reaches the transistor collectors and produces
a constant operating voltage across the parallel
combination of the collector resistors. The op­
erating voltage is constant even if the current
is not shared equally by the two transistors,
since' the delay line provides a dc short circuit
between the collectors. The collector resistors
are used to terminate the delay line so that
there will be no reflections and the outputs of
the second stage will recover to the reference
level in a minimum of time after the end of
the digit transient.

The delay of the delay line is long enough that
a usable amount of the inverted amplified sense
signal is passed before the output is reduced
by the delayed amplified sense signal. The de­
lay in this system is 25 nanoseconds, which is
approximately one-half the base width of a
sense signal.

The third stage of the sense amplifier is an
ac-coupled differential amplifier. One output is
used as a test point for observing amplified
sense signals, and the other output drives the
next stage. The third stage has a maximum
output current swing that is limited by the cur­
rent in the emitter current sources. This pre­
vents the digit transient from overpowering the
inhibit current in the strobe circuit.

The last stage is the strobe and pulse-stretch­
ing circuit. This stage contains a bistably biased
five-milliampere germanium tunnel diode which
drives an output transistor. The tunnel diode
has two inputs. One input is from the third
stage which provides the amplified sense signal
and also provides the normal bias current for
the tunnel diode. The second input is from the
strobe circuit which during the inhibit time
provides sufficient reverse current through the
tunnel diode to keep it in the low-voltage state
during the digit transient.

The operation of this stage is illustrated in
Figure 17, which shows the tunnel diode volt­
ampere characteristic and its load line. The
tunnel diode is normally biased in the low­
voltage state at point A and is unable to switch
to the high-voltage state during the digit transi­
ent because of the current-limiting action of
the third stage. During a portion of the read
time the sense amplifier is strobed by removing
the inhibit current, thereby biasing the tunnel
diode in the low-voltage state near the knee at
point B. A difference signal of five millivolts
at the input of the sense amplifier and the
polarity of a ONE signal is sufficient to trigger
the tunnel diode to point C in the high-voltage
state. The tunnel diode turns on the output
transistor which produces a three-volt negative­
going pulse used to set a flip-flop in the memory
information register. The tunnel diode re­
mains in the high-voltage state until the inhibit

TUNNEL DIODE
CHARACTERISTIC

Figure 17. Tunnel diode characteristic and load line.

A 105 BIT HIGH SPEED FERRITE MEMORY SYSTEM 137

current is applied by the strobe circuit. The
inhibit current resets the tunnel diode to point
A and terminates the output pulse.

The operation of the sense amplifier is illus­
trated by the waveforms in Figure 18. Figure
18 (a) shows superimposed the read-out signals
and digit transients on the two lines of a digit
line-pair. The stored information is represented
in the difference between the two signals that
appear on the lines at read time.

Figure 18 (b) shows the signals that appear
at the sense-amplifier test point when the delay
line is removed from the circuit. The solid
line shows reading and regenerating a ONE
and the dotted line shows reading and regen­
erating a ZERO. The amplifier has amplified
the difference in the read-out signals and has
limited the digit transient. It can be observed
that these waveforms have a dc component
which would result in a dc shift in an ac ampli­
fier. This shift would be particularly objection­
able at high repetition rates. In addition, the
waveform base line is dependent on the dc
balances of the previous stages.

Figure 18 (c) shows the test point signals
with the delay line in the circuit. The wave­
forms represent the sum of the inverted
amplified difference signal and the delayed
amplified difference signal. These waveforn1s
have no dc component other than the base-line
voltage, which is well determined.

READ TIME WRITE TIME

(al SIGNALS ON DIGIT LINE PAIR

WAVEFORMS AT TEST POINT --O---f\-,!?\
{b 1 WHEN DELAY LINE IS REMOVED

FROM CIRCUIT \ :

{ 1 WAVEFORMS AT TEST POINT
C WITH DELAY LINE IN CRCUIT

(d1 STROBE PULSE

(el SENSE AMPLIFIER OUTPUT

I , ' , ,
I.. __ .J

-..1\ _____ _

o ---u-----
I

Figure 18. Sense amplifier operation.

Figure 18 (d) shows the strobe pulse which
is positive only during the first peak of· the
amplified sense signal shown in Figure 18 (c) .

Figure 18 (e) shows the sense amplifier out­
put. The negative-going pulse indicates the de­
tection of a ONE.

PACKAGING

The circuitry of the memory, except for
those parts that had to be near the memory
stack for special reasons, is packaged in four
nests surrounding the memory stack as seen
in the photograph in Figure 19. Each nest
has 10 removable motherboards, each of which
could potentially contain up to 56 small plug-in
modules. Individual modules contain such parts
as logic blocks, portions of drivers, portions of
the sense amplifiers, etc. When a nest is com­
pletely assembled, all of the circuitry within it
is interconnected by 70-ohm-impedance printed
strip lines on both sides of the motherb()ards
and perpendicular grandmother boards. Inter­
connections between nests are made by coaxial
cables. Some of the memory circuitry which
did not lend itself to modular packaging be ..
cause of power dissipation or size considera ..
tio~s, such as driver output stages, was pack ..
aged on specially built motherboards by remov­
ing some or all of the provisions for pluggable
modules. All logic level interconnections are
made via 70-ohm cables. Re~d and write driver
outputs are transmitted to the bipolar diode
matrix at the stack via 70-ohm cables. To ob-

Figure 19. Memory system.

138 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

tain a lower impedance, the output stages of
the switch channels are located at the memory
stack. These stages are connected to the rest
of the switch channels via 50-ohm cables. The
digit driver outputs are transmitted to the
stack via 100-ohm cables, and the sense ampli­
fier first stages are connected to the rest of the
sense amplifier by twisted-pair balanced cables
having a common ground sheath and a differ­
ential impedance of 125 ohms.

TEST RESULTS

The 1024-word two-core-per-bit memory was
built with a complete word system and a full
digit system of 100 bits. Also, a special mem­
ory exerciser was built to thoroughly test the
memory system.

Figure 20 shows a switch voltage, read and
write currents and a digit current. The switch
waveform was observed at the center tap of a
word line transformer primary winding (see
Figure 13). The undulations on the plateau
were caused by the flow of read and write cur­
rents through the switch circuit. These undu­
lations would have been much larger if the
switches had not been mounted on the memory
stack. Read and write pulses of both Timing A
and Timing B are shown in the figure. Note
that the read and the write pulses of Timing

SWITCH
WAVEFORM

READ AND
WRITE PULSES
(TIMING A)

READ AND
WRITE PULSES
(TIMING B)

DIGIT PULSE

(
AT THE END)
OF DIGIT LINE

200 MA/DIVISION

200MA /DIVISION

74 MA/DIVISION

- lOONS/DIVISION

Figure 20. Switch voltage, read and write pulses
("Timing A" and "Timing B"), and'digit pulse.

A are close together, while those of Timing B
are slightly separated. The digit pulse was
observed at the end of a digit line.

As shown in Figure 21 (a), T termination
networks are used to terminate digit lines. The
termination impedances are Zrl = 137 ohms and
Zs = 133 ohms. For practicality, the same ter­
mination networks are used for all the 100 digit
line-pairs, although there is some indication
that the optimum value changes from bit to bit,
not so much for Zd but to some extent for Zs.
The calculated value of the common-mode ter­
mination is Zc = 403 ohms. The word lines
crossing digit lines are responsible for the large
difference between the differential mode and
the common-mode termination impedances.

Figure 21 (b) shows the voltage waveforms
at the three points on a termination network
as indicated in Figure 21 (a). It is seen that
the voltage waveform at the end of the un­
driven line B and that at the junction C in the
T termination are the same. This is important
because it means that no current flows out of
the undriven digit line, which is a basic re­
quirement for memory operation as shown in
Figure 2. To make the net current propagation
on the undriven line zero, there must be a volt­
age propagation on it. (Here, the same velocity
is assumed for all the propagation modes that
exist in the memory operation.) It is to be

CURRENT PULSE

--u-

LlN~IG~~'R{ NO CURRENT

VOLTAGE AT A
(DRIVEN LINE)

VOTAGE AT B
(UN DRIVEN LINE)

VOLTAGE AT C

(a)

_ lOONS/ DIVISION

(b)

IOV/DIVISION

Figure 21. Voltage waveforms at a termination net­
work: (a) T termination network (Zd = 137 ohms and

Zs = 133 ohms), (b) voltage waveforms.

A 105 BIT HIGH SPEED FERRITE MEMORY SYSTEM 139

noted that the condition shown in Figure 21 is
realized only when all the 100 digit drivers are
operating.

Figure 22 shows waveforms at a sense am­
plifier test point, together with related wave­
forms. Figure 22 (a) shows two bits, one at
the edge of the memory stack and the other at
the center, regenerating ONES and ZEROS
alternately over the entire memory of 1024
words. Note that the sense signals are delayed
to avoid the switch noise. The switch noise, al­
though comparable in amplitude to the sense
signal, could have been made as small as it
is only by the use of coupling transformers.
The negative-going sense signal represents a
ONE and the positive-going sense signal a
ZERO. The digit transient takes about 350
nanoseconds to die down, measured from the
start of the digit pulse. This time includes
approximately 300 nanoseconds attributed to
the base width of the digit pulse and the stack
recovery time, plus 50 nanoseconds attributed
to the sense amplifier. This relatively slow re­
covery of the stack, even with the elaborate T

WAVEFORM
AT TEST POINT

(EDGE OF MEMORY
STACK)

WAVEFORM
AT TEST POINT

(CENTER OF MEMORY
STACK)

READ COMMAND
PULSE
WAVEFORM
AT TEST POINT

STROBE PULSE

SENSE AMPLIFIER
OUTPUT

MEMORY REGISTER
ONE SIDE

READ COMMAND
PULSE

WAVEFORM AT
TEST POINT
STROBE PULSE
SENSE AMPLIFIER
OUTPUT

MEMORY REGISTER
ONE SIDE

te)

-100 NS/DIVISION

IV/DIVISION

IVIOIVISION

WAVEFORM NO. 2
lV/DIVISION

5V/DIVISION
OTHERWISE

WAVEFORM NO. 2
lV/DIVISION

5V1DIVISION
OTHERWISE

Figure 22. Waveforms at sense amplifier
test points: (a) regenera tion of ones and
zeros, (b) regeneration of ones, (c) regen­
eration of ones and zeros at 450-nsec cycle

time.

termination, seems due to the imperfection of
digit lines as transmission lines.

Figure 22 (b) shows regeneration of ONES
on all the 1024 words. It is seen that the infor­
mation is available at the memory register in
about 230 nanoseconds from the beginning of
the read command pulse. Figure 22 (c) shows
a higher repetition rate operation of about 450-
nanosecond cycle time. I t shows regeneration
of ONES and ZEROS on alternate words over
the entire memory. Here, the switch noise and
the digit transient recovery are made concur­
rent without affecting the sense signals.

The waveforms shown above represent only
a small portion of the tests performed on the
memory with the aid of the memory exerciser.
These tests confirmed the soundness of the de­
sign philosophy, the effectiveness of the prob­
lem solving approach, and the practicality and
reliability of the memory system actually built.

CONCLUSION

Development of the present memory system
evolved the method of control of wave propaga­
tion. Unless wave propagation is controlled, it
is almost impossible to operate a high-speed
memory. The basic requirements for control
are:

1. Use of two neighboring digit lines as a
pair for one-bit location

2. Equalization of coupling between the
digit lines

3. Use of differential sense amplifiers

4. Termination of digit lines on both ends
for all the existing wave propagations
with particular emphasis on the differen­
tial-mode termination.

The last requirement is met by the present
memory due to the particular digit drive
scheme used. It requires careful study to choose
a digit drive scheme, as otherwise, a simultane­
ous termination for all the possible propaga­
tions becomes a very complex problem, with no
practical answer. Although not applicable to
the present memory, it is preferred that only
the differential-mode propagations exist. This
may be accomplished by the proper selection
of memory cell types and digit drive schemes,
and will simplify the propagation problem

140 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

greatly. It should be emphasized that the
approach used in this paper in treating wave
propagations in a memory stack is applicable
to any word-organized memory.

The use of transformers to couple read and
write pulses to individual word lines proved
very successful in alleviating the noise problem
associated with the word selection matrix.
There is still a possibility of reducing the noise
further by reducing the transformer inter­
winding capacity, which will increase the sys­
tem reliability and at the same time enable a
faster access time.

The use of a delay line in a differential sense
amplifier minimized the problems of dc im­
balances and level shift when sensing sm:),ll
signals in an environment of large digit pulses.
In addition, the use of a tunnel diode strobe
circuit provided low-level thresholding and
high-speed operation.

There seems to be no basic difficulty in build­
ing a memory with twice as many words, using
the basic design described here. It is expected,
however, that the cycle time will be slightly
longer since the digit lines are twice as long.

APPENDIX

WAVE PROPAGATION ON MULTIPLE
PARALLEL LINES WITH EQUALIZED
COUPLING

The analysis given below shows the modes
of wave propagation that can exist on a set
of multiple parallel lines with equalized cou­
pling. The following assumptions are made:

1. Propagation is in the direction of the
digit lines only. This implies that the
word lines are considered as contributing
only to the coupling among digit lines.

2. Digit lines are distributed constant lines.
This is justified because for the frequen­
cies of interest, it is not necessary to con­
sider the line irregularities caused by
memory cells.

3. Digit lines are uniform and have no dis­
continuities. This assumption may not
hold precisely in practice, but is made to
permit a mathematical analysis.

4. A ground plane is present. This assump­
tion is also made to permit a mathemati­
cal analysis.

A similar problem of multiple line wave
propagation was studied a long time ago.17 The
solution given here is more general than the
one given in the reference and more readily
applicabl~ to memories.

Let the number of lines be 2n, where n is an
arbitrary integer. From these, we form n
pairs. Pair i consists of line i and line - i,
where i = 1,2, ... ,n. This is shown in Figure
A-I. Pair-to-pair coupling is equalized, which
implies that, when we consider pair i and pair j
(i *- j, and i, j = 1, 2, ... , n), the coupling is
the same between line i and line j, line i and
line - j, line - i and line j, and line - i and line
- j. To be general, the coupling is made a func­
tion of i and j. The case in which the coupling
is constant regardless of i and j has been
treated elsewhere.!'

Using matrix notation, the pertinent differ­
ential equations are

[- ~:] = [Z] [I]

[- ;~J = [Y][V]

(A-I)

(A-2)

The above factors are defined as follows:

r ~-~ 1

[V] = I [I]

I
I
I
I Vn I
L V-n J

where

Vi = Voltage on line i
V- i = Voltage on line - i
Ii = Current on line i
Li = Current on line - i

= 1,2,3, , n.

L~ 1

I
I

I
J

[Z]

where

A 10· BIT HIGH SPEED FERRITE MEMORY SYSTEM 141

PAIR I PAIR 2 PAIRi PAIR j ····PAIRn

~ ~ r-"'----. ~ ~
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GROUND 1 I utI LINE i
LINE -i LINE -j

Figure A-l. Cross section of a system of 2n parallel lines.

................. J
Znl Znl Zn2 Zn2. Zsn Zmn

L-Znl Znl Zn2 Zn2. . • . •. Zmn Zsn

where

Y si = Self parallel admittance per unit
length of line i or line - i, i = 1, 2, 3,
..... ,n.

Y mi = Mutual parallel admittance per unit
length between line i and line - i,
i = 1, 2, 3, , n.

ZSi = Self series impedance per unit length

Yij = Mutual parallel admittance per unit
length between either line i or line
- i and either line j or line - j, i =I=- j
and i, j = 1, 2, 3, , n. of line i or line - i, i = 1, 2, 3, , .

n. Y ij = Y j i i =I=- j and i, j = 1, 2, 3, , n.

Zmi = Mutual series impedance per unit
length between line i and line - i, From Equations (A-I) and (A-2) ,

i = 1, 2, 3, , n.

Zij = Mutual series impedance per unit
length between either line i or line - i
and either line j or line - j, i =I=- j and

[~:J = [Z] [Y] [V] = [1'] [V] (A-3)

where

i, j = 1, 2, 3, , n. (equalized) [/L] [Z] [Y]

Zij = Zji i =I=- j and i, j = 1, 2, 3, , n.

IY
" Ym

, Y"
Y l2 YIn YIn -,

Y ml Y SI Y l2 Y l2 YIn YIn

Y 21 Y 21 Y S2 Y m2 Y 2n Y 2n

I 1'" I'm, 1''' /L12 /LIn /LIn

/Lml /LsI /L12 /L12 /LIn /LIn

/L21 /L21 /Ls2 /Lm2 /L2n /L2n

/L21 /L21 /Lm2 /Ls2 /L2n /L2n

[Y]
Y 21 Y 21 Y m2 Y S2 Y 2n Y 2n

.................
/Lnl /Lnl /Ln2 /Ln2 /Lsn /Lmn

Y nl Y nl Y n2 Y n2 Y sn Y mn

Y nl Y nl Y n2 Y n2 ..••.. Y mn Y sn

L- /Lnl /Lnl /Ln2 /Ln2•. /Lmn /Lsn

and

/Ls; = Zsi Y Si + Zmi Y mi + 2 ~ Zik Y ki ; k,. i

JLmi = Zsi Y mi + Zmi Y Si + 2 ~ Zik Y ki ;
kli

1,2,3, , n

i = 1, 2, 3, , n

/Lij = Zij (YSj + Y mj) + Y ij (ZSi + Zmi) + 2 ~ Zik Y kj ;

k" i
k I j

and i, j = 1, 2, 3, , n.

142 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

In general
P,ij =FJLji; i =F j, and i, j = 1,2,3, , n.

Assume a solution for Equation (A-3) of the form

V V
"f.X

i = oje 1

i = 1, 2, , n.

In order that the solution not to be trivial (Le., VOl = 0, i = 1, 2, , n), the following must
hold:

or

p,nl
p,nl

x

p,ml
P,sl - y2
P,21
P,21

P,nl
P,nl

P,12
P,12
p,m2

p,s2 - ... /

p,n2
p,n2

P,12
P,12
p,m2

p,s2 - y2

JLn2

p,n2

(P,SI - p,ml - y2) (P,S2 - p,m2 - y2)

(P,Sl - p,ml - y2) 2JL12
2JL21 P.S2 + P.m2 - y2

/LIn
P,ln

This is a 2n th degree equation in y2. Let the roots be

2 {P,Sk - JLmk k = 1, 2, , n
Yk = Root of the determinant k = n + 1, n + 2, , 2n

=0

=0

Consider only the forward propagation, because the backward propagation is the same except for
direction. Then

1
- V JLsk - P,lllk

Yk = - V Root of the determinant

Now the solution of Equation (A-3) is

V. =~v'keY"l

V_. == ~ V ••• eY
" }

k = 1, 2, , n

k = n + 1, n + 2, t 2n

i = 1, 2, , nand
k == 1, 2, , 2n

(A-4) lit

Substituting Equation (A-4) into Equation (A-3) to find relationships among V 1k and V- ik,

~ JLlj (V jk + V-Jk) + (P.Si - y!) V ik + /tllli V- ik = 0
J"rf
~/tiJ (V jk + V- Jk) + p,ml V ik + (P.Si - y=) V- ik == 0
~

(A-5)

(A-6)

* Here it is assumed that A"'oS are all single roots. Inclusion of multiple roots, however, does not change the
form of Equations (A-ll) and (A-12), because the terms of the form xPe"Y", where p is a non-zero integer, can­
not appear in the solution.

A 105 BIT HIGH SPEED FERRITE MEMORY SYSTEM 143

where

i = 1, 2, , nand k = 1, 2, , 2n.

By substracting Equation (A-6) from (A-5),

If k =1= i, /Lsi - /Lmi - Y: =1= O. Therefore

V ik = V-ik, where k =1= i, and k = 1,2, , 2n (A-7)

Then, Equation (A-5) can be rewritten as

~ 2/Lij V jk + (}Lsi + /Lmi - y 2k) V ik + /Lik (Vkk + V-kk) = 0
j 'I i

(A-8)

j I- k

where

k =1= i, and i, k = 1, 2, , n.

If k == i, /Lsk - y~ = /Lmk (k = 1, 2, , n).

Then, from Equation (A-5)

where

k = 1,2, , n.

For a given k, Equations (A-8) and (A-9) to­
gether form n simultaneous equations in V jk
(j =1= k; and j = 1; 2, , n) and (Vkk + V -kk).

In other words, if k is fixed, Equation (A-9)

gives one equation and Equation (A-8) gives

(A-9)

(n - 1) equations, because i can take (n - 1)
different values. Therefore,

V jk = 0

and

j =1= k, and j, k = 1, 2, , n

Vkk + V-kk = 0 k = 1,2, '" 0' n

These are combined with Equation (A-7) to
obtain

V ik = -V-ik
V ik = V- ik = 0
V ik = V- ik

i = k = 1, 2, , n }
i =1= k and i, k = 1, 2, 0 0 0 0, n
i = 1,2, 000 .,nand k = n + 1,n + 2, 0000' 2n,

(A-I0)

Now Equation (A-4) becomes

U sing Equation

I _Vii 1'i% + ~.2n
i --e

Zoi
k = n + 1

2n

~
k = n + 1

i = 1,2,0000, n (A-II)

i = 1,2, .000' n (A-12)

144 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

where

JZSi - Zmi
Z·=

01 Y~i - Ymi

i = 1,2, , n

Equations (A-II) and (A-12) show that the
possible modes of propagation are:

1) Independent differential mode for each
line-pair

2) Common modes in which the two lines of
a pair have identical wave propagation.

ACKNOWLEDGMENT

The authors wish to acknowledge the assist­
ance given on this project by the members of
the Computer Advanced Product Research
Group. Credit is due to them for designing the
two-level logic modules, developing the new
packaging techniques, and designing and con­
structing the memory exerciser. Special credit
is due to. H. C. Nichols for his invaluable con­
tribution in the fabrication of the memory
system. Additional acknowledgment is due to
Memory Products Department, RCA Electronic
Components and Devices, for the construction
of the memory stack.

REFERENCES

1. V. L. NEWHOUSE, "The Utilization of Do­
main Wall Viscosity in Data Handling De­
vices," Proc. IRE, vol. 45, no. 11, pp. 1484-
1492, November 1957.

2. W. S. KOSONOCKY, "Memory System," U.S.
Patent 3,042,905, filed December 11, 1956,
issued July 3, 1962.

3. J. A. RAJCHMAN, "Ferrite Aperture Plate
for Random Access Memory," Proc. IRE,
vol. 45, no. 3, pp. 325-334, March 1957.

4. M. M. KAUFMAN and V. L. NEWHOUSE,
"Operating Range of a Memory Using Two
Ferrite Plate Apertures per Bit," Journal
of Applied Physics, vol. 29, no. 3, pp. 487-
488, March 1958.

5. R. E. McMAHON, "Impulse Switching of
Ferrites," Solid State Circuit Conference
Digest, pp. 16-17, February 1959.

6. R. H. TANCRELL and R. E. McMAHON,
"Studies in Partial Switching of Ferrite
Cores," Journal of Applied Physics, vol.
31, no. 5, pp. 762-771, May 1960.

7. R. H. JAMES, W. M. OVERN, and C. W.
LUNDBERG, "Flux Distribution in Ferrite
Cores under Various Modes of Partial
Switching," Journal of Applied Physics
Supplement to vol. 32, no. 3, pp. 385-395,
March 1961.

8. C. J. QUARTLY, "A High Speed Ferrite
Storage System," Electronic Engineering,
vol. 31, no. 12, pp. 756-758, December
1959.

9. H. AMEMIYA, H. P. LEMAIRE, R. L. PRYOR,
and T. R. MAYHEW, "High-Speed Ferrite
Memories," AFIP Conference Proceedings,
vol. 22, pp. 184-196, Fall 1962.

10. W. H. RHODES, L. A. RUSSEL, F. E. SAKA­
LAY, and R. M. WHALEN, "A 0.7-Microsec­
ond Ferrite Core Memory," IBM Journal,
vol. 5, no. 3, pp. 174-182, July 1961.

11. G. F. BLAND, "Directional Coupling and
Its Use for Memory Noise Reduction,"
IBM Journal of Research and Develop­
ment, vol. 7, no. 3, pp. 252-256, July 1963.

12. W. T. WEEKS, "Computer Simulation of
the Electrical Properties of Memory Ar­
rays," IEEE Transactions on Electronic
Computers, vol. EC-12, no. 5, pp. 874-887,
December 1963.

13. G. H. GOLDSTICK and E. F. KLEIN, "Design
of Memory Sense Amplifiers," IRE Trans­
actions on Electronic Computers, vol. Ee-
11, pp. 236-253, April 1962.

A 105 BIT HIGH SPEED FERRITE MEMORY SYSTEM 145

14. T. R. MAYHEW, "The Design of a Sense
Amplifier for a Thin Film Memory," Mas­
ter's Thesis, University of Pennsylvania,
June 1962.

15. R. T. LURVEY and D. F. JOSEPH, "RCA
N7100 Microferrite Array," Application
Note SMA-9, RCA Semiconductor and
Materials Division, Somerville, N.J., Au­
gust 1962.

16. B. A. KAUFMAN and J. S. HAMMOND, III,
"A High Speed Direct-Coupled Magnetic
Memory Sense Amplifier Employing Tun­
nel-Diode Discriminators," IEEE Transac­
tions on Electronic Computers, vol. EC-12,
pp. 282-295, June 1963.

17. J. R. CARSON and RAY S. HOYT, "Propaga­
tion of Periodic Currents over a System of
Parallel Wires," Bell System Tech. Jour­
nal, vol. 6, no. 3, pp. 495-545, July 1927.

AN ASSOCIATIVE PROCESSOR
Richard G. Ewing and Paul M. Davies

Abacus Incorporated, Santa Monica, California

1. INTRODUCTION

This paper describes the computer system de­
signed under an Air Force sponsored study pro­
gram to develop a non-cryogenic Associative
Processor organization and to study its possible
use in a variety of Aerospace applications. Two
approaches were considered to this problem:
one in which an associative memory would be
added to a more or less conventional computer
and another in which a new organization would
be developed around the principle of memory
distributed logic. The latter approach was
chosen because it appears to result in a more
efficient form of parallel processor.

Because of the nature of the intended use of
the processor, emphasis was placed on network
simplicity, on reduction of size and power, and
especially, on reliability. While the processor
organization was designed in terms of a partic­
ular mechanization-wire memory and inte­
grated circuitry-the organization and algo­
rithms are described here in general terms, and
questions of mechanization are postponed to a
final section.

When the fundamental limits of electrical
and optical signal propogation speeds are
reached, there are just two ways to further re­
duce the time to perform a given computation.
One of these is by making things smaller, and
the other is by performing parallel processing.
But efforts to achieve efficient parallel proces­
sors have encountered several difficulties. First
is the problem of providing sufficient memory
and computing capability within a simple
module. Some parallel processors, such as the
Holland 1 machine, have employed relatively

147

simple modules, but the memory capacity and
computing capability of each module were lim­
ited. Others, such as the Solomon Computer 2,

provide greater memory capacity and comput­
ing capability in the module, but each module
approaches the complexity of a small computer.

Another serious problem is that of communi­
cation. For a periodic computing structure to
be useful, it is essential that there be efficient
paths for the communication of control signals
and operands among the modules. In some
parallel processors, the communication net­
works are more complex than the processing
modules themselves.

The associative memory suggest itself as a
basis for another approach to the problem of
parallel processing. Logical operations are per­
formed within the individual memory cells of
this memory, and communication within the
structure is particularly efficient. Extension of
these principles to permit full logical and arith­
metic capability within each memory cell would
provide a high degree of processing parallelism.
We shall call an associative memory structure
and its control logic, which is capable of per­
forming such distributed computation, an As­
sociative Processor.

In addition to the parallel computing capa­
bility, there are several other advantages which
one may expect to achieve in the Associative
Processor. These are:

1. The data storage and retrieval capabil­
ities of the Associative Memory, which
greatly simplify or eliminate such com­
mon data manipulations as sorting, col-

148 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

lating, searching, matching, cross refer­
encing, updating and list processing;

2. Programming simplifications based upon
the possibility of ignoring the placement
of data in memory and the extensive use
of content addressing and ordered re­
trieval;

3. The periodic structure of a large portion
of the processor. Periodicity of structure
lends itself to integrated circuit tech­
niques and batch fabrication. Inter­
connections between components become
shorter and less tangled, reducing propo­
gation delays and simplifying layout and
checkout. Since the structure is periodic,
it can easily be expanded in size;

4. Fault Tolerance. The periodic structure
may permit an organization which is tol­
erant of memory or circuit element fail­
ures. If a cell fails, it may be possible to
avoid its further use with little loss to the
system capability. A program for an as­
sociative structure makes little or no ref­
erence to a unique cell so that loss of a
cell "vould not confuse the program.

Two approaches have been taken in the past
to solve the problems of parallel processing by
using associative processing techniques. Rosin 3

and Fuller 4, 5 have considered an associative
memory under control of a general purpose
computer. In Fuller's work, algorithms for a
variety of arithmetic operations are built up as
sequences of elementary operations performed
by the rather limited word logic of the associ­
ative memory. In Davies 6, more extensive
word logic is provided, and the control is inte­
grated into the associative processor. The pres­
ent paper represents an attempt to achieve the
higher speed of the second approach with a
considerably simpler logical structure, which
could be mechanized from non-cryogenic com­
ponents.

The design which was adopted provides a
random access memory for program storage
and a bit serial associative memory for data
storage and parallel processing. The ability to
write tags (i.e. to simultaneously write data in
a selected bit position of a number of selected
words), coupled with simplified word logic net­
works, permits relatively efficient bit serial
algorithms for many kinds of parallel searches,

parallel arithmetic and ordered retrieval.
Methods were developed for treating certain
classes of memory and circuit failures. For
these cases, the processor can continue to op­
erate in spite of a failure with only slight im­
pairment of the overall system capability. In
the area of communication, methods were de­
veloped for treating operand pairs in a variety
of relative locations.

2. MEMORY DISTRIBUTED LOGIC

One of the fundamental features of the asso­
ciative memory is that logical operations are
performed within the memory cells. However,
even in the random access memory a limited
amount of logic is performed in the memory
cell. The boolean function Xi 'Yj 'Sij is per­
formed, where Xi is the selected X address co­
ordinate, Y j the selected Y address coordinate,
and Sij the bit stored at location ij. The value
of the function is read out on the sense line. In
an associative memory, the memory logic is ex­
tended to permit selection of a memory cell on
the basis of stored data. In some associative
memories, this is accomplished by the function

(Sl~Rl) . (S:!~R:!) ... (Sn~Rn)

which is mechanized in each memory word cell.
"Si~Ri'" the equivalence function, is the same
as Si . Ri + Sj • R i. Si is the bit stored in the
i-th bith position of a typical word, while Ri is
the corresponding bit of a reference word
stored in an external register. The function
selects all words whose stored contents match
the reference word. This can be improved to
permit masking of selected bits as follows:

[(Sl~Rl) + Md r (S2~R2) + M2]

[(Sn~Rn) +Mn]

where Mi indicates whether the i-th bit is to be
ignored in the comparison.

In addition to providing logic in each mem­
ory bit position, it is also profitable to have logic
associated with each word cell. This is the case
in certain word organized random access mem­
ories and in associative memories. In the first
case, there is the word driver which may be a
magnetic or semiconductor amplifier which re­
sponds to X and Y coordinate selection lines
just as the typical bit cell does in a coincident
current memory. In associative memories,
there is usually a match detector with each

word which responds to the match logic de­
scribed above. Ordinarily, the match detector
has memory. These operatiotls at both the bit
level and the word level suggest the possibility
of providing sufficient distributed logic to per­
mit parallel computation throughout the mem­
ory structure.

In arriving at an Associative Processor capa­
ble of such parallel computation a number of
important decisions must be made. One basic
choice is whether to use a separate random ac­
cess memory or the associative memory itself
for program storage. The first choice is prob­
ably more practical since the random access
memory is less expensive; furthermore, it will
be easier to protect the associative portion from
fault if the program is kept separate.

A second choice to be made is between bit
parallel and bit serial operation. Certain asso­
ciative operatibns such as the matching of fields
for equality can be performed in bit parallel.
On the other hand, to perform the more com­
plex functions of arithmetic, it appears more
convenient to use the bit serial approach,· sim­
plifying the bit cell by time sharing one logic
module among all bits of a word.

A third problem is that of communication.
To· perform parallel computation, one must
have access to the operands and operand pairs.
In some cases, the operand pairs are stored
together in the same word. In other cases,
they are in adjacent words, while in still others,
they are in non-adjacent words, but always
some fixed number of words apart. Another
common requirement involves operand pairs in
which the first operand of each pair is common
while the second operands are distinct. In this
case, the common operand, in an external reg­
ister, must be communicated to the others,
stored in various memory cells. Still another
communication problem is based upon the fact
that while large portions of a problem may be
susceptable to parallel processing, other parts
may be essentially sequential. These also must
be performed efficiently by the Associative
Processor if they are not to offset the ad van­
ta~es gained in the parallel processing .

. Techniques for solving these communication
problems include the following:

1. Transmission of a common operand to all
memory word cells.

AN ASSOCIATIVE PROCESSOR 149

2. Flexible control of field selection to per­
mit operation on pairs of operands in the
same words.

3. Use of shift registers for communication
between words. These can be uni-direc­
tional orbi-directional and can be ex­
tended to two or more dimensions to give
greater flexibility.

4. Forms of entry-exit ladder networks
which permit rapid communication be­
tween non-adjacent word cells.

The following sections will describe the As­
sociative Processor, which is based upon spe­
cific choices of these options.

3. ORGANIZATION

A block diagram of the Associative Proces­
sor is shown in Figure 1. It contains both
a conventional random access memory (RAM)
and an associative memory. The RAM pro­
vides storage for instructions and constants;
it is accessed parallel by bit and serial by
word. In processing operations, the Associa­
tive Memory is accessed parallel by word and
serial by bit. In the organization under con­
sideration, RAM contains 4000 twenty-four
bit words, and the Associative Memory con­
tains 500 ninety-six bit words.

Instructions accessed from RAIVI are trans-
ferred to the Instruction ·Register where they
are held during execution. The D-Register,

INPUT

ASSOCIATIVE

MEMO~Y

WORD
La G I c}
SENSE

&
W~I TE

AM P'S

Figure 1. Block Diagram of Associative Processor.

150 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

which has the same length as a RAM word,
serves as temporary storage for operands
which participate in associative operations.
For instance, the D-Register may hold the
argument of a search, may receive data being
retrieved from the Associative Memory, or
may communicate with the external world.
Data originating from outside of the Associa­
tive Processor can be transferred directly to
either the Associative Memory or RAM. Direct
input to the memories is under an automatic
interrupt control.

In the Associative Memory, only one bit
column at a time may be operated upon. The
particular bit column is selected by either the
A Counter, the B Counter, or the C Counter.
Associated with the A and B Counters are the
A and B Limit Registers. Each may contain
a value which serves to define a maximum or
minimum value of its companion counter. To­
gether, each counter and limit register define a
field which can be any length up to the number
of bits in the Associative Memory word, and
may overlap the field defined by the other coun­
ter and limit register.

, The design of the Associative Processor is
sufficiently general to permit implementation
by' a variety of memory elements and logic
techniques. Therefore, the following descrip­
tion of the Associative Memory, shown in
Figure 2, will present those characteristics
which are essential to the design of the As­
sociative Processor.

Storage for one bit is provided at each inter­
section of a word and a bit line. A pulse on
a bit line causes a signal to be emitted by each
bit on that line. The signals are transmitted
through the word lines to the sense amplifiers.

l

BIT DRIVERS

Figure 2. Associative Memory.

The equivalence function is obtained in one of
two ways depending upon the particular mem­
ory element. In some memories it is sufficient
to exercise control over the polarity of the
interrogating pulse, thereby achieving a signal
output for a match and no output for a mis­
match. In these cases, the bit element itself
performs the equivalence function, S~R. In
other memories, the stored bit is merely read
out; the reference bit is transmitted to all
sense amplifiers and logic associated with each
sense amplifier generates the equivalence func­
tion.

Writing at a particular bit location is ac­
complished by passing a current through the
intersecting bit and word lines. The polarity
of the current in the world line, or in some
cases the word and bit lines, determine the
state of the written bit. By energizing all the
word drivers and one bit driver, one bit of each
word can be written into. The latter opera­
tion, which is sometimes referred to as "tag­
ging", plays a significant role in the design of
the Associative Processor.

The logic associated with each word gives
great power to the Associative Processor. This
logic 'is identical for all words and consists of
a sense amplifier, storage flip-flop, write ampli­
fier, and control logic. Refer to Figure 3.3.
The sense amplifier is bistable and remembers
the match state from one interrogation to the
next. The output ",of the sense amplifier de­
termines the state of the storage flip-flop in
various ways as determined by the control
signals, Es, Er, and Ec. In addition, the con­
tents of each storage flip-flop can be shifted to
the storage flip-flop in the word above under
control of the signal, Esh. This provides com­
munication between words.

One of the functions of the storage flip-flops
is to control writing. In this operation, the
storage flip-flops in the "1" state select the
words that are to be written into, while the
signals, W1 and WO, determine whether "l's"
or "O's" are written by the selected write
amplifiers. In addition, the output of each
storage flip-flop is "ANDed" with the output
of the corresponding sense amplifier. The out­
puts of these AND gates are ORed together
to provide an output channel from the Associa­
tive Memory to the remainder of the Processor.

Control of the word logic networks is exer­
cised through a Control Unit. This unit inter­
prets the contents of the Instruction Register
and D Flip-flop to determine the control sig­
nals, Es, Er, Ec, Esh, WI, and WO which are
transmitted to all word logic networks.

The D flip-flop and D Register are the data
link between the Associative Memory and the
Random Access Memory. Data, such as the
argument for a search, are transferred from
RAM in parallel to the D-Register. Each bit
is then shifted into the D Flip-flop where it
participates in the search operation. Data
retrieved from the Associative Memory are
transferred through an adder to the D Flip­
flop and then to the D Register.

The Associative Processor offers a variety of
processing options in terms of operand loca­
tion and processing speed. The following list
illustrates 'some of the possibilities:

1. D+ M~D
2. D,+ Mj~Mj

3. Mj + Mj~Mj
4. Mj + Mk~Mk

(1) represents an operation occurring be­
tween the D Register and one selected word in
the Associative Memory. The result goes to
the D Register. (2) illustrates a process be­
tween D Register and many words in the
Associative Memory. The third operation
occurs between pairs of operands, each pair
stored in a separate word. (4) represents an
operation occurring between operands in dif­
ferent words. The same operation may simul­
taneously occur in many such pairs of words.
In addition to these operations, many varia­
tions are possible, e.g. the operands may be
located in different words with the results
going to a third word.

The capability of the storage flip-flops to act
as a shift register provides the communication
link between adjacent words. Another use of
this shift register occurs in counting the num­
ber of words which satisfy a search algorithm.
This is accomplished by operating the storage
flip-flops as a shift register and counting the
number of "1's" shifted out. Each "I" cor­
responds to a word that satisfies the search.

AN ASSOCIATIVE PROCESSOR 151

4. COMMAND STRUCTURE

There are two types of instructions in the
Associative Processor. Instructions which ex­
ercise control over the Associative Memory
shall be referred to as associative instructions.
Instructions which provide access to the Ran­
dom Access Memory or that perform control
transfers shall be referred to as non-associa­
tive instructions. A list of non-associative
instructions follows:

LA Load the contents of memory location
M into the A-Counter and Limit Regis­
ter.

LB Load the contents of memory location
M into the B-Counter and Limit Regis­
ter.

LC Load the contents of memory location
M into the C-Counter.

LD Load the contents of memory location
M into the D-Register.

LM Load the contents of the D Register into
Memory Location M.

TD Transfer to location M if the D flip-flop
equals "zero", otherwise proceed se­
quentially.

TO Transfer to location M if the output of
the OR gate equals "'zero", otherwise
proceed sequentially.

TI Transfer to the location specified by
memory location M.

TU Unconditionally transfer to location M.
SH Up-shift the storage flip-flops a number

of times equal to M.
SC Up-shift the storage flip-flops a number

of times equal to M. The C Counter
counts the number of ones shifted into
the highest level storage flip-flop.

CD Transfer the contents of the C Counter
to the D Register.

ID Input data wo;rd from external device to
the D register *.

OD Output data word from the D register
to external device *.

*The input and output commands generally work
in conjunction with the automatic interrupt facility.
An external devicE' requests an interruption by turning
on an interrupt flip-flop. This causes the Processor
to complete the present instruction, store the contents
of the Instruction Address Counter in memory, and
jump to an Input or Output routine. These routines
can transfer 1-0 data between the D Register and
either the RAM or the Associative Memory_

152 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

CS CC TC AC RS

f-.i
0

:J ~

~~
~~

fE~ #Sf-; f;J ~O
~~ \/)~ A~ f4~

~ O~ Z~ A~ D$
00 ~O ~O ~\/)

0 00 [So 0 ~

~ A
0

Each associative instruction controls the
processing during a single bit time, except
when it is executed in a Repeat Mode. The
instructions are divided into a number of fields,
each of which specifices the control of a sepa­
rate part of the Processor. Figure 3 sum­
marizes these fields which are described below:

Column Select (CS) : The contents of this field
determine what bit column of the Associative
Memory is to be interrogated or written into,
either by specifying the A, B, or C counter,
which in turn selects the bit column, or by di­
rectly specifying one of the four bit columns.
The four directly specified columns are ordi­
narily used for the storage of tag bits.

A A counter
B B counter
C C counter
T1 Column 1
T2 Column 2
T3 Column 3
T4 Column 4

Counter Control (CC): The contents of this
field determine whether the counter selected
in CS will be modified. A counter may be dec­
remented or incremented by one.

IN Increment
DE Decrement
NC No Change

Transfer Control (TC): In general, instruc­
tions are accessed from sequential memory lo­
cations in RAM. To facilitate exiting from a
subroutine, it is desirable to be able to transfer
to another location when the contents of a
counter become equal to the associated Limit
Register.

Ta Transfer to memory location 0 when the
A-Counter becomes equal to the A-Limit
Register

IC WC SC IT RM

is ~. ~ &
~~ ~ ~.~ 0 0
00 fS~ ~O ~ ~
O~
~~

I--;f-;

~~
Dg Of:4

O~ f-.i
.~~ ~ ~O ~O gf-;

~ fSo 2 0

~
0 [g f:4 t/) I--;

~

Tb Transfer to memory location 1 when the
B-Counter becomes equal to the B Limit
Register

NC Proceed sequentially.

Adder Control (AC) : The contents of this field
control the manner in which the output of the
OR gate is transferred into the D Flip-flop.

L OR gate output copied into the D Flip­
flop.

C Complemented OR gate output copied
into the D Flip-flop.

A OR gate output added to the D Flip-flop.
The carry is stored in a flip-flop as­
sociated with the Adder.

S OR gate output subtracted from the D
Flip-flop

NC No transfer

D-Register Shift (RS) : The D Register can be
made to shift one bit in either direction. The
shift is end around when the contents of the
AC field indicate that no transfer is to take
place.

R Right shift
L Left shift
NC No Change

• TO O~
r----L...I GATE

Figure 3. Word Logic.

Interrogate Control (IC) : Upon interrogation,
the sense amplifier responds with a "1". out­
put to a· match condition between the interro­
gated bit and what previously has been labled
a reference bit. The IC field defines the ref­
erence bit:

1 Interrogate for "I". If the stored bit is
equal to "1", the sense amplifier will be
set.

Z Interrogate for "0". If the stored bit is
equal to "0", the sense amplifier will be
set.

D If the D flip-flop is equal to "I", inter­
rogate for "1", if "0", interrogate for
"0" .

D If the D flip-flop is equal to "0", inter­
rogate for "I", if "I", interrogate for
"0" .

Write Control (WC): This field specifies writ­
ing to occur in the words for which the stor­
age flip-flop is equal to "I". During writing,
the IC field is available to determine whether
"1's" or "O's" are to be written.

W-Write
NC-Do not Write

Storage Flip-fiop Control (SC): This field
specifies the state of the control signals which
are common to the input logic of each of the
storage flip-flops. This logic influences the
transfer of data from the sense amplifiers to
the storage flip-flops.

NC O~Es, O~Er

No transfer takes place.

Es I~Es, O~Er

The Storage flip-flop is set if the
sense amplifier is equal to "I".

Er O~Es, 1 ~Er
The Storage flip-flop is reset if

the sense amplifier is equal to
"0" .

Esr I~Es, I~Er

D

The state of the sense amplifier
is copied by the storage flip­
flop.

I~Es, O~Er,

if the D flip-flop is equal to "1".

O~Es, I~Er,

if the D flip-flop is equal to "0".

AN ASSOCIATIVE PROCESSOR 153

15 O~Es, I~Er,

if the D flip-flop is equal to "I".

I~Es, O~Er,

if the D flip-flop is equal to "0".
OR I~Er

Ec I~Ec

if the output of the OR gate is
equal to "I".

The storage flip-flop is comple­
mented if the sense amplifier
is equal to "1".

Instruction Type (IT): This field appears in
both associative and non-associative instruc­
tions. The contents designate the instruction
as being associative or not.

A Associative
A Non-associative

Repeat Mode (RM): It is sometimes desirable
to repeat an instruction during the execution
of a simple search.

R Repeat until the counter specified by CS
becomes equal to its limit register.

R Do not repeat instruction.

The time required to execute one associative
instruction is measured from the time the in-
struction is transferred into the Instruction
Register to the time the sense amplifier out­
puts are transferred into the storage flip-flops.
During this time, the next instruction is ac­
cessed, and the previous output of the storage
flip-flops can be transferred to the D flip-flop.
This time will be referred to as a "bit time".
Associative instructions are accessed at a rate
of one per bit time. It should be noted that
the AC field of the associative instruction will
control the disposition of storage flip-flop data
that resulted from an interrogation specified
by the previous associative instruction. Non­
associative data tranferring instructions re­
quire two bit times for execution (Both an in­
struction and an operand must be accessed
from the Random Access Memory). N on­
associative instructions which transfer control
require one bit time for execution.

5. MICROPROGRAMMED ALGORITHMS

The method by which associative instruc­
tions are controlled constitutes one of the

154 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

major factors contributing to the flexibility of
the Associative Processor. Each field of the
instruction directly specifies some. control func­
tion, so that numerous associative instructions
can be micro-programmed by the appropriate
selection of fields. Despite the large number
of options available, the central control unit is
very simple since the control functions are ob­
tained directly from the instruction fields.

Following, is a description of several impor­
tant categories of associative instructions with
typical microprograms; algorithms are also
given for more complex data retrieval and
arithmetic processes built up for micropro­
grammed associative instructions.

Possibly the most often used algorithm is
ordered retrieval. A number of algorithms for
retrieval have appeared in recent publications.
Among these, the algorithm presented by
Lewin 11 appears to be fastest, making its' im­
plementation in the Associative Processor an
attractive consideration. However, in view of
its' unique hardware requirement, (Le., the
equivalent of a three state sense amplifier on
each bit column), an algorithm was developed
which utilizes logic of a more general nature.
In fact, the development of this algorithm
greatly influenced the design of the word logic.
The algorithm, presented in detail later in this
section, retrieves one bit of data for each bit
time of execution.

The ordered retrieval algorithm is used
whenever data is to be retrieved from the As­
sociative Memory or whenever it is necessary
to select a word in which to write data. Since
the time required to identify a word is related
to tIie number of bits that must be searched,
it is often desirable to have stored in each
word a compact address field. Having such a
field also provides a convenient way to distin­
quish between two words which might other­
wise contain the same data.

In most instances, before the execution of an
associative search, it is necessary to precondi­
tion the storage flip-flops either by setting or
resetting them all, or by setting those corre­
sponding to the set of words which is to be
searched. Accomplishing this last operation
requires transferring the contents of the tag
bit (or whichever bit position holds the infor-

mation) into the sense amplifiers and then
copying the states of the sense amplifiers into
the storage flip-flops. These operations can
be executed with a single associative instruc­
tion.

CS CC TC AC RS IC Wc S.c IT RM

Tl NC NC NC NC 1 NC Esr A R

Setting (or resetting) all the storage flip­
flops requires two associative instructions. The
procedure is to interrogate the same bit column
twice; once for "1's", and once for "O's". The
following instructions reset the storage flip­
flops.

CS CC TC AC RS IC WC SC IT RM

1. Tl NC NC NC NC Z NC Er A R
2. Tl NC NC NC NC 1 NC Er A R

The following associative searches have been
microprogrammed:

Equality
Less than
Less than or equal
Greater than
Greater than or equal

Maximum value
Minimum value
Similarity
Ordered Retrieval

Except for Similarity, the execution time or
each search is one bit time for each bit of the
argument.

'The object of most searches is to leave the
storage flip-flops in a state which defines the
locations of those words which meet the con­
ditions of the search. However, it is possible
to obtain the complementary set of words, as
well as the set obtained by ORing or ANDing
the results of several different searches. Fol­
lowing are a few examples of search micro­
programs:

Equality Search

CS CC TC AC RS IC WC S.C IT RM

A IN TA NC R D NC Er A R

This instruction searches the words in mem­
ory whose storage flip-flops are initially true.
At the end of the search, the storage flip-flops
identify those words containing a field exactly
matching the field in the D Register. The field
in memory is defined by the A Counter and
Limit Register. Each bit of the field is inter­
rogated starting with the least significant bit.

The D flip-flop specifies the match conditions.
A mismatch will cause the appropriate storage
flip-flop to be reset.

Less Than

CS CC TC AC RS IC WC SO IT RM

A IN NC NC R Z NC DAR

This instruction causes a storage flip-flop to
be set if the .interrogated memory bit is "0"
and the D flip-flop "I" and reset if the memory
bit is "I" and the D flip-flop "0". Otherwise the
storage flip-flJPs are unchanged. Essentially,
this logic is the same as borrow logic with the
contents of the D Register being subtracted
from the contents of each memory word. When
the storage flip-flop is equal to one, the memory
word is less than the data register word.

Ordered Retrieval

CS CC TC AC RS IC WC SC IT RM

A DE NC L L 1 NC Or A R

This instruction transfers to the D Register
the maximum value field of the set of fields
which are identified by the true storage flip­
flops, Starting with the most signicant bit
position of the search field, each bit position is
sequentially interrogated for a one. When any
sense amplifier indicates a match for a field still
in the search set, the storage flip-flops corre­
sponding to those sense amplifiers indicating a
mismatch are reset. Each time a bit position
is interrogated and is found to contain a "I"
in any of the words remaining in the search
set, a "I" is transferred into the D flip-flop.

Many arithmetic and logical microprograms
have been developed for the Associative Proc­
essor. Below is a partial list. The operations
are identified by S when they apply to an
operation between a single pair of operands.
An SP refers to an operation betwen one op­
erand in the D Register and many operands in
the memory, and P refers to simultaneous
operations between many pairs of operands in
memory.

The number of bit times required for the
execution of each operation appears in paren­
thesis

Add M + D~D

S (1 + no. of operand bits)

AN ASSOCIATIVE PROCESSOR 155

AddD + M~M
SP (12 X no. of operand bits)

Add Ml + M2~M2
P (12 X no. of operand bits)

Multiply Ml X M2~D,M3
S (20 X no. of multiplier bits)

for a 24 bit mUltiplicand

Multiply Ml X M2~M3
P (no. of multiplier bits X no.

of multiplicand bits)

Divide D/Ml~M2
S (30 X no. of operand bits)

Add (M1 + M2~M2)

Field Ml is added to field M2 in all words
which contain a "I" in bit column (T1). Field
Ml is defined by the A counter and Limit Reg­
ister. Field M2 is defined by the B counter. Bit
column T2 is temporary storage for the carry.
Addition is executed in the following steps:

1. The jth bit of Ml is transfered to the stor­
age flip-flops.

2. The contents of the storage flip-flops are
added to the jth bit of M2. The carry is
developed in the storage flip-flops during
the addition.

3. The partial carry resulting from the car­
ry addition_ (preceding step 1) to the j th

bit of lVI2 is ORea with the partial carry in
the storage flip-flop. The final carry re­
sults in the storag~ flip-flop.

4. The carry is added to the j+1 bit of M2;
the resulting partial carry is stored in T2.

The following program executes this addition
algorithm:

CS CC TC AC RS IC WC SC IT RM

1. T1 NC NC NC NC 1 NC EsrA R

2. A IN NC NC NC 1 NC Er A R

3. B NC NC NC NC 1 NC NC A R

4. B NC NC NC NC 1 W Er A R

5. B IN TB NC NC 0 W NC A R
6. T2 NC NC NC NC 1 NC Es A R
7. T2 NC NC NC NC 0 W NC A R

8. B NC NC NC NC 1 NC NC A R
9. B NC NC NC NC 1 W Er A R

10. B NC NC NC NC 0 W NC A R
11. T2 NC NC NC NC 1 W NC A R
12. Transfer to 1 (TU) A

156 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Instruction one transfers T1 to the storage
flip-flops. Instruction two interrogates the jth
bit of MI and resets the storage flip-flop where
mismatches occur. The resulting contents of
the storage flip-flops constitute the AND func­
tion of T1 and the jth bit of MI' Instructions
three, four, and five have the effect of comple­
menting the jth bit of M2 in words for which
the storage flip-flop is equal to "1". In addition,
if the jth bit of M2 were equal to "1", the stor­
age flip-flop would remain equal to "1", thereby
representing the partial carry. Instruction six
OR's the carry resulting from addition of the
last carry to the jth bit of M2 to the partial
carry in the storage flip-flop. Instruction seven
clears the T2 column in preparation for the next
carry storage. Instructions eight, nine, and
ten add the carry to the j + 1 bit of M2 using the
same technique as instructions three, four, and
five. Instruction eleven stores the partial carry
in T2. The routine is exited after instruction
five has been executed and the addition of the
most significant bits completed.

6. FAULT TOLERANCE

An interesting characteristic of this particu­
lar associative memory is its structural pe­
riodicity. Each bit driver is identical to any
other, and the logic of each word is identical
to that of any other. There is no addressing
matrix and no ladder network. The existence
of these characteristics suggest the possibility
of making the system operation insensitive to
local malfunctions in the memory stack and
memory circuits.

There are numerous possible causes of mal­
function in the Associative Memory. However;
most malfunctions can be placed in one of four
categories. The first is characterized by the in­
ability of the sense amplifier to change state.
The second is characterized by the inability of
the storage flip-flop to change state. The third
category consists of those malfunctions which
cause a write amplifier to fail, and the fourth
consists of those malfunctions which cause a bit
driver to fail.

The procedures to be described below consist
of exercising control over the functions com­
mon to the logic of each word in such a way
as to gain a system tolerance to these malfunc­
tions. Other malfunctions may occur for which

the only safeguard would be the utilization of
component redundancy techniques. In the fol­
lowing discussion it will be assumed that no
more than one type of malfunction exists in
anyone word.

To cope with these malfunctions, it is of pri­
mary importance to guard against spurious re­
sults in the retrieval operations. It is of little
importance if, in a particular word, some other
operation goes awry as a result of a malfunc­
tion. This merely produces meaningless data in
that word, which is unimportant if provisions
are made never to write into and never to re­
trieve information from such a word. Since a
word is selected for writing by means of the
retrieval algorithm, the fundamental problem
is to guard against incorrect retrieval as a re­
sult of a malfunction.

Malfunctions of the first category cause the
sense amplifier to permanently store either a
"1" or a "0". If a "0" is stored, the storage
flip-flop can never be set. The retrieval of data
from a particlular word and the ability to write
into a particular word are dependent upon the
storage flip-flop of that word being in the "1"
state. If the storage flip-flop can never be set,
the word appears to be nonexistent. If infor­
mation were stored in the word prior to the
malfunction, it would become irretrievable;
however, as long as the malfunction existed it
would be impossible for data to be inadvert­
antly stored in that location.

A "1" locked in the sense amplifier presents
a different problem. If the storage flip-flop of
such a malfunctioning word is true, execution
of the retrieval algorithm will result in the re­
trieval of a word of "1's". To prevent this, it
is necessary to perform an operation prior to
the retrieval algorithm which will reset the
storage flip-flops in words whose sense ampli­
fiers are locked in the "1" state without alter­
ing the states of the other storage flip-flops.
Furthermore, this operation must not turn on
a storage flip-flop in a word whose sense ampli­
fier is locked in the "0" state. This can be ac­
complished as follows: Reset the sense ampli­
fiers by interrogating a column of "O's". Then
by executing the complement control Ec, com­
plement all storage flip-flops corresponding to
sense amplifiers still in the "1" state.

Malfunctions of the second category are those
in which the storage flip-flop does not change
state. If the storage flip-flop is locked in the
"0" state, the associated word can not partici­
pate in any reading or writing operations. Such
a condition will cause that word to appear to be
nonexistent. A permanently stored "I", how­
ever, may cause an erroneous readout during
execution of the retrieval algorithm. To avoid
this, in the case of maximum value retrieval,
the affected word should be loaded with "O's"
prior to retrieval. A method of determining
whether any storage flip-flops are malfunction­
ing is first to interrogate a column of "1's" so
as to set the sense amplifiers, then to execute
the Es and then Ec functions. The output of
the OR gate will be "I" if any storage flip­
flops remain true.

The third category consists of those malfunc­
tions which disable a write amplifier. If a dis­
abled write amplifier can be detected and the
word uniquely marked, further operations upon
that word can be avoided. Detection is accom­
plished by writing a pattern of "1's" and "O's"
in each word. An equality search is then made
using the same pattern to identify any words
in which the pattern was not successfully re­
corded. On each successive execution of this
procedure, a pattern different from the last
pattern must be used. If the pattern which is
read out of a given word is not identical to the
current pattern, then the write amplifier driv­
ing that word is malfunctioning. The errone­
ous pattern cannot be used again. If the length
of the pattern is N bits, then N bits in each
word of the memory must be relegated to stor­
age of the checking patterns at the time of
execution of the checking procedure. The num­
ber of different patterns must exceed by two
the number of malfunctions which can be tol­
erated.

The malfunctions of the last category are as­
sociated with the bit drivers. Once a bit driver
has failed there is no way of writing into or
interrogating that particular bit column. There­
fore, it is necessary to isolate malfunctioning
bit drivers. Detection of a malfunctioning bit
driver is accomplished by designating two
words of memory as test words, one of which
would contain stored "1's" and the other, stored
"O's'. Special logic on each of these two word

AN ASSOCIATIVE PROCESSOR 157

lines would compare the real output to the
theoretical output upon each interrogation. A
discrepancy would interrupt the program,
thereby allowing the execution of a pro­
grammed corrective action.

7. MECHANIZATION

The critical problem in mechanizing the As­
sociative Processor is, of course, the imple­
mentation of the associative memory. The
critical requirements of this memory are the
following:

1. Non-destructive readout. This is essential
for the Processor described above; how­
ever, with slight modification, destructive
readout could be tolerated provided the
write time was comparable to the read
time.

2. Small ratio of word write current to read
signal. This significantly influences the
complexity of the sense amplifier and
write amplifier and limits the number of
words in memory.

3. Short write cycle. This makes tagging
operations practical.

4. Short interrogation cycle. This is espe­
cially important for a bit serial processor.

5. Limited power consumption.

A number of memories were analyzed for
compliance with these requirements, including:

1. Plated Wire 7,8

2. Laminated Ferrite 9

3. Bi-core
4. Biax

At this time, the most promising of these for
both the Associative Memory and RAM ap­
pears to be the Plated Wire Memory. It can
be operated in a nondestructive readout mode,
requires a word current of approximately 25
ma, and can be interrogated or written into at
a 10 mc rate.

The closed flux path, rotational switching
mode and lose coupling of the switched flux to
the sense line contribute to the high ratio of
read signal to word write current and to the
low power consumption of each bit.

Our laboratory evaluation of the Plated Wire
has indicated the feasibility of using integrated

158 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

circuitry for both the word logic and the bit
drivers. The periodic structure of large por­
tions of the Associative Processor and the re­
quirement for a relatively small number of
circuit types facilitate mechanization with in­
tegrated circuits.

The optimum sizes of the Associative Mem­
ory and the Random Access Memory depend
greatly upon the application. For the class of
Aerospace applications for which the Processor
was conceived, the following dimensions and
parameters were chosen:

RAM: 4096 words of 24 bits each.
Associative Memory: 512 words of 96 bits
each.
Bit time = Memory cycle time = .1 fLsec.

8. CONCLUSIONS

The Associative Processor possesses several
virtues as a parallel processor. The basic
processing module, i.e. one word of Associative
:Memory with its word logic, possesses consid­
erable computing and memory capability for
its size and complexity. This implies a large
amount of parallel processing per dollar. Com­
munication within the Processor is relatively
efficient, especially where associative techniques
can be employed. Most of the Processor is pe­
riodic in structure and, therefore, compatible
with batch fabrication techniques and inte­
grated circuitry. Fault tolerance techniques
can be employed, at least to a degree. The non­
periodic control structure of the Processor is
relatively simple. And, finally, the micropro­
gramming characteristics of the instructions
permit and encourage programming experi­
ments.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the sup­
port of the Space Systems Division of the Air
Force under whose study contract the work
was done and Space Technology Laboratories,
Inc., who participated with Abacus, Inc. in the
study.

We wish particularly to thank Mr. M. Wax­
man of S.T.L. for his work in evaluating the
Associative Processor in several aerospace ap-

plications and Mr. T. Stupar who assisted in
evaluating the technical feasibility of the sys­
tem.

REFERENCES

1. HOLLAND, J. H., "A Universal Computer
Capable of Executing an Arbitrary N um­
ber of Sub-Programs Simultaneously,"
Proc. Eastern Joint Computer Conference,
(1959) .

2. SLOTNICK, D. L., BORCK, W. C., and Mc­
REYNOLDS, "The Solomon Computer,"
Proc. Fall J oint Computer Conference,
(1962) .

3. ROSIN, R. J., "An Organization of an As­
sociative Cryogenic Computer," Proc.
Spring J oint Computer Conference, San
Francisco, (May 1962).

4. ESTRIN, G. and FULLER, R., "Algorithms
for Content Addressable Memory Organ­
izations," Proc. Pacific Computer Confer­
ence, Pasadena, (March 1963) .

5. ESTRIN, G. and FULLER, R., "Some Ap­
plications for Content-Addressable Memo­
ries," Proc. Fall Joint Computer Confer­
ence, Las Vegas. (Nov. 1963).

6. DAVIES, P. M., "Design for an Associative
Computer," Proc. Pacific Computer Con­
ference, Pasadena, (March 1963).

7. I. DANYLCHUCK, A. J., PERNESKI, M. W.
SAGAL, "Plated Wire Magnetic Film Memo­
ries," Intermag Proceedings, Washington,
D.C., (April 1964) .

8. K. FUTAMI, et al., "The Plated-Woven Wire
Memory Matrix", Intermag Proceedings,
Washington, D.C., (April 1964).

9. R. SHAHBENDER, et al., "Laminated Fer­
rite Memory." Proc. Fall Joint Computer
Conference, Las Vegas, (Nov. 1963).

10. C. A. ROWLAND, W. O. BUGE, "A 300 Nano­
second Search Memory," Proc. Fall Joint
Computer Conference, Las Vegas, (Nov.
1963) .

11. M. H. LEWIN, "Retrieval of Ordered Lists
from a Content-Addressed Memory," RCA
Review, (June 1962).

A HARDWARE-INTEGRATED GPC/SEARCH MEMORY
Russell G. Gall

Goodyear Aerospace Corporation, Akron, Ohio

SECTION I-INTRODUCTION

A search memory that can be operated in
conjunction with a USQ-20 computer using
only the standard input-output channels is, be­
ing developed by Goodyear Aerospace Corpora­
tion. This approach is referred to as the pe­
ripheral search memory. On the other extreme,
there is the possibility of completely integrat­
ing the search memory with the USQ-20 com­
puter. That is, the instruction repertoire can
be modified to include associative instructions"
the control logic cap. be modified extensively,
and additional registers can be added as neces­
sary. Neither integration can be considered
the optimum since the latter involves costs
that are out of proportion with the advantages,
and the former involves undue transfer time
penalties and more complex programming.

This paper presents, a method of integrating
the search memory with the Univac 1206 (AN/
USQ-20) computer more intimately than is pos­
sible through a standard input-output channel.
The saving of search time that results ap­
proaches that of a completely integrated sys­
tem. The hardware modifications required are
relatively minor, and therefore increases in
cost are held to a minimum. A typical four­
variable search problem is formulated and its,
solution by the following three separate sys­
tems is analyzed: (1) AN/USQ-20 computer,
(2) AN /USQ-20 computer in conjunction with
a peripheral search memory tied to a standard
I/O channel of the computer, and (3) the pro­
posed hardware-integrated USQ-20/search
memory. Search solution times are derived for
each of the three systems. They are displayed

159

as curves for ease of comparison of perform­
ance of the three systems.

While the integration methods described
could conceivably be applied with some study to
any general-purpose computer, this document is
particularly oriented toward integration of the
Goodyear Aerospace Corporation (GAC) search
memory with the Univac 1206 general-purpose
computer. The actual military designation of
this computer is CP642A/USQ-20 (V) . This
indicates that it is one of a number of com­
ponents included under the designation AN /
USQ-20 (V) . USQ-20 is a general term used
informally to identify this computer and is
used throughout this paper.

SECTION II-SEARCH MEMORY
DESCRIPTION

1. GENERAL

The particular search memory model upon
which this study is based is shown in block dia­
gram form in Figure 1. A brief functional de­
scription is considered sufficient background for
understanding the ideas presented herein.
More detailed information is available in the
literature. 1

The memory proper has a capacity of 256
words. Each word contains 30 bits. (The
word size of the USQ-20 computer is also 30
bits.) The memory is limited to three types of
search:

1. Exact match (=)

2. Equal to or greater than (»

3. Equal to or less than «)

160 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

ADDRESS
SELECTION
MATRIX

MEMORY
30 BITS--"
256 WORDS

+

RESPONSE
STORE

RESPONSE
RESOLVER

Figure 1. Search Memory Block Diagram

The search types may be combined without
limit with the logic AND connective. For ex­
ample, the equal-to-or-Iess-than search logically
ANDed with the equal-to-or-greater-than
search is, equivalent to a between-limits search.

2. SEARCH MEMORY INPUT (FROM
USQ-20)

a. Information Types
Three general types of information are trans­

ferred from the USQ-20 computer to the
search memory: instructions, data, and cri­
teria.

b. Instructions
The instruction information consists of a

single instruction word, the format of which is
shown in Table 1. The instruction word is the
only type of information that is transferred
from the USQ-20 computer via the external
function mode of data transfer. The configura­
tion of the instruction word tells the search
memory when to start writing data into the
memory, when to erase remaining words in

memory, when to accept criteria, what type of
search to perform, and what type of response
is required.

c. Data
A total of (n) words (0 < n < 256) of data

may be transferred from the USQ-20 computer
to the search memory at a maximum rate of 8
p'sec per word using the internal interrupt mode
of data transfer. The USQ-20 program then
will be interrupted internally after transfer­
ring the nth data word to the search memory
and will jump to an interrupt routine. This
routine will generate an "erase" instruction if
required, load the first set of criteria in an out­
put buffer for the forthcoming transfer to the
search memory, and initiate the first search in­
struction. The search memory will accept a
search instruction even though it is not finished
erasing, although it will not act upon this in­
struction until erasing has been completed.

d. Criteria
The criteria consists of either (1) a mask

word followed by a key word or (2) a key word

TABLE I-INPUT INSTRUCTION WORD FORMAT

Bit

d22 ••• d15 d6 d5 d4 d3 d2 d1 do

Address d7 Mask Response LIT G/T Exact Stop Start
(random Response word required search search match write write
write or count follows search (erase)
start) required

A HARDWARE INTEGRATED GENERAL PURPOSE COMPUTER/SEARCH MEMORY 161

transferred from the USQ-20 to the search
memory. The search instruction cues the
search memory as to whether the criteria will
be transferred according to (1) or (2) (see
bit d6 in Table I). It is considered sufficient
that the criteria be transferred from the USQ-
20 to the search memory in the normal buffer
mode of data transfer. The internal interrupt
mode of data transfer is not considered neces­
sary in this case since the USQ-20 need not
take further action until an end-of-search sig­
nal response is received from the search mem­
ory via the input channel.

3. SEARCH MEMORY OUTPUT (TO USQ-
20)

The output of the search memory can be
either response address, response count, or no
response. Either may be selected by the in­
struction. A no-response instruction indicates
the response to the present search should be
saved for logically ANDing with the next
search. Two address responses per 30-bit word
are packed for transfer to the USQ-20. There
can never be more than a single count response
for any given search. It is placed in the least
significant portion of the 30-bit word trans­
ferred to the USQ-20. The normal buffer mode
is used to transfer address or count responses
to the USQ-20. An end-of-search signal must
be sent to the USQ-20 whether or not an ad­
dress or count response is desired or available.
This signal is transferred via the USQ-20 ex­
ternal interrupt. The end-of-search signal al­
ways follows the transfer of address or count
responses if any have occurred.

4. SEARCH TIME

a. Exact-Match Search
Search time is variable, depending on the

type of search. The exact-match search is per­
formed in 5 p'sec and is independent of the
memory size (number of words), number of
words actually loaded into the memory, and the
number of unmasked bits searched.

b. Equal-to-or-Less-Than Search
The equal-to-or-Iess-than search is actually

the result of one or more exact-match searches.
The number of exact-match searches performed
depends on the number of unmasked zeros in

the key word. Therefore, the total search time
is 5mo p'sec, where mo is the number of un­
masked zeros in the key word.

c. Equal-to-or-Greater-Than Search
The equal-to-or-greater-than search is simi­

lar to the equal-to-or-Iess-than search, except it
depends on the number of unmasked ones in
the key word. The total search time then is
5m1 p'sec, where ml is the number of unmasked
ones in the key word.

5. ADDITIONAL CONSIDERATIONS

Masked shift load capability is a method of
specifying n high-order bits of the 30-bit USQ-
20 word, and specifying a particular field of
the search memory into which this n-bit byte
should be entered. Although this actual search
memory model does not have this capability,
for the purposes of this paper the memory is
assumed to have it. Although there are sev­
eral methods and variations of methods to up­
date the search memory, the masked shift load
affords the fastest way to update both the pe­
ripheral search memory and the proposed hard­
ware-integrated GPC/search memory. It also
allows less complex programming procedures
in the USQ-20 computer, which will ease the
analysis and evaluation to follow.

The USQ-20 is a one's complement machine.
The search memory must have data in straight
binary form, from smallest (most negative)
value to the greatest (most positive) value to
perform the equal-to-or-greater-than and equal­
to-or-Iess-than searches properly. Therefore,
the most significant bit of each data word trans­
ferred to the search memory must be inverted.
This may be handled either by USQ-20 soft­
ware or search memory hardware. The actual
search memory does not incorporate this hard­
ware at present, but is assumed to have this
capability to simplify the ideas to be presented.

SECTION III-PROPOSED METHOD OF
INTEGRATION

1. SYSTEM CONSIDERATIONS

The hardware-integrated search memory will
require relatively minor modifications to both
the presently contracted peripheral search
memory and the USQ-20 computer. The over-

162 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

all system function of the integrated search
memory will be identical to that of the periph­
eral search memory. A block diagram for the
integrated search memory is given in Figure 2.
The block diagram shows that the integrated
search memory system still uses an output
channel of the USQ-20 computer. This output
channel will provide the following functions:

1. Initial loading of the search memory by
means of block transfer (masked shift
load)

2. A means of providing instructions to the
search memory utilizing the external
function mode of data transfer

3. An additional method of updating dy­
namic data in the search memory by block
transfer if considered appropriate in a
given system application.

The external function mode of data transfer
is a very efficient method of providing instruc­
tions to the search memory, since a single pro­
grammed instruction in the USQ-20 computer
can effect the transfer of a single instruction
to the search memory.

The main modifications involve supplying the
search memory direct access to several of the

, I • C'NES FOR '56-WORD .. EMORV I
e .. I RESPONSE ADDRESS

e'
e LINES FOR 2SS'WORO MEMORY I

S4 I I

I..ot-------' CLEAR e
7

I

8
d

I

~--_ iENSE 2'· BIT OF 8
7

_I CQMPARANO OR LOAD DATA

~
UTPUT _____ 1 INSTRUCTION

CHANNEL I IEXTERNAL FUNCTION MOCE) OR

LOAD DATA (NORMAL. BUFFER MOOE~ ___ ~ L _______ ~

Figure 2. Hardware-Integrated USQ-20 ISearch
Memory Block Diagram

internal registers of the USQ-20. Specifically,
output access to the 30-bit A register and out­
put access to the 30-bit Q register is required.
In addition, two-way access to the Bl index
register is provided. Although the Bl register
contains 15 bits, only an 8-bit access is neces­
sary for a 256-word search memory. Output
access to the Bl register is not used in the time
analysis that follows, but can be useful in many
applications. As shown in Figure 2, there are
only two lines remaining in the interface be­
tween the search memory and the USQ-20. One
line allows the search memory to clear the B7
index register of the USQ-20. The other line
allows the search memory to sense the most
significant bit of the B7 index register. These
are the only two lines necessary to effect syn­
chronization between the search memory and
the USQ-20. Absolutely no modification to the
complex control circuitry of the USQ-20 com­
puter is required. Without further explana­
tion, one might reasonably question the fact
that only two leads in the interface between
the search memory and the B, index register
could effect complete control and synchroniza­
tion between the two devices. The answer is,
of course, that the two leads cannot alone pro­
vide the required control and synchronization
of the two devices. However, in conjunction
\vith judicious use of certain USQ-20 instruc­
tions, they provide for the control and syn­
chronization of the two devices mainly by
economical software utilization rather than
expensive hardware modification. The key
USQ-20 instruction for synchronization is RE­
PEAT, described as follows: Clear B7 and
transmit the lower 15 bits of Y (the operand)
to B7 • If Y is nonzero, transmit (j) to r
(designator register), thereby initiating the re-
peat mode. This mode executes the instruction
immediately following the REPEA T instruc­
tion Y times; B7 contains the number of execu­
tions remaining throughout the repeat mode.

The instruction selected to follow the RE­
PEA T instruction is the ENTER Bo instruc­
tion. It was the shortest instruction that could
be found in the repertoire, and is normally
used as a NO-OP instruction since there is no
Bo register. In the repeat mode, the first exe­
cution of the ENTER Bo consumes 8 fLsec; each
succeeding execution requires only 4.8 fLsec.
The repeat mode described above and the added

A HARDWARE INTEGRATED GENERAL PURPOSE COMPUTER/SEARCH MEMORY 163

single leads (Figure 2) that control and sense
the status of the repeat mode synchronize the
USQ-20 and the search memory during trans­
fer of search data. Details will be clarified
during the analysis to follow later.

2. HARDWARE CONSIDERATIONS

a. General
The hardware considerations discussed below

are based on data contributed by R. Horvath. Z

Since synchronization and control of these in­
tegrated devices will be handled by judicious
use of the USQ-20 software, the only USQ-20
hardware modifications will be those necessary
to provide the search memory two-way access
with the Bl and B7 registers (18 bits) , and out­
put access from the A and Q registers (60
bits). The hardware changes that will be
necessary to the present peri pheral search
memory to modify it for use in the integrated
system are the circuitry to terminate and gate
69 additional input lines, and circuitry to drive
9 additional output lines.

b. USQ-20 Modifications
Each additional input to a register stage in

the USQ-20 must be ORed with the existing
inputs to that stage. This is accomplished by
removing the collector resistor and clamp diode
from the output transistor of a standard USQ-
20 gated input amplifier. The open collector is
then directly connected to the proper output
side of the given register stage.

Each additional output from the USQ-20 is
handled in a straightforward manner by pro­
viding a standard USQ-20 data line driver with
the feedback circuitry removed to decrease the
rise and fall times. Removal of the feedback
circuitry may be unnecessary.

All B registers are located in Chassis No. 7
of the USQ-20 computer. The required nine
modified gated input amplifiers and the nine·
modified data line drivers may be located in
Chassis No.8, which has 30 spare card locations
available. The interchassis connectors have a
sufficient number of spare pins to allow the
necessary interchassis wiring.

The A and Q registers are located in Chassis
4 and 5. The 60 modified data line drivers may
be located in spare card locations in Chassis 3,
4,5, and 6.

SECTION IV-SEARCH TIME ANALYSIS

1. GENERAL

In this section, a typical search problem is
defined and three separate solution methods are
analyzed: (1) USQ-20 computer only, (2) pe­
ripheral search memory, and (3) integrated
search memory. The resulting equations and
curves represent the USQ-20 computer arith­
metic time used. The over-all task can be di­
vided into three basic time-consuming steps no
matter what the search system configuration
might be: (1) loading data and updating dy­
namic data, (2) providing search criteria and
instructions, and (3) handling the resulting
responses.

2. TYPICAL SEARCH PROBLEM DEFINI­
TION

The typical search problem parameters are
shown graphically in Figure 3. The problem is
stated verbally as follows. Find the addresses
of all items that are hostile AND between the
limits of Xl and Xz AND between the limits of
Yl and Y2 AND equal-to-or-greater than Zz.
The solution approaches are governed by the
following assumptions:

1. Six bits are used to describe each of the
four variables for all items.

2. Initially, each of the 4 variables occu­
pies a complete 30-bit word in the USQ-
20 memory.

3. Mask word will always be part of the
criteria supplied by the USQ-20 com­
puter (that is, criteria will always con­
sist of two words-mask and match).

4. The search memory capacity is 256
words and 30 bits; however, the number
of words is treated as a variable in the
equations to be developed.

5. Xl and Y 1 are positive.
6. X2 and Y z are negative.
7. Zl and Z2 are positive.
8. 128 items (or half the total items) will

be found between the limits of Xl and
X 2 •

9. 128 items (or half the total items) will
be found between the limits of Y land
Y 2 •

164 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

10. 64 items (or one-fourth the total items)
greater than Z2 will be found.

11. 16 items (or one-sixteenth of the total
items) will prove to be hostile.

12. Only a single item will meet the logical
product of all the criteria.

13. Distribution of items is shown in Figure
3.

3. USQ-20 COMPUTER SOLUTION

The USQ-20 computer method of solution
uses only the USQ-20 computer without bene­
fit of the search memory and serves as a basis
for comparison of solution times with those of
forthcoming solution methods.

A USQ-20 instruction-oriented flow diagram
was drawn (Figure 4) to solve the typical
search problem stated in Item 2, above. Note
that a step of the over-all search task, that of
updating dynamic data, is not included in the

tZ

-y

-z
NOTE:

FOURTH DIMENSION IS CLASSIFICATION

y OBLIQUE VIEW

I I
I I

--t--- __ 1..._

EB: EB!EB
I
I

---1--

:EB
I

--+----+-.- x
I
I

--+--
I
I
I

x,

EB:EB
---t- --

EB:EB
EB:EB
---~- -

EB!EB
I

EB:EB
--+ --
EB:EB
EBlEB
--+--
EB!EB

r
x,

X-v PLANE X-Z PLANE

x

PROBLEM: FINO ALL HOSTILE TARGETS THAT ARE BETWEEN THE LIMITS OF Xl AND X
2

~ BETWEEN THE LIMITS OF Y, AND Y2 AND GREATER THAN Z2'

ASSUMED TARGET DISTRIBUTION:

,. EB SHOWS THE DISTRIBUTION OF HOSTILE TARGETS.

2. THERE ARE FOUR TARGETS (TOTAL) IN EACH OF THE 64 X-Y-Z SPACE CUBES.

Figure 3. Test Problem Geometry

Figure 4. USQ-20 Computer Search Flow

flow. When only the USQ-20 computer is used,
updating is not considered part of the search
task. Only when an external search memory is
used, which must be updated in addition to the
conventional core memory, must updating time
be considered. A typical distribution of the
items in the four-dimensional space was as­
sumed as shown in Figure 3. From this as­
sumed distribution, the number of cycles
through all the loops in the flow diagram can
be determined and, therefore, a very close esti­
mate of solution time is possible. The expres­
sion for the solution time as a function of the
number of items (N1) and the number of typi­
cal mixed searches (Ns) is handled by four
possible equations:

Teol = [0.048 + 0.0866(NI - m) + 0.240m]
Ns + 0.016ImNs, (1)

T,'o:l = [0.048 + 0.0192 (N1 - m) + 0.240m]
Ns + 0.016ImNs, (2)

Teo:! = [0.48 + 0.224 (N1 - m) + 0.240m]
Ns + 0.016ImNs, (3)

and

Tco4 = Tco2 + 112 (TcQ3 - T co2)

[0.048 + 0.1216 (N1 - m) + 0.240m]
Ns + 0.016ImNs. (4)

A HARDWARE INTEGRATED GENERAL PURPOSE COMPUTER/SEARCH MEMORY 165

With reference to the above equations,

1. T is search solution time in milliseconds.
2. The subscript co refers to computer

(USQ-20) only.
3. NI is the number of items.
4. m is the average number of responses per

typical mixed search.
5. Equation 1 assumes the typical (see Fig­

ure 3) distribution.
6. Equation 2 assumes best item distribution

for the indicated solution sequence.
7. Equation 3 assumes worst item distribu­

tion for the indicated solution sequence.
8. Equation 4 is the mean item distribution

(between worst and best).

Equation 4 is plotted as Curve 1 in Figures 11
through 13. The term 0.0161mNs appears in
all four equations and expresses the time re­
quired to perform some system function based
on the responses.

1. 0.016 (msec) is the time per average in­
struction.

2. I is the number of average instructions
per response.

3. m is the average number of responses per
typical mixed search.

4. Ns is the number of typical mixed
searches.

The term 0.016ImNs, for reasons that are ex­
plained in Section V of this paper, is disre­
garded when the equation is plotted.

4. PERIPHERAL SEARCH MEMORY SOLU­
TION

a. Dynamic Case
As explained earlier, the peripheral search

memory consists of the search memory model
that interfaces with the USQ-20 computer
strictly by means of the standard I/O channels
of the USQ-20 computer. The typical problem
will be programmed using this system config­
uration.

The solution for the dynamic case requires
periodic search memory updating since the
parameters describing each item are assumed
to be variable with time. The single param­
eter table block-transfer method of updating
will be used since this appears to be the fastest

method of updating the search memory. An
equation describing search problem solution
time will be developed by actually writing an
abbreviated symbolic program for each of the
three basic steps of the overall search problem:
(1) updating, (2) supplying criteria, and (3)
handling responses. Since instruction execu­
tion times are known quantities, one or more
terms can be developed for each of these three
basic steps of the search problem. A collec­
tion of terms results in the required equation.

The generalized functional flow diagram for
this configuration is given in Figure 5. The
broken line blocks are not considered part of
the search problem, while the solid blocks con­
tain the search functions that are executed
from the main program. The remainder of the
search functions are handled by interrupt
routines that begin with the updating routine
shown in Figure 6. Internal interrupt routines
handle the updating, while the search routines
are handled by external interrupt routines.

Updating time is determined by adding the
time to perform the updating functions of
Blocks F, G, H, and J in Figure 5 to the total
instruction execution time for performing all
the instructions found in Figure 6. In addi­
tion, every word that is transferred into or out
of the USQ-20 computer via a standard I/O
channel requires 16-p.sec memory-access time
that otherwise could be used for arithmetic ac­
cess time. The total updating time is shown in
Table II.

Figure 7 A displays the instruction list for
supplying criteria to the search memory. The
total instruction execution time required to sup­
ply criteria to the search memory is 1176 p.sec.

TABLE II-UPDATING TIME,
PERIPHERAL SEARCH MEMORY

Function Time (msec)

Blocks F, G, H, and J (Fig- 0.080
ure 5)

Updating routine (Figure
6)

I/O output access (0.016 X
4 X NI)

Total

0.684

0.064NI
0.764 + 0.064N I

166 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

START MAIN PROGRAM

K r------,

24 pSEC

r-I-. .---.l ADDITIONAL SYSTEM
I FUNCTIONS AS REQUIREDI

SEND WRITE INSTRUCTION TO
SEARCH MEMORY VIA EXTERNAL
FUNCTION [STORE CONTENTS OF
OUTPUT BUFFER (X) INTO SUC- .
CESSIVE LOCATIONS OF SEARCH
MEMORY INTO FIELD DESIGNATED
BY INSTRUCTION]

L _____ -.J

I INITIALIZE :

L ____ J

256 TIMES THROUGH LOOP (n = 0 THROUGH 255)

Figure 5. Peripheral Search Memory Search Flow

16 pSEC

STORE· A • L (DOG)

24 pSEC

ACTIVATE 256-WORO
OUTPUT BUFFER (X)
TO SEARCH MEMORY
WITH MONITOR

This is, of course, for a single search. The
total execution time for N s searches per updat­
ing therefore becomes 1.176Ns (in milliseconds).
Here again, every word that is transferred in
or out of the USQ-20 by a standard I/O chan­
nel requires 16-f-tsec memory-access time that
otherwise could be used for arithmetic access

time. Since 12 criteria words are supplied for
each search, the total memory access time to
supply criteria to the search memory is:

16 f-tsec/word X 12 words/search X Ns searches

or
O.192Ns (in milliseconds).

TITLE UPDATING R()l1TlNE PERIPHERAL SEARCH MEMOR Y PROGRAMMER
PAGE d CODING FORM ~~E-_EXT __ MS-

LABEL I OPERATOR 1 OPERANDS AND NOTES

~PDATING _TYPf INSTR EXEC EXEC PER TOTAL
TIMl" (I.l~l"r.I "l",,,,r.' fJLSl"r.I

INTINT • RETURN JUMP' PA T 24 5 120

PAT ·JUMP "P + 1 8 4 32

.ENTER "A" U (120 + j) 16 4 64

• SUBTRACT "A' X + 255il · SKIP· A ZERO 20 4 80

• ENTER "A • U (120 + j) • SKIP 24 3 72

.JUMP "RAT 8 1 8

.SUBTRACT "A • Y + 25s.to " SKIP-A ZERO 20 3 60

.ENTER "A' U(120+j)' SKIP 24 2 48

.JUMP "TAR 8 1 8

.SUBTRACT "A " Z + 255 10 • SKIp·A ZERO 20 2 40

.JUMP "CAN 8 1 8

.JUMP "TAP 8 1 8

CAN • ENTER "A· L (PAT) 16 1 16

• STORE • A " L (ABLE) [FIGURE 7AJ 16 1 16 .

.JUMP "SEARCH [fIGURE 7AJ 8 1 8

RAT .OUTPUT "Cn • MONITOR !?56-WORD Y-BUFFER] 24 1 24

.JUMP • PAT 8 1 8

TAR .OUTPUT • Cn " MONITOR [256-WORD Z-BUFFER] 24 I 24

.JUMP "PAT 8 I 8

TAP .OUTPUT • Cn • MONITOR [256-WORD C-BUFFER] 24 1 24

.JUMP • PAT 8 I 8

TOTAL 684

Figure 6. Peripheral Search Memory Updating Routine

A HARDWARE INTEGRATED GENERAL PURPOSE COMPUTER/SEARCH MEMORY 167

The total computer real-time consumption nec­
essary to supply criteria to the search memory
therefore is

time for Ns searches per updating and m re­
sponses per search becomes:

1.176Ns + 0.192Ns (in milliseconds). 0.216 2 Ns + 0.016ImNs

Figure 7B shows the instruction list for
handling responses from the search memory.
The total instruction execution time required
to handle responses from the search memory
is 216 + 161 p.sec. This is for a single search
and a single response. The total execution

[
m+1]

where
(in milliseconds),

m

TITLE SEARCH ROUTINE PERIPHERAL SEARCH MEMORY
PAGE cri CODING FORM

LABEL T OPERATOR I OPERANDS AND
~ __ n~

SUPPLYING CRITERIA

EX TINT + RETURN JUMP' ABLE

ABLE +JUMP • P + 1 !lvrAIN PROGRAM]

SEARCH + ENTER ·A· RET ff
+ SUBTRACT 'A' L (DOG)' SKIP' A NOT

+JUMP • DOG

+ STORE • Cn - CAT

+ ENTER 'A • W (CAT) • SKIP - A NOT

+JUMP • TARE

DOG JUMP RETN [+IJ

+JUMP -ABLE

RET ff + EXT FUNCTION-Cn [STOP WRITE]

+OUT • cn.- CRIT IX l? WORD~
+ EXT FUNCTION-cn [SEARCH' NO REPLY]

RET 1 + RETURN JUMP· DOG

+OUT • Cn - CRIT IX? [2 WORDS]

+EXT FUNCTION-Cn [SEARCH' NO REPLY]

RET 2 + RETURN JUMP- DOG _.
OUT - Cn-CRIT IY [? WORDS]

+EXT FUNCTION-Cn [SEARCH· NO REPLY]

RET 3 + RETURN JUMP' DOG

+OUT • Cn - CRIT I Y? [2 WORD§]

+EXT FUNCTION-Cn [SEARCH· NO REPLyl

RET 4 .. RETURr.; JUrviP~ DOG

+OUT • Cn - CRIT 1 Z, [2 WORDs.!

+ EXT FUNCTION-Cn [SEARCH· NO REPLY]

RET 5 + RETURN JUMP' DOG

+OUT • C n - CRIT IC [2 WORDSJ

+IN • Cn - RESPONSES [128 WORDS]

+ EXT FUNCTION" Cn [SEARCH. REQUEST REPLY]

RET 6 + RETURN JUMP' DOG

m+l
the greatest integer in ---

2
number of responses per search,
and

PROGRAMMER
~iE-_EXT-__ MS-

NOTES
INSTR EXEC ~::iCf,ER ru~i~~ TIME (llSECl

24 6 144

8 6 48

16 5 80

24 5 120

8 1 8

16 5 80

24 5 120

8 0 0

8 6 48

8 6 48

24 1 24

24 1 24

24 1 24

24 1 24

24 1 24

24 I 24

24 I 24

24 1 24

24 I 24

24 I 24

24 I 24

24 I 24

24 1 24

24 1 24

24 I 24

24 1 24

24 I 24

24 1 24

24 1 ~
24 1 24

CONTINUED IN FIGURE 7B. HANDLING RESPONSES PORTION

TOTAL EXECUTION TIME FOR SUPPLYING CRITERIA 1176

LABEL T OPERATOR I OPERANDS AND NOTES

~ANDLING RESPONS~""" INSTR EXEC EXEC PER Tu~;~~ TIME (Il"-Fr, "-",,,-,,rt:

BEG + ENTER Q • L (BUFFER COUNT) 16 2 32

+ COMPARE Q • L (BUFFER LIMIT) • SKIP

+ NI IF ~ Q 16 2 32

+JUMP RET 7 8 I 8

+ STORE Q L(DOT) 16 I 16

DOT + ENTER •. A' U () - SKIP A ZERO 24 I 24

+ ENTER Bn • A • SKIP 16 0 0

+JUMP ODE 8 1 8

PERFORM I RESPONSE HANDLING INSTRUCTIONS 16 0 0

ODE + STORE Q • L (LOW) 16 I 16

LOW + ENTER B n • L () 24 1 24

+ PERFORM I RESPONSE HANDLING INSTRUCTIONS 16 I 161

+ REPLACE L (BUFFER COUNT) • 1 24 I 24

+JUMP BEG 8 1 8

RET 7 + RETURN JUMP' DOG 24 I 24

TOTAL EXECUTION TIME FOR HANDLING RESPONSES 2J6 + lhT

Figure 7. Peripheral Search Memory Search Routine

168 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

I = number of instructions per re­
sponse to perform some system
function based on the response.

Again, every word that is transferred in or out
of the USQ-20 by a standard I/O channel re­
quires 16 p'sec memory-access time that other­
wise could be used for arithmetic access time.
Therefore, the total memory access-time-to­
transfer responses from the search memory is

16 !'Sec per response word X [m ; 1 J
response words per search X N s searches

or

[
m+ IJ . 0.016 2 Ns (in milliseconds)

where

[m ; 1 J = the greatest integer in m ; 1 and

m == number of responses per search.

The total real-time consumption necessary to
handle responses from the search memory
therefore is

0.216 [m; 1 J Ns + 0.016ImNs

+ 0.016 [m; 1 J Ns.

The final equation that expresses the complete
search solution time for this system configura­
tion can be found by combining the double un­
derlined expressions that describe each of the
three basic search steps:

TpSD == 0.764 + 0.064N1 + 1.368Ns + 0.232

where

[m: 1 J Ns + 0.016ImNs• (5)

T = search solution time ex­
pressed in milliseconds.

PSD (subscript) == system configuration (pe­
ri pheral search memory,
dynamic) ,

N r == number of items,

N s = number of typical mixed
searches per search mem­
ory updating,

m+l
greatest integer in ,

2

m = number of responses per
search,

I = undetermined (depends
upon application) number
of average (16 p.sec) in­
structions required to per­
form some system func­
tion that is based on each
response address.

Equation 5 is plotted as Curve 2D in Figures
11 through 13. However, the last term
(0.016ImNs) of the equation is disregarded
whene plotted for reasons that are explained in
Section V of this paper.

b. Static Case
In some applications of the search memory,

it is recognized that the search memory data
could be static. Under this assumption, the
equation for search solution time is similar to
Equation 5 with the updating terms removed.
The equation then becomes

Tpss = 1.368Ns + 0.232 [m: 1 J Ns

+ 0.016ImNs, (6)
where

PSS (subscript) = system configuration (pe­
ripheral search memory,
static) .

The first two terms of this equation are plotted
as Curve 2S in Figures 11 through 13.

5. INTEGRATED SEARCH MEMORY

a. Dynamic Case

An integrated search memory has been pro­
posed and is described in Section III above.
The typical problem will be programmed using
this system configuration.

The solution for the dynamic case requires
periodic search-memory updating since the
parameters describing each item are assumed
to be variable with time. The single param­
eter table block-transfer method of updating
will be used since this appears to be the fastest
method of updating the search memory and

A HARDWARE INTEGRATED GENERAL PURPOSE COMPUTER/SEARCH MEMORY 169

also since this is the same method used to up­
date the peripheral search memory above.

An equation describing search problem solu­
tion time will be developed by actually writing
an abbreviated symbolic program for each of
the three basic steps of the over-all search
problem: (1) updating, (2) supplying criteria,
and (3) handling responses. The generalized
functional flow diagram for this configuration
is given in Figure 8. The broken line blocks
are not considered part of the search problem;
the solid blocks contain the search functions
that are executed from the main program. The
remainder of the search functions are handled
by internal interrupt routines that begin with
the updating routine shown in Figure 9.

Updating time is determined by adding the
time to perform the updating functions of
Blocks F and G in Figure 8 to the total instruc­
tion execution time required to perform all the
instructions found in Figure 9.

In addition, every word that is transferred
into or out of the USQ-20 computer via a
standard I/O channel requires 16-J-tsec memory­
access time that otherwise could be used for
arithmetic access time. The total updating
time is shown in Table III.

The instructions necessary to perform the
remaining portions of the over-all search prob­
lem, those of supplying criteria to the search
memory and handling responses from the
search memory, are found in Figure 10. The

256 TUES THROUGH LOOP In = 0 THROUGH 255J

Figure 8. Integrated Search Memory Search Flow

TABLE III-UPDATING TIME,
INTEGRATED SEARCH MEMORY

Function Time (msec)

Blocks F and G (Figure 8)
Updating routine (Figure

9)

0.048
0.708

I/O output access (0.016 X
4 X N r

0.064N1

Total 0.756 + 0.064Nr

total time is (481 + 24m + 161m) microsec­
onds. This, of course, is for a single search.
The total execution time for Ns searches per
updating, therefore, becomes:

0.481Ns + 0.024mNs + 0.016ImNs (in milli­

seconds) ,

where
m = number of responses per search, and
I = number of instructions to perform

some system function based on each
response.

The final equation that expresses the com­
plete search solution time for this system con­
figuration can be found by combining the fore­
going double underlined expressions. The
equation becomes

TrSD = 0.756 + 0.064Nr + 0.481Ns + 0.024mNs
+ 0.016ImNs, (7)

where
T search solution time in

milliseconds,
ISD (subscript) system configuration (in­

tegrated search memory,
dynamic),

Nr - number of items,
N s number of typical mixed

searches per search mem­
ory updating,

m

I

number of responses per
search, and
undetermined (depends
upon application) number
of average (16 J-tsec) in­
structions required to per­
form some system func­
tion that is based on each
response address.

170 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

TITLE UPDATING ROUTINE INTEGRATED SEARCH MEMORY PROGRAMMER
PAGE of CODING FORM

PLT. __ E)(T __ MS_
DATE

LABEL 1 OPERATOR T OPERANDS AND NOTES - _
~~~} .. R I ;; ... Er.~ ~;:~ r.~ER lj(~i~~ 

OUTINT + RETURN JUMp· PAT [BAT - FIGURE 10 -AFTER PER-

FORMING CA'l] 24 5 120 

PAT +JUMP • P + 1 8 4 32 

+ ENTER .A·U(120+j) 16 4 64 

+ SUBTRACT • A • X + 255, n • SKIP' A ZERO 20 4 80 

+ ENTER • A • U (120 + j)' SKIP 24 3 72 

+JUMP ·RAT 8 1 8 

+ SUBTRACT • A • Y + 255, n' SKIP'A ZERO 20 3 60 

+ ENTER • A • U (120 + j) • SKIP 24 2 48 

+JUMP • TAR 8 1 8 

+ SUBTRACT • A • Z + 255, n • SKIP'A ZERO 20 2 40 

+JUMP • CAN 8 1 8 

+JUMP ·TAP 8 1 8 

CAN + OUTPUT • Cn • MONITOR G WOR!] 24 1 24 

+ ENTER ·A· BAT 16 1 16 

CAT + STORE ·A· L (TAB) 16 1 16 

+JUMP • PRESEARCH 1FIGURE 10J 8 1 8 

RAT +OUTPUT • Cn • MONITOR [256-WORD Y-BUFFER] 24 1 24 

+JUMP • PAT 8 1 8 

TAR +OUTPUT • cn • MONITOR [256-WORD Z-BUFFER] 24 1 24 

+JUMP • PAT 8 1 8 

TAP +OUTPUT • Cn • MONITOR [256-WORD C-BUFFERl 24 1 24 

+JUMP • PAT 8 1 8 

TOTAL 708 

Figure 9. Integrated Search Memory Updating Routine 

Equation 7 is plotted as Curve 3D in Figures 
11 through 13. However, the last term 
(0.016ImNs) is disregarded when plotting for 
reasons that are explained in Section V. 

b. Static Case 
In some applications of the search memory, 

it is recognized that the search memory data 
can be static. Under this assumption, the equa­
tion for search solution time is similar to Equa­
tion 7 with the updating terms removed. The 
equation then becomes 
T1ss = 0.481Ns + 0.024mNs 

where 

ISS (subscript) 

+ 0.016ImNs, (8) 

system configuration (in­
tegrated search memory, 
static) . 

The first two terms of Equation 7 are plotted 
as Curve 3S in Figures 11 through 13. 

SECTION V-SEARCH TIME COMPARI­
SONS AND CONCLUSIONS 

A search time analysis was performed in 
Section IV for each of three search system 
configurations. For each system configuration 
several equations were derived. The dependent 

variable in all equations is search time, T. All 
equations contain the independent variable N s, 
which is the number of searches per search 
memory updating, and m, which is the average 
number of responses per search. Most equa­
tions contain a third independent variable, NT, 
which is the number of items carried in the 
system. T versus Ns is plotted for each system 
configuration on each of the three graphs (Fig­
ures 11, 12, and 13). Figure 11 treats NI as 
a constant 256 items; Figure 12 treats NI as 
a constant 512 items; Figure 13 treats NI as a 
constant 1024 items. In all cases, m is assumed 
equal to one. The search time equations that 
describe all the curves are derived in Section 
IV. Note that one term, 0.016ImNs, is com­
mon to all the equations for all system config­
urations. This term describes ·the time re­
quired to perform some system function, based 
on the search response address and must be 
performed in the USQ-20 computer in all 
cases. This function is not considered part of 
the search but only related to the search in 
that it is based on the results of the search. 
This term is, therefore, disregarded in the 
plots of the equations. 

Equations 1, 2, 3, and 4 describe the search 
time when only the USQ-20 computer is used. 



A HARDWARE INTEGRATED GENERAL PURPOSE COMPUTER/SEARCH MEMORY 171 

TITLE SEARCH ROUTINE INTEGRATED SEARCH MEMORY PROGRAMMER 
PAGE fI CODING FORM PLT. __ EXT. ___ MS 

DATE 

LABEL I OPERATOR I OPERANDS AND NOTES .., 
• 

___ TT~ 
INSTR EXEC EXEC PER TOTAL 

- TIME (liSE C) SFAR r.H (ILSEC\ 

PRESEARCH • ENTER - Bn • ZERO 8 1 8 

SEARCH • ENTER - Q • W (Xl MASK + Bn) 16 1 16 

• ENTER - A • W (X~ + Bn) 16 1 16 

• EXT FUNCTION-Cn [$EARCH - NO REPLyJ 24 1 24 

.REPEAT NI - 10000R fP 7 TIME~ 8 1 8 

• ENTER • BO - ZERO ~O OP] 6.5 (AVE) 2 13 

* ON COMPLETION OF SEARCH, SEARCH MEMORY CLEARS B 7 IN USO-20 

"ENTER • Q • W (X2 MASK + Bn) 16 1 16 

.. ENTER • A - W (X7 + Bn) 16 1 16 

• EXT FUNCTION Cn I§EARCH - NO REPLY] 24 1 24 

.REPEAT NI • 10000R [B? TIMES] 8 1 8 

"ENTER • BO. ZERO [NO OP] 6.5 (AVE) 2 13 

* ON COMPLETION OF SEARCH, SEARCH MEMORY CLEARS B7 IN USQ-20 

• ENTER • 0 • W (Y I MASK + Bn) 16 1 16 

• ENTER • A· W (Y 1 + Bn) 16 1 16 

• EXT FUNCTION-Cn [SEARCH - NO REPLY] 24 1 24 

.REPEAT NI • 10000R ~ 
7 TIME~ 8 1 8 

• ENTER • BO. ZERO [j.lo OP] 6.5 (AVE) 2 13 

* ON COMPLETION OF SEARCH, SEARCH MEMORY CLEARS B7 IN USQ-20 

• ENTER • 0 • W (Y7 MASK + Bn) 16 1 16 

• ENTER - A • W (Y 7 + Bn) 16 1 16 

• EXT FUNCTICN- Cn [sEARCH - NO REPLY) 24 1 24 

.REPEAT NI - 10000R fu7 TIMES] 8 1 8 
• ENTER • BO. ZERO [NO opl 6.5 (AVE) 2 13 
*'ON COMPLETION OF SEARCH, SEARCH MEMORY CLEARS B7 IN USO-20 

• ENTER ·0 - W (Z2 MASK + Bn) 16 1 16 

• ENTER • A • W (Z1. + Bn) 16 1 16 

.EXT FUNCTIO:N~ en [SEARCH - NO REPLY] 24 1 24 

.REPEAT NI • 10000.A B 7 TIMES 8 1 8 

"ENTER • BO. ZERO LNO OP] 6.5 (AVE) 2 13 

*ON COMPLETION OF SEARCH, SEARCH MEMOR Y CLEARS B 7 IN USQ-20 

"ENTER • 0 • W (C MASK -+ en) 16 1 16 

"ENTER • A • W (C + Bn) 16 1 16 

• EXT FUNCTIO~ cn [sEARCH - REOUEST REPL yJ 24 1 24 

REP 6 .REPEAT NI • 10000R B 7 TIMES 8 1 + m 8 + 8m 

"ENTER • BO·ZERO [NO OP] 8 m 8m 

'* ENTER RESPONSE ADDRESS FROM SEARCH MEMORY INTO Bl REGISTER AND CLEAR B7 

REGISTER 

• PERFORM (I) RESPONSE HANDLING INSTRUCTIONS 16 1m 161m 

.JUMP • REP 6 8 m 8m 

BAT • JUMP • P + 1 8 0 0 

• BSKIP • Bn • SEARCH COUNT 16 1 16 

.JUMP • SEARCH [FIGURE 8J 8 0 0 

.JUMP • PAT I FIGURE 22A 8 1 8 

TOTAL EXECUTION TIME FOR PERFORMING 

SEARCH 481 + 24m + 161m 

"'"THESE ARE NOT USQ-20 INSTRUCTIONS; THEY ARE SYSTEM FUNCTION STATEMENTS. 

Figure 10. Integrated Search Memory Search Routine 



172 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

100,000 

10,000 

1,0 

~ o 
u 
e! 
:I 
! 
w 
:a 
j: 

is 
~ 

00 

00 

10 

I'~ 
:\.. 

" ~ 
.... 

" '" ~ 
I"\~ "-
~~ 

"iii 

1 
e! 1000 100 

NUMBER OF SEARCHES, NS 

1 - USQ-20 COMPUTER ONLY SOLUTION -
-("MEAN" ITEM DISTRIBUTION) -

2D - PERIPHERAL SEARCH MEMORY -
(DYNAMIC CASE) 

2S - PERIPHERAL SEARCH MEMORY -
(STATIC CASE) 

3D - PROPOSED INTEGRA TED SEARCH MEMORY 
(DYNAMIC CASE) = 

3S - PROPOSED INTEGRATED SEARCH MEMORY = 
(STATIC CASE) -

", , 
, 

"-

"' I 

I'~ 
"-

" L' 
i'.... ~ 

1'."' .......... 

~ "' I'i\,. .... ~ Dr-. ~ 

f'J'\.. " ~i -
, 

Js "' ""l'\ .~ 

~ 
, 

10 1 

Figure 11. Search Time (T) versus Number of Searches 
per Updating (Ns ), 256-ltem Case, m = 1 

Since the USQ-20 computer must perform the 
search sequentially, the resulting search time 
is highly sensitive to item distribution (with­
in the space constraints) for any given solu­
tion sequence. Equation 1 assumes the typical 
distribution found in Figure 3. Equation 2 
assumes best case distribution for the solution 
sequence used; Equation 3 assumes worst case 
distribution for the solution sequence used; and 
Equation 4 is the calculated mean between 
Equation 2 and 3. Since the item distribution 
changes in a dynamic situation, the mean dis­
tribution is the most meaningful. Therefore, 
Equation 4 was chosen to be plotted (as Curve 
1 in Figures 11 through 13) to display the 
problem solution resulting from use of only 
the USQ-20 computer. Updating is not in­
cluded in the search time, using the USQ-20 
computer only, since it is assumed that up­
dating must occur to meet other system require­
ments. 

Curves 2 and 3 display the problem solution 
time of the peripheral search memory and the 
proposed integrated search memory, respective­
ly. Curves 2D and 3D handle the dynamic 
problem situation where the search memory 
must be updated in addition to the conventional 
memory. Curves 2S and 3S represent a static 
problem situation where updating is not re­
quired. The curves displayed in Figures 11 
through 13 allow unlimited performance com­
parisons to be made between the three system 
configurations. The conditions, however, must 
be specifically stated. Two representative com­
parisons will be made here (see Figure 12). 
The conditions are as follows: 

NI 512 
m 1 

Ns 1000. 
Results are 

1. Peripheral search memory (Curve 2D) 
provides a performance increase by a fac-

100,000 

1 - USQ.20 COMPUTER ONLY SOLUTION j ! I ("MEAN" ITEM DISTRIBUTION) , 
i 2D - PERIPHERAL SEARCH MEMORY 

"l (DYNAMIC CASE) 

~ 2S - PERIPHERAL SEARCH MEMORY 

II I ~~ 
! (STATIC CASE) I 
1\30 - PROPOSED INTEGRATED SEARCH MEMORY 

1 (DYNAMIC CASE) ~ 

3S - PROPOSED INTEGRATED SEARCH MEMORY _ 
10,000 

(STATIC CASE) -

! 

I! 1\ 
i! " 

1,00 

!! i i 

" I I, 
! 

! i J I 

I I I 
'1 0 

~ .... 
" I'.: 

til ... , : 
~ "\1\. '" 1'IlII~ ~ ~ 

~ "\ I 

"r'\ I ~ t--r-. 
100 

20 
to.... ~ 
~ 3D t-

" 
~ , ~2S 

'" "\ 
0 3S 

" , 
~ , ~ 

1"\[\ "\ 
1 

1000 100 10 

NUMBER OF SEARCHES, NS 

Figure 12. Search Time (T) versus Number of Searches 
per Updating (Ns ), 512-ltem Case, m = 1 



A HARDWARE INTEGRATED GENERAL PURPOSE COMPUTER/SEARCH MEMORY 173 

100,000 
1 - US0-20 COMPUTER ONLY SOLUTION :: ("MEAN" ITEM DISTRIBUTION) -

~ 2D - PERIPHERAl SEARCH MEMORY -
['.. (DYNAMIC CASE) -

['.. 
2S - PERIPHERAl SEARCH MEMORY -

'f\.. (STATIC CASE) 

,,~ 
3D - PROPOSED INTEGRATED SEARCH MEMORY 

(DYNAMIC CASE) 

3S - PROPOSED INTEGRA TED SEARCH MEMORY 
(STATIC CASE) 10,000 

" ~ 
r\.1 

'r'\. 

" 1,000 

'" ,''''- "-
]\II' ,~ l'\. 

~f' "0 l'\.. 
I " ....... ~ r--

t'-I'- '" ~ ~ ~D I 

3D 
100 

2S 

, , , II~I , 

" 

,1 
, !, , , ! ! !!, ! I'N ! "'- !!,,' , , 

I f' 
~ I 

0 

~ "-
l'\. 

1 I III i 1 1"-
I 

I 
I ~ "'-1 

I 

1 I iii II j j J 

, 

11 iN " 
I 1 1 

100 10 1000 
NUMBER OF SEARCHES, NS 

Figure 13. Search Time (T) versus Number of Searches 
per Updating (Ns ), 1024-Item Case, m = 1 

tor of 38 over the conventional computer 
only (Curve 1) solution. 

2. Integrated search memory (Curve 3D) 
provides a performance increase by a fac­
tor of 116 over the conventional computer 
only (Curve 1) solution. 

Note that the curves show only system search 
time of the three system configurations. The 
proposed integrated search memory has an ad­
ditional advantage over the peripheral search 
memory-less complex programs. Comparison 
of the list of instructions for the two system 
configurations (given in Figures 7 and 10) will 
indicate that the proposed integrated search 
memory approach requires fewer instructions 
and allows more familiar and direct program­
ming techniques than for the peripheral search 
memory. 

An important point to remember is the fact 
that the updating terms of the search time 
equations, for the system configurations that 
involve the search memory, only need be con­
sidered if the search memory must be updated 
in addition to the conventional core memory of 
the USQ-20 computer. If only one of the two 
memories requires updating then the updating 
terms may be ignored and, therefore, only the 
straight line plots of Figures 11 through 13 
need be considered. 

Another consideration is the fact that the 
feasibility of transferring large amounts of 
data over the standard USQ-20 I/O channels 
for one purpose (search memory in this case) 
is unpredictable unless the word rate require­
ments of all the I/O channels are known and 
considered. In a complex system, there is the 
possibility that the I/O is already heavily 
loaded and that the peripheral search memory 
I/O requirements could result in overload of 
the I/O. The proposed integrated search mem­
ory, on the other hand, does not have to depend 
on standard I/O channel data transfer, and so 
this unpredictable I/O situation can be avoided. 
Related to this consideration is the definition 
of solution time. The solution times analyzed 
and displayed in this paper are based on com­
puter memory access time. In an approach 
where standard I/O channel transfers are not 
involved, computer memory access time is 
identical with real or actual solution time. 
Where standard I/O transfer time is involved, 
memory access times are not adjacent and the 
actual solution time is greater than the solu­
tion time based on computer memory access 
time alone. This then points to another ad­
vantage of the proposed integrated search mem­
ory approach. 

LIST OF REFERENCES 

1. GER-10857: Collection of Technical Notes 
on Associative M emory. Akron, Ohio, 
Goodyear Aerospace Corporation, 9 October 
1962. 

2. HORVATH, R.: Integrating the Search Mem­
ory with the USQ-20 Computer. GER-
11621. Akron, Ohio, Goodyear Aerospace 
Corporation, 4 June 1963. 



A BIT-ACCESS COMPUTER 

IN A COMMUNICATION SYSTEM 
Dr. Edmund U. Cohler and Dr. Harvey Rubinstein 

Sylvania Electronic Systems 
A Division of Sylvan:ia Electric Products, Inc. 

APPLIED RESEARCH LABORATORY 
40 Sylvan Road 

Waltham, Massachusetts, 02154 

1.0 INTRODUCTION 

Systems having computers and communica­
tions subsystems are increasing in number. 
The application of such systems span such di­
verse fields as process control, message switch­
ing, command and control, and multi-user on­
line computer installations. In these systems, a 
significant portion of the information processed 
is brought to and sent from the computer on a 
large number of communication lines, carrying 
peak bit rates generally from 75 bps to 4800 
bps. 

Often, failure of a portion of the system to 
provide services can entail serious consequences 
to the system users. Thus severe relability 
standards are placed on the system hardware. 
Many of these systems must be capable of pro­
viding service to a range in the number of 
users and must be able to grow as the system 
finds more users. Thus, one finds the need for 
modularity to meet these demands. Finally, as 
these systems are used, they must be capable 
of change so that they can be adapted to the 
ever changing and wide variety of require­
ments, problems, formats, codes and other 
characteristics of their users. As a result, gen­
eral-purpose stored program computers should 
be used wherever possible. 

Past approaches toward meeting these oper­
ating requirements have been made by utilizing 

two computers (full redundancy) to obtain the 
required reliability and availability. One com­
puter stood by while the other processed data 
on line. When it failed, the computers were 
interchanged. To handle the incoming data, 
many of these past systems were designed with 
costly complex fixed programmed bit and char­
acter buffers, and message assemblers. The 
buffers operated in such a way that a failure 
in one of them could prevent usage of a num­
ber of transmission lines. As a rule, the fixed 
programs wired into these units did not permit 
rapid changes of the characteristics of the line 
it handled. 

175 

In this report, a design for a low-cost multi­
processor system is described which alleviates 
these past deficiencies. This system performs 
the store-and-forward operations of a message 
switch. A unique design of the input and out­
put interface is central to meeting these ob­
jectives, and is the primary topic of this paper. 

1.1 Operational Objectives of the Design 

The basic objectives of the work described 
were to design a message switch which pro­
vides: 

A. Improved operational reliability, 

B. Greater economy, both in the initial in­
stallation and in operation, and 



176 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

c. Greater adaptability to a wide variety of 
communication environments and proce­
dures, initially and during operation. 

These goals were achieved through the de­
sign features which are summarized below: 

1. The design is made modular through the 
use of equipment pools. These pools of 
processing and storage equipment lead to 
a very high order of reliability with low 
initial and maintenance costs. In particu­
lar, a method has been evolved for using 
a number of small digital computers to 
provide message switching functions with 
a large amount of flexibility and modu­
larity in operation and in installation. 

2. A unique method of interfacing lines 
with processors has been invented which 
decreases buffering costs, failure interac­
tion, and bit processing equipment re­
quirements. The method is a combination 
of hardware, logic and software which 
ideally suits the problem at hand. It 
makes possible to use general-purpose 
processors in transferring and processing 
messages and thus provides great adapta­
bility to changing environments and re­
quirements. The direct access to memory 
of information lines provided by this 
technique allows much greater equipment 
efficiency in handling incoming and out­
going information in a class of multiuser 
computer systems extending well beyond 
message processing. The message proc­
essing example, however, shows sufficient 
details to support the claims of better 
efficiency. 

3. An efficient method for the orderly stor­
age and retrieval of messages in a modu­
lar drum (or other medium-access-time) 
storage system has been evolved. This 
method reduces the cost of core storage 
by allowing frequent drum accesses and 
reduces the cost of the drum system by 
making efficient use of the storage re­
quired by the drum. 

1.2 Achieving Operational Reliability 

To obtain the reliability offered by redun­
dancy without the impoverishing costs of du-

plexing, we have turned to the use of modular 
equipment pools. As an example, the processor 
pool serves incoming and outgoing lines. Each 
of these lines has a usable service connection to 
three separate processors. Thus, if a single 
processor fails completeley, its lines can be 
serviced by other processors that are not com­
pletely occupied. Because there are four proc­
essors in the pool, we need only 25 percent over­
capacity (redundancy) in each processor to 
assure no loss of system capacity on a single 
processor failure. Many computer-centered 
systems require 100 percent redundancy (com­
plete duplexing to achieve the same result. 
Other such systems do not use the pool concept 
so that despite similar degrees of modularity, 
a loss of a single module causes complete loss 
of service to a group of lines until it is either 
repaired or replaced. A similar pooled approach 
has been taken in the message storage area 
where any of three selection units can give a 
processor access to the message storage drum 
modules. 

The modularity of this design also improves 
maintenance times by reducing the time re­
quired to isolate faults and by simplifying the 
training of maintenance personnel. Shorter 
times to find a difficulty and correct it result in 
greater system reliability. 

An important requirement in pool operation 
is that failures on one side of an interface do 
not cause failures on the other. The magneti­
cally coupled interfaces used in the direct-ac­
cess-to-memory avoid this difficulty. The mag­
netic coupling is sufficiently loose that the fail­
ure of an active component cannot affect other 
equipments across the interface. 

1.3 Achieving Greater Economy 

We have achieved economy in this system 
primarily by the invention of a new type of 
line access to a processor which makes the 
processor more than five times more efficient 
in the acceptance and assembly of bits from a 
serial line. In all past such switching systems 
either external equipment was assigned to the 
task of bit assembly or it was done in the com­
puter at great cost in number of memory cycles 
per bit. By making possible a single instruction 
time for the handling of a single bit, we have 



A BIT-ACCESS COMPUTER IN A COMMUNICATION SYSTEM 177 

been able both to eliminate external equipments 
and to make efficient usage of our computer in 
handling the bit transfers and assemblies as 
well as the more complex but less frequent jobs 
of switching. 

Furthermore, the modularity of the proc­
essing pool allows us to choose the switch ca­
pacity to suit traffic conditions and numbers of 
lines in various installations thus minimizing 
the required equipment. In addition, the pooled 
approach results in much less redundancy so 
that we can expect an almost two-to-one cost 
reduction over other duplexed systems even at 
their optimum capacity. 

1.4 Achieving Greater Operation Adaptability 

The advantage of using a programmed proc­
essor for flexibility and adaptability to meet 
new requirements and situations over the older 
techniques of wired-in operations is now well 
recognized in the industry. Error correction 
and detection schemes may be implemented. 
Very sophisticated priority disciplines can be 
adopted on a moment's notice to suit the situa­
tion at hand. Changes in codes, formats and 
routing indications can be handled. With pooled 
design, vIe can re-assign lines not only under 
failure conditions but under conditions of 
changing traffic patterns because line assign­
ments are made electronically and each line can 
be assigned to any of three separate processors. 

In talking about the adaptability to change, 
we should also speak of protection against un­
warranted change. We observe that. this sys­
tem, being primarily under programmed con­
trol, permits protection from tampering by 
making initial program entry possible only 
from protected devices, while subsequent modi­
fication through the console or other external 
devices would be solely under the control of 
some internal program. 

2.0 Description of the System 

2.1 Description of Switch Operation 

The block diagram of Figure 1 shows the 
equipment pools and their interconnections. 
The most important pools in the normal on-line 
operation of the switch are the processor pool, 
the message drum pool and the processing 

SERVICE 
SECTION 

REFERENCE 
FILE 

;APES ~ B 3 ~ 

JOURNAL, 
OVERflOW, 
INTERCEPT, 

TAPES 

CROSS- MESSAGE 
POINT IlWM POOL 

io---~ I I 
I I;; 
I I 

IOI~ I I ~ 
I I:: 
I I ~ 

IOI~ I I 
I I 

Figure 1. 200-Line Message Switch Major Subsystems 
Diagram (Maximum Lines). 

drum pool. The tape and console pool playa 
subsidiary job as they are only partially utilized 
in the routine switch operation. Briefly de­
scribing the input processing, the incoming bits 
for each line are sent to three processors in the 
processing pool. A supervisory program has 
previously assigned each line to one of these 
three processors. As the bits arrive, the proc­
essor assembles them into characters and 
checks the characters for special system coordi­
nation and control information. Included in 
these control information groups are the rout­
ing indicators which identify the message des­
tination and precedence characters which indi­
cate the priority of the message. When these 
arrive, an access is made to the processing 
drum pool by the processor to translate these 
groups into outgoing line numbers. When the 
outgoing line numbers and the precedence of 
the message are known to the processor and the 
message has fully arrived, an entry is made 
into a table (queue list) to alert the outgoing 
line that a message is a waiting transmission. 
In addition, the processor enters somewhat dif­
ferent information onto a ledger, which main­
tains an account of the message status; i.e., 
those lines on which the message is to be trans­
mitted, those on which it has been transmitted 
and those which have acknowledged the trans­
mission. Simultaneously, the processor trans-



178 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

fers the incoming message onto the 'in-transit" 
message-drum pool and onto the reference-tape 
pool. This it does in fixed-size bins. The initial 
entries into a journal are also made in the 
course of the input message processing. The 
journal is a chronological listing of the actions 
taken on a message while it is in the switch. 

In output processing when a processor finds 
that one of its outgoing lines is no longer busy 
(or at fixed intervals after a nonbusy condi­
tion) , it refers to the queue lists, which are 
identified by line and precedence, to obtain the 
message-drum address of the next message to 
be transmitted on that line. It then makes ar­
rangements to retrieve that message from the 
drum and to send out the characters one bit at 
a time. In the meanwhile recordings of these 
actions are made upon the journal tape. When 
the message is completely transmitted, addi­
tional entries are made in the ledger to indicate 
transmission. When all transmissions of a mes­
sage have been made the in-transit message and 
the ledger are erased. 

2.2 The Processor Pool Functions 

The processor pool accepts the bits from a 
line, assembles them into characters, disassem­
bles them and sends them to a line. Secondly, 
it examines the incoming characters and per­
forms a variety of routing, queuing and surveil­
lance functions based on these. Thirdly, it 
stores groups of characters in its core memory 
for buffering other storage pools (primarily 
the message drum pool). Finally, during slack 
time and routinely, the processor evaluates 
switch operation and traffic for maintenance 
and adaptation purposes. It is evident that a 
general-purpose processor can handle all of 
these functions, and if it is time shared, efficient 
hardware usage can be achieved along with 
flexible operation. 

In Section 3.1, it is demonstrated that bit 
and character processing dominate the other 
processes in computer usage thus making the 
interface techniques important in improving 
processor efficiency. 

Because this paper is primarily on the inter­
face technique which we have used between the 
communication lines and the processing pool, 
our discussion will center on this pool. 

2.3 Message Drum Pool Functions 

The maj or message drum pool function is the 
storage of messages to accommodate line avail­
ability / demand variations. This variation 
shows up as messages stored in "in-transit" 
storage awaiting lines to become free for trans­
mission. It is clear that this function requires 
orderly and efficient storage of messages. 

Orderly storage of information on the mes­
sage drum and efficient transfer to and from 
the processing pool have been achieved by the 
use of list processing techniques. Because of 
properly chosen accessing procedures, all bins 
of information in the processor memory are of 
the same size, so that the information may be 
stored on the drum in fixed-size bins and suc­
cessive bins chained to previous ones. A com­
plete empties list keeps track of all available 
storage space remaining on the drum, thus 
permitting very efficient storage filling. Because 
all messages are stored in fixed-size bins, the 
problem of cross-office speed conversion is auto­
matically accomplished. A full discussion of the 
message drum pool techniques is beyond the 
scope of this paper. 

2.4 Processing Drum Pool Function 

The processing drum pool stores the lists and 
registers used in the processing job by the 
processor pool. Its lists, as a matter of fact, 
are used in common by all of the processors of 
the processing pool to provide a record of: 
where the message ,viII be kept on the message 
drum pool, on what lines the message is to be 
transmitted, in what sequence the message is 
to be transmitted, to what lines the message 
has been sent, which message to transmit next, 
where the message is located; and to update 
the ledger entry of lines to which the message 
has been sent. Even though normal operation 
of this pool is independent of the message drum 
pool, it makes use of the same drums for stor­
age. This is possible and efficient because both 
storage capacities are determined by the maxi­
mum probable queue build up. 

2.5 Other Equipment Groups 

The other equipment groups within the 
switch are not as central to the normal opera­
tion of the switch, and will not be covered in 
this paper. 



A BIT-ACCESS COMPUTER IN A COMMUNICATION SYSTEM 179 

3.0 SYSTEM DESIGN 

3.1 The Processor Pool 

3.1.1 Processing Jobs 

Messages on various lines and trunks may 
differ in code, bit rate, and message format, 
but in each case, the message consists of a 
header, text and ending. The header includes 
routing and message priority. Some messages 
are divided into 80 character blocks for trans­
mission and reception purposes. 

In a message store and forward system, 
processing of two types are encountered. The 
first type centers about the acceptance, storage 
and transmission of messages and the second 
type about the control of the switching system. 

Tables I, II and III indicate typical message 
processing functions. Routine functions are 
classified in these tables as either of a bit, 
character block or message type. 

System control functions keep the switching 
system performing effectively by supplying the 
switching center supervisor with data useful 
in the management of the store and forward 
center and network, and as an aid in maintain­
ing and testing the switch, its programs, and 
data base. They are generally not performed 

regularly or very frequently and are given in 
Table IV. 

3.1.2 Discussion of Store and Forward Switch 
Functions 

An examination of the list of functions given 
in Tables I-IV shows the store and forward 
switch functions fall into four classes: data 
formating, system operation, signal acceptance 
and transmission and recording (storage) op­
erations. 

In order to obtain an order of the importance 
of these functions to message switching, it is 
desirable to classify them in the order of their 
frequency of occurrence. The acceptance and 
forwarding of bits are the most frequently oc­
curring functions. They occur at the incoming 
and outgoing bit rates. The next most fre­
quently occurring functions are those associated 
with each and every character which enters 
or leaves the system, for example, control char­
acter check. Most functions are not performed 
on each character. Header validations and en­
tries in queue lists for example are performed 
on entire messages independent of the number 
of characters they contain. The character func­
tions occur lib times as frequently as the bit 
function, where b is the number of bits per 
character and averages almost 7 bits per char-

TABLE I-INPUT PROCESSING-ROUTINE 

Accept bits and assemble characters 
Check parity of characters 
Detect system control characters 
Assemble characters in words and bins 
Write messages in "In-Transit Store" 
Initiate preemption for flash messages 
Verify header 
Perform routing 
Enter incoming message data in ledger 
Check block parity 
Write message on reference tape 
Enter data in journal 
Acknowledge accepted messages 
Count blocks 
Enter data in queue lists 
Assign serial number for processing 

Bit 

x 
x 

Character 

x 
x 
x 

Block 

x 

x 

Message 

x 

x 
x 
x 

x 
x 
x 

x 
x 



180 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

TABLE II-OUTPUT PROCESSING-ROUTINE 

Use queue lists to initiate message transmission 
Make journal entries 
Updata ledger 
Retrieve messages from "In-Transit Store" 
Convert formats 
Convert codes 
Construct block parity 
Check security for each block 
Remove messages from storage which have been 

transmitted 
Convert messages to a bit stream 

acter. The next set of operations in the order 
of descending frequency of occurrence, are 
those which occur for each block. They occur 
l/cb as often as the bit functions. Here, c is 
the number of characters per block and is 
about 80 characters. The remaining functions 
occur once per message or so. If there are m 
characters per message, the message functions 
occur l/mb as often as the other functions 
where m is approximately 2000. Then each 
character, block or message function occurs 
respectively 8, 640, 16,000 times as infre­
quently as a bit function. 

The most frequent functions then are the bit 
functions. When a bit arrives, it must be stored 
in the proper place in a character, used to up­
date the character parity count, and counted to 
establish the arrival of a full character. When 
a full character is received, it is transferred to 
another location in memory for further proc­
essing. A similar per line process occurs in 
reverse order when information is disassembled 
for forwarding. These bit functions are per­
formed on each line at a rate determined by 
the information rate on the line. In designing 
an equipment to perform this function, various 

TABLE III-MESSAGE PROCESSING­
NON-ROUTINE 

Control errors. 
Print or display messages. 
Initiate service messages. 
Manually retrieve message. 

Bit Character Block Message 

x 
x 
x 
x 
x 

x 
x 

x 

x 
x x 

line rates (from 75 bits per second to 4800 
bps), and various bits per character (from 5 
to 8 depending on their code) must be con­
sidered. 

The character operations are somewhat more 
complex. Typically, characters must be ex­
amined to determine if they are system control 
or coordination characters, and if their parities 
are correct. When transmitting, the character 
codes may require conversion and the block 
parity must be determined. The characters also 
must be counted to determine block length. 

Two characteristics of these bit and char­
acter functions should be noted. The first is 
that there exists a variety of functions and the 

TABLE IV-SYSTEM CONTROL 
PROCESSING TASKS 

Maintain in-transit storage status. 
Maintain status of traffic. 
Activate overdue message alarms. 
Activate queue threshold alarms. 
Execute maintenance routines. 
Control program maintenance routines. 
Activate and control start-up. 
Activate and control recovery. 
Check confidence levels on equipments and 

links. 
Provide line synchronization. 
Allocate hardware. 
Accept supervisor initiated commands. 
Provide statistical analyses of traffic. 



A BIT-ACCESS COMPUTER IN A COMMUNICATION SYSTEM 181 

second that these same functions are performed 
on all lines. The latter assumptions imply time 
sharing of equipment while the former implies 
a reasonably complex assortment of equipment. 

3.1.3 The Processor Interface With Input and 
Output Lines 

Because the most frequent operations in the 
message switch are the acceptance and the de­
livery of bits of information, earlier switch de­
signs used special equipment to accept bits 
from a line and assemble them into characters 
for use by the processor. That approach in­
volved considerable equipment which was pe­
culiar to a particular line type. Recent designs 
have made this equipment sufficiently flexible 
(generally by pluggable programs) to be suita-
ble for a wide variety of such lines. However, 
in so doing, any efficiency derived from special­
purpose equipment was lost. Furthermore, an 
efficient method of providing alternate capa­
bility (redundancy) in case of equipment fail­
ure was not provided. Seeking economy, re­
dundancy, flexibility and simplicity in handling 
bits, we use a general-purpose machine, taking 
advantage of its high speed to perform service 
for a number of lines. A direct and inexpensive 
interface is made to each line. Each line inter­
faces with a number of processors so that in 
case of failure, assignments can be made elec­
tronically for other processors to take over the 
lines formerly served by the inoperative pro­
cessor. 

The communication lines interface directly 
with computer memory cores in our design. A 
single instruction ( one memory cycle in 
length): (1) accepts a bit from the communi­
cation lines; (2) puts it in the proper bit loca­
tion in a memory word which is employed as a 
character buffer for that particular line; (3) 
checks to see if a complete character has yet 
arrived; and (4) computes the parity bit for 
the character. The operation is accomplished 
almost entirely with existing equipment in the 
main computer memory. Additionally, it pro­
vides alternate servers for each line with suf­
ficient decoupling to assure that no failure on 
one side of the interface can cause a failure on 
the other side. Both the method of entry and 
the handling of the bits within the machine 
will be described in what follows. 

3.1.3.1 Bit Handlin.q By A New Instruction 

The lines coming into the computer are ac­
tually wired into the memory of the computer 
as described in the next section. Each incom­
ing communication line will be accompanied by 
a synchronizing line which specifies timing. 
Each of these wires is wired into a memory 
core at a location which is permanently re­
served for that communication input. A pro­
gram will cause the line termination memory 
locations to be scanned at times specified by 
interrupts from a real-time clock and will then 
put the received data bits into the proper po­
siti()n in that word. When the word is full, it 
will be transferred to another location and 
character processing will begin. A new type of 
instruction in the processor puts the bit into 
the proper place in the memory location for the 
line, checks to see if the location is full and 
computes the character parity. The entire in­
struction takes just one memory cycle of the 
computer. One additional memory cycle must 
be used to determine the line to be scanned 
next. This latter instruction is just an uncon­
ditional branch instruction whose address por­
tion is determined when scan lists are made up. 

The new type of instruction is exteTnally de­
termined which means that its effect is not de­
termined at the time the program is written 
but rather is determined by subsequent input. 
This is not quite the same as a branch or skip 
instruction which merely constitutes a choice 
of where the next instruction is taken based on 
post-programming inputs. 

With the direct interface it allows inexpen­
sive appropriate control of a processor by a 
number of external users. 

For purpose of accepting bits the instruction 
nature is determined by an incoming synch sig­
nal and by a marker bit which determines the 
end of character. However, the instruction is 
programmed in the normal manner as part of 
a subroutine which performs line scanning. 
The instruction format is as shown in Figure 
2. The instruction code part of the instruction 
word contains a partial code and two externally 
set bits. The address field part of the instruc­
tion word contains the operand for the instruc­
tion. When the scan program causes this in­
struction to be read-out from the memory, the 



182 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

GENERAL ORDER 

DATA BIT 

INSTRUCTION CODE INSTRUCTION EFFECT 

o I 0 I X X - - - - - - CHECK SYNCH AND MARKER 

o I 0 I I 0 - - - - - - SHIFT BITS 1-16 lEFT CLEAR BIT 17 AND 

RESTORE. (POSITIONS DAT .... BIT.) 

UPDATE PARITY. 
o I 0 I 0 0 - - - - - - NO OPERATION. 

o I 0 I 0 I - - - - - - BRANCH TO X AND MARK PLACE. 

(THIS STARTS CHARACTER PROCESSING.) 

o I 0 I I I - - - - - - IlI!ANCH TO ~ AND MARK PLACE. (THIS STARTS 

CHARACTER PROCESSING) 

Figure 2. Instruction Formats for Bit Processing. 

operation which is executed will then depend 
upon the two indeterminate bits. For the time 
being, let us assume that the second indeter­
minate bit is a zero. The first indeterminate 
bit is the synch bit, which will be a one if a 
new data pulse has come in since the line was 
last scanned. The full instruction code is then 
010110 which (see Figure 2) entails a shift op­
eration upon part of the instruction word. The 
data bit which was in the last significant bit 
of the word is shifted left one position and, 
thereby, entered into the partly assembled char­
acter. Simultaneously, the character parity is 
updated. In addition, the synchronization bit is 
cleared and the entire word restored in the 
same memory location. If when we had read 
the line word out, no synch bit had come in, 
then the instruction (010100) would be in­
terpreted as a no-op and the word restored 
without modification. 

The use of the marker bit is fairly simple. 
When we arrive at the end of a character, we 
would like to know about it so that the entire 
character can be moved to another location in 
core memory thence to enter on character 
processing. To do this, the program sets a "1" 
into a particular bit of the input line instruc­
tion in the normal address field. Since the- ad­
dress field is initially all zeros, the marker bit 
will be the first one to show up in the second 
indeterminate bit of the instruction code (due 
to a succession· <)f shifts). Thus, whenever a 
"1" appears in this position, it indicates that 
a complete character has been received, and the 
instruction becomes a branch instruction which 
branches to a sub-routine to take care of trans­
ferring the character. Two different branches 

are indicated here because the asynchronous 
nature of the system may allow a data bit to 
come in after the character was filled. On the 
other hand, there may be no new data bit that 
has come in. In one case, a single bit must be 
preserved in the memory location and in the 
other case, it need not be. 

While this is one type of externally deter­
mined instruction, there are others possible, 
and in fact, the line equipment used in making 
the asynchronous to synchronous conversion 
can be embodied in an additional indeterminate 
synchronous bit possible in the instruction code. 
The full power of such an instruction particu­
larly in message switching and command and 
control has not yet been realized. 

3.1.3.2 Description of Interface Electronics 

The basic system of entry into the memory is 
illustrated in Figure 3. Each incoming line is 
wired into a core which is effectively part of 
the main memory. These cores are all in the 
same bit position in the memory. The informa­
tion coming into the core is written into each 
core on the basis of a coincidence of input-cur­
rent and a write-current from the computer; 
the latter being supplied on every memory 

write cycle (by the y-drivers in Figure 3). 
The information is read, out of the core by 

the standard read cycle of the memory. Thus, 
once having been written in, a data bit is avail­
able for read-out with the rest of the word 
using the standard memory equipment already 
in the computer (with some exceptions to be 
covered later) . 

INCOMING UNES 
CoURY 1/2 - WlfTE CURRENT 

DATAl 

SYNCH 

1 
1 
1 
I 

DATAl 

SYNCHJ 

FROM COR£ MINOP:'f 
. CIRCUITS 

CORRESPONDING 
MEMORY LOCATIONS ARE 

RESEItVED FOR A UNE -
INSTIt\JCTION WORD 

Figure 3. Processor-Input Line Interface. 

TO 
MINOP:'f 
REGISTEl 



A BIT-ACCESS COMPUTER IN A COMMUNICATION SYSTEM 183 

However, we recognize that a single bit could 
be written in and read-out many times since 
input pulses are much wider than memory 
cycles. Furthermore, a read-out of a zero data 
bit is ambiguous since it may indicate no input 
rather than zero-input. Thus, we must provide 
a synchronizing channel for each line, which 
will indicate when a data bit is available for 
reading. A similar input to another bit of the 
same word will be used for such synchroniza­
tion purposes. However, the synchronization 
pulse must be timed to a single write pulse of 
the computer. This means there must be an 
asynchronous to synchronous converter timed 
from the master timing source (which also 
times the computers) for each incoming line. 
While we have devised a method of employing 
a third channel to obviate the need for the con­
version equipment, we will not discuss it here 
because the economic tradeoffs are not clear. 

Actually, the input lines are not wound 
through the cores which are normally located in 
the main memory stack. Instead, two additional 
very small memory planes (Figure 3, Auxiliary 
Memory Cores) are provided which are the 
storage locations for those particular bits of 
memory. These planes are wired in with the 
x and y and z lines of the main memory. A 
coincident current memory will provide two 
half-writes, x and y. Either the x or the y 
write current will be provided to the external 
cores as a 1/2 write common to all auxiliary 
cores. Thus, coincidence with the external 1/2 
write signal will write in a "I". A separate 
sense winding will be provided to prevent inter­
ference with the normal words of memory and 
thus a separate sense amplifier will be provided 
for each of these two planes. The output will 
be logically added to the output of the normal 
sense amplifiers. Thus, all the input lines can 
be implemented with the addition of the auxil­
iary planes, two sense amplifiers, a few diodes 
and two gates. 

While each line has been described as thread­
ing a single memory, in actuality it would 
thread cores in three sep~rate processor memo­
ries. Thus, anyone of the processors coupled 
to this line could service the line if its pro­
grammed scan included the line. 

On-line program modification could take care 
of reassignment if it became necessary. Be-

cause the input line is magnetically coupled to 
the memory, no processor failure can disable 
it; i.e., it will still deliver its write current to 
the other processors with which it is associated. 
Furthermore, if a portion of the line equipment 
fails, it disables the particular line but in no 
way prevents the processors from servicing 
other lines. Thus, this magnetic coupling has 
the sort of ideal loose coupling described ear­
lier. 

3.1.4 Programming System 

A master control program schedules oper­
ating programs and provides for hardware and 
line assignments. Consequently, it organizes 
routine and non-routine activities. The portion 
of the control program which refers to the rou­
tine functions resides in the core memory of 
each processor and has the facility to call the 
remaining program or portions of it from the 
processor drum memory to core storage when 
required. The operation of the control program 
is tied to interrupt signals from a real-time 
clock. These signals occur as often as required 
for the processor to sample its incoming lines 
for signals and to supply information to its out­
going lines. The processor need not keep 
track of elapsed time. 

The operation of the control program and the 
operational programs for the functions proceed 
as follows: the control program, on the basis 
of information describing the lines assigned to 
it, schedules groups of lines to be scanned at a 
time. When a real-time interrupt occurs the 
program transfers control to an appropriate 
program for handling the line scanning func­
tions. If during the line scan a full character is 
found to have entered the machine, the char­
acter will be entered into core memory with 
others in its message. If the character shoul~ 
be a system control character appropriate ac­
tion will be noted in a list kept for scheduling 
by the control program. When all the lines 
have been scanned, control will be returned to 
the control program. At this time, the control 
program decides what its next course of action 
will be through an examination of its schedul­
ing list. It might examine the control char­
acters to determine their significance. If one 
of these was a start of message, it would initi­
ate a header verification and then have control 



184 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

returned to it for user action. As characters 
are accumulated in memory or transmitted 
from memory by the operating routines, they 
would signal the control program to initiate a 
program which would bring more information 
from the drum for transmission or would have 
information taken from core memory for stor­
age. 

Programs for the handling of change in line 
assignments due to hardware failures will 
either be manually or automatically initiated. 
The manual initiation will occur from the su­
pervisor's console. From this position, a com­
puter will be selected and a message sent to 
this computer to initiate a program that would 
remove a computer from service and reassign 
its lines. This program will be retrieved from 
the processor drum, together with a list de­
scribing line assignments and characteristics. 
It will then determine another group of assign­
ments based on an algorithm previously de­
cided on, which is judged to minimize the over­
loading. Queue lengths would be available to 
this program if required. The change in line 
assignments requires no hardware change. 

3.1.5 Processor Rate and Storage Requirements 

The total number of memory cycles required 
for the processing job can be divided by the 
number of input bits to give a figure of merit 
which is independent of the capacity of the 
system. At times one sees such a figure ex­
pressed as instructions per throughput bit. 
However, the number of output bits exceeds the 
number of input bits in a system where multi­
ple addresses are allowed. According to one 
estimate for a large system, the average output 
rate will be 75% higher than the average input 
rate. Thus, the proposed figure seems more 
natural and allows one to evaluate the required 
processor memory speed. 

Other system factors do influence the pro­
posed figure of merit. For example, the aver­
age number of bits per character, characters 
per block and blocks per message will deter­
mine the number of instructions per bit used 
in character and message processing. These 
parameters have been chosen as discussed in 
Section 3.1.2. 

Trial programs of bit and character func­
tions have been worked out to obtain the data 

on which to assess the processor requirements. 
In estimating program complexity, a prototype 
instruction code containing twenty instructions 
was used. The input bit processing takes two 
memory cycles per bit of direct input proces­
sing and approximately 0.5 memory cycle per 
bit attributable to the control program. The 
former load may be reduced by limiting the 
flexibility of the scan cycle, and in fact may be 
reduced to 1 memory cycle per bit for a fixed or 
nearly fixed scan. The output bit processing is 
similar in memory cycle usage. 

Input character processing can be done in 36 
memory cycles per character and the output 
processing in 28 memory cycles per character. 
To determine the full processor rate required 
for each incoming bit, the bit and character 
process rates must be augmented by the mem­
ory cycles required for the block and message 
functions. Our analysis of the drum transfer 
and other routine block and message functions 
indicates that 2500 instructions per message 
received and 50 instructions per block received 
is a generous allowance for these functions 
(Le., 5000 and 100 memory cycles respec­
tively) . 

The total number of memory cycles per input 
bit is then conservatively fixed at 

36 28 
2.5 + 1.75 X 2.5 + - + - X 1.75 + 

7 7 
5000 50 ---- + = 19.5 memory cycles 

2000 X 7 80 X 7 

This is equivalent to ten instructions which is 
what most systems require for a single inter­
rupt to process one input bit. 

The core memory associated with each pro­
cessor is used to hold the currently executed 
programs (control programs, operating pro­
grams, and maintenance programs when re­
quired), the data base for the execution of this 
program (code conversion tables, empties-reg­
isters, queue entries by precedence for each 
line, address of next ledger entry, etc.) and the 
messages prior to storage on the drum. 

I t is expected on the basis of preliminary 
estimates that the programming and its data 
would consume less than 2000 core memory 
words. 



A BIT-ACCESS COMPUTER IN A COMMUNICATION SYSTEM 185 

The message buffer is required to hold about 
70 words per line. If a double buffer scheme is 
used to prevent buffer overlay before transfer 
to in-transit storage, for a computer handling 
67 lines, about 10,000 words for message buf­
fers are required per computer. 

The most important facets of the processor, 
the interface with the communication lines and 
the memory size and rate have been discussed. 
The remaining features of the processors are 
of conventional nature. 

BIBLIOGRAPHY 

1. HELMAN, D. A., et aI, "VADE: A Versatile 
Automatic Data Exchange," IEEE Trans. 
Communications and Electronics, No. 68, 
p. 478, September 1963. 

2. HARRISON, G., "Message Buffering In A 
Computer Switching Center," IEEE Trans. 
Communications and Electronics, No. 68, 
p. 532, September 1963. 

3. POLLACK, M., "Message Route Control In A 
Large Teletype Network," J. ACM, Vol. 11, 
No.1, p. 104, January 1964. 

4. GENETTA, T. L., GUERBER, H. P., RETTIG, 
A. S., "Automatic Store and Forward Mes-:­
sage Switching," WJCC, San Francisco, 
AFIPS, Vol. 17, pp. 365-369, May 1960. 

5. HELMAN, D. A., BARRETT, E. E., HAYUM, R., 
WILLIAMS, F. 0., "Design of ITT 525 
'VADE' Real-Time Processor," FJCC, 
AFIPS, Vol. 22, pp. 154-160, 1962. 

6. SEGAL, R. J., GUERBER, H. P., "Four Ad­
vanced Computers-Key to Air Force Digi­
tal Data Communication System," EJCC, 
Washington D.C., pp. 264-278, December 
1961. 

7. WOLF, F. G., "Application of A Modular 
Data Processor to Store-and-Forward Mes­
sage Switching Systems," Proceedings 
Ninth National Communications Sympo­
sium, pp. 198-207, 1963. 

8. "Message Switching and Retrieval In A 
Real Time Data Processing System," Comma 
Catalyst of Progress, National Communica­
tions Symposium, Ninth, pp. 190-197, 1963. 





VERY HIGH SPEED SERIAL AND 

SERIAL-PARALLEL COMPUTERS HITAC 5020 AND S020E 
Kenro Murata and Kisaburo Nakazawa 

Hitachi Ltd. 
Tokyo, Japan 

1. Introduction 
HITAC 5020 family consists of general pur­

pose computing systems designed to solve a 
wide variety of problems for both scientific and 
business data processing. 

HITAC 5020 system is a medium-scale junior 
version of this family, and would have the same 
performance characteristics as IBM 360/40 -
50.1 A purely serial logic construction is the 
remarkable feature of this system. 

HITAC 5020E (5020 ENHANCED) system 
is a large scale senior version of this family, 
and would have as much performance as IBM 
360/62 - 70. But this system is constructed in 
serio-parallel logic form for economical rea­
sons. 

The central processing unit of this family is 
designed to rapidly and economically perform 
fixed or floating point arithmetic operations in 
either single or double precision, and even more 
to be able to process bit-wise variable length 
data.2, 3 It contains 18 MC, 2-phase serial 
transistor-diode logic circuits and helical trans­
mission lines4 for accumulators, index registers 
and other various registers. 

Our design goals of 5020 family are as 
follows: 

(1) High Performance per Cost. 
We have realized this feature by intro­

duction of helical transmission lines com­
bined with the 18 MC serial logic system. 

187 

(2) Program Flexibility. 
The refined and flexible instruction 

system, in conjunction with a number -of 
multi-purpose registers to be used as 
accumulators, index registers, and many 
input-output control registers, gives 
powerful possibilities to the program­
ming activities. 

(3) Simultaneity and Multiprogram Activ­
ity. 

The memory time sharing, the con­
current operation of various control unit, 
the automatic program interruption, the 
memory- protection, and the introduction 
of priority mode are prepared. 

This paper reviews the engineering design of 
HITAC 5020 and 5020E systems with primary 
concentration on central processing unit. 

2. Outline of HIT AC 5020 and 5020E System 
The 5020 system is organized along four basic 

lines, Main Memory, Arithmetic and Control 
Unit, I/O Channels and I/O Devices. 

Figures 1 and 2 show those 5020 and 5020E 
system configurations, respectively, and Fig­
ures 3 and 4 are pictures of the 5020 system. 

2.1 The Main Core Memory 
The core storage of the 5020 has a capacity 

ranging from 8,192 words to 65,536 words (32 
bits each), and is directly accessible from the 



188 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Main Memory (2.Ops) 

16 Kw 16 Kw 16 Kw 16 Kw 
1 

2+1 

Ari thmetic end Control Uni t 

to other Computer 

to other Computer 

Figure 1. The System Configuration of HITAC 5020. 

central processor and input-output control chan­
nels, with read-write cycle of 2.0 sec per 32 bits. 

The memory addresses 0 - 31 are transmis­
sion line registers and so absent in the main 
core memory. The read-write control of the 
5020 Arithmetic and Control Unit or Channels 
is rather simple one, not overlapped, and the 
access to the memory by the central processor 
is delayed only if any of the input-output chan­
nels or the central processor are attempting to 
access the storage at the same time. 

In the case of the 5020E, the core storage can 
contain anyone of 16K, 32K, 49K, or 65K words 
as a unit. Although the core storage cycle time 
is 1.5 microseconds, the effective increase of 
the access speed is realized through the com­
pletely independent access to each of the sepa­
rate banks into which the whole core storage is 
effectively divided. (i.e., two banks in case of 
16K words). 

Two words (64 bits) in each bank of 16 KW 
capacity are referred at a time, so the effective 
memory speed is doubled. Moreover, each block, 
which is made up of four separate banks, is 
addressed as shown in Figure 2 (i.e. address 0, 
1 in bank 0; 2, 3 in bank 1; 4, 5 in bank 2; 6, 7 

in bank 3; 8, 9 in bank 0; and so on). This 
increases independent operation efficiency. In 
other words, instructions, operands and I/O in­
formations, etc. are referred through the re­
spective exclusive memory refer controls (four 
in total as seen in Figure 2). With these fea­
tures the effective storage speed is doubled, 
while the controls are referencing the separate 
banks, since more than two banks are simul­
taneously accessed. 

Instructions, operands and I/O data, etc., are, 
through their respective controls, transmitted 
via the Core Memory Multiplexer which time­
shares the data flow between the core storage 
and either the processor or the I/O channels. 
In addition, during one storage cycle, data of 
two word length (64 bits), or three or four 
word length (96 bits or 128 bits), in case of 
the operand, can be transmitted in parallel, 
thereby increasing the storage access efficiency. 

The 5020 instructions can designate up to 
65K words (16 bits address field) of the core 
storage addresses. However, the 5020E is so 
designed that the enlargement of the core stor­
age is possible. A field conversion up to 260K 
words of the store capacity is feasible. 



VERY HIGH SPEED SERIAL ANDSERIAL-P ARALLEL COMPUTERS 189 

16 Kw 
Main Memory (.1.5 ps) 

16 Kw 16 Kw 16 Kw 16 Kw 16 Kw 

40 
32 

l6_1 

Core Memory Multiplexor 

Instruction 

Unit 

Operand 

Unit 

Execution Unit 

Arithmetic and Control 
Unit 

to other Computer 

Channel 
Exchange I 

Channel 

Exchange II 

Figure 2. The System Configuration of HITAC 5020E. 

In the case of more than 65 KW capacity of 
the 5020E, every 32 KW memory module en­
largement is possible. 

The effective address field of 16 bits is ex­
panded to 18 bits (theoretically 21 bits) by 

Figure 3. Front view of HITAC 5020. 

means of a preset instruction and a LMM (large 
memory mode) indicator bit. 

The preset instruction prepares 21 bits 
address information which is added to index 
modified address field of next instruction, and 

Figure 4. Console and II 0 Devices. 



190 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

generates the effective address field of 21 bits. 
When the LMM is off, the index modification is 
performed on 16 bits field so the information is 
performed seen as 0 to 216 

- 1. When the LMM 
is on, the modification arithmetic is executed 
on 16 bits information seen as -215 ~ +215 -1. 
Our choice of the above mentioned convension 
is done for assurance of complete compatibility 
between the system of less than 65 KW capacity 
and the more. 

2.2 Arithmetic and Control Unit 
The Arithmetic and Control Unit executes 

and processes stored programs and data. In the 
5020, the arithmetic and logical operations are 
all performed in serial logic. Basic cycle time 
is 2/Ls for 32 bits information and 4 bits un­
available bits (these are used for multiplication 
acceleration) of 18 MC. 

In contrast to the 5020, the 5020E is designed 
to adopt a four-bit parallel logic configuration 
based on the high speed circuit which has been 
proved to be completely feasible with the 5020 
systems. By this alone, therefore, approximately 
four times increase in operation speed over the 
5020 is readily possible. 

In the 5020 the multiplication of 32-bit by 
32-bit word is executed in 8 basic cycles using 

four adders, whereas the 5020E can perform 
the same multiplication in 2 basic cycles (1.0 
microseconds) using a multiplication unit. 

The 5020E processor takes instructions and 
operands in advance, that is, three controls: the 
control for instructions, the control for oper­
ands and the control for executions are con­
stantly operating in parallel. Therefore, the 
instruction and the operand access times would 
scarcely appear in the total execution time re­
quired for the instruction. 

This is a kind of "advanced control" facility 
and will not present any trouble, since the in­
structions will always be executed sequentially 
and the interruption facility will be the same as 
the 5020. 

Specific comparisons of the internal speeds 
of the 5020 and 5020E are illustrated in Table 
I. Comparative capacities indicate that the 
5020E is approximately 8 to 12 times faster 
than 5020 in scientific applications and 8 times 
in the other applications. 

Table I also shows the performance charac­
teristics of other typical computer systems, for 
comparison.1 ,5 

Furthermore, the 5020E can accept the ob­
ject programs which are written in the 5020 

Table I. HITAC 5020, 5020E-Execution Times (in J.L sec) 
(Including instruction read and index-modification time) 

I single or double 
Ooerationa tvce -lellgth 5020 

I 

5020E 160/W 360/50 3l:IJ/62 f 3l:IJ/70 I~~~ 
!1xed- single 8 0.75 .... 2.2 11.88 4.0 1.87 1.05 207 

Add and DOint double 12 ' 1.25 .... 2.2 
INbtract floating- sinde ~"l.24 '3.0 "",1. 18.66 tI.B8 3.2 1.11 1...21) 

noint doUble 16 ..... 26 3.0 ..... 3. Z1.66 9.69 3.22 1.13 6.18 
fixad- sinde 24 2.0,,- 2. 8L..~ 28.52 tI.12 2.8 6.70 

KultiJll1' 
DOint double ~ 3. ..... '5 

floating- sinde 36,,-38' 2.71 '" rs ~.61 2l.5 6.12 2.2 b:£ 
noint double 72 ..... 74 4.2 '" .25 21)9.18 38.0 9.62 4.2 20:9 

fiDd- sin.d.e l&2 7. "'- .0 186 33.25 . ll.2 5.7 ll.<r 

Diude noint double .JJ3 20.0 ... 23.0 

i fioating- sin.d.e '7 "... 80 9.5 .... 12.;75 I 12S 22.25 8.1 .1 13.0 
noint double 13 .... U&2 17.0""2l.0 I 1..77 69.5 17.62 .3 Zl.2 

s~le .... 10 1.0 ll.21);v25 4~9 1.12 ..... 1.62 O • ...,,1.2 1.25 ... 2.-61 
Shirt double ... 10 1.5 I 12.;,....43 4-1; 1.62".2.8'7 O. "\.1.4 1.~37,..2.C3 

Jump 
jump 4 0.5 ... 1.5 SoL3 .. 75 1. 1.0 2.25 

non-jUJlll) 8 1.5 S.rb .75 1 •. 1.0 1.25 

store llinde 10 1.25 - 2.1) 12'. .0 1 1.26 1.88 
double 16 1.25 .... 2.5 I 17. .75 1. 1.26 l;.5 

Inner--100p of the fixeel- sinde 36 3.5"",5.5 
pol;vnaa:l.al. cal.cu- POint double 96 6.0"" 7. 5 
lation fioating- sinde 64 6.0",- 7.0 

Px ~ ~ =p point double 100 7.01.. 8.0 
Inner--1oop of the fixed- sinJUe 48 5.0 .... 7. 5 121 44 ll.O 4.9 lS.76 
matrix mult1pl1c- Point double 112 8.0 
at10n floating- sinJUe 8 8.0~10.0 125 39 12.3 5.0 rs.-70 

:s .. Bi b_1 = ~ point double II 9.0", ll.O 317 ;9 16.1 7.1 
Inner-loop of the fixed- sinde 50 6.0 .... 10.5 
matrix inversion POint double 12 8.0'1.10.5 
by a direct math- f'loating- sinde 9 10.0 ""12. S 
eel&[ .. ctb1 = &[ point double 13 11.0 ..... 13.; 

I 



VERY HIGH SPEED SERIAL AND SERIAL-PARALLEL· COMPUTERS 191 

machine language, as well as the programs writ­
ten in external languages. Consequently, the 
various capabilities and functions of the 5020E 
are identical to those of the 5020 except for the 
increased capacities and several expanded 
functions. 

The 5020E is upwards compatible with the 
5020, which means that the 5020E can accept 
all 5020 programs directly as compiled on the 
latter system. 

The 5020E is also completely downwards 
compatible with the 5020, which permits 5020E 
programs to be directly applied to 5020, and 
which also means that the 5020 is provided 
with the "deduction" ability (stored logic fea­
ture) of 5020E hardware instructions, such as 
quadruple arithmetic. 

General Features of HITAC 5020 family6 
are as follows: 

( 1) Arithmetic Operations 

The central processing unit is de­
signed to perform fixed or floating point 
arithmetic in either single or double 
precisions. 

Especially the double length floating 
point arithmetic is to be operated faster 
than in other conventional computers. 

In the fixed point arithmetic opera­
tions, for large scale scientific problems 
requiring fine precision, instructions 
such as ADD WITH PRECEDING 
CARRY and SUBTRACT WITH PRE­
CEDING BORROW are prepared. More­
over, in MULTIPLICATION and DIVI­
SION, the 4-word-Iength product and the 
2-word-Iength quotient with the 2-word­
length remainder are available respec­
tively. 

These instructions give great conveni­
ences to the scientists and engineers for 
obtaining their results with high preci­
sion. In the floating point arithmetic 
operations, the operand in accumulator 
is always given in double length even in 
the "single" length floating point arith­
metic. 

Therefore, the errors caused by the 
accumulative arithmetics are usually 
smaller than with the conventional com-

puter. This fact has been demonstrated 
by simulation for comparison of this 
HITAC-5020 arithmetic with conven­
tional arithmetic using a single length 
accumUlator, by means of HITAC-5020. 

(2) Variable-Length Data Handling and 
Repeat Mode 

Bitwise addressing is one of the most 
remarkable features in this system. All 
bits within the main memory can be 
addressed and bitwise variable length 
data of 1 to 64 bits length can be assigned 
as operand as well as fixed length data. 

In the variable length instructions the 
bitwise address (normally 21 bit address 
field) modification is possible and if the 
repeat mode is defined by a bit in the 
single instruction, "scatter" or "gather" 
of data within memory and "table 
look-up" for equal, greater or less condi­
tion can be performed in the rather uni­
versal form. 

These facilities, variable length data 
handling and repeatability, can be used 
in bit-based or character-based operation 
for sorting, merging and compiling. 

(3) Multi-Purpose Registers 

The HITAC 5020 system contains 14 
index and arithmetic registers. Six of 
them serve as index registers and ac­
cumulator registers, and the other 8 
registers are used as accumulator regis­
ters. These registers are also addressed 
as if they were in the standard core 
storage, but physically, they are helical­
wired transmission line registers. 

Since the index registers may also be 
used as the accumulator registers, their 
contents are subject to the arithmetics 
as well as the address modification. 

This is a powerful feature in compil­
ing and data processing programs. In 
accumulative operations, intermediate 
partial result in accumulators can be 
used in ensuing operations without re­
turning them to the main storage, there­
fore the storing-fetching time and the 
round-off error are eliminated. 



192 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

(4) The Remarkable· Instructions of the 
5020 family are as follows: 
(a) The floating point arithmetic in­

cludes four-word length (8-bit ex­
ponent, 120-bit mantissa) opera­
tions, namely, 

(a, a + 1, a + 2, a + 3) * 
(m, m + 1) ~ 

a, a + 1, a + 2, a + 3 

(a, a + 1, a + 2, a + 3) * 
,..., ,..., 

(m,m + 1,m + 2,.m + 3) ~ 
a, a + 1, a + 2, a + 3 

* denotes an arithmetic code for 
anyone of addition, subtraction, 
multiplication or division. 

(b) Integer arithmetic instructions have 
been added, that is; 

(a) * (m)·~ a - 1, a 

(a) (m) ~ 
a, remainder ~ a + 1 

(c) Operations are included to shift 
data up to four-word length. 

(d) Bit search instructions which allo­
cate the specific bit address, whose 
content is one, to the specific mem­
ory address. 

( e) A preset instruction (Modify Next 
Instruction) which utilizes any of 
the memory addresses as if they 
were index modifiers of next in­
struction. 

(5) Functions, as shown below, are optional 
features of our system, such as, 
(a) Binary to Decimal Conversion, 
(b) Decimal to Binary Conversion, 
(c) Translate by Table, 
(d) Edit, 
(e) Decimal Arithmetic Operations, etc. 

(6) Adaptability to Multi-computer System 
For both the 5020 and the 5020E, 

considerations are given to the multi­
computer system configurations as well 
as the single computer system configura­
tions based on each of the systems. For 
instance, 
(a) Function which allows a program 

to turn on and off the magnetic tape 

switches, or the magnetic drum 
switch share. 

(b) Function to interrupt other com­
puters or transmit a communica­
tion information. 

(c) Main memory share capability has 
been provided. 

2.3 Input-Output Control Channel 
Input-output units are linked with the mem­

ory and the central processor through the I/O 
control channels. After an initial instruction 
from the computer, the channel controls in­
formation transmission between the I/O unit 
and main core storage in accordance with the 
"commands." Up to 12 channels are available, 
and an arbitrary arrangement is permitted. To 
a certain channel, however, the same type of 
I/O units are to be connected and the maximum 
number of units which can be connected is 
assigned. 

2.4 Input-Output Units 

Peripheral units, such as magnetic drums, 
magnetic tape units, printers, etc., can be con­
nected directly to the input-output control 
channels. 

Tables II and III review the typical I/O de­
vices of the 5020 and the 5020E systems. 

3. Instruction System 

3.1 Number Representation 

Figure 5 shows the internal representation of 
numbers in the HITAC 5020 family. Negative 
numbers in fixed point operand or floating point 
fraction part are represented in 2's complement 
form, and negative exponents in 256's comple­
ment form. Bitwise variable length data are 
referred by instruction with the left most bit 
address (21 bits information) and the bit 
length (6 bits information) of the field. 

3.2 M emory Address Assignment 

Figure 6 shows the memory address assign­
ment, and Figure 7 shows the bit assignment 
of special registers. As seen in these, almost all 
information that represents the internal state 
of the 5020 or 5020E system is assigned in the 
particular bit in the main memory. 



VERY HIGH SPEED SERIAL AND SERIAL-PARALLEL COMPUTERS 193 

Table II 

Transfer Rate Av Access or ; RPM. or Max No. Max No. of f 
Type # Type Capacity/Device (6 bits) (3 bits) Start Stop Time' Tape. Val. Derlce per CH. 

H-366-1 D/F 22 Mch 32 Kc/s 6 Kw/s 125 DIS 1,200 rpD. 2 4 .. 
-2 " 44 II " " " " II 

-3 " 66 " " " II II " 
-4 n as II II " II " II 

H-179-1 F/D 32 Kw 51 Kw/s 10 DIS 3,000 rpD. 2 8 

2 " 49 II " n u 

3 II 65 n n II II 

H-582 MIT 66.7 KC/S 12.5Kw/s 5.5ms 2.54 m/s 8 6 

H-175 MiT I 24 KC/S 4.5Kw/s 7.Cbs . 3.0 m/s 8 6 

H-3485 MIT i 30 Kc/s 5.6Kw/s 3 DIS 3.81 m/s 8 6 

* 
I 83.4 " 15.6 " II 

I ~O 
I 

II 22.5 n II 

D/F: Dis c File 
I/O Device (1) 

* 8 bits (9 tracks)H-3l,.85 is also available 
F /D: File Drum 
M/T: Magnetic Tape 

3.3 Instruction Set and Instruction Format 

The instruction set of the HITAC 5020 may 
be classified as follows: 

( 1) 6 types of short (32 bits) instructions 
for fixed length data. These include (a) 
immediate, (b) jump, (c) fixed point 
arithmetic types including logical in­
structions, (d) floating point arithmetic 
types, (e) store, and (f) miscellaneous. 

(2) 2 types of long (64 bits) instructions for 
bitwise variable length data. These in­
clude (a) jump instructions, and (b) 
2-address arithmetic or logical instruc­
tions. 

(3) Long (64 bits) instructions for input 
and output "command." 

The short instructions for fixed length data 
handling may be called "local 2-address instruc-

Table III 

i 

_~e# Type Speed No. of CH 

H- 333 L/p 1000 1/m 120 ch 

800 n 

H- 329 C/R 1,4'70 n so Col 

H- 334 C/p 100 n so 

H-3436 C/p 300 n 

I/O Devices (2) 

I Max No. of· Max No. of i 
CH i Derlce Plr CH . 

I 
2 

2 
; 

2 

2 

L/P: Line Printer 
c/R: Card Reader 
C/P: Card Punch 

2 

I 
I 

2 

2 

2 

tions." Their format is shown as Format I in 
Figure 8. 

where, 

F; function 

B; specify a modifier (index register) 

I; indirect addressing bit 

A; specify a working arithmetic register or 
index register 

V; variation; short (32 bits) or long (64 
bits) (for the length of operand) left 
(0-15) or right half (for the A-register) 
etc. 

M; memory address part or immediate 
number 

When M = 0, I = 0, B = 0, the operand ad­
dress of this instruction is not #0 address but 
next location of this instruction. 

(a) M:JA:JB 
M refers to all core memory addresses 
and helical delay line register addresses, 
address numbers 0 through 65,535. A 
refers to addresses 0 through 15 which 
are the helical delay line registers and 
serve as fast access multi-purpose regis­
ters. Thus, A designates an arithmetic 
register or an index register. In the 
case of "Jump on Indicator" instruction, 
A refers to the local bit address of the 



194 . PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

half word. 

,f sign 

m; 0 

r Sign 

single word L:,.I -----____ ----1 

m; 0 31 

double word 
,r si€!l 

m; 0 

r sign of fraction 

exponent fraction 
floding single !.....' --+<1 I~---=-----=-----' 

word m; 0 789 31 

rdlJll of frae fraction 
floating double,,-expo-=--n_en_t~1 I~-_______________ ----I 

..oro m; 0 7 8 9 63 

fraction 
. r sign of frac 

exponen~ 

floating quad- L-' ---1-1 L-' --------------/I:j(-------------' 
ruple word m;o 789 127 

,..---_______ data ________ ____ 

example of 
bitwise variable!..... __ _ 
length data, II!; 0 12 31 32 63 64 61 

Figure 5. Number RepresentatiQn. 

indicator bit which is accommodated in 
the address 17 register. B refers to the 
index registers which serve as "zero ac­
cess modifiers" of the M-address of an 
instruction. 

(b) Each instruction operates on A-ad­
dresses indiscriminately, i.e., there is no 
distinction between index arithmetic, 
pure arithmetic and logical operation in 
the addresses from 0 to 15. For example, 
"add" instruction may be used for an 
addition of two index or arithmetic 
registers. Some advantages of this in­
struction system are: 

(i) All registers are always efficiently 
available in the program sequence. 

(ii) Arithmetic results may immedi­
ately be used as index modifiers. 
This is remarkably useful in the 
compiling and data processing pro­
grams. 

(iii) In many cases, several program se­
quences may continue without 
store instruction. This will shorten 
the execution time and eliminate 
the round-off error. 

(iv) The operation of a program se­
quence may be reduced by using 
A- or B-registers in two-address 
way. 

The long instructions for bitwise variable 
length data are divided into two categories, 
Formats II and III in Figure 8, bitwise vari­
able length data handling and variable length 
conditional jump instruction, respectively. 

where, 

F; function example VA (variable length 
add) ; VBM (variable length bitwise multi­
ply) (AND) etc. 

Bh B2; modifier of first operand address 
B2, 12 ; indirect bit of first operand address 
Ml *; bit address of first operand 
L; length of operands 
W; repeat mode bit 
M2 *; bit address of second operand 
A; A-address in which there is a number to 

be compared 
M2 ; jump address 
V; variation bit (absolute or not) 

Some specific features of this instruction 
are: 

(i) Bitwise addressing and bitwise vari­
able length data handling. 

(ii) Complete 2-address. 
(iii) Bitwise modification. 
(iv) Repeatability by W-bit. 

In the repeat mode, many data may be scat­
tered or gathered from memory to memory in 



VERY HIGH SPEED SERIAL AND SERIAL-PARALLEL COMPUTERS 195 

the most universal form, where source address 
interval d, destination address interval d', count 
number n and current count-up p are all as­
signed in the addresses 2 and 3 as shown in 
Figure 9 (a) for Format II, (b) for Format 
III. 

Repetition stops when n = p or the -dump 
condition is fulfilled, and when the repetition 
is the case of jump instruction (table look-up), 
the bit address of the current address is stored 

from 0 through 20 bit address of address 3. 
After this the jump occurs. This operation is 
used in the "table look-up." 

The instruction format for the input and out­
put "command" is shown in Format IV in 
Figure 8. 

where, 

F; Function 
B; Modifier of DA parts 

Word address (:32 bits in£o:nna.tion each.) 

#1 

#2 

#3 

114 

, EIIlpty (11011 is read when referred to) 

Special register for variable length data instruction 
(used in case of repeat mode) 

B-register (index register, used as automatic address 
modifier assigned by the B-part of instruction) 

-register (arithmetic register, refelTed to by the 
A-part of instruction, can also be used as index register 
together with a "pseudo indexll instruction) 

#16 memory_ error address indicator, mElllo17 protection 
boundar.y register 

1/17 I/O channel busy indicatcrs, overnov indicators 
compare indicators etc. 

/flJ3 mask register indicators 

#19 channel control register of channel 113 

#2JJ channel control register of channel 114 
( 
') 

#'30 channel control register of channel #14 

#31 Real Time clock register 

#32 } 
~ memor,y address in core mElD017 

r 
1165536 

'-_______ --IJ.referred to by the H part ot instruction 

Figure 6. Memory Address Assignment. 



196 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

,--__ Memory Error Address ______ ,-- Pr3tec~ Bo~ary LRee --;p 

I~ I , I " I f I I , !' 116 
I • • , , I ,2! I 24, I , I ! I , J 

address ,~ 

address 17' 

address 18 
1 OJ I , ~, ~! • ! 5 ! 6 ~ 71 8 , 9 ,", ' ! , ' ! , , , , ! , , ! , ! ! ," I 

~ M '~ ________ ~ ________ ~ 

£= ~ tl= 
.,!!lE r-I C\I Mask indicator corresponding to the same 

8 .Q :§ r-I bi taddress of address 1/1 .... P..... C\I .... \ ~ '" ° M ~ "II:, "'" ~ ~s::+> CIl till ~ 
",om -d MOO CIS = 
trj §,~ ~ ~~ ,--_______ Channel Control Resist.:..:e=-r ______ ~ 

,0 I ! ! ! I ( I , , ! I '~ 116, , I ?O 1
21

, ! , , , ,31 I Ii' 
address S. 

30 ~----~v-----~ ~~--~~--~ Command Address Statios Indicator Count 

Figure 7. Assignment of Special Register Bit. 

I; Indirect address bit 

A; Channel number specification 

B2 ; M2 part modifier 

12 ; Indirect address bit 

M2 ; "Command" location specification 

D; Device number specification 

W; Mask bit setting 

L; "PS" instruction variation 

4. Input-Output Channel and Its Control 

The I/O control of the 5020 family is exe­
cuted by means of I/O channels, and the Arith­
metic and Control Unit or the channel time­
shares main memory as occasion arises. An 
I/O channel is exclusive to a certain type o~ 
I/O devices, and the simultaneous operation of 
maximum 12 channels is allowed. 

The channel operation is initiated in Arith­
metic and Control Unit by I/n instruction 
(Format IV), which is valid when and only 
when the Priority Mode Indicator (the 4th bit 
of address 17, of Figure 7) is on. 

The L part of an I/O instruction assigns sub­
functions such as Read, Read Backward, Write, 
Advance, Advance Backward, Rewind, etc. 

The channel having received the control, 
starts the designated unit and transfers infor­
mations between I/O unit. 

The transmission area is defined by "com­
mands" (as shown in Figure 8), which are ini­
tially- addressed by a I/O instruction and are 
fetched from the main core memory also by 
use of memory read facility of the channel. The 
command operations can be chained by desig­
nating a bit in a command. 

Each part of a command shown in Figure 8 
represents the following: 

M; initial main memory address or drum 
address 

N; number of word or block to be processed 
R; transfer or skip 
S; variation of operation 
T; disconnect or proceed 

The adoption of commands in the 5020 and 
5020E systems makes the I/O operation more 
efficient, as so called scatter read, gather write 
or symbol control is possible. 

Having left the I/O control to the channel, 
the central processor processes ensuing main 
program simultaneously with the I/O opera­
tions of the channel. Its memory refer process 
is delayed only if any of the I/O channels are 
attempting to access the main storage at the 
same time. 

The status of a channel in operation or after 
operation is indicated in the channel Control 
Register as shown in Figure 7 and can be re­
ferred by main control programs. 



VERY HIGH SPEED SERIAL AND SERIAL-PARALLEL COMPUTERS 197 

5. Program Interruption and Protections 

The program interrupt conditions are: 
Memory error 
Overflow in fixed point, floating point or 

variable 
Length arithmetic operations 
Memory protection and No operation 
Ready conditions of I/O control channels 
Real-Time clock interrupt 
Manual Console switch, etc. 

These conditions are indicated in the address 
17 Indicator register (Figure 7). 

The built-in circuits continuously and auto­
matically check for above conditions and cor-

responding contents of mask register (address 
18, as seen in Figure 7). 

These program interrupt conditions cause an 
interruption only when there is a "one" bit 
both in Indicator Register and Mask Register, 
and when the Priority Mode Indicator (4th bit 
of address 17) is off. 

If the program interruption occurs, the main 
program routine is turned off, the Priority 
Mode Indicator is forced to turn on, the current 
content of SCC is stored to the address 32 with 
the instruction word count, and a forced jump 
is made to the address 33 from where begins 
Master Control Program, the routine handling 
the specific conditions. 

11 
Fomat I~~~~~~~~~~-L~~~~'~ILv~I~.~,_A~,~I~Ill-Lr~~~'_'L,_FLr~~~~,~, 

15 16 17 2D 21 22 24 25 31 

M* 
[11 Br F 1 , , r , r I , , , , I 

202122 2425 31 

{2, ~ 'PI L , , , , I I I I , 
525354 565758 63 

111* {, ;BI F , , 
I , I I 

, , , , I: I , 
20 21 22 2~ 25 31 

"'2 V A 

I~' ~ 
W L 

I , , I I I , I f I I , 
4748 49 525354 ~ 5758 63 

[ 

I , 

FomatlV 0 

I 

D 
I--d A ,Ill IBl, 

F , , , , I I I I I 
15 17 2D 21 22 24 25 31 

M ' . 12 ~ IWI L 
I I , 1///I/////I/lJ I , , I , , , 

47 5354 5657 58 63 
32 

Command I , 
11 
! , 

R S T 
I LJ ·1 I I I I 

N 
I I 

o 
1517 18 192D 21 

Figure 8. Instruction Format. 



198 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

address I 

2 0 

3 
0 

address I 
2 

3 

0 

I 

0 

f 
I 

o 

4, 

~ 

(a) 

d..
1 

(b) 

Modifier (value) 

n 
3) 21 31 

P 

20 21 31 

n 

20 21 31 

I P I 
20 21 31 

displacement 

15 1& 31 

(e) index word for word adress modification 

,,------modifier (value) 
I 

o 

, 
! 

20 21 31 

(d) index word for bit address modification 

Fig. 9. Repeat Mode Modifier and Index Word. 

The right half word of address 16 is the 
memory Protection Boundary Register (as 
shown in Figure 7), U or L assigns the upper 
bound group number or the lower bound, re­
spectively, where a group represents every 256 
words memory locations, each group having an 
address that is a multiple of 256. (When the 
main memory capacity is over 65 KW in a 
5020E, every 1024 words.) 

The protected memory address X, whose 
group number is X, is assigned by U and L, 
such as 

ifU>L U>X>L 
if U = L 
if U < L , 

no region is assigned 
X < U or L < X 

When and only when Priority Mode Indica­
tor is on, all the instructions which will have 
store operation to the above-mentioned pro­
tected area are suppressed from storing, and 
this is indicated by Transfer Protection Indica­
tor (Oth bit in address 18) and Protection 

Indicator (16th bit in address 17). So the pro­
gram interruption will occur. 

The purpose of this protection is to eliminate 
the interactive of programs in multiprogram­
ming operation. Especially when the system is 
operating under supervision of the monitoring 
system, it is necessary to safeguard the moni­
tor from harm of supervised program, for 
these situations cause not only a single pro­
gram but all the system to stop. Moreover, 
stop protection facility is provided in the 5020 
family. 

Thus, automatic program interrupt ion sys­
tem and protection facility have made effective 
multiprogramming possible. 

6. Logical Structure 

6.1 Logic Circuit 
The logic circuit of the 5020 family is fully 

synchronous, 2 phase (B phase) static circuit. 
Figure 10 (a) shows a basic regenerative ampli-



VERY HIGH SPEED SERIAL AND SERIAL-PARALLEL COMPUTERS 199 

fier or flip-flop, in which the connection A is 
specially added to eliminate the hazard of mis­
operation and to have room of the clock phase 
adj ustment. Figure 10 (b) is the symbolic rep­
resentation of circuit (a). (c) in the same fig­
ure shows the rules of worst case logical con­
nection, that is, two levels of pair logic are per­
mitted. Max number of fan-in of logic circuit 
is 7 and max fan out of logic is 6. ( d) shows 
the helical-wired transmission line (delay line) 
register of 36 bit information in the 5020 
system. 

6.2 Arithmetic Unit of the 5020 

In the 5020 arithmetic unit, the pure serial 
logic and the delay line registers feature re­
veals especially its simple characteristics in 
multiplication, division and shift operation. 
The multiplication and the division in the serial 
computer are performed by a series of addi­
tions, subtractions and shifts. Therefore, if the 
most simple procedure is adopted, it will take 

'------00 '}" 

32 words cycle time to execute the multiplica­
tion of one word by one word. Particularly for 
scientific uses it is important to reduce the 
execution time of the multiplication. The sum­
Inarized procedures of the multiplication and 
the division are as follows. 

( 1 ) Multiplication 

The HITAC 5020 has five binary Adder & 
Subtracters. In the multiplication, four Adder 
& Subtracters of them are connected in series. 
The multiplier is divided into eight parts, each 
of which contains 4 bits information. When 
the multiplicand passed through four Adder in 
series according to 4 bits information, the par­
tial product of one-word by one eighth word is 
obtained. Therefore the multiplication of one 
word by one word is performed only in 8 words 
cycle time (16 .p.sec). 

In the case of Integer Multiply (1M), five 
Adders are used. So it takes only 1 word cycle 

x C) , {ci)I'---...oo It 

~ Q-Q _-,I T ___ 
ooOC 

Y 

N/O- OR-EF ANf)-c,· EF 
A .... p 

Q.tu EF ". OR-ANb rt OR- AWD A .... p 

~ l l ~ 1=&1 ~ ~ ~ i ~--t@ 
I-7a.~·"'1 ----. 7i ---.-.. ----4---- _____ ~ ______ ~ 
I.. .J.1:" J 

I ~ --------------------------~~ i ~ 
(C) 

00( '7, 
~ • r K£ !.: r d.efAt ~ ~ ~ ~ 

lei ) 
Figure 10. Logic Circuit. 

I 
I 

~. 

~ 



200 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

time to carry out the multiplication of one word 
by the integer less than 32. This scheme is illus­
trated in Figure 11. 

(2) D-iv-ision 

Generally the non-restoring method is suit­
able for the procedure of the division in com­
puters. According to the test result of signs of 
the divisor and the partial remainder, the di­
visor is added to or subtracted from the partial 
remainder shifted one place to the right. 

In the HIT AC 5020, this method is more im­
proved to reduce the execution time of the divi­
sion by using three binary Adder & Subtrac­
ters. (See Figure 12.) 

The result of the addition or the subtraction 
is transferred to the Adder 2 and the Adder 3, 
in which the divisor is added to or subtracted 
from the result in the Adder 1, respectively. 
These two results appear in the Auxiliary Reg­
isters 1 and 2. At the end of this operation, the 
true result is selected automatically by check­
ing a sign bit of the result in the Adder 1. 
Thus, the division of one word by one word is 
performed in 16 words cycle time (32 p.sec). 

(3) Shift Operation 

In the HITAC 5020, the shift operation is 
performed by means of the shifter. Owing to 
very high clock frequency, the delay lines can 
be used as various registers instead of the tran­
sistorized register, and the use of delay lines 
is very eminent from the viewpoint of econ­
omy and reliability. The Shifter, of course, is 
made of delay lines. For instance, n bits left 
shift is carried out by making the contents of 
a register pass through the delay lines of n bits 

a}---_ 

I 
I 
I 
I 

I I 
I L ___ --- __ --1 
L----________ ..J 

contrel line 

Figure 11. Multiplication Unit of the 5020. 

quotient .e--- r--- - ----- - -------.., 
I I 

I 

I Add Partial ~ I "-------®- _R!'!'!.":!.!!d!'!. __ -0-+ } Adder 1 a } I 
I or Subtracto I 

.witchl ---.... af--.d-----{'a _..J 
Sub Partial I 

a - ~~i.!!9~ __ -0--* 

a -~~~-- ,~-------

Figure 12. Division Unit of the 5020. 

length. The Shifter of the HITAC 5020 con­
sists of delay lines of 0, 1, 2, 4, S, 16, and 36 
bits length. When the number to be shifted n 
places is set in the Shift Control Register 
(SCR), these delay lines are connected auto­
matically to make the total length n bits. Every 
kind of shift operation, thus, can be performed 
by very simple logical circuits. Although the 
one-word information of the HITAC 5020 is 
32 bits, the one-word delay line registers have 
36 bits length for certain reason (ex. multipli­
cation). Therefore, the recirculation time of 
delay line register is 36 bits cycle. Some con­
sideration must be taken to shift the two or 
more-word information because of 4 bits spare 
time. For this purpose, the coincidence circuit 
between the shift control register and the coun­
ter is provided, which controls two output of 
the shifter (see Figure 13). 

6.3 Arithmetic Unit of the 5020E 

(1) Multiplication Scheme of the 5020E 

To perform the mUltiplication of one word 
by one word only in two words cycle time 
(1.0fts in the case of the 5020E), we use eight 
4-bit-parallel-adders, AI, A2 ..... AS (see 
Figure 14). The multiplicand is passed through 
the fifteen black boxes which are n time cir­
cuits, named Nl, N2, . . . . . N15 and we get 
15 outputs (Le. y, 2y, 3y, ..... 15y) simul­
taneously. Now, they are fed into eight gates 
numbered Gl through GS. On the other hand, 
the most significant four bits of the multiplier 
control the gate G 1. That is, they select one 
of the 15 outputs, mentioned above, or inhibit 
all of them when the 4 bits are all zeros. The 
next more significant 4 bits of the multiplier 



VERY HIGH SPEED SERIAL AND SERIAL-PARALLEL COMPUTERS 201 

4 Delay line 

information 
;/0--

input of tl:e shifter + 
.! I 

-t.. 16 I 
I I I 
I I I 
I I 36 I I 
I ..J I L ____________ ji---------- I 

I I 
L--_.---,------, Shift Control Register I 

b----------~-_J co:"ncidence 
circuit 

I I L--____ ----'I counter 

Figure 13. The Schematic Diagram of the Shifter of the 5020. 

control the gate G2 and so on. The outputs of 
the gates are fed into the corresponding adders 
and the adders are connected in series. So we 
can get the two-word product from the output 
of the adder A8 in 2 words cycle time. 

(2) Division Scheme of the 5020E 

To speed up the division process, we modify 
the non-restoring method slightly and obtain. 
4 bits quotients in one word cycle (0.5 fLS). 

In this method, comparing the sign of the 
divisor (y) with the sign of the partial remain­
d~r (ri), we can determine the next quotient 
bit (qi) and whether to add or· subtract next. 
But still there are eight possibilities left. That 

lmltiplier Register (xl 

C!I o· 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 

lmltiplicand Reg (yl 

Figure 14. Schematic Diagram of the Multiplication 
unit of the 5020E. 

is, how many times of the divisor should be 
added to (or subtracted from) the 16 "'I i. 

riH = 16 "'Ii -+- (2k + 1) y (k = 0, 1, ..... 7) 

Comparison of the most significant 5 bits of 
the divisor (y) with the most significant 6 bits 
of the partial remainder' '(r i) allows us ~o re­
strict the above eight possibilities to onl~ two. 
(The divisor must have been normalized.) Sup­
pose that we could find k to be n or n + 1 
(n = 0, 1, 2, ... 6). Then, perform three addi-
tions (or subtractions). . 

riH: = 16Yi ± (2n + 1~ y 
riH" = 16 "'Ii ± (2n) y 
ri+4'" = 16 "'Ii -+- (2n + 3) y 

Test the, sign of ri+4" and we c~n determine 
which of the two possible remainders -(r1H" 
ri+4{~). is right. And, of course, we can obtain 
the right quotient bits. This method is sche­
matically illustrated in Figure 15 where N1, 
N2, .... N15 are then times circuits which are 
used also in multiplication operation; G1, G2, 
G3 are gates which choose the n multiple of 
the divisor by the informatio~ of the most sig­
nificant 5 bits of divisor (Dl, D2, .•.. D5) and 
of the 6 bits of the partial remainder (R1, R2, 
... R6). AS1, AS2, AS3 are the Adder-Sub­
tracter. and P is a circuit to select the right 
partial remainder out of two possible ones. 

7. Circuitry 

Recent advancement of transistor technique 
is remarkable and enables us to' easily realize 



202 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

IlL mm~m. 
00000 

Divisor Reg (7) 

Figure 15. Schematic Diagram of the Division Unit of the 5020E. 

the circuit that operates at over 10 Me clock 
frequency. Moreover, we have utilized the cur­
rent switch mode circuit to make the most of 
its high speed feature .. :F.orAND .. OR logic cir­
cuit, however, the diode logic and emitter fol­
lower fan out is adopted, based on economy 
and logic density vs. speed studies. 

Figure 16 illustrates the circuit configuration 
of Amp (which is the same circuit as shown 
in Figure 10(a), (b» (a), AND-OR logic (b), 
and OR-AND logic. 

The "zero" level of signal is ground and the 
"one" level is + 3 V as is done in other current 
switch mode circuitry. The collector of the 
amplifier directly drives the signal transmis-

Figure 16. Circuitry of the 5020 Family. 

sion lines, which are twisted pairs or coaxial 
cables, and the collector load is the matching 
resistance (75 or 100) of these lines. The AND­
OR logic circuit is driven by EF's (emitter fol­
lowers) which are almost uniformly distributed 
on signal lines, and transform the source im­
pedance to low. The reasons why we do not 
drive the line by EF, but from collector di­
rectly, are as follows: 

i) The maximum fan out of EF is confined 
by its Pc (power dissipation of transis­
tor) . 

ii) The direct connection of logic input to 
transmission line disturbs the line char­
acteristics. 

iii) The problem of damping oscillation of 
EF is serious. 

iv) It is necessary to decrease the collector 
load resistance as far as the characteris­
tic impedance of line in order to attain 
very high speed switching of transistor, 
so our configuration has no losses. 

The signal transmission lines are the 
foamed polyethylene twisted pair lines 
and coaxial cables, whose length, for the 
worst case of half phase 2 level logic, 
must be less than 1.8m. The output 
lines of EF are single lines less than 
0.5m length. 



VERY HIGH SPEED SERIAL AND SERIAL-PARALLEL COMPUTERS 203 

The computer is fully taken care of 
ground construction and power distribu­
tion, for these may otherwise cause very 
serious problems in very high speed cir­
cuit. 

The circuit data of Figure 16, or Figure 10 
are shown below. 

Ta; delay time of Ampincluding logic witch 
clock, 6.5 ns 

Ta; delay time of Amp including logic witch 
line, 7.5 ns 

T; delay time of two levels of pair logic, 8.5 
ns 

These, all added up, have sufficient room for 
half phase of 18 MC, clock period, that is 27.8 
ns. Actual computer system has been operating 
with sufficient margin, and proved to be com­
pletely feasible. 

8. Core Memory 

The 5020 Magnetic Core Memory is a word­
arranged, linear-:-select system utilizing one fer- -
rite core per bit in a partially-switched mode. 

The basic memory module contains 8,192 
words (33 bits per word including one parity 
check hit) arranged in an array of 4,096 
access lines of 66 bits (2 words) each. This 
enables the transfer of 2 words or up to 64 
consecutive bits per module in a single memory 
cycle which is 2.0 microseconds for 5020 and 
1.5 microseconds for 5020E. Expansion of 
memory capacity can be made in modules or 
banks, as described in 2.1. Each 30-18 mil high 
speed core in the memory array is threaded 
by three windings: One winding each for the 
word read and write currents, one winding for 
the common sense-digit line whose winding 
scheme is such that optimum noise cancellation 
is achieved and the rather liny line is properly 
terminated in view of the high speed operation 
involved. Word selection is accomplished by 
Ineans of a large steering diode matrix in con­
junction with a transistorized cross-bar switch; 
drive current are derived from the constant 
current switch, flow into the selected steering 
diode, word winding and finally the voltage 
switch. The access control and information 
flow control for the memory modules are pro­
vided for every 16 KW as a unit. The built-in 
checkout circuit serves to quick maintenance 

and troubleshooting without the aid of the cen­
tral processor. 

9. Summary 

The paper has described the outline of hard­
ware aspect of the HITAC 5020 and 5020E. 
The design goal of this family, such as high 
performance per cost, is achieved by 18MC 
fully synchronous 2 phase logic circuit, helical 
transmission lines for various purpose regis­
ters such as accumulators, and serial or serio­
parallel logic structure. 10 systems are now in 
production, the largest system of which will be 
installed at the Tokyo University and consists 
of a 5020E and two 5020's. This will be one 
of the most advanced integrated systems in 
Japan, and in the world as well, which is ex­
pected to play an important role and contribute 
to the advancement of Japanese sciences and 
engineerings with its full-fledged power. 

ACKNOWLEDGMENT 

The aU,thors ~ish to acknowledge Prof. T. 
Simauti, St. Paul's University, Tokyo, for his 
considerable--£ontribution to the development 
of system philosophy and software considera­
tions. Thanks are also due to S. Anraku, 
Hitachi Central Laboratory, for his ,yorks in 
the logical design, especially in the design of 
5020E control unit, to Y. Onishi and lVL Tsut­
sumi, Hitachi Central Laboratory, for their 
memory design wor ks, and to many other 
people associated with the 5020 and 5020E 
project. 

REFERENCES 

1. Standard EDP Report, "IBM System/360" 
(Auerbach Corporation, Phi I a del phi a, 
Penna., June 1964). 

2. E. BLOCH, "The Engineering Design of the 
STRETCH Computer," Proc. EJCC, No. 16, 
p. 48,1959. 

3. W. BNCHHOLZ, Planning a Computer Sys­
tem (McGraw Hill Book Co., Inc., N. Y., 
1962),chap.7,p.75. 

4. I. A. D. LEWIS and F. H. WELLS, Milli­
microsecond Pulse Techniques (Pergamon 
Press, London, 1959), chap. 2, 3, p. 47. 

5. Standard EDP Report, "CDC 3600," ibid. 
6. Hitachi Ltd., The Instruction Manual of 

HITAC 5020 (Hitachi Ltd., Tokyo, 1963). 





IBM SYSTEM!360 ENGINEERING 
P. Fagg, J. L. Brown, J. A. Hipp, D. T. Doody 

International Business Machines Corporation, Poughkeepsie, New York 
and 

J. W. Fairclough 
International Business Machines Corporation, Winchester, Hampshire, England 

and 
J. Greene 

International Business Machines Corporation, Endicott, New York 

INTRODUCTION 

The cornerstone of the IBM System/360 
philosophy is that the arch~tecture of a compu­
ter is basically independent of its physical 
implementation.1 Therefore, in System/360, 
different physical implementations have been 
made of the single architectural definition 
which is illustrated in Figure 1. 

One of the initial decisions was the number 
of processors to implement. Specifically, 
should it be four or five (considering the Model 
60/62 as one). The original decision of five 
was based upon a planned increase of about 
2.5 to 3 in internal performance between one 
model and the next. 

Another fundamental decision was to pro­
vide full compatibility, both upward and down­
ward, over the entire range of the IBM 
System/360. This decision was motivated 
primarily by the advantages, both to IBM's 
customens and to IBM, of the interchange­
ability of software. 

It was clear to Engineering that the cost 
targets for each model in System/360 would be 
feasible only if a significant breakthrough were 
made in costs of building transistorized. com­
puters utilizing the IBM SMS technology. 
Therefore, we decided in 1961 to utilize the 

205 

micrologic components that were then being 
developed by the IBM Components Division. 

The most significant features of this Solid 
Logic Technology (SLT) are the module, 
which replaces discrete transistors, resistors, 
diodes, etc., and the two-layer printed wiring 
'tTT'h;n'h .... .o:n10na..1 ....... n"'+ n-f +'ha IH"'n .... a+a UT;1"'a", rr''ha 
yy~~.1.\...-.I.J.. ... "',t'.1.u-.......... "'" .I..L.l.Vtrr.:)V V..L. V.I."',", """ ... .VV.LVU'-' Y'f.&..L"'JJ_ ..L. ... .L", 

modules are a~embled on small cards in 
groups or 6, 12, 24, or 36. The small card is 
the basic replaceable unit. These small cards, 
in turn, plug into large multilayer printed. 
circuit cards (approximately 8.5 x 13 inches). 
Interconnections between large cards are made 
by flat multiconductor tape cables that plug 
into large cards in the same way that the small 
cards do, and which run in channels between 
the large cards. See Figure 2. 

Experience with read-only storages was de­
rived from an experimental computer built in 
1960-1961 at the IBM Hursley Laboratory in 
England. There were two major reasons for 
the general adoption. of read-only storages in 
System/360. 

1. Assist downward compatibility due to 
the cost advantages. Read-only storage 
(ROS) showed an advantage in cost over 
the circuitry which it replaced. ROS 
is used primarily in the control section 
of the system and its advantages be-



206 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Fi 

INPUT -OUTPUT CHANNELS 

MULTIPLEX CHAN. SELECTOR CHANNEL 
MODEL MAX. NUMBER MAXIMUM MAXIMUM DATA RATE 

SUBCHANNELS NUMBER PER CHAN. (KC) 

30 96 2 250 
40 128 2 400 
50 256 3 800 
60 6 1300 
62 _ }NOT 6 1300 
70 

_ AVAILABLE 
6 1300 

ADDRESSES 

INSTRUCTIONS 

CONTROL 

MODEL TYPE 
CYCLE 

)II 

30 READ ONLY STORE 1.0 INDEXED 

40 READ ONLY STORE 0.625 ADDRESSES 
50 READ ONLY STORE 0.5 
60 READ ONLY STORE 0.25 
62 READ ONLY STORE 0.25 
70 SLT CIRCUITS -

RELATIVE INTERNAL PERFORMANCE 

MODEL INTERNAL PERFORMANCE 

30 1 
40 3 
50 10 
60 20 
62 30 
70 50 

gure 1. IBM System/360 Architecture. 

comes more pronounced when more func­
tions are to be performed. Therefore, 
ROS units showed a method of maintain­
ing full compatibility by allowing com­
plex function even in the smallest 
systems. 

2. Flexibility., such as the implementation 
of compatibility features with other IBM 
systems. A unique flexibility is achieved 
by being able to add to the control sec­
tion of the computer, when implemented 
by a ROS, without significantly affecting 
the remainder of the system. One re­
sult is to allow certain System/360 
models to operate as another computer, 
such as the 1401, by adding to but with­
out redesigning the system. This ROS 
concept can be combined with software 

MAIN STORAGE 

CAPACITY WIDTH BITS 
MODEL 8-BITBYTES EXCLUDING 

CYCLE 

lK "1024 PARITY )jS 

30 8-64K 8 2.0 
40 16 - 2S6K 16 2.S 
50 32 - 256K 32 2.0 
60 128 -5 r2K 64 2.0 
62 256 - 512K 64 1.0 
70 256 - 512K 64 1.0 

t 

DATA FLOW 

WIDTH BITS CIRCUIT DELAY 
MODEL EXCLUDING PARITY PER LEVEL, ns 

30 8 30 
40 16 (8 ADDER) 30 
50 32 30 
60 64 10 
62 64 10 
70 64 5 

I VARIABLE I FLOATING 
FIXED FIELD LENGTH POINT 

GENERAL REGISTERS I FLOATING POINT 

MODEL 

30 
40 
SO 
60 
62 
70 

(16 It 32) REGISTERS (4 x 64) 

LOCAL STORE 

WIDTH BITS 
TYPE EXCLUDING 

CYCLE 

PARITY )jl 

MAIN STORE 8 2.0 
CORE ARRAY 16 1.25 
CORE ARRAY 32 0.5 

SLT REGISTERS 64 -
SL T REGISTERS 64 -
SLT REGISTERS 64 -

to offer almost any performance from 
pure simulation (no ROS) to maximum 
performance (no software). When this 
can be done with performance equiva­
lent to the original system, it greatly 
simplifies the programming conversion 
problem by offering essentially two 
computers in one. Note that we have 
various technologies for the read-only 
memory control, including card capa­
citor, balanced capacitor, and the trans­
former approach. Certain choices were 
made for initial implementation, but it 
should be made clear that the choices, 
especially in the slow speed unit are not 
critical and that more than one tech­
nique could be used to give the desired 
performance. 



The concept of architectural compatibility 
was carried a step further in the input/out­
put area by the decision to attach the various 
units through the same electrical interface. 
The major reasons for this decision were the 
added flexibility to the IBM customer, and 
the greatly reduced number of different 
engineering and manufacturing efforts 
which would be involved in producing both 
the System /360 I/O channels and the many 
I/O units. 

Other decisions concerned reliability and 
maintainability. The primary improvement in 
reliability involved the advantages of SLT 
over SMS and obtaining more performance 
from a given number of components by using 
high-speed circuits and storages. An objective 
in maintainability was to have hardware and 
software not only detect failures, but to local­
ize them to small areas, such as five specific 
small cards. A programming system was 
created which takes the machine logic, analyzes 
it, and automatically produces a set of pro­
grams with the proper patterns and expected 
results for that specific logic. These fault locat-

IBM SYSTEM 360 ENGINEERING 207 

ing programs (FLT's) are then capable of 
being entered to the appropriate computer 
(Model 50, 60/62, or 70) and executed with 
the assistance of special hardware. This hard­
ware allows setting up the proper patterns in 
the various registers, advancing the clock a 
controlled number of cycles, logging these reg­
isters into main storage, and comparing the 
actual versus expected results. The program­
ming system allows for updating these FLTs 
with engineering changes, and they offer a 
powerful diagnostic tool in localizing failures. 

SYSTEM/360 MODEL 30 

Model 30, the smallest member of the Sys­
tem/360 line, was designed for the market area 
currently served by the IBM 1401,1440, 1460, 
and 1620. The design objective was, of course, 
complete function and compatibility with other 
System/360 models. However, System/360 
architecture includes 142 instructions, decimal, 
binary, and floating-point arithmetic, complete 
interruption facilities, overlapped channels, 
storage . protection, and "other features nor­
mallyfound in more expensive computers. 
This made maintenance of full compatibility, 

Figure 2. Solid Logic Technology (SLT). 



208 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

Figure 2b. 

Figure 2c. 

, 
• 



while achieving the required cost and perform­
ance objectives, a very difficult task. 

Therefore, a number of different hardware 
configurations were examined. Data paths 
and storages from four to sixteen bits. wide; 
table lookup addition and logical operations; 
registers built in SLT hardware, in main stor­
age and in a separate high-speed storage, were 
studied in detail to arrive at a configuration 
that would meet the cost performance objec­
tives. The availability of the 2-p,sec. storage 
at an acceptable cost was also established at 
this tim:e and became an overwhelming factor 
in our; selections. 

The, key engineering decisions which estab­
lished Model 30 characteristics were: 

1. Selection of an 8-bit wide, plus parity, 
2-,p,sec storage unit, 64K bytes maximum, 

2. Use of 8-bit wide, plus parity, data path, 
3. Use of 30-nsec SLT circuits, 
4. Implementation of "local storage" in 

main storage, 
5. Use of a 1-p,sec ROS for control, 
6. Provide· integrated, time-shared, multi­

plex and selector channels, 
7. Provide for complete processor growth in 

in a single frame, 
8. Utilize "byte" packaging to facilitate 

checking and fault location. 

"By-te" packaging means placing all the cir­
cuits required for eight data bits plus parity 
on one pluggable small card. This concept, 
along with micro-program diagnostics, per­
mits fault location to a resolution that averages 
five small cards. 

A simplified data-flow diagram ,of the Model 
30 processor is shown in Figure 3. The four­
teen 8-bit registers, with the 8-bit AL U and 
8-bit storage, provide all the functions for the 
CPU and multiplex channel. Additional reg­
isters ,or buffers are required for selector 
channe.ls,: direct control, interval' timer, and 
storage-protection features. 

Figure 4 is a map of local storage, which is 
actually an extension of the main storage unit. 
The first 256 bytes are utilized by the processor 
for general registers, floating-point registers, 
interim storage during multiply time shar-

IBM SYSTEM 360 ENGINEERING 209 

ing, and other scratch-pad functions. The 
second 256 bytes are used by the multiplex 
channel for channel-control words. Additional 
control-word storage is available in larger 
storage sizes. 

The multiplex channel time shares the proc­
essor registers by interrupting the micropro­
gram, holding the return address, storing the 
registers in local storage, and then at comple­
tion of the I/O operation, restoring the regis­
ters to their original state. This is analogous 
to a macroprogram interrput. 

TIMING AND ROS CONTROL 

The basic timing is established by the 1-p,sec 
read-only storage. The main storage provides 
the read-write cycle in 2 p,sec and a read-com­
pute-write cycle in 3 p,sec. Within the 1-p,sec 
ROS cycle are four 250-nsec timing pulses. 

The read only storage in the Model 30 is a 
card capacitor ROS containing a maximum of 
8,000 words with 64 bits per word. 

The capacitor ROS consists of a matrix of 
drive lines an<;l sense lines with capacitors at 
the intersections where a one is required, and 
no capacitors at those intersections requiring 
a zero. The voltage change on a drive wire 
will cause capacitive current to flow in those 
sense lines which are coupled to that particu­
lar drive wire by a c,apacitor. In the card 
capacitor store, the 64 sense lines and one plate 
of each capacitor are printed on an epoxy glass 
board bonded to a sheet of dielectric material. 
The drive wires and the other plate of the 
capacitors are printed on mylar cards (pro­
gram cards) the size of a standard IBM card 
(see Figure 5). 

Each program card is punched with the in­
formation pattern specified by the micro-code 
and contains 12 ROS words. A capacitor plate 
is punched out at an intersection where a zero 
is to be stored; thus, an unpunched card will 
give all ones and punching a hole gives a zero 
at that bit in the word. Microprogram changes 
can be made by inserting new program cards. 

MICROPROGRAM 

A single microprogram instruction can initi­
ate a storage operation, gate operands to the 



210 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

TOW TOX 

STORAGE INHIBIT BUSS 

STORAGE 
DATA 
BUSS 

B 

A 

B 

NEXT ROS 
ADDRESS 

ROS 
BRANCH 

ROS 
BRANCH 

STAT SET 

SOURCE "A" 

"A" INPUT CTL 

SOURCE "B" 

"B" INPUT CTL 

CONSTANT 

CARRY CTL 

TIC ALU CTL 

o EST. "0" 

STORAGE 
ADDRESS REG. 
INH SELECT 

LOCAL/MAIN 
DEST. CTL. 

X BUSS 

WBUSS 

Figure 3. System/360 Model 30 Data Flow. 

ALU 

TIC 

CN 

CL 

CH 

CS 

CA 

CF 

CB 

CG 

CK~--. 

CC 

CV 

CD 

CM 

CU 

FROM 
U V 



IBM SYSTEM 360 ENGINEERING 211 

INTP STATUS 

0 I 2 3 4;: 6 7 8 9 10 II 12 13 14 IS 

OX G.P. REG 0 f I X I x+llx+2 FLOATING POINT REG. 0 

lX I 0111213141S1617 .... K ADDRESSABLE LOCAL 
STORAGE BYTES, FOR 
TEMPORARY STORAGE OF 
INSTRUCTION COUNTER, 
STORAGE PROTECTION 
MASK, SELECTOR AND 
MULTIPLEX CHANNEL 
INFORMATION, CONDITION 
REGISTER, ETC. 

2X 2 10SO USE FLOATING POINT REG. 2 

'3X 3 8 I 9 110 III 112 113 I 14 liS .... 
4X 4 FLOATING POINT REG. 4 

SX S 16 I 17 I 18 I 19 120 121 122 123 .... 
6X 6 FLOATING POINT REG. 6 

LOCAL 7X 7 24 I 2S I 26 I 27 I 28 I 29 I 30 I 3 I .... 
STORAGE 8X 8 

9X 9 o 1 LiS I v lUi G1 J I I 

lOX 10 l 
T 

IIX II CPU STORAGE DURING MPLX 
12X 12 SHARE 

13X 13 

14X 14 I CPU WORKING STORAGE 
ISX IS 

OX UNIT CONTROL WORD 0 UNIT CONTROL WORD 16 

1)( 1 17 

2X 2 18 

3X 3 19 

4X 4 20 

SX S 21 

6X 6 22 

MPX 7X 7 23 
STORAGE 8X 8 24 

9X 9 2S 
In ,),c, 

1:~~I~------------------i-j----r------------------~-~--~ 
Figure 4. Model 30 Local Storage,. 

ALU input registers, select the ALU function, 
store the result in the destination register, and 
determine the next micro-word to read from 
read-only storage. Each ROS. word is decoded 
to operate the gates and control points in that 
system. A brief description of the branch, 
function and storage-control fields in each ROS 
word follows. 

Branch Control 
The branch control fields provide the address 

of the next ROS word to be executed. A ROS 
address is a 13-bit binary number. Nor­
mally the branch control group provides 
only 8 bits (leaving 5 bits unchanged) of 

next address information. Of these 8 bits, 
the low-order 2 are called "branch" bits and 
the remaining 6 are called "next address" bits. 
The 6 "next address" bits are specified directly 
in a 6-bit field. The two "branch" bits are 
speficied by two 4-bit fields. These two fields 
are decoded and used in masking and extract­
ing machine conditions and status conditions 
contained in data-flow registers G and S. 

Another 4-bit branch control group provides 
the function of setting several variables to de­
sired values for later use in microprogram 
branching. 



212 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

CONNECTION 
TABS 

MYLAR PROGRAM CARD 

~:iE CAPACITANCE 

EPOXY GLAss 
SENSE PLANE 

Figure 5. Model 30 Card Capacitor Read-Only Storage. 

In summary, every ROS word provides a 
branchjng ability. The branch can be 4-way, 
2-way, or I-way (simple next address). A 
partial next address is normally used, but pro­
vision is made for obtaining a full 13-bit next 
address when required. The total length of 
the branch control group is 18 bits, plus 1 
parity bit. 

Function Control 
The function control· group is subdivided 

into four fields: source A, source B, operation, 
and destination. 

1. Source A (CA) 
This 4-bit field selects one of the 10- hard­
ware registers to be gated to the A input 
of the ALU. 

2. (CF) 
The 8 data bits from a register can be 
presented to the A input "straight" or 
they can be presented "crossed." The 
term· "crossed" means that the high-

order four bits of the source register 
enter the low-order four bits of the ALU, 
and the low-order four bits of the source 
register enter the high-order four bits of 
the ALU. The A input can further be 
controlled by presenting all eight bits, 
the low-order four only, the high-order 
four only, or none, to the ALU. 

3. Source B (CB) 
This 3-bit field selects one of three regis­
ters to be presented to the B input of the 
ALU. The B input is the "true/comple­
ment" input and has HI/LO controls 
but no straight/crossed controls. 

4. (CG) 
This field controls the gating of the B 
input to the ALU. That is, the low-order 
four bits only, the high-order four bits 
only, all eight bits, or none of the eight 
bits of B may be presented to the ALU. 

5. Constant Generator (CK) 
This field is gated to the B buss, main 
core STAR and ROSAR, thus providing 



a source for constants, mask configura­
tions, and address constants. 

6. Carry (CC) 
This 3-bit field controls carry in, AND, 
OR, EXCLUSIVE OR functions and per­
mits the setting of carry out into the 
carry latch, if desired. 

7. True / Complement & Binary / Decimal 
Control (CV) 
This 2-bit field controls the true/ comple­
ment entry of the B input to the ALU, 
also whether the operation is decimal or 
binary. 

8. Destination (CD) 
This 4-bit field selects one of the 10 hard­
ware registers to receive the output of 
the ALU. A given register may be used 
both as a source and as the destination 
during a single ROS cycle. 

In summary, the Operation group specifies 
one of ADD binary, ADD decimal, AND, OR, 
or EXCLUSIVE OR. It also specifies true 
or complement; 0 or 1 carry input; save or 
ignore resulting carry; use true/complement 
latch; and use carry latch. 

Storage Control.'J 
(CM) (CU) 

These two fields control core storage opera­
tion. Either main storage, local storage, or 
MPX (for I/O) storage can be addressed for 
storage read-write calls; five values of CM 
are used to specify the address register to be 
gated to STAR. 

An example of the sequence of ROS control, 
Figure 6, shows an ADD cycle using a simpli­
fied data flow. 

Step i-As the routine is entered, the con­
tents of UV are gated to the STAR, a read call 
is issued to main storage, and register V is 
decremented by 1. 

Step 2-The A-field data is regenerated in 
storage and the A-field data byte is transferred 
from register R to D. 

Step 3-The contents of IJ are gated to STAR, 
a read call is issued and J (lower -4 bits) are 
put in Z. 

Step 4-Z is tested for 0 to set up the branch 
condition at the next step, the B-field data byte 

IBM SYSTEM 360 ENGINEERING 213 

is read out (R) to the adder, as are the D­
register contents (A-field data) and the carry 
from a previous cycle. The output (Z) is gated 
into R. 

Step 5-If the zero test of A in Step 4 is true,-a 
write into the B field is performed (the address 
is still in STAR), J is decremented by 1 and the 
routine is repeated. If the zero test of Z in step 
4 is false, then' a branch is made to the write 
call and the routine is exited. 

As an example of Model 30 microcoding 
efficiency, the execute portion of a fixed-point 
binary add uses approximately 20 words. How­
ever, the add can be combined with 13 addi­
tional operation-code executions, such as sub­
tract, AND, OR, EXCLUSIVE OR, etc., using a 
total of 45 words. A one-half word multiply 
giving a full-word product requires about 95 
words. The total floating-point feature, which 
utilizes the fixed-point microprograms, requires 
approximately 500 words. It should be recog­
nized that the microprogrammer has the choice 
of optimizing for minimum words or maximum 
performance. 

IBM 1401/40/60 COMPATIBILITY 
FEATURES 

It was a market requirement that Model 30 
execute the IBIVI 140.1-40/60. instructions di­
rectly. Further, it was desired to provide these 
features without disturbing the Model 30 de­
sign, which was optimized for System/360 re­
quirements. As a result, these features are 
provided by an addition of only four circuit 
cards plus extensive microprograms. 

The general approach utilizes the following: 

1. System/360 input-output devices, 
2. Conversion tables in local storage, 
3. Microprogram decoding and execution of 

the instructions directly. 

The internal performance is several times the 
1401, based on a typical mix of instructions 
found in 1401 programs. For individual in­
structions, however, the speed ratio varies 
widely. 

Method 

The internal code used in Model 30 for the 
compatibility feature is EBCDIC and, further, 
Model 30 has a binary-addressed storage. Thus, 



214 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

SENSE OUT 

I 
READ 1/ 

I 
WRITE I 

I 
I 

CORE 
STORAGE 

STAR = UV 
RD 

V = V- 1 

INHIBIT 

WR 
D=R I 

I I 

~ ~ 
V ~ 
I I 

ALU OUTPUT BUSS (Z) 

U, V - ADDR. A FIELD 

I J - ADDR. B FIELD 

ALU OP - ADD 
A INPUT 

BINPUT 

STAR = IJ 
RD R=R+D+C 

Z'" J (L) 
I 

~ 
I 
I 
I 

I 
I 
I 

V 
I 

END-LOW 4 BITS OF 
J-EQUAL 0 

I 
I 
I 

'{-
I 

Figure 6. Model 30 Read-Only Storage ADD Cycle. 

a certain amount of translation of character 
codes and conversion of numbers from decimal 
to binary radix, and back again, takes place 
during processing. These conversions and 
translations are accomplished by table look-up, 
using the tables in local storage. These tables 
are read into storage as part of the special load 
procedure required prior to execution of a 1401 
program. The table used to translate the 
EBCDIC to BCD requires 128 characters. It is 
used ·during the execution of 1401 instructions 
such as bit test, move zone and move numeric, 
which depend on the actual bit coding. 

A 72-byte table is required to hold the con­
stants used to convert the 1401 decimal ad-

dresses to binary addresses and the converse. 
This conversion takes place at execute time, 
hence the programs can operate correctly no 
matter what methods are used in the 1401 pro­
gram to generate or modify addresses. Each 
conversion requires from 6 to 12 microseconds 
depending on the value of the address. 

Other functions which utilize tables are op 
decode and I/O device address assignment. Ad­
ditional areas in local storage are used for hard­
ware register back-up, sense switches, system 
specification, and working area. While most of 
the available 512 bytes of local storage are used, 
no main storage is used. Hence, an 8K 1401 
program will run on an 8K Model 30. 



Each input or output device type has an indi­
vidual microprogram routine. Most devices are 
attached to the Model 30 multiplex channel. 
Magnetic tapes are also available on selector 
channels. The throughput for the compatibility 
feature requires an analysis of the particular 
I/O devices used and the particular program 
being run. However, in every practical case it 
will exceed the system being simulated. 

SUMMARY 

The Model 30 effort has helped to prove two 
points: 

1. Small systems, with the extensive func­
tion and facility of the largest systems, 
are practical. 

2. The microprogram control is sufficiently 
general that a good system design can be 
used to simulate a wide variety of archi­
tecture. 

SYSTEM/360 MODEL 40 

The performance of Model 40 is approxi­
mately three times that of Model 30. To attain 
this performance at minimum cost, four major 
design decisions were important. 

1. The adoption of a 16-bit-wide storage of 
2.5 p'sec together with a basic 16-bit wide 
data flow; implemented in 30-nsee SLT 
circuits, provided an optimum configura­
tion. 

2. A 0.625 p.,sec read-only storage as a means 
of control for all CPU functions was used 
because this technique offered significant 
advantages in cost, flexibility, and design 
freedom, compared with more orthodox 

. control systems. 
3. The inclusion of a 1.25 p., sec local storage 

of one hundred forty-four 21-bit words to 
provide general register storage. This 
resulted in a considerable reduction in 
accesses to main storage. 

4. By using the local storage to preserve the 
contents of the CPU during channel op­
erations, much of the CPU data flow can 
be used for channel functions, thus con­
siderably reducing the cost of channels. 

MICROPROGRAMMING 

Microcoded programs, physically residing in 
permanent form in a transformer read-only 

IBM SYSTEM 360 ENGINEERING 215 

storage (TROS), form the heart of the control 
section of the Model 40. To reduce the resulting 
physical changes associated with changes in the 
microprograms, the microprogram design is 
automated and debugged before actual physical 
implementation by means of an IBM 7090 pro­
gramming system, the Control Automation Sys­
tem (CAS). CAS is utilized not only by Model 
40, but by all the System/360 models using ROS 
control. 

The basic input to the system is a logic sketch 
page produced by the microprogrammer. The 
separate micro-instructions are written on this 
page in a formal language, TACT. When this 
initial writing phase is complete, the page is 
transcribed into punched cards. The control 
program for the 7090 is directly derived from 
the Model 40 control signal specification and 
acts as a set of inviolable rules. Within this 
framework, and using associated established 
microprograms for reference where necessary, 
the 7090 simulates the Model 40 and attempts 
to run the microprogram using submitted data. 
Errors or violations are detected, stop the pro­
gram, and cause a diagnostic analysis routine 
to be entered. 

Facilities are available for various printouts 
to provide for analysis and subsequent correc­
tion. 

The debugged microprogram, in the form of 
magnetic tape, is submitted to assignment 
checking. This operational phase checks the 
manual assignment of the absolute address giv­
en to each ROS word, and produces listings giv­
ing the absolute address and binary bit pattern 
of each assigned ROS word. Two decks of cards 
are also produced and used in the production 
and testing of the read-only storage. 

An output of the CAS program is a fully­
checked and redrawn version of the original 
logical sketch page. If microprograms are sub­
sequently updated, a revised CAS page is auto­
matically printed on receipt of change. 

TROS 

The finally-debugged microprogram is trans­
lated into a series of micro-instructions, held in 
read-only storage. 

In Model 40, this takes the form of a trans­
former read-only storage-TROS. TROS is 



216 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

made up of 16 modules, each containing 256 
ROS words (micro-instructions) to make a 
total capacity of 4096 words. Each module is 
made up of 128 tapes, each tape containing two 
words. The word tape carries two ladder net­
works, each of which, after modification, holds 
the bit pattern derived from a specific micro­
instruction. 

The tapes are stacked in a module, as shown 
in Figure 7, with transformers inserted 
through the prepared holes in the tapes. These 
54 transformers are in the form of U and I 
cores. The I cores carry the sense windings. 
Each stage of the ladder network corresponds 
to one bit position of the ROS word. Whether 
the bit is a 1 or a 0 is determined by breaking 
the current path on one side of the ladder with 
a punched hole through the printed wiring, so 
that the current then either passes through the 
core for a 1 or bypasses it for a O. 

Signals are taken from the tapes to the sense 
amplifiers, the outputs of which are used to set 
54 latches. 

The total cycle time of the TROS and the 
basic cycle time of the CPU are both 625 nsec. 

Figure 7. System/360 Model 40 Transformer 
Read-Only Storage. 

Normally, there are four 625-nsec TROS cycles 
for each 2.5-/1 sec main storage cycle. 

It is possible, by the inclusion of a feature 
which adds additional ROS modules, to simulate 
other equipment, such as the 1401 or the 1410. 
This enables programs written for these ma­
chines to be run on the Model 40. Model 40 
implements these features by microprogram­
ming and conventional programming; Model 30 
utilizes microprogramming exclusively. For ex­
ample: the input/output and edit commands 
in the 1401 simulated on the Model 40 are ex­
ecuted with System/360 programming, while 
most of the remainder of the 1401 instructions 
are microcoded. 

The primary reason for adopting this ap­
proach in the Model 40 is to reduce the added 
TROS requirements and the ensuing packaging 
problems and costs. 

DATA FLOW 

Figure 8 is a schematic representation of the 
Model 40 data flow. 

The data flow may be divided into sections 
characterized by their data-handling capabil­
ities: 

1. one-byte arithmetic handling (8 bits plus 
parity) , 

2. one-byte local storage addressing, 
3. two-byte storage addressing and data in­

put/output referencing, 
4. one-byte service for the channel data and 

one-byte service for flags related to the 
channel interface, 

5. two-byte data flow to and from local 
storage. 

One-Byte Data Flow 
One-byte arithmetic handling is performed 

by the arithmetic and logical unit (ALU). The 
ALU is a one-byte-wide adder/subtracter which 
operates in either decimal or hexadecimal mode. 
It is capable of producing both arithmetical 
and logical combinations of the input data 
streams and is checked by means of two-wire 
logic, where one true and one complement sig­
nal is expected on each pair of wires. 

Data bytes are fed to the P and Q busses 
from the associated registers or from the emit 



field of the current micro-instruction. The data 
are then manipulated by the ALU in accordance 
with the content of the ROS control word. 
Several instructions may have common micro­
program subroutines in which the difference 
lies only in the ALU function. One of 16 dif­
ferent AL U functions is preset by a 4-bit field 
in a ROS control word executed before branch­
ing to the common subroutines. 

Two-Byte Data Flow 
Data transfers between local storage, channel 

registers, CPU registers and main storage are 
carried out in two-byte steps. 

STORE 
PROTECT 

1 P BUS (9 BITS) 

DIRECT CONTROl 
INPUT 

REGISTER 0-7 

DIRECT IN .-J 
DIRECT OUT ·1 I 

DIRECT CONTROL Pt O-15 Pt O-17 
OUTPUT B A 

IBM SYSTEM 360 ENGINEERING 217 

LOCAL STORAGE 

This is a small, high-speed storage which pro­
vides registers for fixed and floating-point op­
erations, channel operations, dumping of CPU 
working register contents, interrupts, and for 
general working areas. Only the fixed and float­
ing-point locations are addressable by the main 
program. 

The ferrite local store contains 144 locations 
allocated as shown in Figure 9. Each location 
is 21 bits long. Addressing is completely r~n­
dom and the unit may be split-cycled with read­
or-write operations in any sequence. A read-

MAIN STORE 
2.5 PSt CYCLE 

~ 1881TS 

BUMP 

Q BUS (9 BITS) 

I 
ARiTHMETiC 

I 
I AND LOGIC UNIT 

Pt O-7 Pt O-17 Pt O-15 
C - D 

REGISTER 0-7 REGISTER REGISTER REGISTER REGISTER 

I I I 
MPX OUT 

R BUS (21 BITS) 

SELECT IN 

1 P,O-17 READ ONLY 
R ADDRESS 

SELECT OUT 

SELECTOR INCREMENT REGISTER REGISTER P,O-II 
CHANNEL DATA 

REGISTER P,O-7 

I ,. 
LOCAL .. 
STORE LOCAL READ 

H J ADDRESS - STORE ONLY 
CONTROL 144 WORDS STORE -P,O-7 P,O-7 REGISTER 21 BITS P,O-52 P,O-7 

MPXIN 

Figure 8. Model 40 Data Flow. 



218 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

000 

009 

015 

016 

031 

032 

037 

038 

041 

042 

043 

047 

048 

053 

054 

056 

057 

063 

WORK 
AREA 

WORK 
AREA 
AND 

LOG OUT 
AREA 

SELECTOR CHANNEL 1 
UNIT CONTROL 

WORD 

MULTIPLEX CHANNEL 
WORD AREA 

INTERRUPT BUFFER 

UNASSIGNED 

SELECTOR CHANNEL 2 
UNIT CONTROL 

WORD 

UNASSIGNED 

2ND LEVEL 
DUMP AREA 

ADDRESSES IN DECIMAL 

064 WORK AREA IN 

066 UNDEFINED STATE 

067 

PROGRAM 
STATUS 
WORD 

071 
072 START 1/0 SWITCH 
073 

1 ST LEVEL 
DUMP AREA 

SELECTOR 
CHANNEL 1 

BUFFER 

III 

112 

SELECTOR 
CHANNEL 2 

BUFFER 

127 

Figure 9. Model 40 Local Storage. 

FLOATING 
POINT 

REGISTERS 

FIXED 

POINT 

REGISTERS 



or-write cycle requires 625 nsec. A complete 
read-and-write cycle therefore takes 1.25 p.. sec. 

One example of use of the local store is the 
double-dump routine executed under certain 
types of channel operation. If the machine is 
currently in CPU mode and a multiplex channel 
interrupt occurs, all data relevant to the current 
CPU operation are dumped in the local storage 
first-level dump area. If, subsequently, a se­
lector channel interrupt occurs, all data relative 
to the multiplex service are dumped, and the 
selector channel is serviced. When all selector 
channel operations are complete the multiplex 
data are restored and multiplex servicing is 
continued. Similarly, when mUltiplex servicing 
is complete, CPU data are restored and CPU 
operation is resumed. 

MAIN STORAGE 

The main storage array (2.5-p.. sec cycle, 1.25-
p.. sec access) of the machine is divided into two 
logical sections. These are the true main stor­
age, and a special area of 256-2048 bytes, 
called the bump storage. The bump storage is 
used to hold channel control words used in mul­
tiplex channel operations and is accessible by 
the microprogram only. 

CHANNELS 

Multiplex Channel 
The multiplex channel is an extension of the 

CPU in the sense that .the regular CPU data 
flow and microprogram are used for all data 
transfers. This channel, which allows a number 
(maximum of 128) of relatively low-speed units 
to be operating simultaneously, normally scans 
all attached control units continuously. When 
a device reaches the point where it needs to 
send or receive a byte of data, its control unit 
intercepts the first available scanning signal 
and transmits the unit address to the CPU. The 
CPU data flow is then cleared and retained in 
the local store using the dump routine. After 
the byte transfer has been completed, the con­
trol unit and device disconnect from the chan­
nel, permitting scanning of other devices to be 
resumed, and the CPU processing to continue. 

Selector Channels 
Two types of selector channels are available 

on Model 40, the A channel and the B channel. 

IBM SYSTEM 360 ENGINEERING 219 

They differ in that the CPU interference caused 
by I/O operations on the B channel is approxi­
mately one third of that caused by the A 
channel. 

The A channel time-shares the CPU data flow 
and microprogram to a high degree. Data bytes 
are never transferred directly between main 
storage and the interface busses, but move via a 
16-byte buffer in the Model 40 local storage. 
The transfer between interface and buffer is 
conducted serially, by byte, at the rate dictated 
by the I/O device. Each transfer causes the 
microprogram to hesitate one 625-nsec cycle. 
When the 16-byte buffer is half full, the channel 
requests the use of the microprogram and CPU 
data flow. Up to 12 microprogram cycles are 
required to preserve the current contents of the 
data-flow registers and to load the control word. 
The 8-16 bytes in the buffer are transferred 2 
bytes per storage cycle to main storage as a 
block, at a rate of 2 bytes every 2.5 micro­
seconds 

The B Channel is more conventional; it uses 
SL T hardware and does not use the local stor­
age as a buffer. Data is transferred to main 
storage as soon as two bytes are accumulated. 
Interference is basically constant at 1.25 p'sec 
per byte. 

SYSTEM MAINTAlNABILITY 

One of the more unique features of Model 40 
maintenance hardware is the use of the read­
only storage as a source of diagnostic routines. 
One module of the TROS contains a complete 
set of tests to validate the CPU, local and main 
storages. These tests are automatically applied 
each time the system reset is operated to ensure 
an operational machine. 

SYSTEM/360 MODEL 50 

The performance range of System/360 Model 
50 is approximately ten times the Model 30. 

A review of the following key engineering 
decisions will highlight the distinguishing char­
acteristics and engineering achievements of 
Model 50. 

1. The 30-nsec family of SLT circuits is 
used. 



220 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

2. A small, 0.5 p,sec, local core storage con­
tains the general purpose and floating­
point registers. 

3. A relatively low-cost 2.0 p,sec. main stor­
age is used. 

4. The data paths, local storage and main 
storage are" each 32 bits wide (plus 4 
parity bits) . 

5. A 0.5 p,sec read-only storage provides se­
quence control throughout. 

6. Both selector and multiplexor type chan­
nels are provided to cover a wide per­
formance range. 

7. The CPU and channels utilize common 
hardware, yet maintain substantially 
overlapped operation. 

8. The CPU, channels, and storage are 
packaged in a unified structure. 

CENTRAL PROCESSING UNIT 

The first four decisions are highly interde­
pendent and were reached somewhat simultane­
ously to produce a system in the right cost and 
performance range, utilizing components that 
would be available at the right time and that 
would fit together in a good physical and speed 
relationship. These components were selected 
on the basis of good performance per-unit-cost 
and a balanced design, rather than for per­
formance alone. 

The choice of the 30-nsec family of circuits 
allowed an internal clock cycle from register 
through adder and back into register of 500 
nsec. This family of circuits provides the com­
bination of compact packaging, good fan in-fan 
out ratios, and low power dissipation, with a 
nominal delay per stage of 30 nsec. 

A typical 30-nanosecond SLT module is illus­
trated in Figure 10, together with its circuit 
diagram. Such a module has a power dissipa­
tion of approximately 30 milliwatts and allows 
a fan-out factor ef 5 and a fan-in to the OR of 
5. The fan-in to the AND is limited only by 
packaging considerations. 

Figure 11 illustrates the basic Model 50 data 
flow. The main adder path, the working reg-

.,,1 __ -

Figure 10. Solid Logic Technology 30-nsec AOI Circuit. 

isters, the main storage, and the local storage 
are all 32-bits wide plus 4 parity bits. An 
auxiliary 8-bit data path through a logical 
processing unit, called the mover, is provided 
for processing variable field length informa­
tion. This path allows a byte to be selected 
from each of two working registers under con­
trol of two byte counters. The two bytes can 
then be combined in a variety of logical func­
tions and returned to one of the working reg­
isters. With the mover, decimal operands are 
first aligned in the working registers, then 
processed arithmetically 32 bits at a time using 
the main adder. 

The main 2-p,sec storage unit for the Mod 50 
is approximately 32" x 14" x 26"; a reduction 
by one-third the physical size of the 7090 stor­
age (Figure 12). It is available in capacities 
of 64K, 128K, and 256K bytes (8 bits plus 
parity). Bump storage which is part of main 
storage is used to hold channel control words 
for multiplex channel operations. Bump stor­
age area of 1024 to 4096 bytes is accessible only 
by microprogram control and not by the prob­
lem program. The use of a combined sense­
inhibit line allowed a three-wire ferrite core 
plane which can be machine wired. 

The local storage contains 64 thirty-six bit 
words (32 plus parity) and has a read-write 



cycle time of 500 nsee. This ferrite core storage 
unit provides working locations for the CPU 
and channels, as well as the general and float­
ing point registers. Regeneration from either 
the L or R register allows a swap of informa­
tion between the CPU and local storage on a 
single cycle. 

READ-ONLY. STORAGE 

The decision to use a read-only storage for 
sequence control produced a great unifying and 

--L 

L2 
=+~ I L.S. ADDRJ 

REG. 

LOCAL STORAGE i 
32 PLUS PARITY 

+ 
+ + 

~ + 

IBM SYSTEM 360 ENGINEERING 221 

organizing influence on the design procedure. 
It not only forced a centralization of all con­
trols, but· also forced an early definition of all 
gate signals thereby allowing the design to pro­
ceed independently in several areas of the ma­
chine. Additional benefits resulted from the 
use of the Control Automation System (CAS). 
This system not only provides the necessary 
record-keeping and generation of manufactur­
ing information for the read-only storage, but 
also provides documentation of the instruction 

t 1 
-A. TO 

SELECTOR 
CHANNELS 

~I II STO!AGE I 
.. r:-iii i ~ i i i i i i II A~~;.. iii ~~:. i I L REG. I I R REG. I III M D I F I 1M REG. I I I H REG. I 

-r -
f COUNTER 

I 

MAIN 
STORAGE 

STORAGE 
DATA REG. 
32 PLUS 
PARITY 

I 

T L..:l_T -tT-I 
I I 

TRUE/ 
COMPLEMENT 

GATE 

-.i ~ ~ 

MOVER ADDER 
8 PLUS 32 PLUS PARITY PARITY 

I I X + + 
I SHIFTER I I LATCH I 

I 
1 

..L -
, 

l---i.. ~-

I LATCH 

I 
+ 

Figure 11. System/360 Model 50 Data Flow. 

I 
FROM 
MULTI­
PLEXOR 
CHANNEL 

TO 
MULTI­
PLEXOR 
CHANNEL 

FROM 
SELECTOR 
CHANNELS 



222 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Figure 12. Physical Comparison Model 50 and 
IBM 7090. 

sequences and allows complete simulation of 
these sequences before producing hardware. 

The balanced capacitor technology is used in 
the read-only storage unit of the Model 50. A 
bit plate contains the information content of 
the storage in the form of tiny tabs attached to 
a long electrical drive line (see Figure 13). 
These are etched on a glass epoxy plate by a 
process similar to that from which printed cir­
cuit cards are manufactured. This bit plate is 
covered by a sheet of I-mil mylar which forms 
the dielectric of the capacitor. The bit-plate tab 
forms one plate of this capacitor and a sense 
line running orthogonally to the drive line 
forms the other plate. 

The sense lines are also etched lines. A pair 
of these lines form inputs to the base and 
emitter of a differential amplifier at one end 
and are terminated to ground at the other end. 
One sense plate contains 400 parallel sense 
lines. 

The bit plates lie over the sense plates and 
are separated by the I-mil mylar, with the 

drive lines running vertically and the sense 
lines horizontally. Approximately a 5-inch 
pound torque is applied to a system of pressure 
pads to maintain constant pressure between the 
two plates. 

Thus, switching on the array driver provides 
a change in voltage that is capacitively coupled 
from the drive line to the sense line. For im­
pedance-matching purposes in the sensing cir­
cuits, a balancing line is used in conjunction 
with each drive line. The appropriate location 
of the bit tabs determines whether the signal 
received by the sense amplifier is a 1 or a O. 

The read-only storage of the Model 50 con­
tains 2816 words of 90 bits each. It has a cycle 
time of 500 nsec and an access time of 200 nsec. 
To allow the result of one cycle to immediately 
influence the choice of the next, two words are 
read from storage simultaneously, and a choice 
between them is made on the basis of the result 
of the first cycle. The chosen word then con­
trols the second cycle. This technique allows 
the same speed to be'maintained as if sequential 
logic circuit controls were used. 

CHANNELS 

A wide range of channel performance is pro­
vided in the Model 50 by the inclusion of two 
quite different channel designs. Both types of 
channels allow a substantial overlap with CPU 
operations. 

The multiplexor channel provides concurrent 
operation of multiple low to medium speed de­
vices. It makes extensive use of CPU hardware 
and contains relatively little hardware of its 
own. (Example: Local storage and some CPU 
registers are used as working locations.) The 
control words for each operating device are 
held in an extension to main storage called 
bump storage. As each byte is handled, the 
channel takes control of the CPU and obtains 
the required control word from bump storage. 
The CPU registers required for the operation 
are dumped into local store. The multiplexor 
channel can also operate with a single higher 
speed device in a "burst" mode. In this mode 
the control word is held in local storage to speed 
the operation, but bytes are still handled one 
at a time. 



B( + PADS 
-=-

DRIVE 
BALANCE 
LINE 

TO r 
SENSE! AMP 

(A) 

TO 
SENSE 

AMP 
(B) 

IBM SYSTEM 360 ENGINEERING 223 

{

TO TERM. 
RESISTOR a 
+6 VOLTS rTOTERM. 

RESISTOR a 
+6 VOLTS 

TO TERM. 
RES. a GND. 

TO TERM. 
RES. a GND. 

TO TERM. 
RES. a GND. 

TO TERM. 
RES. a GND. 

:?~E,~~EJ 
~Mr-. \'" L-' 1 

y 1 r~~~~E .ZERO"/lJ------- O-~ 
BIT TO ARRAY DRIVE BALANCE TO ARRAY 

DRIVER 
(X) 

TO ARRAY 
DRIVER 

(Y) 

TO ARRAY 
DRIVER 

(Z) 
DRIVER (X) LINE 

Figure 13. Model 40 Capacitor Read-Only Storage. 

High speed I/O devices use the selector chan­
nels (up to three are attachable) which can 
handle 8-bit data up to an 800 KC byte rate. 
These channels contain sufficient hardware to 
assemble a full word of data before requiring 
the main storage or CPU facilities. Control­
word information is retained in hardware in­
stead of local storage. CPU facilities are used 
only when transferring a word to storage or 
chaining between I/O commands, resulting in 
a much higher maximum data rate than the 
multiplexor channel. 

An additional selector channel is available 
which operates in a lockout fashion a;nd is 
capable of operating at a data rate up to 1.3 mc. 

MAINTENANCE 

Four decisions stand out in the maintenance 
area. They are: 



224 PROCEEIHNGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

1. The decision to include a hardware Log 
In-Log Out system for the execution of 
fault location tests (FLT's). An inte­
grated approach (using the read-only 
storage to control FLT sequencing and log 
paths, and using existing hardware where 
feasible) reduced the cost from being ex­
cessive to being defendable, and in addi­
tion provided better fault resolution than 
conventional diagnostics. The FLT's can 
provide fault localization to within a few 
small cards, on the average, and have the 
additional advantage of being automati­
cally produced and updated. The Log 
Out system is also used with the error 
checking circuits, to provide a complete 
snapshot of internal status at time of 
error. 

2. Use of a Progressiive Scan technique 
provides a reasonable means of running 
fault-location tests on channel hard­
ware; with resultant improved fault 
resolution, thus the entire processor 

can be examined with high resolution, 
non-functional test. 

3. The DIAGNOSE instruction allows the 
initiation of any micro instructions, 
in any order. This permits integration 
of the control of various maintenance 
techniques into the read-only storage. 
This instruction gives the diagnostic 
programmer a power tool. 

4. The decision to allow for single-man 
servicing. This is made possible by 
bringing all controls and indicators 
together on a single system control 
panel which is usable in two positions; 
the normal operating position, and 
swung left 1800 so that it faces the prin­
ciple servicing area (CPU logic, main 
storage, and channel hardware). See 
Figure 14. The small logic cards, which 
are the principle replaceable item, are 
easily accessible, with the majority 
located on the outer sides of the gates. 

Figure 14. Model 50 System Control Panel (Open Position). 



SYSTEM/360 MODELS 60/62 

Models 60/62 are large-scale processors with 
performances that are approximately 20 and 30 
times that of Model 30. 

Basic design considerations are: 
1. Main storage speeds of 2 p,sec and 1 p,sec. 
2. High-speed circuit family with nominal 

delay of 10 nsec per logical block, 
3. Local storage in transistors, with 125-

nsec access and non-destructive read, 
4. Read-only storage control of CPU func­

tions at a 250-nsec cycle, 
5. 64-bit-wide storage, plus 8 parity bits; 

64-bit data flow, plus 8 parity bits. 

Models 60/62 attach stand-alone storage and 
channel units compared to the integrated de­
signs of the smaller models in System/360. The 
entire instruction set is standard. Model 60 is 
equipped with a 2-p,sec main storage packaged 
in two separate frames. Address interleaving 
between the frames increases the effective 
speed of storage. The combined capacity of the 
storage frames varies and is available in 128K, 
256K, or 512K byte sizes. Input-output control 
is provided through a channel capable of han­
dling 8-bit data at a lo3-mc byte rate. Up to 6 
channels are attachable and capable of oper­
ating simultaneously. Information is passed 
between storage and channel on a 72-bit, dou­
ble-word basis, minimizing interference with 
operating programs. High-speed I/O devices, 
tapes, disks, and drums are primarily intended 
for direct attachment to the channel. Slower 
speed units, terminals, peripheral readers, 
punches, and printers, attach to smaller Sys­
tem/360 Models which, in turn, may be con­
nected to one of the Model 60 channels in a 
multiprocessing arrangement. 

Model 62 differs from Model 60 only in the 
speed and configuration of the main storage. 
The 1-p,sec storage associated with this model 
is available in 256K-byte, self-contained units. 
A maximum of two of these units is directly 
attachable, providing 512K bytes of storage. 
The addressing is conventional and is accom­
plished without interleaving. 

TECHNOLOGIES UTILIZED 

The foundation of the central processing unit 
design is a basic building block or module con-

IBM SYSTEM 360 ENGINEERING 225 

taining four logical diodes with load resistors, 
one emitter follower and inverter transistor, 
plus three control diodes fabricated ona single 
substrate. This device houses the primary cir­
cuit used almost exclusively in Models 60/62. 

Variations of diode and transistor arrange­
ments exist within the same circuit family and 
these different module types equip the logician 
with a full array of AND-OR design elements. 
The basic block has a nominal delay of 10 nsec. 
Signal swings vary from + 1 to +3 volts. The 
circuits display good noise-rejection character­
istics in that worst-case simultaneous switch­
ing is tolerable under maximum loading situa­
tions of five-way AND's driving five-way O,R's 
into a ten-load output. Circuit speed has pur­
posely been compromised to improve driving 
and loading capability. 

All the circuitry is contained on one module, 
with the exception of the two collector resistors 
which are located external to the module in a 
resistor pack. With the exception of the com­
ponents outlined, the circuit configuration is 
essentially the same as the 30-nsec circuit block. 

The local store is not required to accommo­
date integrated I/O channels, consequently a 
favorable trade-off is achieved by structuring it 
in transistor registers as opposed to ferrite 

. cores. In addition to reduced cost faster speeds 
are obtained, since the store is not destructively 
read, so regeneration time is eliminated. The 
unit contains twenty-:five 36-bit registers. Six­
teen are general purpose· registers, eight are 
floating-point registers and one is a working 
register used for variable field· length control. 
Since one or more registers participate in the 
execution of each System/360 instruction, the 
accessibility and maneuverability of local stor­
age contents is mandatory for good.internal 
performance. Any of the registers can be easily 
read or modified in 125 nsec, a nice fit for the 
250-nsec machine cycle. All CPU manipulations 
occur within the 250-nsec machine cycle. 

A balanced capacitor read-only storage de­
vice, similar to that used by the Model 50, pro­
vides logical control for the processor. The cycle 
time of the read-only storage is 250 nsec, with 
the output being available 100 nsec after select. 
Sixteen bit planes of 176 words each provide 
a total of 2,816 words. Each word is 100 bits 
wide. 



226 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

To achieve desired CPU speeds, the read-only 
storage is supplemented with conventional con­
trol hardware. Approximately 500 control lines 
are generated in all, of which 400 emanate from 
the read-only storage. Conventional control 
logic is utilized primarily where sequencing be­
comes data-dependent and exclusive read-only 
storage control would require additional cycles 
to be taken. 

LOGICAL ORGANIZATION 

The size of the CPU -storage interface varies 
in width from a byte on Model 30, to half-word 
on Model 40, to a full word on Model 50. In the 
Models 60/62, it is double-word wide. A reduc­
tion in the number of storage cycles required 
fo~ program execution is purchased at the price 
of hardware. The data path continues double 
word throughout. Significant performance im-

provements in the handling of long precision 
floating-point arithmetic and variable field 
length operations are achieved. 

A 64-bit instruction-buffer register is di­
rectly fed from storage and initially receives 
all instructions (see Figure l5). Four half­
words are loaded and passed, one half-word at 
a time, through a I6-bit extender register to a 
I6-bit decoding register where instruction ex­
ecution commences. As the last of the four 
half-words enters the extendor register, storage 
is signaled to refill the buffer register. The flow 
through these three registers neatly overlaps 
instruction fetching with execution and adds 
substantially to the internal performance of 
the CPU. 

A parallel adder, 60-bits wide, is the con­
fluence of the data path. Address calculation, 
arithmetic, shifts, register-to-register trans-

TX 
LOCAL STORE 

25 WORDS 

SERIAL ADDER 
8 BITS 

LATCH 

TO ST 

..... I--+-.... ~ .... ----.. L ADDR. 

24 32 24 32 

PARALLEL ADDER 
60 BITS 

LATCH 

TO AB, T, D, IC, R, E 

BUS 

Figure 15. System/360 Models 60/62 Data Flow. 



fers, and parity generation and checking are 
handled in the adder. It is a high-speed unit 
split into four sections, four groups per section, 
four bits per group for look-ahead propagation. 
Worst-case carries ripple out in 135 nsec. The 
entire adder output can be held in a latch 
register equipped with gates which can shift 
the full sum 4 bits right or left into the latch. 
Adder input gates provide for left shifts of one 
or two bits. The adder accommodates, in one 
pass, the 56-bit fraction arithmetic of long pre­
cision, floating-point instructions. 

Two 64-bit registers operate in concert with 
the parallel adder. Both can be directly loaded 
from storage and one provides the store path 
to main core. At times they participate in an 
action as a 64-bit unit. Frequently they are 
treated as separate and independent 32-bit reg­
isters (identified logically as A-B, S-T). A 
finer subdivision into 8-byte units can also be 
effected. Both the A-B and S-T registers have 
three-position byte counters controlling byte 
movements. By utilizing the 32-bit _ working 
register in local store, in addition to parallel 
adder paths, any combination of register-to­
register transfer between, A, B, Sand T can 
be made. The base registers in local storage 
transmit between the S-T registers. A 24-bit 
instruction counter and a 24-bit storage address 
register connect to the parallel adder for load­
ing and incrementing. 

An 8-bit serial adder draped with extensive 
gating is woven into the data flow. It drives a 
latching register and is byte fed into the work­
ing registers. The many variable field ope:t;a­
tions, including arithmetic, work through the 
serial adder as do the logical functions AND, 
OR and EXCLUSIVE OR. 

To provide maximum flexibility in present 
or future high-performance system configura­
tions, physically-independent storage and chan­
nel units are employed. One common mu1tip1ex­
type interface serves to permit the attachment 
of either the 2360 (2 p.Sec) or the 2362 (1 p.Sec) 
storage units to the CPU and 2860 channel. 
This interface also provides the mechanism for 
the attachment of multiple 2361 large-capacity 
storage units. Figure 16 shows that the key to 
this interface is the cable that serves as the 
conductor for multiple driving circuits feeding 
multiple receiving circuits. This permits effici-

IBM SYSTEM 360 ENGINEERING 227 

ent time sharing of the inter-unit data and 
address paths under the control of just a few 
direct connection signal lines. 

SYSTEM/360 MODEL 70 
System/360 Model 70 is designed to fill a 

marketing need for a very-high-performance 
data processing system. It may serve as a direct 
functional replacement for any member of the 
System/360 family, with which it maintains 
complete program compatibility. 

The sole constraints on program compati­
bility are storage size, input/output configura­
tion, and the absence of time-dependent pro­
gram loops. 

The fundamental elements contributing to 
Model 70 performance are: high-speed circui­
try, interleaved 1-ftsec storage units, and logical 
organization. 

CIRCUITS AND PACKAGING 
To achieve the desired performance, the 

Model 70 Engineering team specified a circuit 
family which would permit an effective balance 
between the basic machine cycle, storage-access 
time, and storage-cycle time. 

The optimum cycle time was established at 
200 nsec. This, in turn, coupled with machine­
packaging constraints, dictated a circuit with 
a nominal switching time of 5 nsec. The re­
sultant circuit is of the AND-OR INVERT 
family. The switching time varies from 4 nsec 
and longer as a function of fan-in and loading, 
i.e., line length and number of loads. The basic 
circuit configuration is similar to the 10-nsec 
AOI but differs in component characteristics. 

These circuits are packaged in modular form; 
the modules are mounted on small cards having 
a capacity for either 12 or 24 modules. A sub­
stantial number of these small cards are func­
tionally packaged to achieve high density and 
relatively short line lengths. With a circuit that 
performed well, extreme care had to be exer­
cised, not only in defining the functional cards 
but also in card placement. More difficulty was 
experienced in controlling delays in transmis­
sion than logical delays. 

STORAGE 
Main storage for the Model 70 consists of two 

banks of 1-ftsec storage. Each storage bank has 



228 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

STORAGE 1 STORAGE 2 
MODEL 60-2360 MODEL 60-2360 
MODEL 62-2362 MODEL 62-2362 

LCS 1 
2361 

LCS 2 
2361 

LCS 3 
2361 

LCS 4 
2361 

~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
! ; I I ! I ! • ! I ! I r-- -~--""--+--+---4--""-.~-:---'---~--~ :

I : : Ii:
I' I • I ! • I t-------------.. -------------.--------------~---------- ____ • ______________ J

I

I t--------------,------------r- -- ---- -- ---r--- -- --- ------~ ---- --------,-------- -- ---,
I: : : : : : :
t- I • I • I I I .- -r--T- --:-,-"--r-T- -t"--""'T-"~-r-r- -;--1 !

~ DR~ ~DR~ ~DR ~ ~DRa ~DR~ ~DR~ ~DR~

~ --
CPU

2060

~ SIMPLEX CONTROL LINES 7

2 3

2860 SELECTOR CHANNELS

t

4 5

2860 SELECTOR CHANNELS

LEGEND:

--- STORE BUS }
--- FETCH BUS MULTIPLEX BUSSES

------- ADDRESS BUS

DR - DRIVER CIRCUIT
REC -RECEIVER CIRCUIT

LCS - LARGE CAPACITY STORAGE

6

Figure 16. Model 60 Storage-Channel Interface.

a- capacity of 256 K bytes arranged in 32K dou­
ble words (64 information +8 parity bits).
Data with even double word addresses are
stored in one bank; data with odd double word
addresses are stored in the other. These two
banks a.re independent of each other, having
exclusive drive schemes and data registers.

When accesses are made to sequential storage
addresses, the storage units operate in an inter­
lea ved fashion.

The two units cannot be accessed concurrent­
ly but must be offset by at least 400 nsec, a
restriction imposed by the maximum rate of
the storage bus.

LOGICAL ORGANIZATION

The initial design approach was to accentu­
ate the p~rformance of arithmetic operations.

Enlphasis, however, was brought to bear on
those instructions used heavily in the compiling
function, e.g., load, branch, store, and compare.
A data flow schematic is shown in Figure 17.

Instruction buffering is provided via two
double-word registers, each supplied by inde­
pendent banks of main storage. Instructions
are executed sequentially and as the contents
of each register is exhausted, it is replenished
from storage during which time the contents
of the second register is being used.

Some degree of instruction overlap is
achieved by operand buffering. A sequencing
unit controls the instruction decoding, effective
address generation, and operand fetching, while
the preceding instruction is being executed. The
sequencing unit is not allowed to operate more
than one instruction ahead of the execution
unit and is not allowed to change any addressa-

ble registers while the execution unit is still
operating on the previous instruction. This
eliminates recovery problems in the event that
a branch or interrupt causes the abandonment
of the instruction being worked on by the se­
quencing unit. Address generation is accom­
plished through the use of a three-input adder
in one machi!le cycle (200 nsec) ; one input is
from the instruction register, the other two
from the general purpose registers specified by
the instruction.

The heart of the execution unit is the main
adder which is a 64-bit adder-shifter' combina­
tion. It has a three-stage full carry lookahead
scheme which permits an add operation in one
clock cycle. The main adder is supplemented
with an 8-bit exponent adder for floating point
operations and an 8-bit decimal adder for deci­
mal and VFL operations.

ADDRESSING
ADDER

16

GENERAL
PURPOSE
REGISTER

i I
I I

IBM SYSTEM 360 ENGINEERING 229

A read-only storage mechanism was not in­
cluded in the Model 70 since it did not lend it­
self to the machine organization, especially in
the area of required cycle time. As a result, the
control functions were implemented through
conventional logic design.

A further attempt to improve performance
was made through utilization of transistor cir­
cuitry, rather than core storage, for the general
purpose and floating-point registers. This ap­
proach permitted faster access, eliminated re­
generation time between fetches, and permitted
accessing more than one register at a given
time.

In view of the storage interleaving and in­
struction overlap, a precise estimate of ma­
chine performance on a particular program,
loop or sub-routine, must involve careful scru­
tiny of instruction and data addresses and in­
struction sequences.

MAIN ADDER

FLOATING
POINT

REGISTER
4

I

STORAGE
IN BUS

Figure 17. System/360 Model 70 Data Flow.

230 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

LARGE CAPACITY STORAGE CHANNEL

A considerable asset in achieving thruput
improvement is the addition of large capacity
storage (LCS) to the Model 70. This storage
unit, with a read-write cycle of 8 p'sec, may be
attached to the system in increments of 1024K
and 2048K bytes up to a maximum of 8 million
bytes. These units are attached directly to the
storage bus and can be considered an extension
of directly addressable main storage.

The 2860 Selector Channel is a very high
performance data channel designed to operate
on Models 60, 62 and 70.

The performance of this channel utilizing
30-nsec circuits permits operation at data rates
up to 1.3 megacycles; the rate being measured
by the number of 8-bit bytes that pass, via the
I/O interface, to or from an appropriate input
or output control unit. Any interconnection to
input or output control units is via the I/O in­
terface. The LCS can also be attached to Models 50,

60 and 62, and has the facility of being shared
between any two of these systems.

The channel is of the selector type, per­
mitting interconnection of multiple I/O control

,< 21' O'

r r, ~SERVIC~EA-------------------~~'
~ BOUNDARY 30

I
i ~--Cl l ./'" : I M-4 M-4

/ /"" I 1 1 AND 2 3 AND 4

I / fl: ! 60~'
I 1/ : : III 4 (OPTIONAL) I

I / !!ii = = -t
,- - -, IL--__ -Y

I MCU L: - - - ---, (OPTIONAL) 17 1 3"

I 311 r------+-- CPU 1 , I I 1 L _____ , __

I , \ I I I

: I \ I : : 3"
I EXTERNAL CABLE I \\ I 604'

I CONNECTORS I" I : : ~
I I "'" 1 I I
I I '--1- - L... '- '- '- I I

I ,'I I I
I I 1

! I I I I 30"

L_l _______ l ___ J ___ ~L ____ L_~~
L30.1 63' J. 43.-L-43"-i-43,,J30.J

Figure 18. Model 70 Physical Arrangement.

units to a single channel. A maximum of 6
channels may be used. Up to 8 control units
may be attached to one channel. However, the
channel at any given time operates with one,
and only one, device of the many attached. The
channel is "instructed" by the processor system
to commence an operation. An operation per­
formed by an instruction may involve any se­
quence or list of commands to that particular
device. After being instructed, the channel in­
dependently obtains "commands" and transmits
data to or from processor storage until it com­
pletes its operation.

In operating with storage, the channel shares
the buss control unit, used by the processor, to
obtain its storage references. The Models 60,
62 and 70 use a double level of priority. In the
first level, each channel vies with the other
channels attached to that particular CPU for
priority, and then in turn vies with the proces­
sor for specific priority.

PHYSICAL ORGANIZATION

. Figure 18 shows the Model 70 physical ar­
rangement. Each gate in the CPU contains 20
large cards and 4 half-size cards for termina­
tion of interframe cables. Two of the gates con­
tain the Execution-unit, the other contain the
sequencing-unit. The maintenance-control unit
(MCU) frame contains maintenance circuitry,

IBM SYSTEM 360 ENGINEERING 231

the bulk power supply, and a small amount of
the CPU circuitry.

Mounting the CPU and the storage units on
a common wall helps performance in that it
allows short, direct cable connections between
them, rather than long under-floor cables. It
also means that all installations will have the
same cable lengths in these paths.

The 2860 Selector Channel frame is a three­
gate stand alone frame housing three swinging
gates, each capable of containing 20 large cards.
Power supplies are mounted in the internal
column between gates. Since each channel oc­
cupies one full gate, up to three channels may
be contained in a given three-gate frame.

BIBLIOGRAPHY

1. AMDAHL G. M., BLAAUW G. A., and BROOKS
F.P. JR., "Architecture of the IBM System/
360, "IBM Journal of Research and Develop­
ment, Vol. 8, No.2 (April 1964).

2. DAVIS E. M., HARDING W. E., SCHWARTZ
R. $., and CORNING J. J., "Solid Logic Tech­
nology: Versatile, High-Performance Micro­
electronics," IBM Journal of Research and
Development, Vol. 8, No.2 (April 1964).

3. CARTER W. C., MONTGOMERY H. C., PREISS
R. J., and REINHEIMER H. J. JR., "Design
of Serviceability Features for the IBM Sys­
tem/360", IBM Journal of Research and De­
velopment, Vol. 8, No.2 (April 1964).

UNISIM-A SIMULATION PROGRAM FOR

COMMUNICATIONS NETWORKS
J. H. Weber and L. A. Gimpelson
Bell Telephone Laboratories, Inc.

Holmdel, New Jersey

I. INTRODUCTION

The design and analysis problems associated
with large communications networks are fre­
quently not solvable by analytic means and it
is therefore necessary to turn to simulation
techniques. Even with networks which are
not particularly large the computational dif­
ficulties encountered when other than very
restrictive and simple models are to be con­
sidered preclude analysis. It has become clear
that the study of network characteristics and
traffic handling procedures must progress be­
yond the half-dozen switching center problem
to consider networks of dozens of nodes with
hundreds or even thousands of trunks so that
those features unique to these large networks
can be determined and used in the design of
communications systems. Here it is evident
that simulation is the major study tool.

II. SIMULATOR REQUIREMENTS

The type of problem to which this simulator
is directed is quite different from many of
the queuing and other problems which are
the primary application for most simulation
programs. Whereas in management simula­
tion and tandenl queuing processes (job
shop simulations, etc.) problems are charac­
terized by a fairly complex sequence of pos­
sible alternatives, the number of demands
simultaneously in process is ordinarily not so
great as to tax the capacity of the computer.

233

Furthermore, the measured outputs are di­
rectly influenced by most or all of the trans­
actions sequenced through the program.

In telephone (and other) traffic simulations,
however, particularly of the network type, the
possible number of alternatives before any call
(demand) is not very great, but the number of
calls which are simultaneously in progress is
quite large, and their interactions are not
predictable. The measure of performance is
typically grade of service (or probability of
blocking), which is normally in the order of
one per cent of the total offered calls. This
measure, furthermore, applies to each traffic
parcel in the network. For example, if there
are 20 nodes in a network, there are 190 two
way traffic items, each with a different demand
rate. If the smallest demand contributes only
1/1000 of the total calls in the network at any
time, then 1000 calls must be processed for
each one from this smallest parcel. A block­
ing of one per cent should be measured with
reasonable reliability on this smallest parcel,
and even if 1,000,000 calls are processed, only
(1/1000) (1/100) (1,000,000) or ten calls
will be blocked, and therefore contribute di­
rectly to the measurement on the smallest par­
cel. Since many networks must be tested
using different load levels, it is clear that a
primary requirement for a simulator which is
to be used in traffic network studies is that
it be fast. An improvement in speed of 5

234 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

per cent or 10 per cent can be worth many
thousands of dollars even for a single study.

The other important characteristic that sim­
ulators for this application must have is that
they be capable of handling large networks.
The toll network in the United States has in
the order of 2000 switching centers. Although
it is not possible to incorporate even a sub­
stantial fraction of this number into a simula­
tion pl'ogram, the number of nodes which can
be accommodated must be capable of exercising
all of the proposed routing and control param­
eters, which can ordinarily not be done with
anything fewer than about 20 or 30 nodes,
and preferably should be somewhat larger. In
practice, the capacity of a, simulator is not
governed by the number of nodes in the net­
work, but by the number of calls simultane­
ously in progress, and this maximum must be
commensurate with the maximum number of
allowable nodes. I t would do no good to
simulate a 2000 node network which allowed
less than one simultaneous call in progress
per node pair since this would not be a real­
istic situation. This requirement, of course, is
in conflict with the speed criterion, since to
take advantage of low speed bulk storage
media such as disc files might cause an intol­
erable slowing down of the program.

III. SIMULATOR CHARACTERISTICS

The simulator can accommodate systems
with both direct (line switched) and store­
and-forward traffic and with two nonpre­
emptive priority levels allowed for each traffic
mode. It also allows trunk reservation by
mode, priority, or route and can develop its
own alternate routing tables according to
specified rules. These can then be dynamically
changed according to the state of the system.

All congestion is assumed to result from
trunks only: the switching centers offer no
delay or blocking to any call. This assump­
tion, although perhaps somewhat unrealistic
in certain circumstances, allows the simulation
to operate quite rapidly while facilitating the
evaluation of alternate routing patterns
strictly on the basis of their basic structure
and routing doctrine, without introducing ob­
scuring effects of particular switching ma-

chines. It is felt that the structure informa­
tion will be common to a large variety of
networks, whereas the switching machines are
of course unique to each particular system.

The essential characteristics of the simula­
tor are as follows:

1. Two modes of traffic, direct and store­
and-forward, are allowed. Direct traffic
is served upon arrival, using either a
direct or an alternate route. If a direct
call is unable to be served immediately,
it is considered blocked and is either
lost from the system or reattempts after
some fixed interval of time. The re­
attempt interval may be exponentially
distributed or constant, and calls may
either reattempt after each try or be
lost with a given probability. Store-and­
forward calls are served immediately,
using the direct or alternate route, if
possible. If the call cannot be served
immediately, it is stored and queued on
the most direct route.

2. Each mode of traffic is allowed two
nonpreemptive priorities, and these can
be distinguished by:

a. Different retrial times for direct
traffic.

b. Head of the line queuing for the
higher priority store-and-forward
traffic.

c. Trunk reservation procedures in
which a certain number of trunks in
a group are reserved for high priority
traffic only.

3. The simulator accommodates networks
with the following maximum dimensions:

63 nodes
1,953 trunk groups

These maxima cannot be simultaneously
realized, the primary limitation being ap­
proximately 6,000 calls in progress si­
multaneously.

The simulator will handle approxi­
mately 500,000 calls per computer hour;
this is a maximum speed obtained when a
moderately loaded network of about 35
nodes is being simulated (i.e., the number
of calls in queues and being retried is

UNISIM-A SIMULATION PROGRAM FOR COMMUNICATIONS NETWORKS 235

small compared with the number of calls
in progress). The time required to proc­
ess the simulator output and produce sta­
tistics on the run (included in the above
estimate) varies with the network size
and may take as long as the simulation
itself.

4. The alternate routing procedure which
is provided determines its own sym­
metrical routing arrangement (see Ref­
erence 1) based on the shortest paths
between each two points, hierarchial
routing according to preset rules or gen­
eral routing with the route sections read
in directly. The routing either remains
fixed throughout the run or can be
changed at periodic intervals according
to the dynamic condition of traffic in the
network.

5. The output data are arranged such that
information about probability of block­
ing, delay distributions, trunk usage and
several other aspects of the system are
summarized over prearranged intervals
of time. The results of these summari­
zations are then printed out, as well as
placed on magnetic tape, and selected
sections can then be combined using an­
other program to derive means and vari­
ances of the appropriate statistics over
any group of intervals which is desired.

6. The simulator has the ability to change
loads at a linear rate during the course
of the run; that is, any load or combina­
tion of loads can be made to vary at a
fi'xed rate over a desired period of time,
including a step function in which a
change is made in zero time.

7. Trunk reservation is set up not only to
distinguish between high and low prior­
ity calls but also between direct and
store-and-forward calls: it is possible to
reserve some trunks for direct calls only,
as well as for the higher priority. Trunks
may also be reserved for first routed
traffic at the expense of alternate routed
traffic.

8. Routing is of the Hstage-by-stage" va­
riety. As calls progress through the net­
work their next choice of route is

determined only by the condition of the
immediately succeeding links. Calls are
not allowed to switch through the same
node twice, and maxima, in the form of
number of links and distance, can be
established for each traffic item. It is
also possible to allow cans to return to a
previous point for rerouting if they are
blocked.

IV. SIMULATOR ORGANIZATION

The Simulator Program (Figure 1) is made
up of a number of subprograms, some of which
are simultaneously in core and some of which
are read in sequentially. This subprogram
structure was used in order to accelerate the
programming, maximize the availability of core
storage for any program, simplify debugging
and allow maximum flexibility for future
changes. Briefly, the sequential programs are
as follows:

1. The Traffic Generator accepts as input
data the point-to-point offered loads, the
holding times of the various types of

TRAFFIC
TRAFFrC DATA TAPE

I --

~ I
I GENE~AT~R ~

FACILITY AND
ROUTI NG OAT A

CALL RECORD
AND

SWITCH COUNT
TAPES

STATISTICS ~--4

STATISTICS ~_~

Figure 1. Simulator Organization.

236 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

traffic, and the load changes which can be
expected during the course of the run.
The program generates all the calls
which will be used in a simulation run,
placing their mode and priority, time of
arrival, originating and terminating
points and holding time on the Traffic
Tape in chronological order. This tape
is used as input to the main Simulation
Program.

2. The Simulation Program accepts as in­
put the structure of the network in terms
of nodes and trunks; trunk reservation
information, if any; routing options and
limitations; retrial specifications; and
the Traffic Tape. It then processes the
calls through the simulated system and
reports the results on two tapes. One of
these, called the Call Record Tape, con­
tains a record of all calls which have
been processed; that is, arrival time,
service time, holding time, mode and
priority, origin, destination and number
of links used. The other tape, called the
Switch Count Tape, records the results
of periodic measurements of all of the
trunk groups in the network, reporting
on occupancy and reservation levels.
These two tapes contain all of the raw
output information from the simulation
and are used as input to the Output Proc­
essor Programs. The Dynamic Alternate
Router Program, which determines the
routing pattern as a function of the traf­
fic condition of the network, is alternated
in core with the main processing pro­
grams, the program not in use being
temporarily stored on a scratch tape or
disc file.

3. The First Output Processor accepts as in­
put the Call Record Tape and the Switch
Count tape, as well as specifications of
the number and length of the time inter­
vals over which the information on the
two tapes are to be averaged. It then pre­
pares mean values of blocking probabil­
ities, delay distributions, average delays,
trunk usages and links-per-call distribu­
tions over the specified intervals. This
information is printed out and placed on
magnetic tape. By visual inspection of

these outputs the program user can then
determine the intervals over which the
system was sufficiently close to steady
state operation to allow longer term
averaging. He then can make the ap­
propriate specifications for the Second
Output Processor.

4. The Second Output Processor accepts the
output tape from the First Output Proc­
essor and the interval averaging specifi­
cations of the program user, and deter­
mines over-all means and variances of all
system statistics originally derived by
the First Output Processor.

The detailed operation of the several pro­
grams mentioned above will be given in sub­
sequent sections.

V. TRAFFIC GENERATOR

The Traffic Generator Program (Figure 2)
is run prior to the Simulation Program and
the Traffic Tape which is produced can be re­
used as required. This procedure realizes a
saving in computer time since traffic need not
be regenerated to test several network con­
figurations and routing schemes.

The Traffic Tape contains an entry for each
offered call consisting of essential informa­
tion such as arrival time, terminal nodes, hold­
ing time, etc. The calls are generated by using
input quantities such as offered loads to gen­
erate interarrival times using independent
random numbers, selected from a specified
distribution (single parameter with unit
mean). The program continually searches for
the next earliest arrival. Finding that item, a
holding time and direction are determined.
This information is placed on the output tape.
The item then receives a new arrival time, is
placed back into the list, and a new search is
initiated for the next arrival.

The selection of the earliest arrival is ex­
pedited by the use of a technique, suggested by
W. S. Hayward, Jr., in which entries in the list
are paired, and the earlier of the two arrival
times of each pair is placed in a second list.
This same process is continued using pairs
from subsequent lists until the earliest arrival
is selected. The node pair and call type as­
sociated with the arrival time can be simply

UNISIM-A SIMULATION PROGRAM FOR COMMUNICATIONS NETWORKS 237

DATA
CONSTRUCT LIST
1 FROM INPUT
DATA; SET UP

CHANGE NUMBERS

CALCULATE
6 i b=hi/Li a ab

FOR EACH ITEM
AND REPLACE

ALL Liab BY_
APPROPRIATE 6 iab

CALCULATE INITIAL
ARR.I VAL TIMES =
6 i ab . Ra AND

STORE IN LIST 1

DETERMINE
HOLDING TIME

AND DIRECTION
FOR CALL SELECTED

PUT ALL REQUIRED
DATA INTO OUTPUT

BUFFER FOR
WRITING ONTO TAPE

LOAD NEW t, AND
t2 AND NEW

CHANGE NUMBERS

;>-Y_E_S_ STOP

aik TO
DETERMINE NEW

AVERAGE INTER-

STORE NEW
ARRIVAL TIME IN
LI ST 1; ALTER

LIST 2

ARRIVAL TIME
AND THEN NEXT
ARRIVAL TIME

FOR TH I S ITEM

Figure 2. Traffic Generator.

determined. The economy of this technique
results from its ability to change individual
items very rapidly without full reconstruction
of the lists; in particular, it can select the re­
quired call more quickly than would be possi­
ble with a full search of the first list.

During prespecified time intervals in which
there are to be load changes, a calculation of
each new interarrival time is preceded by a
test for the presence of a flag in the listing of
the current item of traffic. Should there be
one, the interarrival time is modified to pro­
duce a linear change in the load.

VI. SIMULATION PROGRAM

A) General Description
The Simulation Program (Figure 3) is

composed of a number of subprograms which
can be grouped into three categories:

1. Operator Program
2. Routing Programs
3. Record Keeping Progr~ms

The division of tasks between the subpro­
grams was made to allow separate writing and
debugging of the programs by a team of pro­
grammers. This technique also permits
changes in operation to be effected in parts of
the simulator without major rewriting of the
entire program; for example, several routing
schemes are available as "plug-in" units.

The Operator Program maintains a single
chronological queue (or linked list) containing
all events which occur in the simulator. This
includes call arrivals, call departures, call re­
trials and various instructions to perform con­
trol actions. For example, if the event at the
head of the queue is the arrival of a new call,
placement is attempted; successful placement
will move the call back in the queue to a point
in time equal to the arrival time plus the hold­
ing time; when that time is reached (following
processing of intervening events), this call is
removed from the network.

In order to maximize the number of calls si­
multaneously in progress, advantage was taken

238 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

INITIALIZE
PROGRAM

OPERATOR
PROGRAM

CONTROL
DIRECTION DYNIIMIC

ROUTER

Figure 3. Simulation Program.

ROUTE
AVAILABLE

of the statistics of network behavior in organ­
izing the data structure. Since the chronologi­
cal queue is the basic data item using most of
the memory, the cell size to be used was of
critical importance. It turned out that if a
call used only one, two or three links, then
three words would be sufficient, but if more
links were needed (and a maximum of seven
was a requirement for some calls) a larger cell
would be needed. In most networks at least
95 per cent of the calls use fewer than four
links; so the cell size was set at three words,
with the possibility of adding additional words
if the particular call required them.

The Operator Program presents a new call
to the Direct Router, which determines
whether a single-link placement is possible by
checking trunk availability for the mode and
priority of the new call. If a direct route cannot
be obtained, the call is presented to the Alter­
nate Router, which attempts a multiple-link
connection. The Alternate Router uses a
Trunk and Routing Table (described below) to
find an available route for the call. A valid
route obtained by either routing program is
transmitted to the Call Placer, which updates
the Trunk and Routing Table to account for
the new call. That call (with its event time
changed to its departure time) is returned to
the Operator Program for reinsertion into the
chronological queue. Upon complete failure
to route the call, the Operator will either add

the call to a nonchronological queue (for store­
and-forward traffic) or, with a new event time
obtained by adding a retrial interval to the
arrival time, place the call at this event time
in the chronological queue (for direct traffic).
At the conclusion of the call the Operator pre­
sents the call to the Call Releaser, which alters
the Trunk and Routing Table to account for
the call's withdrawal and checks each trunk
group previously employed by this call for the
presence of nonchronological queues, reporting
these to the Operator.

The Trunk and Routing Table (Figure 4b)
contains the occupancy status of each equipped
link (Trunk Data) and routing information
for each pair of nodes (Routing). Thus the
same table keeps a record of the traffic on
individual links and provides full routing in­
formation for each pair of nodes in the simu­
lated network. The routing information con­
sists of lists of intermediate nodes to be used
for calls which cannot be placed directly.

ADDRESS
ADDRESS
ADDRESS
ADDRESS

LIST A
(LOW NUMBERED NODE)

LIST B ."
(H I GH NUMBERED NODE) '---

-- ~ ""'- ----..
~. LISTS FOR ENTERING TRUNK AND ROUTING TABLE

I A I B I C I 0
I A I B I C I 0

1-2 2-1
1-2 2-1
1-3 3-1

1-' 3-1
I A I 8 I c I 0
I A I B I c I 0

1-4 4-1
IAIBlclo
I A I B I C 10

~

J
TRUNK
DATA
1,2

)
ROUTING

1.2

)
ROUTING
1.'

~
TRUNK
DATA
1,_

ROUTING

)
T:~K
DATA
1,5

b. TYPICAL TRUNK AND ROUTING TABLE

Figure 4. Typical Trunk and Routing Table.

1,2
1,3
1,4

2,3
2.4

3,4
:5.5

UNISIM-A SIMULATION PROGRAM FOR COMMUNICATIONS NETWORKS 239

The Trunk and Routing Table is constructed
from the input data by an Initialization Pro­
gram (Figure 5). For symmetrical routing the
program is supplied with point-to-point dis­
tances (or other weightings) and the numbers
of trunks installed throughout the network. It
then determines a number of economical routes
in each direction between every two nodes. The
first intermediate node to be tried for each

READ GENERAL PARAMETER CARD AND
GENERAL ROUTING CARD

CALCULATE ADDRESSES OF LlST BAND
TRUNK AND ROUT LNG TABLE

WRITE INPUT DATA ON SWITCH COUNT TAPE

CALCULATE LIST A

READ TRUNK INFORMATION FROM DATA CARDS

FORM TRUNK DATA LlNES

WRITE TRUNK LINES ON TAPE

CALL DYNAMIC ALTERNATE ROUTER TO
SET UP TRUNK AND ROUTING TABLE

AND COMPLETE LIST B TABLE

STORE TRUNI AND ROUTING lABLE
STARTING FROM APPROPRIATE ADDRESS

CALCULATE AND STORE LIST B
STARTING FROM APPROPRIATE ADDRESS

WRITE INITIAL ROUTING DATA
ON SWITCH COUNT TAPE

TRANSFER TO OPERATOR

Figure 5. Initialization Program.

route selected, together with the minimum
number of links required using that node, is
entered into the Trunk and Routing Table. This
method of preparing the routing data is espe­
cially convenient when large networks are be­
ing tested since the number of alternate routes
becomes so large that manual specification is
not feasible.

The Initialization Program also determines
two lists which facilitate entering the Trunk
and Routing Table. Shown in Figure 4a for a
network of N nodes, there are N entries in
List A, each consisting of the address of the
first line of a series of entries in List B. When
either trunk availability or routing informa­
tion is required for a specific call type between
nodes X, Y (X < Y, numerically; direction of
call is not a consideration at this point), in­
direct addressing permits use of line X of List
A to immediately obtain that line of List B
which pertains to the node pair X, Y. List B
contains information required to route a call
from X to Y.

B) Direct Router

When calls of the following classes reach the
top of a chronological queue they are delivered
to the Direct Router:

1. New calls.

2. Calls which are to be retried after having
previously been blocked.

3. Calls at the head of a nonchronological
queue associated with a link on which a
call has just been released.

4. Store-and-forward calls which have just
completed transmission to an intermedi­
ate node after having previously failed
to reach their destination.

The Direct Router (Figure 6) must deter­
mine the nodes between which a connection is
required. If the node pair is unequipped
(rapidly determined by a sign-bit test in the
Trunk and Routing Table), the Call Data is
sent immediately to the Alternate Router. If
there is a trunk group installed, the Direct
Router enters the Trunk and Routing Table
and, using the call type, determines the avail­
ability (considering reservations) of the trunk
group for this call. The lack of an available
trunk sends the Call Data to the Alternate

240 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

ENTER FROM OPERATOR

DETERMINE NODE PAIR: EITHER
TERMINAL NODES OR INTERMEDIATE

TO DESTINATION

YES

ENtER TRUNK
Af40 ROUTlNG

TABLE VIA
LISTS A & B

YES

GO TO
CALL PLACER

Figure 6. Direct Router.

NO

NO

GO TO
ALTERNATE ROUTER

Router, while availability indicates that the
call can be placed to its destination, and the
Call Placer is supplied with this information.

Since every call is offered to the Direct
Router and most calls are carried over direct
routes, this program was written with particu­
lar attention to operating speed. In conjunc­
tion with this the structure of the Trunk and
Routing Table was largely determined to
facilitate its use by the Direct Router.

C) Alternate Router
A call is referred to the Alternate Router

(Figure 7) only if it has been determined that
there is no direct route available.

The Alternate Router attempts an immediate
multiple-link connection, progressing through
the network on a node by node basis. Should
the Router either exhaust the list of node
choices or be unable to find a route with no
more than the permitted maximum number of
links, a direct call will be returned to the Oper­
ator Program for retrial at a later time (a
specified per cent of the retrial traffic can be
"lost" rather than retried), while a store-and­
forward call will be queued on a trunk group.

If there is a direct link between the terminal
nodes, the store-and-forward call will queue on
this link immediately; if there is no such link,
the call will queue along the "first choice
route;" this is a route selected to have no more
links than the minimum number of links spec­
ified when the first choice of an intermediate
node was obtained by the Alternate Router.

"Crank-back" or call "back-up" for direct
traffic is available (Figure 8). When used, a
call which has been blocked at some point in
its routing releases the last link accepted, re­
turning to the previous node where it now tries
to reach its destination via another link. The
number of links which may be released before
each forward progression is an input quantity.

D) Call Placer and Releaser
Upon indication from either router that

there is an available route for the current call,
the Call Placer (Figure 9) determines which

GO TO CALL PLACER

Figure 7. Alternate Router (Without Dynamic Router
or Call Back-Up).

UNISIM-A SIMULATION PROGRAM FOR COMMUNICATIONS NETWORKS 241

BACK-UP TO PRECED I NG
~':'::---------------------.,.jNODEOF ROUTING PATH AND

ATTEr~PT FURTHER ROUTING

Figure 8. Option 2 Alternate Router (Without Dynamic Router, But With Call Back-Up).

links require updating, enters the Trunk and
Routing Table and alters the appropriate data.
After updating these records the Call Placer
returns the call to the Operator for reinsertion
into the chronological queue at the release
time.

At the conclusion of a call, the Call Releaser
(Figure 10) must update the Trunk Data.
Then the call is sent to either the output queue
(for transfer to the Output Tape) or to a non­
chronological queue on a trunk group (for a
store-and-forward call not yet at its destination
and still blocked). Finally, the Call Releaser
checks each of the trunk groups used by the
call just released to determine if there are any
nonchronological queues waiting for these
groups and presents this information and pro­
gram control to the Operator.

E) Operator Program

The chronological queue is administered by
the Operator Program (Figure 11) using

linked lists, which facilitate the maintenance
of information in the computer by allowing
the ordering of data to be easily altered. In
the simulator, a list number is stored with
each chronological event. This number is the
address of the next event in the queue. The
address (or location in core) of an event re­
mains unchanged from the time it enters the
simulator until it is removed (for example,
from original entry from the Traffic Tape until
the end of processing and placement on the
Call Record Tape). The position of a call in
the queue, however, is easily changed by alter­
ing the list numbers of the preceding event
and the event being moved. Vacancies in core
are linked together in the same fashion using
a push down vacancy list. N onchronological
queues are similarly constructed by taking
blanks from the vacancy list. When calls have
been completed they are linked into an output
queue which is periodically read on to the Call
Record Tape; after this the slots are returned

242 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

CHANGE CALL'S CODE
TO INDICATE

DEPARTURE OF A
COMPLETED CALL

""
== ...
~
a::
o
"­
....
C[
w
w
a:: '------<It---...

Figure 9. Call Placer.

UPDATE
ACCUMULA TED

DELAY TIME BY
ADO I NG HOLD I NG

TIME

to the vacancy string. These several cohabit­
ant lists maintain their own links and only the
first element of each need be identified.

The large size of the chronological queue
makes it inadvisable to search through the list
from the beginning for each insertion. Point­
ers, actually addresses of intermediate events,
are used by the Operator Program to enter the
chronological queue at spaced intervals in
event time; once in the vicinity of the required
event time, the Operator steps along call by
(!all to the exact point in time for insertion of
an event.

VII. OUTPUT PROCESSOR PROGRAMS

In order to effectively display the result of
simulation experiments, processing programs
calculate and display the expected values of
important parameters and measure their sta­
tistical variability. In order to perform these
functions most effectively, these output pro­
grams have been divided into two separate
sections.

The first of these, called the First Output
Processor, reads raw system statistics from
the Switch Count and Call Record Tapes and
evaluates the mean values of appropriate sys­
tem statistics over pre specified subintervals
of time. These statistics are then printed out
and also read onto magnetic tape. The pro­
gram user can examine the results and, by as­
certaining the time periods over which equilib­
rium was obtained, write the specifications for
the second program, called the Second Output
Processor.

The Second Output Processor collects the ap­
propriate information from the Processor Tape
(generated by the First Output Processor)
and determines means, standard deviations,
and over-all network statistics for a prespeci­
fied number of processing intervals.

The First Output Processor determines aver­
age values of certain quantities over prespeci­
fied time intervals. Each time interval con­
tains a specified Humber switch counts (which
are snapshots of each trunk group reporting
the number of trunks busy at a given instant) .

CHANGE CALL'S CODE
TO INDICATE

PLACEMENT IN
OUTPUT QUEUE

"" z:
...J

5
C[...
a: CHECK FOR NON-
~ CHRONOI..OG I CAL QUEUE

CHANGE CALL'S CODE
TO I NO I CATE NEXT PLACEMENT

FROM I NTERMED I ATE NODE
TO DESTI NAT I ON

~ ON THIS TRUNK AND NOTIFY
~ OPERATOR
It;!'--_-4 __

Figure 10. Call Releaser.

UNISIM-A SIMULATION PROGRAM FOR COMMUNICATIONS NETWORKS 243

These intervals are ordinarily short enough so
that no important trends will be obscured. All
quantities are stored on the Processor Tape in
a form suitable for reading back into memory.
The quantities which are evaluated and printed
out (both on tape and on paper) are as fol­
lows:

A. Input and Miscellaneous
1. Input information, including offered

loads by mode, priority, origin, and
destination. This information is
simply transferred from the Traffic
Tape via the Switch Count Tape to
the Processor Tape and is printed
without further processing.

2. Time of start and completion of the
measurement period· for each report­
ing interval and the reporting inter­
val number. The reporting intervals
for each run are assigned consecutive
numbers to be used in specifying the
analyses to be done by the second
stage program.

B. Call Tape
1. Blocking probabilities, delay distribu­

tions and average delays of calls by
nl0de, priority and direction for each
origin-destination pair. Five points
in the delay distribution are kept for
each item. The magnitude of delay
at each of the five points can be spec­
ified as an input to the First Output
Processor.

2. Distribution and average of number
of links per call, with a maximum of
seven links per call recorded and with
the same breakdown as in Item 1
above.

C. Switch Count Tape
1. Number of switch count intervals

which are included in the reporting
interval.

2. Number of trunks in each group.
3. Carried loads for each trunk group

(either by mode and priority, or by
first routed or other).

4. Trunk reservation levels for each
trunk group.

5. Distribution and average of queue
lengths by priority for each trunk

group. Three points in the distribu­
tion are kept. These points are spec­
ified in the input to the First Output
Processor.

6. Alternate routing tables when they
have changed.

The Second Output Processor prints the
same statistics as the First Output Processor,
averaged over a prespecified number of proc­
essing intervals. Each period of time for
which a Second Output Processor calculation
is made is called a Reporting Interval and the
program provides the standard deviation of
each measurement based on the variation
among processing intervals within a reporting
interval. In addition, the Call Record Tape
items are averaged for the two directions of
traffic in each point-to-point item; that is, the
blocking probabilities and delays for traffic
from node 1 to node 2 and from node 2 to node
1 are averaged to give a single value for the
node pair (1,2). Means and standard devia­
tions of over-all weighted average values of
each measurement are also calculated. For
example, the'· over-all blocking probability is
the average of all of the point-to-point block­
ing probabilities weighted by the offered loads
or:

~aij
ij

where aij = offered load between node i and
node j

Bij = blocking probability of calls be­
tween i and j.

In addition to these over-all system means
and variances or standard deviations, a statis­
tic called the Misery Factor has been added.
This is a measure of the mal distribution or
unbalance of call tape statistics throughout the
network. It is defined for blocking probability
as:

- j3:!

244 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Sample printouts from the Second Output
Processor are shown in Figures 12 through 16.
These were obtained after the simulation of a
34 node network; note that the printing of
trivial lines (no traffic, no alternate routes,
etc.) has been suppressed to condense the data
and that the figures include only the first page
of the printout in each case. Figure 13 shows
the input to the Traffic Tape as transferred to
the output by the simulator; Figure 13 shows
the initial alternate routing table determined
by the simulator; Figure 14 shows the Switch
Count Tape reduction over specified processing
intervals; Figure 15 shows the Call Tape re­
duction for the same intervals used in the
previous figure; and Figure 16 shows the over­
all means, standard deviations and Misery
Factors for the time intervals listed in the
columns at the left. The measure of statistical
variability is the standard deviation of the
measurement over the reporting interval.

VIII. APPLICATIONS AND EXTENSIONS

The most extensive application of UNISIM
to date has been an investigation into possible

rES

"'----,

routing configurations and control schemes for
the te,lephone toll network. This work has
been described in Reference 2. Since the pur­
pose of such simulators is essentially to evalu­
ate performance in advance of detailed design
and implementation, it, by its very nature,
cannot be directly validated by comparison
with experimental results. The results which
have been obtained, however, to the extent that
they can be compared with measured perform­
ance of operating systems, have been in good
agreement with observed phenomena.

Subsequent applications have been con­
cerned with the evaluation of certain military
communications networks.

It was found in the military applications
that although the program for the most part
was directly applicable, certain changes were
required as new routing philosophies were en­
countered. Since the program was modularly
constructed, these changes were restricted
to one subprogram, the Alternate Router.
UNISIM, however, was written almost entirely
in machine language (assembly) code (FAP),

YES I DYNAMIC 'i---.---+------+
\ ROUTER I
,----'"

r-----------------~~.-----------~--------, CALL j CALL

BRING NEXT BATCH
OF CALLS INTO
CHRON. Q. TAKE
STR I NG NUMBERS
FROM TOP OF
VACANCY STRING.
CHECK FOR END
OF TAPE.

NO

REQUESTS REQUESTS TRUNK

~~-- ~~
(
/ ROUTING '\ CALL CANNOT 'CALL RELEASER~)

(CALL GIVEN,
'~OIGR~,1 BE PLACED \.~E!!. CO~_/

CALL CAN
_ e:':LACED

(CALL ') ~::V~OCpALo~S
\. ~LACE~/ NON-CHRON.

Qs RETRIAL

Figure 11. Operator Program.

UNISIM-A SIMULATION PROGRAM FOR COMMUNICATIONS NETWORKS 245

with suitable use of macros, and the modifica­
tions were therefore not so easy to make as
they might have been if a different language
could have been used.

IX. LANGUAGE CONSIDERATIONS

As was mentioned earlier, UNISIM is char­
acterized by the requirement to handle large
numbers of simultaneous demands, using a
logical structure which is of moderate complex­
ity. It must also estimate quantities which
occur with low probability, and therefore must
operate rapidly and be of large capacity.

These requirements were met in part by sec­
tioning the program, so that all parts of the
program need not be in core simultaneously,
which provided more space for the data. In
addition, most of the program was written in

machine language in order to obtain maximum
utilization of memory by means of tight pack­
ing and dynamic storage allocation, and high
running speeds.

The simulator section was itself divided into
subprograms, some of which are used very
frequently (Direct Router-used for every call)
and some of which are used infrequently (Al­
ternate Router). Since it was necessary for
all of these programs to access the same packed
data, all were written in FAP, although this
made later alterations somewhat cumbersome.
Experience with the program quickly brought
out the need for changing parts of the pro­
gram as new situations presented themselves.
The parts which needed changing were typi­
cally in the less frequently used portions of the
simulator itself, such as the Alternate Router.

N80E PER- PER- PER- 8FFRO LeAD 8FFRD LIlIAD IlIFFRO LIlIAD IlIFFRD LBAD 8FFRD LeAD
PAIR CENT CENT CENT FRIlIM FRIlIM FR8M FRIlIM FRIJ"

FRST 8FFD IJFFD 1.000 4000.000 8000.000 12000.000 16000.000
DIR 8NLY IJNLY T8 Till Til HI Till
TRAF A,B ArC 3000.000 7000.000 11000.000 15000.000 19000.000

1 2 50. 100. 100. 61.63 65.33 6l.U 57.72 53.11
1 3 50. 100. 100. 2.91 3.08 2.90 2.73 2.51
1 4 50. 100. 100. 2.29 2.43 2.28 2.14 1.91
1 5 50. 100. 100. 0.20 0.21 0.20 0.19 0.18
1 6 50. 100. 100. 0.05 0.05 0.05 0.05 0.05
1 1 50. 100. 100. 0.01 0.01 0.07 0.01 0.0t>
1 8 50. 100. 100. 0.28 0.30 0.28 0.27 0.25
1 9 50. 100. 100. 0.09 0.10 Q.09 0.09 o.oe
1 10 50. 100. 100. 8.87 9.40 9.03 8.48 8.06
1 11 50. 100. 100. 0.08 0.08 0.08 0.08 0.01
1 12 50. 100. 100. 0.18 0.18 0.17 0.18 0.17
1 13 50. 100. 100. 0.25 0.26 0.25 0.26 0.24
1 14 50. 100. 100. 0.41 0.49 0.47 0.48 0.44
1 15 50. 100. 100. 0.04 0.04 0.04 0.04 0.04
1 16 50. 100. 100. 0.12 0.12 0.12 0.12 0.11
1 11 50. 100. 100. 0.15 0.16 0.15 0.15 0.14
1 18 50. 100. 100. 0.55 0.51 0.55 0.57 0.52
1 19 50. 100. 100. 0.82 0.85 0.82 0.84 0.78
1 20 50. 100. -100. 3.74 3.89 3.73 3.85 3.54
1 21 50. 100. 100. 0.95 0.99 0.95 0.98 0.90
1 22 50. 100. 100. 0.81 0.84 0.81 0.83 0.17
1 23 50. 100. 100. 0.93 0.91 0.93 0.96 0.88
1 24 50. 100. 100. 0.22 0.23 0.22 0.23 0.21
1 25 50. 100. 100. 0.38 0.40 0.38 0.39 0.36
1 26 50. 100. 100. 0.36 0.35 0.35 0.36 0.35
1 21 50. 100. 100. 0.08 0.08 0.08 0.08 0.08
1 28 50. 100. 100. 1.56 1.53 1.50 1.54 1.51
1 29 50. 100. 100. 1.90 1.86 1.82 1.88 1.84
1 30 50. 100. 100. 0.96 0.94 0.92 0.95 0.93

131- -5-0-;-10·0. 100. 1.58 1.55 1.52 1.56 1.53
1 32 50. 100. 100. 0.43 0.42 0.41 0.43 0.42
1 33 50. 100. 100. 0.56 0.55 0.54 0.55 0.54
1 34 50. 100. 100. 0.65 0.64 0.62 0~64 0.63
2 3 50. 100. 100. 46~-89 49.10 46.72 43.92 40.40
2 4 50. 100. 100. 65.03 68.93 64.80 60.91 56.04 _ ...
2 5 50. iOO:-100~- 4.48 4.15 4.56 4.29 4.01
2 6 50. 100. 100. 1.51 1.66 1.60 1.50 1.43
Z 1 50. 100. 100. 1.14 1.84 1.17 1.66 1.58
2 8 50. 100. 100. 3.39 3.59 3.45 3.24 3.08
~-~n5()~o-:--- 3.88 4.11 3.95 3.71 3.53

2 10 50. 100. 100. 158.81 168.34 161.61 151.91 144.31
2 11 50. rOO. 100. 2.11 2.24 2.15 2.02 1.92
2 12 50. 100. 100. 2.28 2.23 2.19 2.26 2.21
Z 13 50. 100. 100. 3.06 3.18 3.06 3.15 2.90
2 14 50. 100. 100. 2.88 3.00 2.88 2.96 2.12
2 15 50. 100. 100. 0.82 0.85 0.82 0.84 0.18
2 16 50. 100. 100. 1.54 1.60 1.54 1.58 1.46

2lr--50. 100. 100: 1.10 1.17 1.10 1.15 1.61
2 18 50. 100. 100. 6.61 6.94 6.66 6.86 6.31
Z 19 50. 100. 100. 8.38 8.12 8.37 8.62 7.93
2 20 50. 100. 100. 27.21 28.36 21.23 28.04 25.80

22T------s-o-~o.----100. ._. ·----··-rO~78 H.2l 10.76 11.09 10.20

Figure 12. Offered Loads as Used in Generation of Input Tape.

246 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

__________________ ~IN~I~T~f4~I~A~I~TE~R~N~AT~E~R~A~IITWI~N_G~~ES~ ____________________________ _

~E---~W~4XU!~r'~'M~ ______________ ~R~e'~'T~IN~G~I~e~H~T~e~HulwGH~ ________ ~R~e'U'T~IN~G~H~IG~H~T8~lg~W~--____ YLE~N~GT~H~ ___
PAIR LINKS AF LINK

cIRErT NIce t INKS NICE I IN'S N00E I INKS NADE I INKS

--L_~ _____ ~ ________________ ~4~ __ ~? ____ _UIO~--~?~ _____ ~4 ____ ~--__ I~O~--~? ______ ~79~6J~---

00 00 5 00
__ ~ ______ ~ ______________ ~2~ __ ~2~ __ ~4L_ __ ~?~ ____ ~2~ __ ~----~4~ __ ~?~ ____ ~2~4~3~4~4 __ __

o 0 0 0 9 0 o
o 4 ? ? 0 0 2 0 174 70

2 2 10 2 2 2 10 2
o

o.
o 10 ? 2 3 10 ? Q

4
10

o
2

o
3

o 0 0 0
10 ? 8 3 o

4
10

3 00 00 00
2 ? 2 '0 2 2 ? o

4
4

3 0 0 11 3 1 3
9 ? ? 2 42 ? 2 o

2 10 2 3 2 10 2
10 ? 42 ?? 53 ??5 '3

o o 00 42 00
11]0 ? 2 2 10 2 2 2 o

4 3 0 0 0 0
~ ____ ~ ________________ ~2 ____ ~2 ____ _utO~ __ ~3~ ____ ~ ____ ~--__ 1~3~--~3 ______ ~0H_-----

1 13

1 "

1 15

J 16

1 11

1 t8

119

1 20

1 21

1 22

12]

1 24

4
3
2
4

20
3
2

20

20
3

10
4

2

'"
20

3
2
4
o
?

2
10

20

4
4

2
3

3
3
2
3
2
3

2
3

o
2

2
3

20
o

10
20

o
10

4
o

10
4
o

10

4
o
2
o

10
20

o
10 ..

o
10

3
o

10 ..
o

20

'" o
10

4
o

10

2
o

o
2

3
o
3
4

o
3
4
o
3
o

o
2
3
o

o
2
3
o

o
?

3
o

20
19

2
17
16

2
10
15
18
25
21
18

25
20

10
7

2
17
13

2
17
20

2
17

21t
2

11
24

2
21
23

2
11
25

2
3
2
3
4
2

2
4
3
3
3
3
3
2

2
3
2
3

3
2
2
3
3
2
3
3
2
3

21
o

10
18

o
'3
18

o
16
20

o
13
15
o
8

13

10
A

o
10

18
o

10
21

o
10

20
o

20
10

o
10

24
o

25

3
o
2
3
o
3
3
o
10-
2
o
3
4
o

2
3
o
2
3
o
2
3
o
2

2
Q

o
2
3
o

o.

o

o.

o

o.

o.

o

162.35

o

o.

Q

o.

Figure 13. Initial Alternate Routing Tables.

The frequently used sections, such as the
Direct Router or the Operator, are basic to the
structure either of the system or of the simu­
lator, and changes in these would normally be
of a sufficiently fundamental nature to require
a substantially new approach. This type of
program, then, need not be easily alterable.

This sort of experience leads rather natu­
rally to a categorization of simulation pro­
grams according to the following classifica­
tions:

(1) Basic subroutines which are called by
virtually every transaction. These pro­
grams should be efficient but need not
be easily modified.

(2) Subroutines which specify the logic to
be followed under more unusual cir-

cumstances, such as when congestion is
encountered. Such routines are critical
to the problem, since it is the behavior
of the system under such circumstances
that is normally the question under in­
vestigation. The logic followed in these
cases ordinarily can be varied and is
under constant assault as new operat­
ing procedures are invented and must be
tested. These programs, however, must
have access to the same data structure
as the basic subroutines of class (1).

(3) Programs which perform such func­
tions as preparing the inputs or proc­
essing the data. These programs are
normally reached only at infrequent
times, and can access data which is buf­
fered and altered from the basic data

UNISIM-A SIMULATION PROGRAM FOR COMMUNICATIONS NETWORKS 247

in the simulation. They also may be
largely arithmetic in function as op­
posed to the logical operations generally
performed by the programs within the
simulation.

could well be written in some intermediate type
of simulation language. The characteristics
of the language would have to include at least
the following:

It would be desirable in the development of
future simulation languages if the capability
for using different existing languages for cer­
tain sections of the program could be provided.
For example, heavily used portions of the pro­
gram may be best written in a machine lan­
guage in order to obtain maximum efficiency
in speed and space. Others may best be writ­
ten in a familiar language which is suitable for
arithmetic operations (although if a simula­
tion language can incorporate extensive arith­
metic functions, this would be useful). The
third type of program, however, (type (2»

(a) It be "natural" in the sense that it be
reasonably easy to understand and use,
and has a documenting capability to
facilitate program changes.

(b) It be capable of interfacing with a pro­
gram written in machine language and
perhaps with a commonly used compiler
language such as Fortran. In particular,
it must be capable of operating on the
same data as do machine language sub­
routines, with full capability for flexible
bit packing and accessing of informa­
tion which is stored in dynamically
changing arrays.

SWIH.H -UUU.-IAf'L.ltEOUCTHlII,.. MEM-Fl!.IR_REPeRTING INTERVAL -IWMaEA-- _ -__ 1--_______________ _
PReCESSING INTERVAL NUMBERS 2 THRBUGH 6 NUMBER lIF SWITCH Cl!.IUNTS 50

BEGINNING TIME IS 2000.000 ENDING TIME IS 12000.000

~r:E
PAIR

1 2
1 3
1 4
1 10
1 20

_2 _ 3
2 4

_2 5
2 8
2 9
2 10

---2 11
2 12
2 13
2 14
2 18
2 19

_ -220
2 21
2 22
2 23
2 24
2 25

.2 29
2 30
2 31
2 32
2 33
2 34

-----L-~_

3 9
3.10
3 20
3 29
-4 9

H!lTAl
TRlNKS

TRUNKS
RESC
FUll

UTAl CARR I ED
----- ----CARJUEO- -_.F.uu.

UlAD ACCESS

17 C 73.200 67.320
7 0 ______ -.!t.320 __ 3.180

23 0 17.720 8.580
18- . 0 _____ -1L.480_____ 11.420

7 g 5~ 140 4 ... 94Q

CARRIED
LIMITED
ACCESS

5.880
I.HO
9.140
3.060
0.200

PERCENT
lICCU­
PANCV

P-f:RCENT PERCENT
-- -- .. FULL------U!l1 rE-O.---------

ACCESS ACCESS

95.065 91.!998 8.002
61.114 n 74 1 26 2S9
17.043 48.243 51.157
80.444 _____ 78.9D9.----21.'O'9,...1 ____ _
73.429 3.165

____ !LL-_-'L-____ -->3'-"-9-'7'-"4J.LO_--'3><>-8~. ___ . __ 0.800 _______________ .92...A19 ___ ----"9u7...:9'"-'7C-L7 __ ---42:-.u..02~3L-______ _
79 C 74.860 62.680 12.180 94.759 83.786 16.214
31 ______ 0_ 22 380 ----13.520 8.860 ____ 72.194 _.60.13-1-____ -------3..""9 ... 2:.<>6::1-9 _______ _
e 0 4.800 3.860 0.940 60.000 80.585 19.415
9 _ 0 ______ 5 8 8 0 4._400 1.480 65.333 _ 74~9.93- ?S 001

169 0 163.560 150.160 13.400 96.781 91.816 8.184
5 n 1 960 1 860 0.100 ___________ 3.'L2.Qa.. ___ 9""SL.-!t.4C;2S>----_-------'t-.4..:lSu.7:>-S _______ _
4 0 2.260 2.100 0.160 56.500 93.642 6.358

18--- 0 __ --14~ __ 8.620 6.140 82.000 58.58L ___ .U...Al9.. _______ _
10 0 6.740 5.840 0.900 61.400 86.118 13.282
11 0 - -----9..0-20- _ -----'----8.840 0.180 82.000 98.022.---------1.978 ________ _

9 0 7.180 1.180 O. 79.178 100.000 O.
_ -- ______ ---26.-___ --0. 16 380 14 980 _____ 1.400 ________ -ll.DD0-----------"9LL1...:S:>.J1.-L7 __ ----l:8~48t1..:3L-______ _

16 0 10.660 10.620 0.040 66~625 99.658 0.342
7 0 5.160 5.160 O. 73.114--- _LOQ.GOO. __ OU-o--_· _______ _

14 0 12.61:10 12.680 O. 90.511 100.000 O.
5 0 3.360_ 2.720 0.640 67.200 81~82a _____ 18.__+J!7'_"2 _______ _
1 0 4.920 4.800 0.120 70.286 97.')10 2.430

... ___ .33 ____ 0 __ 30]20 '9 980. ____ .0.3 .. 0 9l.8.l2.._-------"9Ul8~8t1.:l91.L2 __ ___lJl...JJ!0w:8L-______ _
11 0 9.020 9.020 O. 82.000 100.000
18 a 15.080 14.260 0.820 8.1.178 94.433_

7 0 4.660 4.500 0.160 66.571 96.538
_____ .7 0 _ . _____ ?o.800 ________ ... 000 0.800 68.511 _ 83.042-'-._

8 0 6.080 6.080 O. 16.000 100.000

o.
5 561
3.462

16 9S8
o.

S7 0 52 400 4 3 420 ___ J.98O' _________ -'U-'9L13""'0_-----'8:>.<?'---'l<92 ! __ ~17 0-<-'79'"--______ _
16 0 it.460 1.680 3.780 71.625 66.110 33.230

___ ._2L-__ D _____ ___ -Ll20J-:L9?"-I.0L----2.0.460 __ __ 0 ... 60 87.167 _ _91.865 2 ! 35
11 0 9.500 9.380 0.120 86.364 98.818 1.182

. __________ lQ. ___ 'O __ .___ 7 3?0 I.110 O. 13.200 ___ .100.000 a
26 0 22.280 16.140 5.540 8'>.692 15.303 24.697

-4 10 48 0 42 440 342M 8 24lL ______ ._--'S..,8 4'"-"L-I7 __ J:U80.........,h.:>JS8"---_].19...,3..,.4L2 _______ _
I, 20 11 0 7.920 6.860 1.060 12.000 86.798 13.202

_'t.2~___ 13 0 9 0 80 8 580. _____ D.500H ___ . .b9.846 ______ 9~ __ ____'_L5 ___ 5'__"'4_"__3 _______ _
5 10 46 0 38.620 29.020 9.600 83.951 75.226 24.714
6 10 _________ ~ ___ ~. ____ ~2u5 88""0''---_L;>25~880' _ o. . ___ 69.946 __ -----11lO_~----Uo",___ _______ _
1 8 13 0 6.820 6.100 0.120 52.462 89.325 10.615

15)aO 7]Q ?J a 14 98Q 0 200 72 2Mb 98 63 8 1 3h2
1 17 19 0 12.480 12.220 0.260 65.684 91.813 2.127
~ _____ ~ __ ~ _____ ~2~9~1~4~O_~2~6 0w8~OL-_~ 35 ° 3.D61l __________ 8..3..257 89 488 10 512

8 1:1 14.060 12.540 21 0 1.520 66.952 89.465 10.535
__ .8.._1.7 _]4 700 13 100 ?J 0 ..l.601l _ __ 10 • .000_ 89 154)0 8 46

8 18 12.320 11.'-40 19 0 0.880 64.842 92.916 1.08lt
8 25 6 +4° .. 7S0]Q 0 I 660 64 400 7_ 326 2 5 614

34 0 9 10 27.920 24.880 3.~0 82.118 89.096 10.904
30 0 ~~ ___ ~~_~ _____ ~2~3 6~4~O~_~22~5~2QL-_-i. 1....l2O. __________ 18~aoo 95 243 4 757
18 C It 13 110.020 10.240 3.780 71.889 72.965 21.035

-- - -- -- -- ----

Figure 14. Switch Count Tape Reduction-Mean-For Reporting Interval Number.

248 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

CAli TAPE REoIICTT8N - MeAN.- FAD AEPIJlIIWNGIi--lIN-NTUE;.aR.ll.YAll'~N'UJ'MUlB~fRR-_...J'-------------
PReCESSING INTERVAL NUMBERS 2 THRBUGH 6 NUMBER BF SWITCH CBUNTS 50

BEGINNING TIME IS

!!RIG PEST
eUICK

PReB

2000.000

AVE.
DE'Ay

DELAY oIST,RIBUTIBN AVE. NB.
a o 5 1 0 1 5 2 a , TNKS

, ,,051 0 0 0 0 0 0 J J 89

3 0.027 O. O. O. O. o. O. 1.211
4 0 oen a . a 0 a 0 0)) 68
5 O. O. O. O. O. O. O. 1.700
6 0 0 n 0 0 0 0 0 900

7 O. O. O. O. O. O. O. 1.500
8 0 050 0 0 0 0 0 0 2 233
9 O. O. O. O. O. O. O. 1.300

) a 0 049 a a a 0 0 a) I 21
11 O. O. O. o. O. O. O. 1.600
1 2 COo a Q 0 a 2 '61
13 0.140 O. O. O. o. o. O. 2.350
lit 0 072 0 0 0 0 0 0 2 397

16 0.200 O. O. o. O. o. O. 2.100
17 0 0 0 a a 0 0 2 467
18 O. o. o. O. o. O. O. 2.275

_) J Q C 073 0 0 0 0 0 0 ? 233

1 20 0.006 O. O. (I. O. O. O. 1.293
) 2 J C 025 0 0 0 0 0 0 2 131

1 22 0.C82 O. O. O. o. O. O. 2.210
1 23 COO a 0 0 a 2 341
1 24 O. O. O. o. O. O. O. 1.733
1 25 C 101 a a a ann 2 258
1 26 C.C25 O. O. O. O. O. O. 2.662

_ I 21 0 0 0 a 0 0 0 1 800

a 844
0.843
a B65
o.
o
o.
o

ENDING TIME IS 12000.000

LINK olSTRIBUTIBN
3 4 5

o J 27 0 025 non.. 0

0.104 0.053 O. O.
Q) 09 a 0) 9 a 007 a
0.700 0.100 O. O.
o 300 0 100 0 D

0.300 0.300 O.
o 767 0 233 Q

O.
o

6

a
o.
o
o.
o
O.
a

O. 0.500 0.100 O. O. O.
a 888 a 100 a 010 0 002 0 Q

O. 0.800 O. O. O. O.
o 0 733 0 267 0 0 0

O. 0.650 0.350 O. O. O.
o 0 703 0 J 97 0 1 no 0 0

O. O. 0.400 0.100 0.100 O.
o a 733 a 067 0 200 0 a
O. 0.825 0.100 0.050 0.025 O.
o 0 800 0 166 0 033 n 0

0.741 0.231 0.022 0.006 O. O.
o 0 869 0 J 31 0 0 0

O. 0.830 0.130 0.040 O. O.
Q Q 783 a 155 Q Q 062 a
O.
Q

O.
a

0.667
Q 7 9 2
O.
o

0.133 O. O.
Q 158 a OM 0

0.538 0.262 O.
o 600 0 0

O.
a
O.
a

a
o.
o
O.
Q

O.
Q

o.
o
o.
Q

o.
a
O.
a
o.
a
O.
Q

O.
a
o.
o
O.
o

1 28 0.0.73 o. O. o. o. O. O. 3.298 O. 0.012 0.689 0.286 0.012 O. O.
1 29 C 024 0 a a 0 0 a 2 316 0 0 772 0 139 Q 088 0 0 Q
1 30 C. O. O. O. O. O. O. 2.351 O. 0.705 0.240 0.056 O. O. O •

. --L-.~3U1 __ C~C~IQO_~0~ ____ ~0~_~0~_~0~_~0~_~0~ ___ ~2~3~5~6_~0~_~0~6~1~4~0~3w06L-~0~Q~1~0~0~Q~1~Q~0~_~Q~ __
1 32 O. O. O. O. O. O. O. 2.317 O. 0.750 0.183 0.067 O. O. O.
J 33 0 e33 0 0 0 0 0 0 2]00 0 0 900 0 100 0 0 0 0

1 34 0.100 O. O. O. O. O. O. 2.369 O. 0.681 0.294 O. 0.025 O. O.
_...L-__ ~3_~C.o...J.LO..1.31L_~04___ 0 a 0 0 0 I 226 0 811 0 158 0 021 0 005 0 Q a

4 C. 038 O. O. O. O. O. O. 1.201 0.837 0.132 0.024 0.006 0.000 O. O •
• -...&. __ --"-_---'0.l.aJ.LC52.16"----"0'-- a 0 0 0 0 I 076 0 937 0 053 0 006 Q 004 0 0 0

C.025 O. O. O. O. O. O. 2.171 O. 0.829 0.171 O. O. O. o.
o () J 1 a 0 0 0 0 0 , 094 0 0 906 0 09. 0 0 0 0

o. O. O. O. O. O. O. 1.078 0.928 0.066 0.006 O. O. O. o.
2 9 C) 00 0 0 0 0 0 0 . I 146 0 904 0 052 0 039 0 005 D 0 0
2 10 0.044 O. O. O. O. O. O. 1.142 0.868 0.122 0.009 O. ·0.001 O. O.

!l C 011 -D..~ ___ .u..o~_--'LO~_--'L0~ __ ~O~_.Jl..) 035 0 976 0 012 Q 012 0 0 0 0
12 C. O. O. O. O. O. O. 1.225 0.B61 0.094 0.019 0.009 0.017 O. o.

2 13 coo 0 Q 0 0 1 ?B2 0 BI6 0 107 0 056 0 Oll 0 0 0
2 H C. O. O. O. o. o. O. 1.139 0.899 0.081 O. 0.019 O. O. O.

..L2.L:15:L--___ .O 025 Q 0 0 0 0 0 2 196 Q 0 400 0 432 Q 1)9 0 029 0 cj

2 16 0.019 O. O. O. O. o. O. 2.420 O. 0.723 0.168 0.075 0.034 O. O.
__ .2. __ 11 C .. Ql..L __ ._. Q ° 0 0 0 --.0.... 2 12.L_-u0~ __ -l01..o..lL88!1JIL-..JOLla..l].1IJ06~..u.0....J0.w0La.8--L10l&..-_.....IQ~ __ Ol1.o...-_

2 18 C.C03 O. O. o. O. O. O. 1.271 0.794 0.155 0.0.0 0.008 0.002 O. O.
19 C C08 0 0 0 0 Q 0 I 361 0 150 0 178 0 Olt) Q olg D OlD 0 0
20 0.C02 O. O. o. o. o. O. 1.026 0.977 0.020 0.003 O. O. O. O.
2) COO 0 0 0 0 J 057 0 947 0 049 0 004 0 0 Q 0
22 0.042 O. O. O. O. O. O. 1.209 0.829 0.139 0.024 0.007 O. O. O.

_. __ ._._---- -_ .. --

Figure 15. Call Tape Reduction-Mean-For Reporting Interval Number.

(c) The implementation should preferably
be monitor independent, so that it can
be used at installations with nonstand­
ard systems. Failing this, the structure
of the translator should be sufficiently
well documented so that modifications
can be made locally.

(d) Although not essential, if the language
is to be used for an entire program, as
might be the case for some smaller
problems, I/O and arithmetic functions
should be included. Special subroutines,
such as programs to assemble delay dis­
tributions, would be useful in this re­
spect.

The above statement of certain desired char­
acteristics of a simulation language in effect
sets a rather limited goal, on the grounds that

such a program would provide most of the ad­
vantages of a full new language, while at the
same time materially reducing the complexity
of the program. This would improve the like­
lihood of its being learned and used, which is
the ultimate test of value.

It also would not be excluded from applica­
tion on grounds of space or speed, since critical
sections can be done in other languages, and
full bit manipulation capability would be pro­
vided.

These requirements are quite general in na­
ture, but we do not believe that detailed ques­
tions of program structure can readily be
deduced from a specific problem of the sort
which prompted the writing of UNISIM, nor
do we expect that this is an appropriate vehicle
for such discussions.

UNISIM-A SIMULATION PROGRAM FOR COMMUNICATIONS NETWORKS 249

The essential point, however, is that the pro­
grammer_ have available the full capability of
the machine if necessary, and a simulation lan­
guage which is to have application to problems
of this sort must make this possible. To our
knowledge no language which presently exists
and is in general use, provides this capability.

Mrs. E. E. Bailey, Miss S. A. Switch, and Mrs.
A. Sheehan.

REFERENCES

1. "Some Traffic Characteristics of Communi­
cations Networks with Automatic Alternate
Routing," Bell System Technical Journal,
Vol. 41, pp. 769-796, March 1962, J. H.
WEBER.

X. ACKNOWLEDGMENT

The programming of the various sections of
UNISIM was accomplished by the following
team at Bell Laboratories: Miss G. T. Watling,

2. "A Simulation Study of Routing and Con­
trol in Communications Networks," Bell
System Technical Journal, November 1964,
J. H. WEBER.

TRUNKS SUM CARR lEO
--'SO""IE=GINNnIN""G-----=EN""OITI"II1NG,.----'f'1l"TfAX"1L--OR?ESfiO..-----,.C"'AR"'R"!""E"D-----=-.,;FUiX--

TIME TIME TRUNKS FULL LilAD ACCESS
- - --------_ .. _-------- ------------------------ ----_ ... __ ..

CARRIED
LIMITED
ACCESS

1.00 3000.00 6663 0 5098.130 4695.531 402.600
----1001)0-.;00- 1000.00 ~663"----"O ~9n~-99T--·ij:608~-39r--- -364~-600··-

8000.00 11000.00 6663 0 5178.997 4765.330 413.667
12000.00 15000.00 6663 0 5365.530 4879.930 485.600
16000.0-'-0 __ 1::..9..:.0_00_ • ..:.0_0 ____ 66-'6'-.3 ___ ..:.0_ 5478.197 4_957 .~!._. 5!Q..~g_~ _

PERCENT PERCENT
~CCU- FULL
PANty ACCESS

76.514 92.103
74.636 92.668
71.728 92.013
80.527 90.950
82.218 90.493

~VERALL SYSTEM STANDARD DEVIATUNS - SWITCH C"UNT DATA - ItEPeRTING INTERVALS

BEGINNING
TIME

ENDING
TIME

1.00 3000.00
4000.00 tOOO.OO
8000.00 11000.00

12000.00 15000.00
16000.00 19000.00

lalAL
TRUNKS

6663
6663
6663
6663
6663

TRUNKS SUM
RESo CARRIED
FULL LIJAD

0 339.522
0 235. tt3
0 229.917
0 213.305
0 206.315 ---------------------------

CARRIED CARRIED
FULL LIMITEO

ACCESS ACCESS

291.658 81.048
214.849 60. 196
211.104 66.274
196.565 68.1/5
199.628 60.410

eVER-ALL Mt:ANS-CALL DATA TAPE
--------------- ---

BEGINNING ENDING BLeCK AVE. DelAY OISTRIBUTHIN AYE. N0.
liME lIME pUB. DELAY O. 0.5 1.0 1.5 2.0 LlNKS

1.00 - -31l1rcr.~Ilf---lf~--____u_;_--- 0.-.---0.--. --0. U()-:----n-----r.-I0"9 0.892
4000.00 7000.00 0.009 D. O. o. O. o. O. 1.103 0.897

-"mnr.0c:r-"Il000;mr-lr.008---1);·~--lf.-·----1)_;;·----O~ O. O. ---r';II3---l)·~·8-88·

12000.00 15000.00 0.012 O. O. o. o. o. o. 1.124 0.878
--n;omr.OO 1900.0.00 0.024 O. o. o. o. o. O. 1.128 0.874

--·~---------·---·-------------"3V£I\-J.U.NTERVAl:;TANDARODEVTlTIlJNS ~··ClI.L-Uj(TA

-1!£GfNNTNG ----EfIDTN(;---·Bl-ocK--/WF;---··_·---'JELlY--DISTRIBUTI"N --------.--~._~
TIME TIME PReB. DELAY o. 0.5 1.0 1.5 2.0 LINKS

0.101
0.097
0·.106
0.ll5
0.1l9

1.00 3000.00 0.013 O. O. o. o. O. O. 0.063 0.033 0.041

LX ~~K 01 S JR.I BUTI eN
~ 4

0.004 O. O.
0.004 O. O.
0.004 o. O.
0.005 O. O.
0.006 j. O.

LINK OlSrRIBUn~N
3 4 5

0.020 O. O.

PERCENT
LIMITED
ACCESS

7.891
7.332
7.987
9.:)50
9.507

o. O.
O. O.
O. o.
o. O.
o. o.

o. O.
0.018 O. O. o. O. ---- 4OOU.00--rooO;OO---0~014 --1)~-------1J~--~-\l;----- 0.·· O. ll~- -0-;m>l:--lr._1)3{I'O'."'O"'38.--"'....,-,,--,.-----...--...,;.:c--..;:.c:--
0.019 O. O. o. o.
0.022 O. O. o. O.

8000.00 11000.00 0.013 O. O. o. O. o. O. 0.060 0.032 0.039
--------12000.00 -1500cr.:oo----o-.015 - 1).-- ~ - - 0-.------0;- - -0-. - ----·O~ .-- ---0";--··~bZ---lf~()'y32.,--.... O-=-.0;.,4"'0.--;~~---;.-=---....;.:'----...=----;:

16000.00 19000.00 0.017 O. O. O. O. O. O. 0.059 0.030 0.037 0.019 o. O. o. O.

HI SERY FACT0RS
---_ .. _----------

BEGINNING ENDING BLeCK AVE. DELAY DISTRIBUTIeN AVE. Nil. LINK DISrRI8UTI~N
- TIME . - -- Tn4F-----PReB~-- DECAY ·0; 0;5--~---1~0 ·r~;-- "2;0 3 5 L INKr-- --r----.,.-----..----.:---..,------:i~-~

1.00 3000.00 0.034 O. O. O. o. O. O. 0.215 0.201 0.189 0.031 O. O. o. O.
4000.00 7000.00 0.026 O. O. O. O. o. O. 0.220 0.211 0.194 0.040 o. O. O. O.

- - 8000.00 lIOOO.OO - 0.029 0.--· . O. ~---\l-;--.- 0.·· ·0-; --- -0;-- - ·--o;ns--- -0;ZOS--D.T88 0.031 O. O. o. o.
12000.00 15000.00 0.034 O. O. o. O. o. o. 0.219 0.208 0.190 0.040 O. o. o. O.
16000.00 19000.00 -0.044 ·0. O. O. -D. O. O.

.- 0.217 - 0.205·0~n7 0.038 O. O. o. o.

Figure 16. Overall System Means-Switch Count Data-Reporting Intervals.

THE DATA PROCESSING SYSTEM SIMULATOR (DPSS)

(SP.1299/000/01)
Michael I. Youchah, Donald D. Rudie, and Edward J. Johnson

System Development Corporation
Paramus, New Jersey

1.0 INTRODUCTION

The Data Processing System Simulator
(DPSS) is a general purpose computer pro­
gram that can be used for the evaluation of a
proposed new design or a modification to an
existing design of a data processing system
prior to making equipment selections or per­
forming any significant computer program de­
sign. The DPSS can also be used to provide
guidance in the design and development of a
data processing system during the detailed de-
sign stages.

The DPSS was initially designed to meet the
needs of analyzing and developing the data
processing requirements of the Project 465L
Strategic Air Command Control System
(SACCS) . It has subsequently been general­
ized to permit its application to other systems
in various stages of design and development.
Results have shown the usefulness of the DPSS
in Project 465L (SACCS) and, in a prelimi­
nary manner, its usefulness on the Space Sur­
veillance Project and New York State Identifi­
cation and Intelligence System. In all three
cases, original concepts about the system's po­
tential performance were evaluated and new
and significant guidance and information ob­
tained as a result of the use of the DPSS. In
the case of the New York State System, the
DPSS results showed a whole class of com­
puters to be inadequate for the job.

251

The D PSS can be used to determine the sen­
sitivity of a data processing system's perform­
ance to various system loading or design pa­
rameters. In addition, the total system design,
including the software and equipment portions,
can be subjected to a rigorous analysis and
evaluation early in the design process so that
key decisions can be made in the areas of:

1. The kind of equipment to be used.
2. The number of each type of equipment.
3. The kind of data processing discipline

and strategy required.
4. The projected performance of the system

under varying loads.
5. The system's maximum capacity.
6. The system's ability to respond as a func­

tion of loading, capacity, and environ­
ment.

2.0 DEVELOPMENT OF THE DATA
PROCESSING SYSTEM SIMULATOR

In its development, the Data Processing Sys­
tem Simulator has used a higher order simula­
tion language similar to those which have been
developed previously for general simulation.
However, unlike other techniques, a single com­
bination of these higher order language macro'
instructions is used in a single logical arrange­
ment permitting the representation of a wide
variety of possible data processing system con­
figurations and processing rules with no addi­
tional programming or design.

252 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

As a consequence, the necessity of writing
special "event" programs or subroutines, as is
usually required with the use of simulation
languages, has been eliminated. Further, the
flow diagramming, design, coding, compiling,
and checkout of each simulator or subroutine
created by the use of simulation languages have
been totally eliminated. The result is a con­
siderably shortened time required to produce
a reliable model of the data processing system
to be investigated.

2.1 DPSS Description
The following sections contain a general de­

scription of the DPSS and a sample problem
illustrating how it can be used.

2.1.1 General Characteristics
The Data Processing System Simulator re­

quires approximately 1,500 instructions writ­
ten in JOVIAL, a high-order programming
language developed by the System Development
Corporation.

The D PSS was initially designed to run on
the AN /FSQ-32-V computer which is de­
scribed in Appendix V, however, a new and
expanded version of the DPSS has been written
to run on the IBM 7094.

The AN/FSQ-32-V version of the DPSS re­
quires 15,000 core locations which are used to
store the basic program and the parametric in­
puts used for each run.

2.1.2 Purposes and Limitations
The DPSS is used to represent (a) the in­

puts to the system, that is, those message units
or informational units which are to be entered
into the system, at either local or remote loca­
tions, (b) the processing performed by the
computer on each input, and (c) the outputs
generated by the processing portion of the sys­
tem based upon the inputs. Processing includes
the buffering and the retention of the messages
prior to processing. It also includes the specifi­
cation of the time to load the system with the
necessary programs and environment to handle
the message and the time to unload and the
time to operate the actual program as well as
the data preparation and data presentation
functions.

3.0 DPSS OPERATION-GENERAL

To understand the functioning of the DPSS,
a general idea of the key features of the way
a possible Data Processing Central (DPC)
cycle operates will be discussed. The system
configuration to be considered in the example
will employ a discontinuous cycle "in which in­
terleaving and interrupting are permitted. The
material for this example is drawn from ex­
perience with several systems and does not
represent the design of any single system. See
the Glossary of Terms, Appendix III, for an
explanation of key terms used in the following
paragraphs.

3.1 Data Processing Central (DPC) Operations
The input messages which arrive from vari­

ous local and remote locations are batched at
the D PC (Figure 1) and held until certain
criteria for one or more of the batches are
reached or exceeded. The specific nature of
batching will be discussed subsequently. Once
a batch criterion has been exceeded, the Execu­
tive program which controls all DPC functions
then initiates the processing of the input mes­
sages which have been batched. In so doing,
it calls in from auxiliary storage the necessary
environment and programs for the operation
of the processing portion of the DPC cycle.
When the processing has been completed, a set
of output programs extracts the appropriate
data from the data files and prepares the re­
quired system outputs.

3.2 Input Batching
An input message batch is characterized by

three items, time, size, and interrupt, the latter
having two sub-items (see Figure 2). The
"time" item indicates that a particular message
or group of messages will be accumulated for
a given length of time before an indication
(cycle initiation request) is given to the Execu-

~N:,.u6.tING H PROCESSING

'-------
~I OUTPUTS

Figure 1. DPC Cycle Operation.

THE DATA PROCESSING SYSTEM. SIMULATOR (DPSS) 253

tive or master program that a cycle should
start. The second item is the "batch" size. The
DPC will collect message (s) until a predeter­
mined number of them have been accumulated.
This given number of message (s) must be
accumulated in less time than the batch time
in order to cause a request for the initiation
of a DPC cycle to be made because of "size."

Once either' of these two values (time or
size) has been exceeded, it must then be deter­
mined if the interrupt feature (the third item)
associated with this particular batch is set to
"yes" or "no," and if set to "yes" whether the
"immediate" or "wait" option is set. T.here are
two cases to consider here: (1) when the DPC
cycle initiation request occurs during the opera­
tion of an interleaved subsystem, and (2)
when the DPC cycle initiation request occurs
during the operation of DPC cycle in progress.

When any cycle initiation request occurs dur­
ing the operation of an interleaved subsystem,
the Executive interrupts the interleaved sub­
system at the earliest possible moment, regard­
less of the interrupt setting of the· batch, and
initiates a DPC cycle. If the cycle initiation
request occurs during an on-going DPC cycle,
Ll ____ Ll _____ Ll_! ______ 1 ______ ..J ______ l! ____ LL._

l"IleIl l"Ilree l"IlIIlgOS CaIl Ilal' l'eIl, Uel'eIlulIlg UIl l"lle

setting of the interrupt item and interrupt
option. If the interrupt item is set to "no" for
a batch which causes a cycle initiation request
to be generated, then an indication will be
given to the Executive program that the batch's
limits of time or size have been exceeded but
the Executive will not interrupt the cycle in
progress. A new cycle will be initiated as soon
as the present one has been completed.

INPUT
BATCHING !----..t

BATCH'"

nME IZE INTER

1.5 10 YES

Figure 2. Batching Concept.

If the interrupt item has been set to "yes"
and the interrupt option to "immediate," then
the Executive program will initiate a new cycle
immediately (possibly with certain program­
ming constraints). If the interrupt item had
been set to "yes" and the interrupt option to
"wait," then the current cycle will be inter­
rupted when the priority of the message caus­
ing the interrupt request is equal to or higher
than the priority of the message being proc­
essed in the current cycle.

The D PSS permits the establishment of as
many batches as are required for efficientsys­
tem operation, assignment and modification of
batch characteristics, and the assignment of in­
puts to each batch.

3.3 DPC Task Processing

Messages are processed by tasks within the
DPC Program System. The tasks are sequenced
according to the priority of the message being
processed (see Figure 3). One of the tasks
provides outputs from the system upon re­
quests (display requests). This task is shown
as the last task in Figure 3, however, there are
many logical places where the task could be

When a D PC cycle begins, all of the mes­
sages that have been collected in all of the
batches up to the time that the cycle begins are
transferred from the batches to the task proc­
essing area. In the task processing area, the
messages lose their batch identity and are proc­
essed according to the task sequence.

INPUT
BATCHING !-----IPROCESSINGt-----I OUTPUTS

TASK TASK

2
TASK --- ___________ !.. _______ M

Figure 3. DPC Task Processing.

254 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

3.4 Input Data for Each Simulation Run
The use of the DPSS requires the definition

of the program system configuration and the
assignment of values for the system param­
eters as input data. The following set of input
data are typical for each run of the DPSS. The
sample values (placed within parentheses or in
tables) are used to describe a system that will
be simulated as an example. Note that if a sys­
tem does not have some of the characteristics
described in the inputs, e.g., batching, then
that information can be left out of the input
data.

1. The length of the period to be simulated­
(3600 seconds).

2. The number of times that this test is to
be repeated under the same operating
conditions, referred to as the number of
cycles in the test- (1) .

3. The messages to be used in the test-(A,
B, C, D, E, F).

4. The number of each type of message that
will arrive at the DPC. This number is
not an absolute number; rather, it deter­
mines the relative frequency of each par­
ticular message arriving at the DPC. This
number is used in conjunction with the
traffic rate:

(A - 10
(B - 22

(C - 19

D - 31)
E - 5)

F - 18)

5. The batch criteria for each batch and the
messages that are collected in each batch.
a. Time
b. Size
c. Interrupt

1) Immediate
2) Wait

Time Size
Batch Message Criteria Criteria

1

2

3

A 0 Sec.
B, D 5 Sec.

C, E, F 10 Sec.

1

3
4

Interrupt
Option

Immediate
Wait
No

6. System Tasks-This is a list of the tasks
or jobs that the DPC Program System is
required to do. The word "job" or "task"

means a collection of programs that are
used to process a message or set of mes­
sages. The performance of a task is
measured as follows:

a. "Load Time"-The time it takes the
environmental data tables and the op­
erating programs to be transferred
from the auxiliary storage to core
memory.

b. "Operate Time"-The time it takes
after the environmental data pro­
grams are in core for the programs
themselves to process the messages to
assess the intelligence they contain.
In both of these cases, the distribu­
tions of the times to be used for this
task and the proper parameter (s)
for the distribution must be specified.
(See Table I.)

7. Message-Task Relationship-This indi­
cates the messages that are processed by
each task. The DPSS will accept any
message-task relationship.

Message Task

A 1
C 2

B,D 3
E,F 4

8. Message-Display Relationship and the
~obability of the Forced Display-This
is the relationship between messages and
forced displays. It indicates which dis­
play(s) may be forced as the result of
the message's being processed. Any mes­
sage-display relationship may be estab­
lished and tested. For each message­
display relationship, the probability of a
display's being forced is the conditional
probability that the display will be forced
given that the message has been proc­
essed. If a display is forced by more
than one message, the probability of a
displats being forced may be different
for each message. (See Table II.)

9. Task Sequence-This indicates the order
in which the tasks operate. There is no
restriction on the order in which the

THE DATA PROCESSING SYSTEM. SIMULATOR (DPSS) 255

TABLE 1. SYSTEM TASK SUMMARY

LOAD OPERATE

TASK Distribution Parameters Distribution Parameters

1 Uniform Min

Max

2 Exponential Mean

3 Uniform Min

Max

4 Triangular Min

Peak

Max

Additional Task Uniform Min
which is per- Max
formed whenever
a system output
is generated.

tasks operate. In addition, a task may
operate more than once during a cycle.

Task

1

3
2
4

Sequence No.

1
2

3
4

10. Traffic Rate-This indicates the total vol­
ume of traffic per hour that is arriving at
the DPC. By knowing the traffic rate and
the relative frequency of each message,
one is able to determine the expected
number of each type of message that will
arrive at the DPC within any time inter­
val. Preplanned changes in traffic rates
are permitted during the test- (750 mes­
sages/hour). "

11. Maximum Interleave Time-This is the
maximum time available for the inter­
leave subsystem. This time could be zero,
in which case the prime DPCcycle would
operate in a cyclic fashion-(1800 Sec.).

12. The Bookkeeping Time for the Interleave
Subsystem-This is the time that is given
the interleave subsystem to store and save

1 Sec

6 Sec

4 Sec

4 Sec

5 Sec

1 Sec

3 Sec

8 Sec

2 Sec

4 Sec

Exponential Mean .001 Sec

Exponential Mean .01 Sec

Uniform Min. .02 Sec

Max .02 Sec

Exponential Mean 1 Sec

Exponential Mean 5 Sec

pertinent data after a DPC cycle has been
requested- (0 Sec.).

3.5 Results for Each DPSS Run
Each simulation run records and prints out

the following items of information:

1. The arrival time of every message that is
received by the computer.

2. The time that each cycle is requested.

3. The time that each cycle begins and the
reason for initiation.

TABLE II. MESSAGE-DISPLAY
RELATIONSHIPS

Probability
Message Display of Forced

A D1 .8
D2 .3

B None
C D1 .6

D3 .5
D4 .01

D None
E D5 1
F None

256 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

4. The number of messages that have been
collected in each batch at the beginning
of each cycle.

5. The time that the processing of each indi­
vidual message begins.

6. The time that the processing of each indi­
vidual message is completed (processing
complete means that the data files have
been updated) .

7. For every display that is forced during a
cycle the message that forced the display,
the time the message arrived and the time
the display is forced are indicated.

8. For every cycle the minimum and maxi­
mum time required to process each type
of message during the cycle.

9. A cumulative average processing time by
cycle for each type of message in the sys­
tem.

10. The time that each cycle ends.

11. A list of messages remaining to be proc­
essed at the end of each cycle.

12. The total number of messages that were
received and processed by the computer
during the simulation period.

13. For every type of message:
a. The number of messages that were ex­

pected to arrive during the simulation
period.

b .. The number of messages that actually
arrived.

c. The number of messages processed.
d. The average waiting time for this

type of message.
e. The average processing time for this

type of message.
f. A histogram which indicates the per­

centage of messages whose. processing
time was in each of several one min­
ute intervals; e.g., the percentage of
messages whose processing time was
between 0 and 1 minute, between 1
and 2 minutes, ... , 30 to 31 minutes
and 31 plus. The DPSS does not plot
the histograms; rather, it supplies the
data from which a plot can be drawn.

14. The number of times that each display
type was forced.

4.0 DETAILED EXAMPLE OF THE DPSS

The DPSS is described in detail with the aid
of an example. This example will consist of a
description of the system to be simulated and
a detailed account of the arrival and processing
of the first few messages. I t should be noted
that all of the features of the DPSS are not
identified in this example. However, enough of
them have been identified and described so that
the reader can get a good understanding of the
model by following the example.

4.1 Description of System Being Simulated

The input parameters identified in Section
3.4 which describe the system being simulated
are summarized in four tables: MESSAGE,
BATCH, TASK, and SYSTEM tables. The MES­
SAGE table identifies the messages, their fre­
quencies, the batches in which the messages are
collected and the displays that are associated
with the messages. The BATCH table identifies
the batches, the batch criteria for each batch,
and the message types that are associated with
each batch. The TASK table is divided into
two parts: LOAD and OPERATE. The LOAD
part is used to specify the probability distribu­
tion and parameters that are used to determine
the length of time it takes to transfer the proc­
essing programs and environment from auxil­
iary storage to core. The OPERATE part is
used to specify the probability distribution and
parameters that are used to determine the
length of time that it takes to process each
message after the processing programs and en­
vironmental data are in core. The SYSTEM
table indicates the length of the test, the rate
of the incoming messages and other pertinent
information for the test.

See tables III, IV, V and VI for this example.

The ADD, CHANGE and DELETE columns
are for the convenience of the user when he is
making a series of runs and may wish to add
or delete displays that are associated with a
message, or to change the probability of a dis­
play being forced.

4.2 The DPSS in Operation

The simulator generates the messages and
"sends" them to the computer, in the same

THE DATA PROCESSING SYSTEM. SIMULATOR (DPSS) 257

TABLE III. MESSAGE TABLE

Number Forced Displays

Message Per Test Batch Display Add Change Delete Probability

A 10 1 Dl

D2

B 22 2

C 14 3 Dl

D3

D4

D 31 2

E 5 3 D5

F 18 3

fashion as it would receive them in an operat­
ing system. This system has'isix message types.
During the simulation period they are "sent"
to the computer at a rate of 750 messages/
hour.

The incoming system messages arrive ac­
cording to a Poisson distribution, i.e., the inter­
arrival times of the system inputs are exponen­
tially distributed.

If x is the interarrival time then an exponen­
tially distributed interarrival time has the fol­
lowing form:

1 1
x = - In (--)

a 1 - Y
(1)

Where l/a is the mean of the distribution and
y is a uniformly distributed random number
between 0 and 1 as determined by the use of
a pseudo random number generator.

In our case, if we want x in seconds, then
l/a = 3600/750. Suppose that the uniformly

TABLE IV.

Batch Size Time No

1 1 o Sec

2 3 5 Sec

3 4 10 Sec x

x .8
x .3

x .6

x .5

x .01

x 1.0

distributed pseudo random number y = .362 is
picked, then

1
x = 3600/750 In ()

1 - .362
= 2.16 seconds

This means that 2.16 seconds after the arrival
of the last message (or from the beginning of
the test if this is the first message to arrive)
another message arrives at the central proces­
sor. The type of message that was received
has not yet been determined. Each type of
message is assigned a range on the interval
(0, 1). The range is dependent on the relative
frequency of the particular message type. To
determine the message type, another random
number is generated and checked to see which
range it falls in.

It should be noted that the order sequence
in which the ranges for the various message
types are laid out on the unit interval does not
in any way influence the simulation process, the
reason being that the picked random number

BATCH TABLE

Interrupt Option
Message Associated

Immediate Wait with Batch

x A

x B,D

C,E,F

258 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

TABLE V
---TASKTABLE-LOAD----------------------------

DISTRIBUTION

MESSAGES EXPONENTIAL ARBITRARY CONTINUOUS NORMAL TRIANGULAR UNIFORM

TASK TASK TASK ASSOC. WITH
MEAN CUM. PROS. VALUE MEAN

NAME NO. SEQUENCE STANDARD MIN. MAX. PEAK MIN. MAX.
DEVIATION

I I A I SEC 6 SEC
2 3 C 4 SEC
3 2 B. D 4 SEC 5 SEC
4 4 E. F I SEC 3 SEC 8 SEC

DSP.
TSK 2 SEC 4 SEC

TASK TABLE - OPERATE

DISTRIBUTION

MESSAGES
EXPONENTIAL ARBITRARY CONTINUOUS NORMAL TRIANGULAR UNIFORM

TASK TASK TASK ASSOC. WITH
MEAN CUM. PROS. VALUE MEAN STANDARD MIN. MAX. PEAK MIN. MAX.

NAME NO. SEQUENCE TASK

I I A .001 SEC

2 3 C .01 SEC

3 2 B. D

4 4 E. F I SEC

DSP
TSK 5 SEC

TABLE VI. SYSTEM TABLE

Message Rate

Rate of

Length of Test
3600 Sec.

Time
(in

seconds) Messages MAXIMUM TIME IN­
------------- TERVAL BETWEEN

o 750 COMPLETION OF A
CONTROL CYCLE
AND REQUEST FOR
A NEW CONTROL
CYCLE 1800 Sec.

LENGTH OF TIME
ALLOTTED THE IN­
TERLEA VE SUBSYS­
TEM TO STORE
DATA 0 Sec.

NUMBER OF TEST
RUNS 1.

DEVIATION

.02 .02
SEC SEC

is always uniformly distributed over the unit
interval.

The ranges for the messages in this system
appear in Table VII.

This means that, if alter a message has arrived
and the random number is picked to determine
what type of message is in the interval .47 to
.77, then the message will be tagged as message
type D.

Using the procedures just outlined, the inter­
arrival time, the time of arrival and type mes­
sage that arrived of the first 6 messages in the
system. (See Table VIlla.)

In addition to these inputs, suppose that the
messages arrive at the times indicated. (See
Table VIIlb.)

The DPSS does not actually generate mes­
sages this far in advance; rather, it always gen­
erates enough messages to keep the arrival of

THE DATA PROCESSING SYSTEM SIMULATOR (DPSS) 259

TABLE VII. RANGE OF NUMBERS
FOR EACH MESSAGE TYPE

Range
Message Type (Approximate) From-To

A .10 o to .10
B .22 .11 to .32
C .14 .33 to.46
D .31 .47 to .77
E .05 . 78 to .82
F .18 .83 to 1.0

the last generated message ahead of the time in
the processor. The simulator could have been
designed to generate all of the messages that
will be used in the simulation prior to making
the actual run. This is an acceptable method
provided that feedback from the central proc­
essing unit will not influence the arrival of
messages.

4.2.1 DPC Cycle Simulation-Cycle I (Figures
4 and 5)

The first message (message D) arrives at
the computer at 2.16 seconds after the start of
the test and is collected in batch 2. It is the
first message in the batch. The time criterion
of batch 2 is 5 seconds, hence batch 2 will re­
quest a data processing cycle at 7.16 seconds.
This batch has a "wait-interrupt" option. Mes­
sage E arrives at 2.27 (2.16 + .11) seconds,
and is collected in batch 3 which will request
a cycle at 10 + 2.27 seconds or 12.27 seconds.
Similarly, Message A arrives at 2.29 seconds
and is coilected in batch 1, which has the "im-

TABLE VIlla. MESSAGE ARRIVAL
TIMES AND TYPES

Arrival
Time

Inter- from Mes-
Random arrival Start Random sage
Number Time of Test Number Type

.362 2.16 2.16 .72 D

.023 .11 2.27 .82 E

.004 .02 2.29 .02 A

.770 7.06 9.35 .35 C

.478 3.12 12.47 .11 B

TABLE VIllb. MESSAGE ARRIVAL
TIMES AND TYPES

Arrival Time from
Message Start of Test

C 18..4 Sec.
E 19.6 Sec.
F 20.7 Sec.
B 21.3 Sec.
A 21.8 Sec .
D 22.8 Sec.
A 23.7 Sec.
B 25.4 Sec.
C 27.5 Sec.
E 36.5 Sec.

mediate-interrupt" option set. The interrupt
occurs immediately and a cycle is initiated.
Note that the computer was available for other
tasks (other than Executive processing) dur­
ing the first 2.29 seconds.

As soon as a cycle starts, all of the batched
messages are tran~ferred to the task processing
area and the time and size criteria associated
with each batch is reset. There are three
messages to process in this cycle:

Message Time of Arrival

D
E
A

2.16
2.27
2.29

The cycle is set so that the tasks 1, 2, 3, 4
operate in the order 1, 3, 2, 4. Task 1 will

INPUT
ARRIVALS

BATCHES

2

3

CYCLE

DEA

I
D 2.16
E 2.27
A 2.39

I REQUEST
CYCLE

10 15
CI
I I

9.35 12.47

7.16
t----~I REQUEST

CYCLE

12.27
t-------~I REQUEST

CYCLE

BEGIN CYCLE
I

Figul'e 4. DPC Cycle Simulation Message Batching­
Cycle 1.

260 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

INPUT
ARRIVALS

BATCH

CYCLE

OEA
I

02.16
E2.27
A2.29

5
I

10'
C
I

9.35

B
1

12.47

15- 20
I ACE IFBA 0

1 1 1 1 II 4
16.6018.4\ 111~h8

19.6 21.8
20.07 21.3

, ~~~ST

17.47
1------11 REQUEST

CYCLE

19.35
.....-____ --11 ~~~ST

20.23 5.19 7.914 10.534 ,Ja.52
2.2~L.T.IIL.T.3IL.T.41 ,L.T •. ,

5. 204 7. 934 13.32

i:~,: rN~ r~ &}~PUT BEGIN CYCLE
A 0 E OS 12

Figure 5. DPC Cycle Simulation.
Cycle I-Operation
Cycle II-Batching

20.23

operate during this cycle, since task 1 processes
message type A and a t least one message A
arrived before the cycle began. The processing
time for the task is divided into a load and
operate time.

The load time for task 1 is uniformly dis­
tributed between 1 and 6 seconds. The length
of time that is required to load task 1, this
time, is determined by picking a uniformly
distributed random number and applying it to a
formula.

To obtain a uniformly distributed random
number lying between a minimum "m" and a
maximum "M," one picks a uniformly distrib­
uted random number on the interval (0, 1) and
uses the formula

y = m + x (M - m) (2)

where y is the desired value uniformly dis­
tributed between m and M and x is a uniformly
distributed random number on the interval
(0, 1).

In this case, m = 1, M = 6 and if the random
number x is .38 then

y = 1 + .38 (6 - 1)
= 2.9 seconds

Hence, it takes 2.9 seconds to load task 1, this
time.

Since the cycle started at 2.29 and it takes
2.9 seconds to load task 1, the time is advanced
to 5.19 seconds. After the task is loaded, the

operate part of the task must be performed.
The operate time for task 1 is exponentially
distributed with mean .001 seconds. A uni­
formly distributed random number (0, 1) is
again chosen. The processing time for message
A is determined in the same fashion as the
interarrival time was chosen for the incoming
messages. Suppose that the processing time is
determined to be .014 seconds, the simulated
time is now advanced to 5.19 + .014 or 5.204
seconds.

The DPSS performs the "load" part of the
task operation once per task and the "operate"
part once for each message that is processed
by the task.

The D PSS is an event oriented simulator
hence the simulated time "steps" from event
to event. However, whenever the time is
advanced, the simulator always checks to see if
any other event occurred or was to occur in
the interval between events. Whenever this
happens, the simulator "backs-up" to take
appropriate action. Message processing for
task 1 is now complete. Since message A has
two displays associated with it, a check must
be made to determine if these displays should
be forced this time.

The probabilities of forcing the two displays
D1 and D2 (Table II) associated with message
A are .8 and .3 respectively. Two random num­
bers are picked, say .94 and .47. Since .94 is
not between 0 and .8 and .47 is not between 0
and .3 neither of the displays is forced. If, for
example, the random numbers chosen were .63
and .47 then only Dl would be forced.

The next task in the sequence, task 3, oper­
ates since it processes message Band D and
one message D arrived before the beginning of
the cycle. Task 3 is "loaded" into the computer
with the load time determined in the way as
was used to determine that for task 1. Suppose
the load time turns out to be 2.71 seconds; the
system time is advanced to 7.914 seconds.

The "operate" part of task 3 is performed
on message D. Task 3 has a uniformly distrib­
uted "operate" time with minimum equal to
the maximum hence the "operate" time, .02, is
constant. The time is advanced from 7.914 to

THE DATA PROCESSING SYSTEM, SIMULATOR (DPSS) 261

7.934 seconds. Task 3 is now ready to generate
displays but since message D does not generate
any displays, the cycle moves to the next task
in the sequence.

Task 2 which processes message type C is
the next task scheduled to be' processed, how­
ever, no C messages arrived before the cycle
began, hence task 2 is skipped during this cycle.
Task 4 processes messages E and F and since
an E message arrived before the beginning of
the cycle task 4 will operate. Suppose its load
time is 2.6, advancing the time from 7.934 to
10.534 seconds. During the load time for task
4, message C arrived at 9.35. Batch 3 has no
interrupt option, however, message C will
cause a cycle initiation request to be issued at
19.35 seconds (10 seconds from the arrival of
message C). Since no interrupt occurred, the
cycle continues, the operate time for message
C taking 2.79 seconds. This brings the time
from 10.534 to 13.324. During this time mes­
sage B arrives at 12.47. Message B is collected
in batch 2 which has a "wait-interrupt" feature
causing a cycle to be requested 5 seconds after
its arrival (being the first message in batch 2)
at 17.47, or whenever 2 messages arrive in that
batch. The task in progress is continued and
since message E forces display D5 with prob­
ability 1.0 the task that forces the display must
be "loaded" taking, say, 3.2 seconds, bring­
ing the time from 13.324 to 16.524. Display D5
is now forced, which takes 3.71 seconds, bring­
ing the time to 20.234 seconds. Message A
arrives at 16.60 seconds during the "operate"
part of the task which forces displays. Since
message A is collected in batch 1, a new cycle
is requested at 16.60. The simulator has the
capability of handling a request for interrup­
tion of a logical operation in two ways. In the
first way, the DPSS can honor the interrupt
as soon as it occurs; in this case the "operate"
part of the task which forces display D5 would
have been interrupted. The second way is to
recognize the interrupt request and honor it as
soon as the current logical operation has been
completed. For purposes of this example, the
interruption will take place as soon as the
current logical operation is complete. Thus
the interrupt request will be held until the
output processing is complete, 20.234 seconds,
hence a new cycle begins at 20.234 seconds.

4.2.2 DPC Simulator-Cycle II (See Figures
5 and 6)

The following messages arrived during the
first cycle and are waiting to be processed in
the second cycle:

Message Time of Arrival

C
B
A
C
E

9.35
12.47
16.60
18.4
19.6

The DPSS has the option of processing the
messages in the order that they are received
or according to some sequence which is inde­
pendent of arrival order. In this system the
messages are processed according to a preset
sequence, i.e., message A is processed before
message B even though it arrived later in time.
The two C messages will be processed together
with the one arriving at 9.35 seconds being
processed before the one arriving at 18.4
seconds.

Again, in this cycle, task 1 is the first one
to be operated. Suppose the load time is
determined to be 3.9 seconds; this advances the

!NPUT
ARRIVALS

BATCH
I

2

3

CYCLE

2

20 25 30 35 'Y'l'FBA C A 18 C III I I I I

REQUEST
CYCLE

END CYCLE

REQUEST
CYCLE

20. 23 24. 13 8
I L.T.I I -~-- .. _____ ~_!_~
3.9 SEC TASK 3 TASK 2 TASK 4

PROC. A

3 BEGIN
CYCLE

3

Figure 6. DPC Cycle Simulation.
Cycle II-Operation
Cycle III - Ba tching

262 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

time to 24.13 seconds. The following events
occur during the load of task 1:

Message Arrives at

F 20.7
B 21.3
A 21.8
D ~2.8
A 23.7

Collected Request
in Batch

3
2
1
2
1

Cycle at

30.7
26.3
21.8
26.3

Message A collected in batch 1 causes a cycle
to be requested at 21.8 seconds. This request
is the "interrupt-immediate" type. However,
under the operating rules of this system, the
cycle interruption will not take place until
task 1 processing has been completed at 24.132
seconds. Note that the second message A arriv­
ing at 23.7 seconds does not generate another
cycle request. The messages that were to be
processed by tasks 2, 3, and 4 are queued when
the cycle interrupt occurs.

4.2.3 DPC Simulation-Cycle III (See Figures
6 and 7)

The third cycle starts at 24.132 seconds. The
batches are again cleared and the time and size
criteria counters are reset to zero. Task 1
operates first (there are two A messages to be
processed) and is completed at 27.9 seconds.

INPUT
ARRIVALS

BATCH

CYCLE

25

~HDA IB C

" I I 122.1 25.4 27.5

21.8 23.7

30
I

35
I

REQUEST
CYCLE

36.5

.I()

I

t--------I, ~~~~ST

o
24.132 ABC F

I A I B ' __ £._-I_.! __ ~
~~~C~C~SK Y TASK 2 TASK 4 

3 

~~~~~ I 
4

Figure 7. DPC Cycle Simulation.
Cycle III-Operation
Cycle IV-Batching

During the operation of task 1, message B
arrives at 25.4 seconds and message C arrives
at 27.5 seconds. Message B will cause a cycle
to be requested at 30.4 seconds and message C
will cause a cycle to be requested at 37.5 sec­
onds. The request from batch 2 (containing
message B) will be an "interrupt-wait," that
is, the interrupt will occur when all of the
messages which are processed before Band D
have been processed, but the interrupt will not
interrupt the currently operating task. In this
cycle, task 3 operates after task 1 because two
B's and 1 D are waiting to be processed. Proc­
essing of task 3 is complete at 31.5 seconds.
N ow since B is a higher priority input than
those processed by tasks 2 and 4 the cycle will
be interrupted after task 3 has been completed.
The inputs that would normally be processed
by tasks 2 and 4 are queued for the next cycle.

4.2.4 DPC Simulation-Cycle IV (See Figures
7, 8, and 9)

Cycle number 4 begins at 31.5 seconds. The
following messages have been collected in the
batches during the third cycle or have been
queued from previous cycles:

INPUT
ARRIVALS

BATCH

CYCLE

Message Number

B
C
E
F

~-n
C

I
27.5

BEGIN
CYCLE

30

1
3
1
1

35 40
I E I ,

36.5

c
C F

'TA~K 3 'TA;K 2' E I
TASK 4

Figure 8. DPC Cycle Simulation.
Cycle IV-Operation

THE DATA PROCESSING SYSTEM. SIMULATOR (DPSS) 263

o DEA 10 15 35 40
C I B I A I E INPUT

ARRIVALS
0-2.16
E-2.27
A-2.29

9.35 12.47 16.60 119.61 '1.8f23.725.4
IS.4 20.7121• 322. S

36.5

BATCH ,2.29

REQUEST
CYCLE

2.15

1
7.16

I
REQUEST
CYCLE

16.60
1

REQUEST
CYCLE

17.47 r--___ I
REQUEST
CYCLE

21.S

I
REQUEST
CYCLE

26.3

I I
REQUEST
CYCLE

31.4
1

REQUEST
CYCLE

2.27 12.27 19.35 REQUEST
rl--------~==LI ______ ~I ~1--------F===LIC~Y~C~LE~-,3~7IL·5-----

REQUEST CYCLE REQUEST

CYCLE BEGIN2~rfLE5.19 7.914 10.~~;LE 16.52 REQUEST CYCLE
I L T 'I L. T. oIL. T 41 PROC IL T. Tel 20j23

5.204 iNPUT E 13. 32
PROCESS PROCESS GEN. OUTPUT 05

INPUT A 0 20·~.T.124.13 B ~ E
~----+----~---
3.9 SEC .002 T.3 T.2 T.4

PROCESS A 0
24.132 ABC F

ABC E
lrASK I YASK3 ITASlr2lr'ASK~

C
C F

4 B C E

'TASK 3 'TASK 2 ITASK !

Figure 9. DPC Cycle Simulation Summary.
Cycles I, II, III, IV.

Therefore, tasks 3, 2, and 4 will operate in cycle
number IV if no interruptions take place. This
procedure is continued until the end of the test.

5.0 DPSS APPLICATIONS

The DPSS has been applied primarily to real
time management information and command!
control type systems. The initial major em­
phasis was in the design and development of
the 465L SACCS. Approximately 300 produc­
tion runs were made simulating 2000 hours of
actual operation.

While the checkout and installation of the en­
tire operational SACCS program system is not
yet complete, significant portions of it have been
successfully demonstrated. The results of these
demonstrations are classified, but it can be said
that the DPSS predicted results were close to
actual performance figures.

The initial application of the DPSS to the
N ew York State Identification and Intelligence
System during the feasibility study phase
showed that a class of computers could not
handle the job unless the user drastically
changed his requirements. The choice was of­
fered to the user early in the system acquisition
process to make the trade-off of dollars versus

capability on a more informal basis. As the
work on this system progresses, the DPSS will
continue to 'be used to evaluate the various
possible system configurations and aid in the
selection of the appropriate hardware.

5.1 Applica.tion of the DPSS on 465L SAGGS

At the outset of the investigations performed
with the DPSS, many combinations of SACCS
system characteristics were checked because of
the complexity of the problem. A list of the
maj or system characteristics checked are shown
in Table IX.

One of the system characteristics initially
subjected to detailed investigations was the
length of the control cycle. This was done be­
cause system response time (the time from the
initiation of a request for data until the data
was presented) was found to be a function of
normal uninterrupted DPC cycle time. *

Cycle time was, in turn, found to be a func­
tion of many items, such as total message rate,
tasks, sequencing, and batches. It was also

* This evaluation was made prior to the introduction
of the interrupt feature, which permits short cycles
and fast response, but which causes the average age
of data presented and message queue lengths to
increase.

264 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

TABLE IX. SYSTEM CHARACTERISTICS
INVESTIGATED IN INITIAL SIMULATION

RUNS

1. Length of Control Cycle
2. Response Time
3. Maximum Message Capacity
4. Age of Data
5. Storage Requirements
6. Average Processing Time Per Message

Type
7 . Average Waiting Time Per Message Type
8. Queue Lengths Per Message Type
9. Message Priority System

10. Relationship and Sensitivity of the Sys­
tem to Combination of 1 Through 9
Above

found to be extremely difficult to predict system
response time with a reasonable degree of cer­
tainty under a wide variety of operating
conditions.

To overcome this problem, an "interrupt fea­
ture" was introduced into the design, which
permits extremely rapid data presentation on
demand. However, prior to incorporating this
system change the effect of the interrupt fea­
ture on the system was checked and the "cost"
of extremely short response time was dramati­
cally demonstrated (Section 5.1.1 and Figure
11). The costs and other side considerations are
discussed in the next section, Results of DPSS
Runs and Their Interpretation.

5.1.1 Results of DPSS Runs and Their
Interpretation

The types of outputs from the simulator runs
were as shown in Section 3.5 with some typical
results shown in Figures 10 and 11.

In testing various possible program system
structures, one of the objectives was to attempt
to have the average times to process each mes­
sage type become relatively constant (Figure
10). The average age is checked for a wide
range of message loads and the value at which
this leveling out occurs would then represent
the expected average age of data in the system
by message type.

MAX

AVG
TIME

MIN

2 3

CYCLE CONTROL NUMBER

Figure 10. Min, Max and Average Time to Process
Each Type of Message by Cycle.

Message-batch-task arrangements are in­
vestigated to find those arrangements which
tend to stabilize the average processing time
values (with minimum spread) in order to
select an optimum program structure. The his­
togram of message processing time for each
message type (Figure 11) for the message­
batch-task arrangement is then evaluated.

In the case shown in Figure 11, the effect
of the interrupt feature (for display request­
ing) on system performance was evaluated. The
high priority display request technique was in­
troduced to permit the interruption of the sys­
tem in order to respond to data presentation
requests in minimum time.

It can be seen from Figure 11 that for a given
set of system loading conditions, 100% of the
high priority display requests were honored
in one minute or less. However, the effect on
a low priority data message was dramatic and

100%

% OF
MESSAGES HIGH PRIORITY DISPLAY REQUESTS
PROCESSED

"lo OF
MESSAGES
PROCESSED

2 3
TIME (MINUTES)

10%

socro

LOW PRIORITY DATA MESSAGE"
(ONLY 1/3 OF TOTAL REC·D

WERE PROCESSED)

29 30 31 ---. 31+

TIME (MINUTES)

Figure 11. Histogram of Message Processjng Time.

THE DATA PROCESSING SYSTEM. SIMULATOR (DPSS) 265

required further assessment. N one of the lower
priority data messages was processed in under
28 minutes. Only 5% were processed between
28 and 29 minutes, 10% processed between 29
and 30 minutes, 35 % processed between 30 and
31 minutes, and 50% of all messages processed
took 31 minutes or longer.

These results can be interpreted to mean that
the high priority data presentation requests
which were honored in one minute or less did
not make use of the data contained in the lower
priority data messages. For the same case, the
queue length was determined from the fact that
only 113 of the lower priority data messages that
were received were processed.

I t was further necessary to determine exactly
what type of data was contained in each type
of message and what its variability might be.
If the lower priority messag-e contained data
which varied relatively little over a period of
several. hours, then the fact that 50% of the
data might be as much as 30 minutes old is of
considerably less consequence than if the data
were extremely variable in less than 30-minute
increments.

Therefore, by investigating the histograms
for each message type, establishing limits on the
number of high priority display requests which
might be made periodically, and determining
the proper message priority and message-batch­
task relationship, it was possible to arrive at a
program system structure which satisfied .Op­
erational Requirements.

5.2 General Results

The results of the simulations showed that
the system is most sensitive to the use of the
interrupt feature. This "system interrupt"
was found to cause short cycle times which
could create the impression of highly efficient
operation. However, the queue sizes and wait­
ing times were increasing as a result of the in­
creased use of the interrupt features.

The total message rate imposed upon the sys­
tem with all or most message types being pres­
ent was found to be second in importance to the
system's operational performance. The pres­
ence of all (or· most) message types causes a
maximum number of input-output (I/O) trans­
fers to occur. I/O transfers are one of the most

time consuming aspects of data processing tasks
and caused total cycle time to increase as the
number of transfers increased. t

It was also determined that the system was
not particularly sensitive to the relative fre­
quencyof each message type for any given input
rate as long as all or most types of messages
were present. This particular aspect of the en­
vironment assumed secondary importance based
on these results.

The investigation of the "time. to load" and
"time to process" portions of the system's task
operating times showed a high proportion of
time to load vs. time to process. This suggested
that the system's apparent I/O limitations
would bear further investigation for possible
improvement of overall system operation.

5.3 System Improvements
A disc file is used as the principal auxiliary

storage device for the SACCS. A study of its
characteristics suggested that a change from
the current serial read procedures to parallel
read procedures could produce a considerable
reduction of I/O time. A conservative estimate
of the I/O time reduction factor attainable was
set at 10 because of anticipated engineering
problems, and also because there are existing
hardware items other than disc files which have
the desired timing characteristics and do not
involve modification of the disc.

When only the times to load and unload
(I/O) of all system times were reduced by a
factor of 10 the results of the DPSS runs
showed a very high payoff available for such
a modification.

The probable results from the reduction of
the I/O time are shown in Table X. In these
results, the "rates" refer to the message input
rate per hour; the "load" refers to either a
"normaP' (N) loading and unloading time or a
"1/10 normal" loading and unloading (I/O)
time. "Interleave" means the availability of
DPC time for other operations which might
normally occur as part of a time sharing func-

t This is not necessarily a linear function. Also note
that the effect of I/O transfer time on total cycle
and response times is a complex relationship, i.e.,
many I/O's can occur with no responses required and
response time therefore becomes meaningless in this
case.

266 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

tion of the system. The load rates shown are
hypothetical and do not in any way reflect
actual rates. However, the effect of reducing
the I/O time factor in the total system operat­
ing time is clearly demonstrated as a function
of relative loads.

It is apparent from the results shown in
Table X that auxiliary storage devices with
the performance specifications inferred from
the reduced I/O time factor would be desirable
to permit maximum time sharing and maximum
expansion potential in the system.

6.0 DPSS CAPABILITIES SUMMARY

A summary of the capabilities of the Data
Processing System Simulator are:

1. System Feasibility Studies

2. Simulates Computer Based Data Process­
ing Systems

3. Evaluate Equipment and Processing Dis­
cipline Combinations vs. System Opera­
tional Requirements

4. Establish Equipment Configuration for
the System

5. Establish Program Configuration for the
System

6. Development of Detailed Design Require­
ments (Operational Program Require­
ments, Subsystem Design Specifications,
Program Design Specifications)

7. Set Initial Parameters for the Operational
System

8. Determine System Performance Require­
ments (for Acceptance Testing)

TABLE X. PROBABLE RESULTS FROM
MODIFICATION OF I/O DEVICE

Conservative Assumed Improvement of I/O
Time = Factor of 10

Rate Load Interleave Comment

10 N 0-30% Acceptable
30 N None Poor
10 1/10 80% All Requirements Met
30 1/10 60% All Requirements Met
60 1/10 30% All Requirements Met

9. Evaluate Proposed System Modification
and Retrofits before Implementation

The flexibility of the DPSS in terms of the vari­
ability of both the inputs to be tested and simu­
lation program logic makes this tool useful in
the early stages of establishing data processing
system requirements. I t is a powerful tool in
performing system feasibility studies, simulat­
ing the operation and performance of computer
based data processing systems, and in evaluat­
ing equipment and data processing discipline
combinations as a function of system opera­
tional requirements.

Once past the initial phases of system devel­
opment process, the DPSS can continue to be
useful in helping to evaluate the equipment
configurations being considered for the system,
and in establishing the framework for the
computer program configuration for the sys­
tem. This latter framework includes items such
as the need for Executive or master control
programs, the structuring and organization of
system inputs, processing tasks, and outputs.

During the system implementation and acqui­
sition phase, the DPSS is of continuing useful­
ness in the development of detailed design re­
quirements. The key design features for
Operational Program Requirements (OPR),
Subsystem Design Specifications (SSDS), and
Program Design Specifications (PDS) can be
determined and established as design goals.
This work, in addition, is valuable in setting the
initial parameters for the operational system.

The DPSS can be used to develop System Per­
formance Requirements (SPR) which can be
used at the conclusion of the system acquisition
phase during which acceptance testing is per­
formed. The SPR's can be established early in
the design process and used by both the con­
tractors and the procuring agencies as perform­
ance criteria for determining the successful
completion of the design and implementation
phase.

Proposed system modifications and retrofits
can be evaluated before commitments are made
for additional equipment, computer program­
ming, or human action requirements. This
evaluation is essentially the performance of the
system feasibility studies discussed earlier in
this section. Thus, the design, development, in-

THE DATA PROCESSING SYSTEM. SIMULATOR (DPSS) 267

stallation, and acceptance testing procedure can
be completed by providing the analytic capabil­
ity needed to continually refine and improve
any system in existence or proposed for future
development without becoming so deeply com­
mitted in time and dollars that prohibitive
rework costs are incurred as is currently the
case in the field of command} control and man­
agement information systems development.

7.0 EXPANDED DPSS CAPABILITIES­
MODEL C

The experience gained by applying the DPSS
to three major management control systems in
different phases of development (see Section
1.0) identified areas in the. original version of
the DPSS which could be further generalized
and expanded so that it can be used to simu­
late a greater variety of data processing sys­
tems. The expanded DPSS-Model C is now
operational on the IBM 7090/7094 computer.
DPSS-Model C is a self contained program
package; i.e., it does not require the use of a
control program. In this way, the operation of
the program is "streamlined" so as to reduce
the computer time required to make each run.

In addition to the capabilities of the original
DPSS described in Sections 1.0 through 6.0 in­
clusive, DPSS-Model C has the following
additional features:

a. The DPSS-Model C program is struc­
tured so that one programming task has
the ability to create inputs for other tasks.

b. Associated with each message-task rela­
tionship is the probability of message
being processed by each of its associated
tasks. A probability of 1.0 ensures that
a message will always be processed by a
particular task.

c. In order to accommodate transient states
in the input message frequencies, DPSS­
Model C permits changes in the relative
frequency of input messages during the
simulation run. This means, for instance,
that the DPSS can simulate changes in
the mode of operation of the system.

d. DPSS-Model C has the capability of
simulating several levels of system opera­
tion, where one level has priority over
another. Each level can be considered as

a system in itself-messages are collected
in batches, processed in tasks according
to some processing discipline (e.g., first
come, first serve or according to a task
sequence), generate displays, etc. Every
level may, but need not~ have identical
characteristics except that one has prior­
ity over the other one. When going from
one level to another the simulator has the
capability of aborting the lower priority
level immediately or at the end of a logical
operation (e.g., completion of a task)
going to the higher level, doing the re­
quired processing and then returning to
the point of interruption. Up to 100 levels
can be requesting service at the same
time, with the highest priority service
first, the next highest priority second, and
so on.

e. The simulator has the capability of selec­
tively emptying the individual batches for
each data processing cycle. This will op­
erate so that only the messages collected
in the batches whose batch criteria are
exceeded before the beginning of the
cycle will be processed in that cycle. The
simulator has the option of transferring
to the processing area for processing in
the next cycle only those messages which
were collected in batches whose batch
criteria was exceeded before the begin­
ning of the cycle. The rest of the mes­
sages remain in their respective batches
until their batch criteria have been ex­
ceeded. This capability enables the DPSS
to simulate more than one independent
system with a priority arrangement such
as might be found in a time sharing
system.4

f. It is possible to delete messages in the sys­
tem as a result of other messages being
processed. This capability covers condi­
tions when "partial updating" of files is
specified in early messages in the system
and where a "complete update" message
is received which includes the conditions
cited in the "partials." In this way, the
simulator will not duplicate the processing
of any message.

g. The capability is provided to regulate
task operation so that a task will operate

268 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

only once in every "n" cycles; "n" must be
specified in the input data.

h. The DPSS has the capability of resetting
the computation counters (e.g., those
counters used to compute average mes­
sage processing time, maximum process­
ing time, etc.) at a prespecified time after
the beginning of the test. With this fea­
ture, it is possible to study systems in
transition, during steady state conditions,
or a combination of transient and steady
state.

1. The DPSS has the capability of providing
three sets of periodic summaries through­
out the test. The summaries can be pre­
sented for every message-task relation­
ship in the system using three time
periods. For example, the average process­
ing time for a given message being proc­
essed in a given task may be presented
every 30 seconds, every 25 minutes and
every hour.

j. The concept of generating or forcing dis­
plays as a result of messages being proc­
essed has been generalized as follows:

(1) There can be any number (limited
only by the capabilities of the
simulator) of tasks that produce
forced displays. Each display pro­
ducing task has its own processing
characteristics.

(2) The tasks that produce forced dis­
plays need not follow the task
which processed the data messages
which caused the display to be
forced, indeed, the tasks which
force displays can be located any­
place in the task sequence.

k. Additional capabilities have been added to
the DPSS to permit detailed investiga­
tion of the effects of limited buffer size
on the functioning of a data processing
system. The DPSS also has the option of
"losing-from-the-system" those messages
which attempt to enter a full buffer. The
DPSS identifies those messages which
have been "lost," or it can exercise the
option of queuing these messages and
not losing them.

1. The manner in which outputs from the
simulator can be presented has been made
more flexible so that only the necessary
or desired information will be produced.

m. The processing of messages by tasks has
been modified to permit more flexible and
detailed simulation of the operation of a
task. Task processing is divided into three
sub-operations: (1) performing the input
operation, (2) processing each message
associated with the task and (3) perform­
ing the output operation. Each of the sub­
operations has its own distribution func­
tion and parameters. In addition, the
DPSS has the option of performing a
"save data" operation in the event of an
interruption during the operation of a
task. When this option is exercised, the
"save data" part of the task operation
will be executed before the request for
interruption is honored. The "save data"
operation has its own distribution func­
tion and parameters. There may be a
"save data" operation associated with
each task in the system.

8.0 FUTURE DEVELOPMENTS

Future developments of data processing sim­
ulators will most likely be along the lines of
multi- and parallel-processing and will include
prediction techniques so that the time required
to develop a data processing system under vari­
ous configurations can be studied.

APPENDIX I

SAMPLE PRINTOUT

This appendix contains a sample printout
from a simulation run. The output data con­
tains the following items of information:

1. The cycle number, its begin and end time.

2. For each message arrival the message
identity, time of arrival, the batch in
which the message is batched, the task
that processes the message (mod cate­
go~y), the priority of the message, the
time when the processing of the message
was completed, the displays that are
forced by this message and the time that
each display is forced.

THE DATA PROCESSING SYSTEM. SIMULATOR (DPSS) 269

3. A list of messages that have not been
completely processed at the end of each
cycle.

4. Averages by batch, priority, message of
a. Processing time
b. Total time
c. Waiting time

DPC SIMULATION-RUN NUMBER 1

CYCLE REQUEST AT 7.65 REASON SIZE

BEGIN CONTROL CYCLE NUMBER 1 AT 22.65

BEGIN CYCLE NUMBER 5 AT 638.48

MESSAGE QUEUE LENGTH-565

BATCH SIZES

BATCH NR. SIZE

0 0

1 0

2 1

3 373

4 60

5. Number of messages queued at beginning
and end of cycle.

6. A list of messages remaining to be proc­
essed at the end of the test.

7. A total time distribution by minute, per
message at end of run. It tells, e.g.,
what percent of messages were processed
between, say, 10 minutes and 11 minutes.

NR. TIME TOTAL
TYPE MOD ARJUVAL OUT BATCH PRIORITY FORCED FORCED INDENT TIME WAIT

5

13C

21

21

2

o

2

2

643.19 664.29

382.50 693.63

568.09

568.09

3

3

o
1

CYCLE INTERRUPT AT 813.67 REASON WAIT
END CYCLE NUMBER 5 AT 834.86

690 MESSAGES REMAINING

TYPE MOD ARRIVAL BATCH PRIORITY

24

40

4

4

1.52

4.41

3

3

1

1

1

2

809.52 A02

809.57 A02P

21.11 5.40

311.13 311.04

270 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

AVERAGES BY BATCH

BATCH NR WAIT TOTAL TIME

0 NO MESSAGES

1 NO MESSAGES

2 56.50 56.56

3 227.53 227.65

4 253.24 253.30

A VERAGES BY PRIORITY

PRIORITY NR WAIT TOTAL TIME

0 8.57 17.82

1 233.19 233.25

AVERAGES BY MESSAGE TYPE

TYPE MOD NR PROCESSED WAIT TOTAL TIME MAX TOTAL TIME MIN TOTAL TIME

0 NO MESSAGES

1 2 2 275.82 275.88 346.82 346.82

2 2 1 233.24 233.29

3 2 18 245.29 245.35 390.05 169.80

TOTAL TIME DISTRIBUTION

RAR

FROM 0 MIN. TO 1 MIN. .33 FROM 1 MIN. TO 2 MIN. .33

FROM 2 MIN. TO 3 MIN. .33 FROM 3 MIN. TO 4 MIN.

FROM 4 MIN. TO 5 MIN. FROM 5 MIN. TO. 6 MIN.

FROM 6 MIN. TO 7 MIN. FROM 7 MIN. TO 8 MIN.

FROM 8 MIN. TO 9 MIN. FROM 9 MIN. TO 10 MIN.

FROM 10 MIN. TO 11 MIN. FROM 11 MIN. TO 12 MIN.

FROM 12 MIN. TO 13 MIN. FROM 13 MIN. TO 14 MIN.

FROM 14 MIN. TO 15 MIN. FROM 15 MIN. TO 16 MIN.

FROM 16 MIN. TO 17 MIN. FROM 17 MIN. TO 18 MIN.

FROM 18 MIN. TO 19 MIN. FROM 19 MIN. TO 20 MIN.

FROM 20 MIN. TO 21 MIN. FROM 21 MIN. TO 22 MIN.

FROM 22 MIN. TO 23 MIN. FROM 23 MIN. TO 24 MIN.

FROM 24 MIN. TO 25 MIN. FROM 25 MIN. TO 26 MIN.

FROM 26 MIN. TO 27 MIN. FROM 27 MIN. TO 28 MIN.

FROM 28 MIN. TO 29 MIN. FROM 29 MIN. TO 30 MIN.

FROM 30 MIN. TO 31 MIN. FROM 31 MIN. TO

THE DATA PROCESSING SYSTEM. SIMULATOR (DPSS) 271

APPENDIX II

THE USE OF RANDOM NUMBER
GENERATOR

1. The Random Number Generator"

X Il + l = 129 Xn + 227216619 (mod 268435456)
is used to genrate numbers between 0 and 1
which are statistically tested to be uniformly
distributed. That is

268435456

are numbers lying between 0 and 1 and satisfy
various statistical tests for being uniformly
distributed (0, 1). The first number of the se­
quence is gotten by letting Xo = 0 and then
Xl = 227216619.

2. Uniformly Distributed Random Numbers

Suppose it required to obtain a uniformly
distributed random number lying between m
and M. If one obtains a number x uniformly
distributed (0, 1) then the converted number

y = m + x (M - m) (3)

is uniformly distributed (m,M).

In practice this is used if the only informa­
tion available is the minimum and maximum
of a random variable.

3. Normally Distributed Random Numbers

A table is assumed stored in core of normal
distribution with mean 0 and standard devia­
tion 1. Suppose a random number y given with
normal di.stribution of mean p. and standard
deviation 0". Then

Y - Ii

is a normally distributed random variable with
mean 0 and standard deviation 1.

To choose a random number y, normally dis­
tributed with mean 0 and standard deviation 1
a number x, uniformly distributed (0,1) is
chosen. Using x find the corresponding Z from
the table of the normal distribution (mean 0,
standard deviation 1).

Now,
y-p.

Z=-- (4)

Hence,
y=p.+O"Z

and y is the desired number.

4. Exponentially Distributed Random
Numbers

(5)

An exponentially distributed random number
x has the distribution

{

O, t < 0
P [x ::;; t] = 1 - e-at , t > 0

(6)

where ! is the mean of the distribution. Since
a

negative values of t have no application for the
simulator it will be assumed here that t ~ o.
To obtain an exponentially distributed random
number, a random number y, uniformly dis­
tributed (0,1) is given and is set equal to

1 - e-ax

Hence,
y = 1 - e-ax

and solving for x,
1 1

x=-ln-­
a 1-y

5. The Triangular- Density Function

(7)

(8)

Sometimes, besides the minimum and maxi­
mum of a randoll1 variable, some Hfavorite"
value is known. This suggests the use of the
triangular density function. Let m, IvI be the
minimum and maximum and K the "favorite"
value. The density function assumes the tri­
angular shape shown in Figure 12.

The area of the large triangular, mPN, is
equal to 1. To obtain a number with such a
density function, a random number X uni­
formly distributed (0,1) is chosen and a num­
ber Y is computed so that the region designated
by A has area X.

6. Arbitrary Continuous Distribution

The random number generator enables the
user of the simulator to utilize almost any dis-

P

A

m Y K M

Figure 12. Triangular Distribution

272 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

tribution he desires. The basic requirements
for such a distribution are:

a. that it be continuous
b. that the random variable be bounded.

Condition 1 is usually the case. A distribu-
tion function that has a discontinuity does not
usually occur in a simulation, and can, if
necessary, be approximated by a continuous
distribution.

Condition 2 requires that the user specify
that the value of the random variable not ex­
ceed (so far as the approximation is concerned)
some specified value.

Suppose Figure 13 represents some distribu­
tion. Various values (in this case Xl' x2 , x3 , x4)

are chosen from the distribution to be approxi­
mated.

Let F (x) be the original distribution. Then

PI = Prob [x S Xl] (9)

P 2 = Prob [x S x2]

and so on until

(10)

Suppose a random number x, uniformly dis­
tributed (0, 1) is chosen. Then if 0 S x S PH

(11)

'where Xis the desired value.

Figure 13. Arbitrary Continuous Distribution

If PIS X S P 2, then

X=XI+ (X_PI)(XI -X2
) (12)

PI P 2

and so on, testing whether R lies between two
successive P's and then using linear interpola­
tion to determine the value between the two
points.

APPENDIX III

GLOSSARY OF TERMS

The following definitions are included for the
reader who may not be familiar with the ter­
minology of the document.

BATCH
A device which is used to request a DPC

cycle.

BATCH CRITERIA
Parameters associated with each batch which

determines when a batch will request a DPC
cycle to be initiated.

DATA PREPARATION
A task which processes every incoming mes­

sage to make sure that they are valid. The
Data Preparation Task also determines which
tasks must operate in the present DPC cycle.

DISPLAY
A presentation of information contained in

the D PC program system files.

DPC CYCLE INTERRUPT
A DPC cycle interrupt occurs when all of

the messages of the present control cycle are
not processed before a new cycle begins.

DPC CYCLE REQUEST
A request for a DPC cycle when the batch

criteria of a batch is exceeded.

DPC PROGRAM SYSTEM CYCLE
A sequence of tasks that are performed to

process the system message.

DPC PROGRAM SYSTEM (OR CYCLE)
That part of the system within the Data

Processing Central (DPC) which deals with
the primary processing functions.

FLASH MESSAGE
A message that is processed immediately,

THE DATA PROCESSING SYSTEM SIMULATOR (DPSS) 273

upon receipt by the computer. This message
does not cause a new cycle to be initiated.

FORCED DISPLAY
A display which is generated as the result

of a message (data) being processed.

INTERARRIV AL TIME
The time between the arrival of two succes­

si ve messages.

INTERLEAVED SUBSYSTEM
Any subsystem other than the primary real

time program system.

LOAD TIME
The time required to transfer the operating

programs and data environment associated
with a task from tape, drum or disc to core.

MESSAGE
An input into the DPC program system.

MOD
The position of a task in a sequence of tasks

(the task sequence number).

OPERATE TIME
The time required by the operating programs

to process a message once the operating pro­
grams and environmental data are in core.

PRIORITY
A measure of importance in a message.

PROCESSING TIME
The time from when processing in a message

is begun to when it is completed.

RANDOM NUMBER
A number from a random number generator

tested for certain statistical properties.

REQUESTED DISPLAY
A display which is generated as the result of

a special message being processed (a display
request message).

TASK
A related collection of programs (considered

in the DPSS as a single operation) which
operate on a message or a set of messages.

TOTAL TIME
The time from the arrival of a message at

the DPC to completion of message processing.

WAIT TIME
The time which begins when a message ar­

rives in the DPC and ends when processing of
this message begins.

APPENDIX IV

MACRO INSTRUCTIONS
The logical operation of the model is gov­

erned by the interpretive program. The oper­
ation of the simulator can be changed by chang­
ing the flow of the interpretive program. The
flow diagram that is currently being used in the
simulator is shown in Figure 14.

Figure 14 illustrates the interpretive pro­
gram as it is read into the computer. The first
few instructions of the interpretive program
are explained below. The last line of the flow
reads

STOP IA

This indicates that the flow diagram data is
complete and the program is to execute the in­
struction labeled IA first. This instruction is
found on line 1:

IA . T"O
~.L.I

TT\
~~

IA is the instruction label. QMSGAR is the in­
struction. The Q usually designates that the
instruction asks a question. In the case QMS­
GAR asks whether any messages have arrived.
If yes go to IB, if no go to ID. Suppose a mes­
sage has arrived then one goes to IB:

IB AGNMSG IA FIN

AGNMSG begins with an A which usually des­
ignates an action, and the instruction states·
that a message is to be generated and then one
goes to IA or FIN depending upon whether
there is more to do in the simulation or not.

If no message has arrived, one goes to ID:

ID QFLASH IE IC

QFLASH asks whether any flash messages are
to be processed. If there are go to IE, if not
to IC.

Macro Programming Instructions

The instructions QBEGCC, QMSG, QSTART
are macro programming instructions. The list

274 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

IA
CA
CB
CC
CE
CF
CG
CH
CK
CC
CP
CQ
CQO
CR
CS
IB
IC
ID
IE
IF
IG
IH
II
1M
IN
IR
FIN
IS
III

QMSGAR
QBEGCC
ABEGPC
QTASKS
AENDCC
QSTART
QMSG
LDTASK
APCMSG
QMSG
QBEGFD
QFORCE
ALDDP
APCFRC
QFORCE
AGNMSG
QFLDSP
QFLASH
APCFLS
QCC
QINT
QFLLD
ABEGCC
QREQ
AGNMSG
AABORT
FINISH
ABEGCC
AENDCC
STOP

IB
CB
CC
IA
IA
CG
CH
IA
IA
CK
CQ
CQO
IA
CS
IA
IA
IH
IE
IA
IG
III
IA
CA
IN
ID
IS

IA
II
IA

ID
CF
FIN
CE
FIN
CO
CC
FIN
FIN
CP
CR
CC
FIN
FIN
CC
FIN
IF
IC
FIN
1M
CA
FIN
FIN
IR
FIN
FIN

FIN
FIN

Figure 14. Interpretive Program Flow Diagram

of macro instructions and their meanings are
as follows:

1. DUMP

This instruction gives an octal dump.

2. QBEGCC

This instruction asks whether at the
time the instruction is to be operated
upon the system is at the beginning of
a cycle. The beginning of a cycle con­
sists of the tasks of loading and oper­
ating the data preparation tasks.

3. ABEGPC

This instruction performs the loading
and operation of the data preparation
task only at the beginning of the cycle.

4. QTASKS
The instruction inquires whether any
more tasks are to be done in the cycle
and sets the indicators to the next task
done by the cycle.

5. AENDCC
This instruction resets various indicators
so as to signal the end of a cycle. I t also
gives a summary of the output data for
that cycle.

6. QSTART
This instruction inquires whether the
system is at that moment at the start
of a task, i.e., whether the program for
that task was loaded.

7. QMSG
This instruction inquires whether there
are messages in the table for the par­
ticular task to operate upon.

8. LDTASK
This instruction "loads" the task in ques­
tion, i.e., determines how long it takes
to load the task and increment the sim­
ulated clock.

9. APCMSG
This instruction processes the appropri­
ate incoming message according to proc­
essing priority.

10. QBEGFD
The instruction inquires whether the
forced display ·task should be "loaded."

11. ALDDP
This instruction "loads" the display task.

12. QFORCE
This instruction inquires whether there
are forced displays to process.

13. APCFRC
This instruction processes the appropri­
ate forced display.

14. QMSGAR
This instruction inquires whether any
messages have arrived.

15. AGNMSG
This instruction generates messages if
any are due to arrive.

THE DATA PROCESSING SYSTEM. SIMULATO'R (DPSS) 275

16. QFLDSP
This instruction inquires whether any of
the ft.ash messages generate display.

17. QFLASH
This instruction inquires whether there
are any ft.ash messages to process.

18. APCFLS
This instruction processes ft.ash mes­
sages.

19. QCC
This instruction inquires whether the
cycle is operating.

20. QINT
This instruction inquires whether the
cycle is to be interrupted.

21. QFLLD
This instruction either "loads" or proc­
esses the ft.ash display task, whichever
is appropriate.

22. ABEGCC
This instruction begins a cycle.

23. QREQ
This instruction inquires whether a mes­
sage will arrive before the request for
the instruction of a cycle.

24. AABORT
This instruction aborts the interleaved
subsystem.

25. FINISH
This instruction finishes the run, sum­
rizes the data and goes on to the next
run, if any.

APPENDIX V

SUMMARY DESCRIPTION OF THE
IBM AN/FSQ-32 COMPUTER4

The AN/FSQ--;3'2 computer is a l's-comple­
ment, 48-bit word computer, with 65,536 words
of high-speed (2.5 m sec. cycle time minus
overlap) memory available for programs, and
an additional 16,384 words of high speed mem­
ory available for data and input/output buffer­
ing; the latter memory is called input memory.

There are four core memory banks (of 16K
words each) which are individually and inde­
pendently accessible by three control units: the
central processor unit, the high speed control
unit, and the low speed control unit. High speed
I/O, low speed I/O, and central processing can
take place simultaneously out of different mem­
ory banks, or with certain restrictions, out of
the same memory bank.

Characteristics of the AN /FSQ-32 Storage Devices

Devi.ce Size

Core Memory 65K

Input/Output 16K
Core Memory

Magnetic Drum 400K

Disk File 4000K

Magnetic Tapes 16 Drives

Word Rate

2.5 ,usec/wd

2.5 ,usec/wd

2.75,usec/wd

11. 75 ,usec/wd

128 ,usec/wd
(high density)

Average Access Time

10 msec

225 msec

5 to 30 msec (no
functioning) *

* Depending on whether the tape is at load point, and whether it is being read or written.

276 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

REFERENCES

1. H. M. MARKOWITZ, B. HAUSNER, and H. W.
KARR, Simscript: A Simulation Program­
ming Language, RAND Corporation, Santa
Monica, California, 1962.

2. General Purpose Systems Simulator 11-
Reference Manual, IBM, 1963.

3. C. A. KRIBS, Building a Model Using Sim­
pac, System Development Corporation,
Santa Monica, California, TM 602/300/00,
November 15, 1962.

4. J. D. SCHWARTZ, E. G. COFFMAN, and C.
WEISSMAN, A General-Purpose Time-Shar-

ing System, System Development Corpora­
tion, Santa Monica, California, SP-1499,
April 29, 1964.

5. P. PEACH, "Bias in Pseudo Random Num­
bers," Journal of American Statistical As­
sociation, Vol. 56, No. 295, September, 1961.

6. M. 1. YOUCHAH and D. D. RUDIE, A Uni­
versal DPG Simulator Applied to SAGGS
Program System Design, System Develop­
ment Corporation, Santa Monica, Cali­
fornia, SP-924, July 8, 1963.

7. D. D. RUDIE and M. 1. YOUCHAH, The Data
Processing System Simulator (DPSS), Sys­
tem Development Corporation, Santa Mon­
ica, California, SP-1299, March 23, 1964.

THE USE OF A JOB SHOP SIMULATOR IN THE

GENERATION OF PRODUCTION SCHEDULES
Donald R. Trilling

Westinghouse Electric Corporation, Pittsburgh, Pennsylvania

The following describes some techniques
under development at the Steam Division of the
Westinghouse Electric Corporation. This plant,
located at Lester, Pennsylvania, manufactures
large Steam Turbines, and its main facility is
an exceptionally large job shop. It is the locale
where many of the concepts discussed below
underwent development. However, it should
be made clear that this paper is not in any way
intended to be a progress report on their use
there. The nature of these techniques remains
highly experimental, and they are described
here as a matter of interest to those who are
concerned with the potential of computers in
management applications.

L BACKGROUND

The technique of job shop simulation is be­
coming increasingly well-established in indus­
try, and the advent of the macro simulator
languages, such as SIMSCRIPT 7, assures con­
tinued movement in this direction. To date,
job shop simulators have been used principally
as a tool for facilities planning \ '2, and as a
testing mechanism for the merit of various de­
cision rules 3, 10. Typically, a model of the shop
is set up in the core of the computer, having a
similar configuration of men and machines as
exist in the real shop or could exist in a con­
templated shop. It is supplied with data on
manufacturing orders representing the coming
load in the shop. The simulator processes the
orders much as the real shop would. By seeing
how the model shop fares in processing its load,

277

we gain some insight into how the real shop will
perform in processing an equivalent load. The
model shows specifically how machines will be
loaded, the extent of the queues that form, and
when orders may be expected to be completed
compared to the schedules set for them. If
management is considering a change in facili­
ties, or a change in procedures, much of the
implications of these changes may be learned in
advance by trying them out in the model.

The comparison of different simulations is
made on the basis of certain shop statistics, re­
ported out periodically as the simulation pro­
ceeds. These statistics are well know, and
follow the pattern set by the original GE-IBM
Job Shop Simulator 4. Such measures as ma­
chine utilization, average waiting time in queue,
average queue lengths, and order lateness are
given. A sampling of these reports is included
in Appendix 1. To the original set we have
added such measures as shop hours, overtime
hours, machine substitution counts and some
others.

The knowledge gained by simulation, in ex­
periments such as outlined above, is quite use­
ful for many scheduling decisions. However,
in general, we may state that this use extends
only to what might be called the guiding of
scheduling decisions. It does not directly assist
in the preparation of actual schedules. The
idea that the technique of simulation may be
turned to such a use is shown below.

The job shop simulator devised at Westing­
house Steam Division has been named SHOP-

278 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964
_SHAH. SIIIUUTOII TO _ OPTlIIAL ~TlOil ~ES
_1_1115 _n AIID PUTlCaAil EYENTS. IlESn_o_ .. _______ _
o.a. TRILLI .. NCU. Loa. - IIIL--. C_OLL. _. ~

DAn s!W8O' ... IIlBIlIElCAt ____ . ____ _ .1M» 1M2 -------", ...
II Of I19GnIIl5 PHIODS

_·we'om~
II TlOll IEGIN DAn. DEC IllS -------------------------------.~w~~
.. ..,- aq£.RL..lSLftU ____ ._______ ..IlI.'-.... ___ _

Shop Statistics-Title Page, showing name, manning, dispatch rule, and
re-routing table for each machine group

HIlIODIC our""
-~-5icIP-P9FiiuiMc:E------ --------

--!ftlOQ_......,.,'---______ TJlU .. !UIOP. .--______ ---Uu_!!1~!~ ________ _

BRill DaTE IN 0EC11IAL _$ 535.0 S26.0
._.STAIIDo'IlD 51<01' TIllE 1121.5 HOUItS. 011 19.0 DAYS. .1"0.0 HOURS ... 01. 611.0 DAYS.
PL_ OVERTlIIE PEttIODS 135.0 HOURS. 01 6.0 DAYS. '72.5 HOUIIS. 011 21.0 DAYS.
ALLOWED OVERTIME pEttIODS .0 1l0III5. 011 .0 DAYS. .0 HOURS. 011 .0 DAYS.

___ --'lIOLlOAYL-~..wrtQAYj ____ 1.~.O .. I!QUIIS._ .000 __ ~.lLOA'(S·~ ___ . __ l"".JLIIlI!!I.!!S~~_I!AYh..._

u_ lilt!! MACltINE _ AYAlL UTIL IDLE UTIL _ TO AYAIL UT IL IOLE UTIL _ TO
___ CUS~_GIIOW _OESCltIPtlOII. _ CAPAC .. CAPAC TOTAL ",,,ac OTHERS CAPAC CAPAC TOTAL CAPAC OTMEltS

_____ H""!>LlJl

FITF 111

.-5111

____ --LotOt....I11

MRS MRS l1li5 MRS MRS MRS·-·

28$ Z ... 85L-__ Ib..!<!OD"'O ____ _

11110 SSt sal .1090

1_3-·-110 ·---·n" --;TlI----21---- -lIaO·· ., BIt-· ·· .. ''2-~705

.... :tn ____ a7 ___ !l~ ___ ~6_.....?.L........~

.623

133

72

Shop Statistics-Shop Performance Report, showing utilization and
re-routes for each machine group

. ____ 11

IIICII _IY _IY _IV _IY "'IA' DlplA' DENRT DE'AIIT o-TlIIE o-nllE o-nllE o-nllE 'VER 0 avEtt 0 , .. 0 aWEa 0

511_": .: ~ -. ~ .: .: ..li .:; o:YS O:YS ~YS o!YS": .: ..li .:;
.. ___ .100IU6 _____BU­

B .. 011l

.A,. ... -a-___ .H55 .. ___ 2~3. ___ .~ _ __"0lL__._~-----.,.1I.0_.......,. __ d... __ • .!I_

1.51 I.S".O.J.0.3

----iiul1i---.. ---,. --M----- - -- is - ·ij .. --.·-··· •• 6S---.-··-1~ .. - --:.- l.a· ~O 1.'

au.II ---...2 ____ . __ 6 . ___ .-6..._--'-- _ •• ~I.l!II .1......-. ..••

Shop Statistics-Analysis of Queues, showing arrivals, departures, average
queue time and average queue length for each machine group.

-1001 .. s.

. _ S.PI1lIGO

01111 "U .. " N" MoC.I.

JaS7. 1._
____ "tba TO._"--____ .. _._. _______ . __ . __

OUO ... 1 Ont a"l Nfl MoC.I.

Slft7· 1.000

_____ ...J_IllIU...l .. c.JIL .. _ .. __ ._ .. __ .2111 _____ ...as,,_ ...5117'-...• 70'-- ________ --.lII5_--'~ __ ... ~5 __ _

lUI 111 .. _ .1100 11. 11."._
all8111 -aD---- .m-"--- .- 11'15 - un .,.

---.. ---. - .. Un..J.1L-_. _____ JDT ___ .Jl. __ 1515~"_ ... ----___"'l. ___ LJUL_.II'f.{ . __

_111 tn, 9797 1179 .OU '50' -. .on

Shop Statistics-Inventory Carrying Costs, showing carrying costs and
at-machine to on-machine time ratio

------:,::-: .. uuTJoiOicMnsilS .--- --.. - .-.-.- --.-... - ---.. - .. -----.. --.-.-.. --.

___ "."""'1 ... 011"--..... ______ l1USJOIOD .. _____ .. ______ . ______ . _____ .. _~TD!Ul!...l)~T!..IiE~ ___ _

EMILY co-LDED OIIIIEU .11 PIIOCISS OIII1BS ILL OIII1BS
__ ----'llt_. ___ ._11 ___ II. L_' .11. M L .. ' MilL'

UTE 0IIDftS ~ITED

COllft.UED 0IIIIftS.
.K .. II .L.':'" Of GllDEaS COllPLPiD·-

__ E~Ja$~·~ _____________ ~_---L-_~L_ ___ L_ _______________________ __

EIG-IS
~I-'--------

rem

f!eM M

EJ-2II& IS

R-JIIY

E2::UII:

EO-lOY

-LQ:JJn'

L2-3D¥

..
IS 21 21

10 10

!

$2 $Z "' U,
51 51 3' 59

13 15 ,---
II --11---

12 12

21

Shop Statistics-Tabulation of Order Completions, showing count of orders
which are completed (or in process) in each early-late category

JOB SHOP SIMULATOR IN THE GENERATION OF PRODUCTION SCHEDULES 279

SHAPE *. It is completely capable of lending
itself to all of the planning and experimenta­
tion described above. Its antecedent was the
Job Shop Simulator ** jointly developed by
General Electric and the IBM Corporation, and
at this point the substantial contribution of
their work should be acknowledged. The fact
that the remainder of this article dwells on the
extensive changes and departures from that
program should not minimize this in any way.

The simulator developed by Westinghouse
has three essential features which facilitate
schedule generation. They are:

1) All shop orders are treated not as linear
paths but as networks, which acknowledge
the constant change in the- combinations
of parts being operated upon, and the
need for material and component staging
at any point in the manufacturing line-up.

2) The entire sequence of events which takes
place in a simulation is captured and
made available later for analysis.

3) The program Is capable of handling ex­
tensive changes in capacity throughout
the term of simulation. This includes
selective overtime and changes in manned­
machine configurations.

In addition to these three major extensions
to the program, there is also provided exten­
sive flexibility in the assignment of dispatch
rules, and the capability to recognize that empty
machines often perform work routed to other
machines of a like type.

II. USE OF NETWORKS IN DEPICTING
SHOP ORDERS

In the manufacture of steam turbines, parts
are often worked on jointly as a sub-assembly
for one operation, and then disassembled and
worked on individually in parallel in subse­
quent operations. The logic by which this
process may be handled in a simulator is cov­
ered thoroughly in 13, and will not be dwelt
upon at length here. However, Figure 1 shows
the fundamentals of the network idea. The
entire figure represents one shop order, made
up of two sub-orders or feeders, AA and BB.
Each part in the manufacturing line-up for the

* Simulator to Hunt Optimal Production Schedules
Highlighting Aggregates and Particular Events.

** ibid.

sub-order is given an identifying number which
is an integer power of two. * Each operation
in the line-up is coded with a number which is
the sum of the identifying numbers for each
part being worked upon at that operation.
These codes uniquely identify the parts in­
volved. In the diagram, the operation numbers
are on the left and the binary codes are on the
right. Operation 6 is one which works on the
parts labeled 1, 2, 4 and 8 as a sub-assembly,
and therefore is coded with a 15. After that
operation the parts are disassembled and the
parts labeled 1, 2 and 8 are worked on jointly
at Operation 7. The part labeled 4 is worked
on individually at Operation 8. After Operation
8, this part is assembled with the parts labeled
16 and 32 for joint processing at Operation 12.
All of the parts are worked on jointly at Op­
eration 13.

The disassemblies and assemblies represent
two types of nodes in the shop order network.
There is still a third, which is seen at operation
21. This type of node is a "'call-out", and it
means that in order to perform Operation 21
the completed part made on the other sub­
order BB is required, along with some inven­
tory item H. ·'It is thus a staging operation.
One or many call-outs may take place at any
operation, and call-outs may be for products
made on other sub-orders, or for raw materials.
The logic of the simulator prevents call-out
operations from starting until all elements
called out have arrived.

While the order depicted in Figure 1 may
appear somewhat complicated, it is not nearly
as complex as many used in steam turbine
manufacturing which are presently being simu­
lated on a routine basis.

The upper part of Figure 2 shows a hypo­
thetical form by which an industrial engineer
can quickly indicate what combinations of
parts are required and where. The lower part
shows the implied network. Cards punched
from such a form would enable a computer
program to assign the necessary bindary codes.

III. SIMULATION AS AN EVENTS
GENERATOR

In job shop simulators the modeled shop has
productive resources in the form of men, ma-

* After Kerpelman. See 5.

280 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

H

32~

G

Legend

D

BB

2

3 0
Y E F

3~J ,

I Material D

Operation 22,
2~27 working on
-, ports 1,2.8.16

Figure 1. Use of Networks in Depicting Shop Orders

terials and machines; and a load of work to be
performed represented by manufacturing data
on a set of shop orders. The dynamics of how
the model shop processes its load are governed
by a set of decision rules. The decision rule
which has received the most extensive treat­
ment in the literature is the dispatch rule *,
which reflects the priority system by which
jobs are assigned out of queue. The addition
of assembly, disassembly, and call-out features
adds to the number of decision rules, since the
simulator program must rigorously prevent op­
erations from beginning (or even being con-

sidered as in queue) until all necessary parts or
components have arrived at the work station
where the operation is to be performed.

Simulator decision rules are generally well
known and will not be dwelt upon here. How­
ever it would pay to review several pertinent
points about the logical basis of simulators.
First, they are queueing devices. W~en ma­
chines are not available, jobs are put In queue
behind the machine, just as in a real shop.
Thus, capacity restraints are specifically re~og­
nized. Second, they are sequential devIces.
Events take place in the simulator sequentially,
just as they would in the shop, only in com-

JOB SHOP SIMULATOR IN THE GENERATION OF PRODUCTION SCHEDULES 281

ORDER:

~
$RT NAME ..

'1'-7§
1 ~ ~ .~ 11 .~ \

OPERATION
NUMBER

I 1)(I
z.)< /
;5 I)c I
~A IX (
~8 IX II
CP)C 1\
7 IX " \
e DC X X)C \
CIt)c X X X)c 1)(\
l~ 1)(\
\'5 1)(rx)
64- I~ X LX I)c [X IX 1)(J

L-I'
_1--'"'"""--____ _L--'

L...----

POO 6 IPOO.OOO

7

9

Figure 2. Coding Form and Resultant Binary Coded Network

pacted time. When a situation arises in the
model requiring a decision (usually a dispatch)
it is made, and all subsequent events are based
on its outcome. ** The arrival of each job at
a machine, its dispatch, and its completion, are
events which take place within the model, at
certain points in modeled time. At the occur­
rence of these events, SHOPSHAPE records
them and the time they took place. Thus, the
model is generating points in time when spe­
cific events may be expected to take place, and
doing so with full recognition of the decision
rules. Wherever possible, the decision rules are

** The importance of this sequential decision process
is fully developed by Rowe in 9. Many of the forth­
coming ideas are found there, and in 10.

designed so that the resulting event sequence
reflects desired management policies. By so
doing, we establish the satisfactory nature of
the way in which the simulator generates
events.

IV. PARA-SCHEDULES

In looking at the way in which events took
place in the model, we may examine them from
two different directions. If we look at them on
a "by machine" basis, we are looking at a dis­
patch sequence. If we look at them on a "by
order" basis, we are looking at a schedule. The
sequencing experienced by the individual op­
erations of an order, leading to the points in
time when they were done, is what eventually

282 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE. 1964

led to the order completion date, or the point
in time when the last operation was done. This
sequencing, or succession in which things were
done in the model, mayor may not lead to
order completion dates which correspond to the
master schedule. Therefore, we call the sched­
ules generated by the model "Para-schedules",
leaving the term "schedule" to still denote the
desired schedule or the master schedule. There
are several basic points about para-schedules:

First, these schedules are resultant sched­
ules. They are created as a result of what re­
sources were available in the modeled shop to
process the load, and what decision rules were
used in the model.

Second, para-schedules are feasible schedules.
There is nothing impossible about them. They
could be put into effect immediately, and
worked to, if in reality one can provide in the
shop the men, machines and work modeled by
the simulator. They recognize every form of
capacity restriction, and most of the technologi­
cal restrictions. Specifically, they recognize the
entire process of interaction between orders
competing for facilities.

Third, para-schedules are highly detailed pre­
dictions of when work may be expected to be
finished, recognizing all corrective measures
that are planned to be taken. The matter of
their accuracy is discussed below.

Fourth, the para-schedule resulting from a
simulation may not necessarily correspond to
the desired schedule but it can be 'Ynanipulated.
The usual approach in high volume schedule
generation is to consider an overload as repre­
senting what is desired to be done, but cannot
be done. In simulation, overload is impossible.
That which would have been an overload is
moved down the time dimension. The work
goes late. Too late to live with? Quite pos­
sibly so, but the schedules can be manipulated
and brought to the state most highly advan­
tageous for all factors considered.

Finally, para-schedules are detailed se­
quences. They represent a dispatch list. In
the short term they should be quite capable of
being worked to. In the long term they ob­
viously will not be met in every detail. But the
dispatch list implements the para-schedule that

has been determined to yield the best possible
shop results.

Para-schedule Manipulation

A para-schedule, while being fully feasible,
may not be desirable. I t may be undesirable
for many reasons, but the two principle ones
would be the inability of certain critical orders
to meet their due dates, and the problem that
too much work is in queue behind certain ma­
chines. These two examples embody most
scheduling problems, and it' would pay at this
point to hypothicate a schedule analyst and
follow what he would do in each case as he
works toward an improved para-schedule.

The queueing problem is the simpler of the
two. The "Analysis of Queues" in Appendix I
shows how long the queues were at each ma­
chine group, and how many days each job lost
there because of them. U sing this report, the
analyst identifies coming problem areas. Once
found, the question arises, what can he do
about them, in order to improve the para­
schedule? He does the same thing that would
be done in the real shop-he finds some way to
increase capacity. Put more men on the glutted
machines. Put them on second or third shifts
for a few weeks. Put on overtime people-­
Saturday, or even Saturday and Sunday. How
much will this improve the situation? He will
simulate again and see. Now that some ma­
chine groups are putting more work through,
quite possibly new bottlenecks develop at other
machine groups. If so, he will take corrective
measures on them, resimulate, and have an­
other look. Not many simulations will be re­
quired before he has attained the best per­
formance possible, and all the various correc­
tive measures deemed advisable have been in­
voked.

This procedure does two things. One, it
balances manned machine capacity against the
load as the mix changes through time; and two,
it produces precise feas'ible para-schedules and
dispatch sequences. The sequences produced
are feasible because no more capacity is put
into the model in the form of men and ma­
chines than can actually be reproduced on the
shop floor.

In the design of SHOPSHAPE, great empha­
sis was given to recognizing all kinds of ca-

JOB SHOP SIMULATOR IN THE GENERATION OF PRODUCTION SCHEDULES 283

pacity changes, and permitting them to take
place at any time for any duration, and for
any machines, just as managers are free to do
in the real shop. Changes in number of ma­
chines, number of shifts, manning and over­
time, are all included. Scheduled down time
may be incorporated and then shifted if de­
sired. All holidays, weekends, and shutdowns
are specifically recognized. The complete im­
plications of every capacity change to be con­
sidered on the shop floor is recognized speci­
fically in the model.

N ow consider the problems with certain criti­
cal orders that failed to get through on time.
First, how does the analyst spot them? In Ap­
pendix II will be seen a report entitled "Feeder
Completion Report." This is an extract of the
para-schedule which devotes one line to each
sub-order (or feeder) and groups them by shop
order. Each line shows how one sub-order
fared compared to its scheduled due date, in
days late or early. It also shows at which two
operations it slipped the most and why; i.e.,
bottled up in queue, or failure of mating pieces
to arrive. Incompleted sub-orders show late or
early status at the last completed operation.

The schedule analyst will call for the Order
History Diagnostic for all orders which appear
to be cause for concern. This is the complete
para-schedule for the order, and gives the his­
tory and the slippage of every operation. His
analysis will begin by looking for any cause
where the order is being held up by mating
parts or materials, and it is here that the power
of the network representation becomes appar­
ent. An example is seen at the first operation
of the last sub-order on the report, the Inner
Cylinder Assembly. Operation 1 calls out the
Inner Cylinder (made on the order just above)
and a Nozzle Chamber. Assume the Nozzle
Chamber is a part coming from an external
source, such as an outside supplier or a feeder
shop. (A comparable call-out configuration is
seen at Operation 21 of AA in Figure 1.) Even
if the Inner Cylinder was available on time,
Operation 1 would still be delayed almost four
weeks, because the Nozzle Chamber did not ar­
rive until 628.2. Here is a case where the simu­
lator pinpoints a delay that will be caused by
an externally supplied part. Such a delay, once

recognized, can usually be avoided by expe­
diting.

What the analyst may do about accelerating
the other delaying component, the Inner Cylin­
der, is somewhat more complicated. Examin­
ing the operation-by-operation experience of
the order, he will note that 19X is an operation
which requires the part being worked on at
Operation 17 and the part being worked on at
Operation 18. But Operation 18 has encoun­
tered a severe queue delay of 426.4 hours, and
does not arrive until 628.4. The part from Op­
eration 17 must stay and wait for it for 437
hours *. In order to decrease the lateness of
the sub-order fabricating the Inner Cylinder
Assembly, the analyst will have to find some
way to accelerate Operation 18 on the sub­
order fabricating the Inner Cylinder.

As a first step he could consider releasing it
to the shop earlier. This mayor may not be
sound. After that, he might take whatever
measures possible to enhance the priority of
the order within the priority system. For in­
stance, if "Earliest Scheduled Start Date Next"
is the dispatch rule used on most machines, he
might try having the scheduled start dates of
ope.rations on the order made earlier.

Wherever the priority for one order is in­
creased, some other orders which compete for
the same facilities will in turn suffer, and this
may then lead to other points of concern. If
there are but few orders of critical concern to
local management, the analyst should be capable
of improving their schedule performance, but
perhaps at some sacrifice elsewhere. As this
number of critical orders gets higher, the ana­
lyst becomes less and less of a manipulator,
and more and more of a juggler. There are
more implications to every change he makes,
and he becomes increasingly burdened with the
same problem facing all schedulers; judgements
are made difficult because volume is high and
all the work is interdependent. Because of this,
with some exceptions, it is more desirable to
return to the aggregate measures of shop per­
formance and manipulate machine group ca­
pacities, rather than manipulate individual
orders.

* The time a part spends waiting for mating pieces
to arrive is called "stay time".

284 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

One cannot discuss manipulation without en­
tertaining the problem of what constitutes bet­
terschedules. The answer to this lies with the
viewpoint of local managemnet, and the policies
which rule in their industries. As many man­
agers can be found who consider on-time de-

livery the dominant consideration as consider
high machine utilization the most important,
yet in a job shop a special emphasis on one
must result in a demeaning of the other. The
points which are made in the study of dispatch
rules hold here as well. The use of certain

e IMOP OIIoea ,elOll ".t OISClIPTIGII !lUI •• IULT ilL DIUTS- CIIIIII UCII SP. I," SCIIIII S".T

L OUAOOtOI.O) 10220002 en 'AIl , eVIl ElIII 'TID '04.0 .15.2 1"2- U L0IIC1U $ 20 _Ill, Q toO.' 611.'
" OU_"IIO) 10.10000 Itll IIIUT '1'1 _ .. 0611., T.l- 103.2 '11.0
" onloo"ltOJ lTllllZ) 'AUI lOllY $flO ~.O '11.1 T.6- 102 •• '11.0
II 01)100"'10) I2Mlt2. ITII IMII' TUIIS eXIl _.0 '11.' 1.S- 101.0 '".0
II 01)_"110) IZMltZtA ITII DUIIP TIIAII' IXII _ .. 0 '11.' 1.t- 10).0 '11.0
" onAOOtOItOJ .2Mlt .. ITII DUIIP TUIIS IIIL _.0 '11.' T.!1- 101.0 .11.0
" OU'OOW.IO) .ZM1 ST" OUIIP lUllS IIIL 604.0 '11 •• l.S- IOJ.O '".0
" 01 "OOW.101 .ZMlIli ITII DUll. lUllS nil _.0 '11.1 T.l- .oJ.' .11.0

.. (lU'OO",", "0011" lIotOll POIIT Sill .U.0621.2 '.2- n EU.U. S n UtlU6 S 10 n.o
" onlOOtOMOt OIUll" .01011 610.461 •• , '.1- • I.OIItUl • 1_412. S _ •• '11.0

" OnAOOtO.104 10210001 efLU" .n.o ", •• 1.1- • IIOPlIU I 2) 'lTfU. S 611.0 61100
L onlOO",", 10ll000) en 1111 , eoy E1111 POIIt .11.0 "1.4 T.S- U IIOPlIll S 17 LIIIICU. , 101.1 612.".
II OUIOO __ 1"10000 &TIIIIILIT '1'1 .11.0 "2.) 1.2- I 110/216 , a_III116 , 610.2 .11.0
" OlJ.OOtOl_ "'111U' VALVI lOIn' POIII 611.0 'U.I .6- '" •• 611.0

II 011100"1105 OSOOllJf IIOTCIII ITIO '20.0 .U.' 1.4- 11 USOUI I) " _116 0 tOt.1 'U.O " on __ "Ull4" IIOTOII 616.' 61l.1 11.1- " 'ITfU. S , LSSOUI • .Ot.' 'U.o
" OU.OOtOltO, 1021000. SUII! .n.o '2).) '.S- 10 fITfU. S 2 .Lllln. I) 10 •• ' .n.1
L onlOOWItO' 10220001 en lASE , eVIl IXII STiD 6n.0 'U •• '.S- 2 .t1llU6 I IUflTflll S '11.0 612 ••
" OUIOOt08IO' '"1_ STII IlILfT .IPI 611.0.".1 .1- .1'.2 61 •• 2
" 011_1tO' ",nu2I VAL VI lOOT STID 611.0 .16.6 ., '15 •• '15.'
" OnIOO"IIO' 101010" IIOU CllANIil • n.o .1'.1 1.2 '".0 '15 ••
" 011IOOWl105 'ZMIt'" &Til DUIIP lUllS IXII .n.o .1 ••• 1.5 "4.0 '1".0
" OU __ IO' .204"241 Sfll DUIIP lUll' UII .n.o 6" •• ., "'.0 "'.0 " 01 __ 105 .IMln. ""DUllPIUIISIIIL .n.o " ••• ' 2.S .14.0 '1".0
" 01"00tM1O' IZM1" .. "" DUIIP TUIIS IIIL '11.0 '1'.6 .5 '1'.0 " •• 0
" (1)10_10' 12042171 STII DUIIP tUilS EXII .n.o " •• 1 .5 " ... " .. "
.. OUIOOtOI.ot "0011 J6 IIOTOII POIIT sa "1.0 'U.l 4.1- 1. 110"'111 Q '" 100/2 .. S 10'.1 '11.0
"ou_osnu" aolOll "I.' 621.2 2.t- • USOUI Q • FlTfU. 5 'U •• '11.'
" 011100_ 10"000' en "II .&t.0 .n.' •• S- 10 fITfUl 5 2 .LlIIll' I 10 •• ' .n."
l (lIIAO~' lO2_. en 1"11 , eoy EIIII POIIT .1 •• 0 '21.1 l.S- 2 PlIIIU. I • PLIIIU •• 611.0 '1"."
II ~UlOOtOltOt 10~10000 "" IlILfJ PI'I .1 •• 0 '11.' .2 .1 •• 2 .a1.2
" CUIOOtOI_ nnU24 VAUI ICIOY POIII .1 •• 0.11 •• .5 .n.I.I1.1
" OI1l00tOl_ IOI0lOII IIOU(lI_1I .&t.0 .n.1 1.1 .n'O'll.'

• r.UIOOWI.o1 O~I'!OIUl IIOTOII ITiD .n.o .n.s '.4- 11 LSS012I I 11 fITfUl 5 61 •• 1 '1'.1 " OU __ .o1 .,un" IIOTOII .n.t U'.1 1.1- • LaSOtal • 4 flTfU. S '"., .11.'
I! ClU'OO"I60' IOUOOOt en IlILn 1110 .26.0 '10.' 4.1- I PlIIIU. I • PtMU. I 61 •• 2 .14.2
l I!I '_tOltO, 10210002 en U" , eft 1l1li S"O '21.0 1 11.1- 2 Ptll.n. I • Pl .. U. 5 'U.O '21.'
• 011_"1.01 10 .. 0000 SIll IlILfT PIN 62 •• 0 U,.' .1 '25.J '25.J
" OUAOO_601 "IlIUJ VAL WI ICG'f $TIO • 2 •• 0 '25.' .S "" .. " ...
" I'U_ ... , 101010" IIOU~ 62 •• 0 'IS.I .4 .n.o 624.'
• OUIOC!"'IO' 12041924 SIll _ ' 5 ·UII '26.e ."., I.S '21.0 62).0
• cnAOe"'IO' UM"ZtA SI" DUIIP T S ellll '26.0 '25." .S '15.0 62'.0
• en.eel"'60' l2C!4lt16 "" OUIIP T ... 5 IIIL 62'.o.n •• J.' IlJ.a 621.0
" 011'0(,"1.0' IIMI ... I ST"_T"IISIIIL 62 •• 0.1S.' .5 '15.0 625.11
" (1"0('601.0' U04U" "II ~ ta"'" 1D! 62 •• 0.IS •• .J "5.4 Il'.'

Feeder Completion Report

- SCIIIO nM' IlL IIACII .. OIIISIIUI. ... IWI , _s "'''lilLY til OP COSI ./01 VALUI IT_, DT '" II

OUAOOZSIIOI 1"IlZ SUlft , .IPE ASS.,
1 62t~. tn.' .0 fITFI'" 62' •• 2 U'J. .,. .. .0- _loU " ... 17 I I' 1.5 011
I '''01. tn.' .0 fUIIIII .. "'.1

10 •• 12) '.1 011

" 6HJ' 61O.' .0- vacll .. 'H.I
10 • In 1.0 011

51 '10",1 '10 •• .0- ,nfn. '1TP141 'H.I ' I n, .5 Of
6 Ul ... '10.' ~J l00/2lt 'H.' "I III '.J 011
7 611.2 .n.1 .0 l00/Zl. '''.1

I 177 22.' 011 • 171 41.0 L'

01 JAOOZ'1I01 11000000 IIIIIEIl en
"I",. '1' •• 1.1- PtIl6U. '11 •• 157 •• .1 '1'" 1.Z- PtIl6". '11 •• 170.2

10. I 105 I.' 011
'11 •• 620.2 1.1- LOIICUI LOIICU. '1'.1 ".1

104 • IDS I •• OP "I,;. '20.Z 1.1- LIIIICUI LOIICll. 27 I In 2.' 011
• 11.6 620 ... I.t- IIDPOU.

.It •• 10).0 1 • IU ., 011 610.4
"'.2 .U.O I.t- IIOPOU. 620.2 "., II

... I ." 40.1 OP
610.2 II 011110

'16 • 1.16. 'I." D.

7 ".'" 'U.I 2.'- LOIICll.
610.' .. 110
622.1 I • 1 •• 1 622.2 2.6- .Llll1SZ PLII6U. 622.2 9 • l.n. .1 Of , .20.11 622 ... 2.)- • LII6U. "2.2 It ••

Z.l • 1.012 16 •• Of
10 '20012 '2206 2.)- .LII6Il. 622~' Z.' 2J

20" • IJ. 1'.1 Of
622 •• ZJ Of 110

92 I I.'" '.t OP

U .20 ... 622.1 2.2- FIT'n. '22.' o. 110
'22.1 12 .20,;. .n •• Z.I- 100/2]6 'Z2.'

20) I 2.I'Z I ••• Of)
U 62101. '25.1 2.1- _'U2 6n.' I 2.142 Of J
I" '21 •• '21.' Z.2- FlTF1JZ "J.'

121 • Z.U. '.1 Of ,
l' .ZlJI 62'.1 Z.S- LOIIC1S2 62'.1

III I 2."1 n.l Of)
16 'll.1 .2'.1 Z.6- 110lI0112 62'.1 UI .. , 2.1 Of 2 n 612.0 .n.o J.I- "'''IU 62'.1 1".0 "'I 911 3.2 Of 2

" 62Z.1 '21.' '.1- 1"'.11I 62'.2 ." .. S" • 2. II!! n.7 OP I 191 .2 'ZI •• ..)- flTfU' ",., ""
1'Z • 1.653 OP 2

625.' "'J OfllOll "'. J'ln '.2 L. J
6ZI •• 0'110 11

01 JAOOZS'101 11000001 1l1li0 en USY
.24 ... '21 •• '.0- ""141 .z •••

'lI ••
I "I 1.J .. 5.1 Of 11000000 1 .. 10./0015 I E. en

62 621.1 J.t- flTfl'"
U'.Z II 11010010 1 .. 10_04 I IIOl eHAIIIEIl 62 •• ' .24.1 '21.1 '.0- flTfl'" 621.1 I '2 I '."1 1.0 Of .25 .. 0 621 •• 1.'- fl"141 621.'

I '1 I ' •• 12 J •• Of
615.0 '''.0 •• 1- FITF141 62'.0 • 121 1." • '.0 OP
'21.0 62'.1 '.1- 1111111'41 62'.1 • n. 1.612 J.J OP
625.1 62'.' ".1- 'lTfl'" 62' •• • " .. I •• 40. 6'.J Of .26..0 .,.., J.l- IIAIINI4I 'lI •• • nl •• 429 Z.O 011
.2 •• 2 6)0.) ".1- 'IlFl,1 6)O.J I '44 I I."" 3D.a Of • nl 1.111 '.J o.

Order History Diagnostic

JOB SHOP SIMULATOR IN THE GENERATION OF PRODUCTION SCHEDULES 285

SUaT 5CHED MACH 5H1lP DaDEIl fEEOEll 01'11 EA DaloMING ITEM PAU DESCRIPTlIIfI

Iollo.~ 611.6 IIOP0116 OllA00l11l01 31000000
1016.6 612.0 IIOP0116 0131000271301 3200082.
616.1 598.8 RCP0116 013100090104010 10211143
616.8 612.0 IIDP0116 0131000271401 22001~26
61b.8 61~.2 IIOP0116 OllA00258101 10000000
616.9 616.0 RDP01l6 013"00285001 10220000
611.0 1012.0 ROP0116 013A00271~1 32001319
617.1 1016 ... ROP0116 037RooO~4300 10000000
611.2 616.4 RDPDI16 017RooD4~4oo 10000000
617.6 597.6 RCP0116 OllA00906406 IOZ117U
617.8 613.0 RDP01l6 0131000216301 32002817
617.9 616.6 ROP0116 013A00271101 61990000
611.9 613.2 RCP0116 0131000908605 10220002

611.0 610.2 '161111:116 0131000270101 11092021
"11.1 604.8 '16"K116 Oll&00265flGl 61992825
611.4 610.2 118"11:116 013&00271201 06150231
6ll.8 611.0 V8"K116 013&00278201 Q60500.4
612.3 6C7.0 VI'IIK116 01lAooU6401 11070000
612.5 611.6 V6"K116 013A00278201 06050094
613.4 613.4 '181'11:116 0131000248501 22001117
613.8 613.4 V8MKU6 OllA00266501 11090001
6U.9 6C5.2 veMU16 0136ooz75801 1l0D4644
615.3 611.2 '181'11:116 0131000270601 22001852
1016.2 616.2 1I8MK116 OllA00276~1 11092191
1016.4 1011.2 V~~K116 013A00271401 31001463
1111.0 612.2 '18"116 013100027060.1 21001819
611.4 612.2 vellKU6 013A00211101 2)000000

611.0 604.8 V8MU16 0131000265601 6)9928n
6ll.0 591.6 V8MLU6 OUA00906~06 102111U
611.3 6C1.Z 1I8ML116 013&0027$1101 21003910
(011.6 I>O~.~ V8MU11I 01)&00271001 11000052
61Z.7 610.~ V!PLI16 013,\00276301 11001~
61).6 611.4 veMLU' 0131000216301 11001040
11110.4 '0).0 ve"Lll6 013A002U101 31002108
614.7 591.4 1IellU16 0131000265601 nOO1412
61S.1 601.0 1I811LU6 0131000908101 991100$'
615.3 IIU.2 veMUI6 0131000270601 21001119
615.4 601.~ ""MLl16 0131000275801 21003910
61 S. 7 601.8 '1ellU16 0131000275301 '200133)
US •• 614.0 vellL116 OUA002U501 22ooUI1
6i6.11 612.4 veMUI6 013A00210601 22001152
tl7.1 612.2 V6PLU6 013,\00211101 13000000
611.1 612.8 vellLlll1 013&00271001 22005631

611.Z 605.6 1IePII116 0111000276101 11002691
6U.8 602.6 ve,,"116 0131000275901 U0901Ze
1.12.2 599.Z 11111"116 013&00911101 0000260
612.4 603.0 1I8PII116 013&00270601 11001923

, IP 6340J0489001 BlADE RING 1 GOY
3 LA 671 J0058001 no RG G01l 2

17 ... 6670J067100D HP CYl fIIO DE
3 L' 671 J0058002 BlD RG GU 2

11 HI' 6630JODOI000 DUTEII C YL GOY
9 liP 6320J0017Doo lP CVL EXHAUST
3 LA 671 Joo58001 IILD IIG GOV 2
1 HP 6590J0874OOI OUTER CYL
7 • HP 6590JOn4ool OUtER t Yl

]0 ... ,,70J06110oo HP tYl FIIO DE
3 IP .. SOJooJ1000 laUDE RING 2 GDV
3 IP 360080523001 tROSSOVeR liNG
• LA 6.6 J0935G02 tYL lASE , CVA ElH SUO

1 LP 365060130001 FlOIi GUIDE RING
I U 188 00226001 seALING OUPH
1 LA 785 006n002 OISC
1 LP 715 00630002 (if"-5
3 lIP 6610JO'04ool NOZ CHIMIER
2 LP 785 00630002 GEN-5

10 II. 6611 J0193G02 BUDE RIIIG GO
3 LP 648000645000 FLOW GUIOE
5 HA 669 J01l3OOi OU""Y RG
5 HA 661 JOB57ooZ BlO RG -2 GEl;
1 loP 1650eOll0001 GUIOE IIING

24 lP 671 J0621OO1 BLD I.G G01l 1
U HA 667 JOIl35oo2 81.0 RG -I GEN

5 IP 6~OJ0489001 BLADE RING 1 GEN

1 I" 7ea 00221>001 SEAliNG OUPH
23 70JOb71000 HP cn fliD DE
10 HA 66] Joo29GOI BLD ItG -I GEN END

II HA 6 .. JOI25ool cn JIltjU
12 IP 6650JoooeOOO lN11EII CYL ASSY
n IP 6i650JOOOBooo tHOIER CYL asSY
10 LA 661 JOI86GOI BLO IIG
Zl I. 66' JOl7aool 8LO RING G01l
12 GA 906 J~2G02 HSG ASSY

6 HA 661 J0835oo2 81.0 RG -I Gtll
18 HP 663 J0029GOI 8LO RG -I GEN END
18 DA 669 J0983GOI NOZZLE CHAM8ER 2NO EXT.
21 tP 668 JOl93G02 ILACE RING litll
10 HI. 667 J08S1oo2 BlO RG-2 GEN

5 tP 6~0J04l19ool 8LAOE RING 3 GOV
5 HA 671 J0666GOI tlLO RING-Z

• 664 JooUIOO) tYl INN~I loSSY
4 I.A 664 J0688001 Flail GUIDn

11 01. 672 ~0~14GOI EXH HOOO
19 HA 668 JOlJ2GOI CVL IIIf;ER asSY

Short Term Schedule

STO HIS OT FRail IIG TO IIG

2'.6
31.7
l.S

31.7
84.4
la.8
31.7
41.2
.,8.2
11.1
43.0
4.0
9.2

9.G
2).0
30.3
1$.6
H.5
0.7
25.2
H.C
94.1
40.6
9.0

25.2
25,3
211.7

2).0
345.0
27.2
76.0
64.'
6Z.)
19.6
Z8.'
21.7
39.6
23.'
7.~

17.1
21.0
211.7
33.0

LO~Clll1 flTflJ6
LOMell6 L0l1'111
LOI!CU6 fITFU6
I.IlllC116 lO~Cl11

-LO"C 116 LO'C 116
-LOMC1l6 LOI'IC116

LOMe 116 LO'" Ul
LOMe1l6 PlIl6116-
1.0I!CU6 PLM6116-
H8M5116 HOP5116
LOMe 11 I fltrU6
LC"ClU fITFUl
FITFU6 LO"C 116

LDPI,U2
LO~'111
VUKI21
V!lTK121

LOMelll VIINK116
VB"JUI FITFUl

FITFU6
HOP5116 lO"C13Z
ROP7111 FIlFlU
FITFIlI FITFIlI

LOIOl:132
VACel~6 FitFUl
FITFlll fITFlll
FITf116 FITF116

LONI'.Ul ___ FITFU6

FITF111
FITfU6 e"F5132
FITFU6 veNLUIo
1I8M(111) III1F5132
IILO)134 FITFU6
IILO]13~ FITF116
flTFlll LOMC111
LOloClll FITFUl
100/2)6 FITFUl
FITFIlI FITFUl
100/236 ft Tf 116
FITF111 FITFUl
FITF116 FITF116
FITFUl FITFUl

FITF116 8"f513Z
HDP5U6 WHAR 1~ I
FITFU6 LOMeU6
FITFU6 ROP0116

rules tends to implement certain policies, at
some rejection of others. This applies equally
well to the schedule analyst, who is also operat­
ing under a set of decision rules. If some cri­
teria could be found lor establishing a cost of
being late, then schedules could be truly opti­
mized and probably fully determined by the
computer. Additional research in this area
could yield rich returns.

path in the order networks, the overall system
may be highly or hardly sensitive to changes in
capacity of a given machine group. While it
is often startling to see the difference wrought
by the addition of one man-shift at certain
machines, it can also be very revealing to see
the fruitlessness of another placement else­
where. It will be up to the schedule analyst to
know these sensitivities.

One of the most important functions of the
schedule analyst is to learn the sensitivity of
the system to. changes in different variables.
Assume he w~~hes to accelerate schedules, and
is followingt~e aforementioned procedure of
adding mento·a machine group with a trouble­
some queue. . As one would expect from the
lessons of queueing theory, or marginal eco­
nomic analysis, each successive addition of a
man should result in a small absolute reduction
in the average queue delay there. In turn, de­
.pending on where the jobs are routed to after
they leave that machine group, the reduction
in delay may result in substantial, little, or no
reduction in general aggregated order lateness.
At some point it will pay to divert the next in­
tended man increment to some other trouble­
some machine group. Depending on its queue,
its level of utilization, and its importance as a

One procedure, which is the converse to the
one above, has also been tried to advantage.
Here, the analyst begins with the simulation
of a shop where all .possible capacity is avail­
able, no matter what the utilization percentages.
This gives an upper limit to the possible sched­
ule performance of the shop. From this point,
successive selective cutbacks can be made on
the machine groups showing low utilization in
the Shop Performance report. Again, as utili­
zations go up, the extent to which the cutbacks
are continued, with their commensurate de­
terioration in schedules, would be a matter of
local management decision. This decision
would be based on comparison of the cost of
the retained man to the reduction in lost time
attributable to him.

The above procedures depict a situation
which appears to incur extensive computer

286 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

costs, since repeated runs would be made in
order to establish the proper balance between
load and capacity. Actually, in practice this
will not be the case. If, for instance, new
para-schedules were generated weekly, then
much knowledge gained from last week's run
can be put to use in the current run. In addi­
tion, orders don't suddenly get into trouble.
They either start out in trouble, or work their
way into it gradually. In most cases there will
be sufficient lead time for the analyst to observe
the impact of his corrective measures in suc­
ceeding simulations.

Para-schedules can also be influenced by
changes in decision rules, such as dispatch rules,
subcontracting policies, and others. However,
their efforts are studied by separate experi­
ments. If sensitivity to their change proves to
be high, then they should be programmed to
respond internally as the schedule analyst
would manipulate them externally.

It has been shown above that by manipulat­
ing machine capacities in the model, and manip­
ulating the priorities within the model, the
para-schedules generated are being manipu­
lated. Coming problems are recognized and
corrective actions tested weeks or months be­
fore the time they will actually be encountered
in the shop. If it is impossible to find a para­
schedule in which all of the orders meet all of
their due dates, then a pretty strong case is
made that some commitments will have to be
changed. All of the due dates simply cannot
be met. Again, the model is available to help
pick and choose. All this is done without the
slightest gamble in the shop itself. When the
analyst has arrived at the best resolution of
limited capacities and disappointed customers,
he adopts the para-schedule which represents
the decisions which gave the best result. At the
same time he has in hand the major instru­
ment for implementing these decisions: The
para-schedule itself and the dispatch sequence
which should produce it.

Dispatch Lists and the Fuzzy Future

The dispatch list is the sequence in which op­
erations are to be performed on each machine.
An example is seen in Appendix II under the
title "Short Term Schedule." The jobs are
listed in the order in which they would be dis-

patched, with start time, job times, and other
pertinent data. They may be printed for any
interval of time, but what the time span for
the Short Term should be is a matter particular
to the shop being simulated. The dispatch list
is the tool to be used in the shop to implement
the desired para-schedule. In theory, if the
shop followed it precisely the para-schedule
adopted would be met precisely. Obviously,
however, this cannot be done. From the instant
the list 'is prepared, things will be happening in
the shop to prevent this. Parts may not arrive.
Men may report in sick, leaving machines un­
manned. Work may be scrapped. Metals may
be extra hard, and machining therefore might
take a little longer. Nevertheless, in general,
the lists may be followed. If the dispatcher
always goes to the highest remaining job on the
list, he will be implementing the adopted para­
schedule. *

This leads us to the question: For how long
into the future are these lists useful? Failure
to do one job at the appointed time can have
perturbations throughout the shop, since other
parts of the list for other machines are based
on that job being done at the proper time. One
failure compounding another and another can
lead to substantial misalignments, when it
comes to trying to sequence the machines as the
list says. However, the actual results should
not be so bad. Here are some reasons why.

Suppose that the job missed was to have
proceeded on to a machine where a large bottle­
neck exists. In such a case, the expected queue
time itself at the bottleneck machine will act as
a buffer, allowing extra time for the work to
actually arrive at the machine before the dis­
patch time appearing on the dispatch list. On
the other hand, suppose the missed job was to
have proceeded on to a relatively slack machine.
Such a slack machine would be quite adaptive,
and capable of handling the work whenever it
did arrive, or shortly thereafter. Similar rea­
soning would hold for machine groups with
high traffic. If many machines are working on
many jobs, then machines empty and are ready
for new work frequently, and at any such point

* At the EI Segundo Division of the Hughes Aircraft
Co. a job shop simulator prepares daily dispatch lists
for their Fabrication Shop. They are apparently being
used with great success. See 12.

JOB SHOP SIMULATOR IN THE GENERATION OF PRODUCTION SCHEDULES 287

previously scheduled work arriving late will be
accommodated, tending to put it back on
schedule.

One situation which is not easily resolved is
the case of a machine group of one or few ma­
chines that processes very long operations.
Here openings are comparatively rare, and
when a scheduled job hasn't arrived to be dis­
patched, a high level human evaluation is
called for. Tying up the only machine for a
long time on the wrong job could cause a sub­
stantial deviation from the intended schedule.
Obviously at the present state of the art, al­
though dispatch sequences are prepared in
great detail, they still require human super­
vision. The need is reduced, but it still re­
mains. Now, when the question is raised of
for how far into the future dispatch lists are
good, it really means for how long will they
continue to require less supervision, rather than
more. This remains to be seen.

Feedback and Relations to Support Units

The setting of due dates for shop orders be-·
gins as a matter of management preference.
Once established, the standard backward sched­
uling procedure can be used to determine due
dates for supporting components and asched­
uled start date for each operation *. The sched­
uled start dates are used by the dispatch rules
in the simulator. It was seen above that the
simulated results may indicate some due dates
cannot be met, but the formal act of reschedul­
ing an order may be forestalled, depending on
how its dispatch priority within the simulator
is influenced. However, the simulator results
also bear a relationship to the components in­
cluded in the order which come from external
sources, such as support shops or aisles, or
outside suppliers. The para-schedule acknowl­
edges them fully, by means of the "Call-out"
mechanism. If information is received that a
component will be late, the computer program
holds up the order in the model until the time

* Rowe's flow allowance 9 could be used nicely here,
since information on queue time distributions would
be available from previous simulations. It is obvious
from the lateness figures that the sample reports reflect
runs where the simulator is pitted against a backward
schedule having a theoretical minimum of slack. These
figures should in no way reflect on the ability of the de­
scribed facility to deliver their orders on time!

the component is expected to arrive. The Order
History Diagnostic shows the expected arrival
times of the called out components, and shows
the slippage, if any, suffered because of delay
introduced by them. This means that any
component holding up an order is brought
to the attention of the analyst so that appro­
priate pressure may be applied to the source
while there is still time. There is still another
aspect to this. If an order is running very late,
either because of late components or bad queue
experience, and nothing can be done about it,
then judicious resetting of the due dates for the
components may be warranted, especially for
those coming from support shops that are al­
ready overloaded. New due dates would be
based on the required times indicated in the
para-schedule.

v. PROBLEMS OF IMPLEMENTATION

As may be expected, a large number of prob­
lems loom in trying to set up such a system.
We will touch on a few of them.

Supporting Systems

The validity of the answers generated by the
simUlator, as in all systems, depends in large
measure on the amount of information available
to it. This information classifies easily into
three parts: configuration information about
the shop, manufacturing information on orders
comprising the load, and third, the intersection
of the first two, which is present shop status.
The first consists of such things as machines
available, manning, scheduled down-time, and
overtime plans. This information is converted
into parameters for the simulator. Such data
is comparatively easy to capture.

The second set of information consists of all
necessary data on all the orders that compose
the coming load in the shop. Depending on the
size of the shop, this data can be quite massive.
It is embodied in a very large "work ahead"
file, and the maintenance of this file requires a
number of supporting systems. Most of its in­
formation is acquired directly from the manu­
facturing line-up. For the bulk of the items in
a job shop, the transfer of this data into the
"work ahead" file is not difficult.

Because simulations often run far out into
the future, and because job shops must fabri-

288 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

cate many products which are newly designed,
very often orders must be included in thesimu­
lation which are booked or are forecast, but for
which no manufacturing data is yet available.
Therefore a system of representing this work
to the simulator is needed. Several systems
have been devised. One is based on composing
prototype manufacturing line-ups from similar
orders previously completed. Another is based
on using Monte Carlo to generate sanlples from
a transition matrix constructed from historical
line-ups. *

The use of component availability dates was
discussed above. Such information necessitates
still another system to capture these availa­
bility dates from the support shops and outside
suppliers involved.

The shop status information may be quite
difficult to acquire. Historically, in job shops
most operational information is not in com­
puter sensitive form. But if simulation is to
be used with the precision that has been in­
ferred, then at simulation beginning, the model
shop has to be set up to reflect as accurately as
possible the present status of the real shop.
Such information can come from an extensive
data collection system.

A final word about supporting systems. No
device, no matter how precisely it processes
data, will generate valid answers if the input
data is not valid. Everywhere that supporting
systems fail to supply useful information, sub­
jective evaluations begin to reappear. There
will always be a need for some interpretation
and evaluation when appraising the para-sched­
ules generated. Unfortunately such interpreta­
tions will grow more and more subjective as
the model gets less and less information to work
with. If too much interpretation is required,
the model has defeated its -own purpose as far
as generation of schedules is concerned.

Frequency of Simulations

In discussing dispatch lists, it was brought
out that the shop must be expected to go con­
siderably astray of the sequences generated.
In addition, it may be expected that the older
the dispatch lists become, the less valid they
will be. With the passage of time, more and
more things will happen to disturb the schedule.

* See \

These would be things that neither the simula­
tor nor any other device could have anticipated.
The questions arise then: a) How often should
the model be set up again, based on the latest
information, and a new simulation run? and
b) How far into the future should the simula­
tion run? Much depends on the uses to which
the answers are to be put. Generation of dis­
patch lists should be frequent, but need not
extend too far into the future. Long range
simulations for load leveling, manpower plan­
ning, and facilities planning would extend very
far into the future, but are run infrequently.
In the simplest sense these considerations are
a function of the production cycle time, the
number of operations done per day, and the ac­
curacy of the data. There can be, in addi­
tion, many other factors such as engineering
changes and repair orders, whose effects are
more difficult to determine. At present, the
answers must be determined empirically for the
shop in question.

Unrepresented Production Patterns

As may be expected, the usefulness of the
results of the simulator will be colored by how
closely the model is an analogue to the real pro­
duction patterns in the shop. A case in point
is the ,vorking of operations out of sequence.
The manufacturing line-up infers that this
should not be allowed, yet sometimes foremen
on the shop floor find cases where they can
circumvent this restriction to advantage. The
simulator does not recognize such a possibility
at all.

Other places where the simulator fails to ac­
curately represent some standing shop practices
is in lap phasing, bumping, and the saving of
set-ups. Simulators can be written which will
do such things. The problem is that the cap­
turing of the necessary information which they
need is prohibitive.

Replication

Each run in a simulation is only one sample
from the joint distribution describing possible
results from the shop complex. Clearly a
greater number of samples, or replications, will
improve the accuracy of the predictions em­
bodied in the para-schedule *. The displays in

* How much is not certain. See B.

JOB SHOP SIMULATOR IN THE GENERATION OF PRODUCTION SCHEDULES 289

Appendices I and II reflect the results of a
single run, but could easily represent the re­
sults of many replications. It is not a difficult
data processing problem to merge the results
of many runs, and format average figures (with
accompanying dispersion measures) instead of
a single value.

Unfortunately, the number of runs required
to allow for a reasonably stated prediction with
very modest confidence limits is prohibitively
high in cost. ** Naturally, in an industrial en­
vironment the cost determines the use. Because
of this, the number of replications will be low,
and scientifically justified statements on ac­
curacy will be limited. However, it is felt that
this does not entirely impugn the usefulness of
the simulator as an operational tool, for several
reasons. The first is the above-mentioned fact
that queues tend to act as buffers. - Another is
that given a feasible schedule to shoot at, man­
agement will put a marked bias on the play of
otherwise random events in the shop. Finally,
the dispatch sequence generated is at least like­
ly to lead to the goals represented by the
adopted para-schedule. Some dispatch se­
quences which wouldn't lead to the desired
schedule have been revealed in prior runs, and
have already been eliminated by manipulation
of the capacities and priorities in the _ model.
A large number of possible sequences may yet
remain which might lead to equally desirable
para-schedules, but it is questionable how much
would be gained by seeking them out.

Scaling

A major limitation of the scheduling scheme
may appear with the inability to fit some shops
into the core of the computer. LeGrande re­
ports on problems of this type in 6. The prob­
lem revolves only partly around the number of
machines in the shop. A more predominant
consideration is the amount of load which must
be represented. Each sub-order is on the
average half-finished, and all of the unfinished
part is in core. Thus, one-half the average
number of operations per sub-order, times the
average number of orders on the floor, gives the
minimum number of operations which must be
kept in core during simulation. The program

** The proper number of replications per simulation
could be in the thousands. For example, see 14.

can require from one to two words of core per
shop operation, depending on the complexity
of the networks. To this must be added the
core required for programs (upwards of 8K)
and core for tables, which is approximately

G

44G+3M+2F+ 154+ ~
i = 1

where

G is the number of machine groups,
M is the number of machines,
F is the maximum number of jobs which

will be forced into a queue overflow
zone when the queue area for a particu­
lar machine group is full,

qj is the mean number of jobs in queue for
the i-th machine group,

O'j is the standard deviation of the number
of jobs in queue for the i-th machine
group, and

k is an arbitrary constant which trades
room for speed when searching for jobs
in queue.

There are several remedies which may be
tried when the model shop becomes too large for
core, but they are too involved for discussion
here.

VI. CONCLUSION

Job shops by their very nature make auto­
matic procedures difficult. Yet it is hoped that
these experiments will lead to efficiently mech­
anizing one of the most difficult of the shop's
control problems: the schedule-sequencing de­
termination. For the first time it appears pos­
sible that at one central logical control point
the entire shop, with all of the interaction
among orders competing for facilities, can be
examined as a unified whole. Ideally, this
should reduce the need for segmenting and as­
signing to the various departments the resolu­
tion of the scheduling problems that occur
there. This has been done in the past because
of the great complexities involved. Those fa­
miliar with this practice know that it adds to
lead times, and encourages suboptimization.

We have outlined above a method that might
be considered somewhat unorthodox to current
scheduling concepts, since the detailed sequenc-

290 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

ing determines the schedule, instead of vice
versa. The full extent of its value remains
to be proven. We have tried to accurately
portray the problems that exist in implementing
such a scheme. It should be pointed out that
most of these problems are not especially dif­
ficult, or beyond the capabilities of present
practices. They are typical implementation
problems.

REFERENCES

1. BARNES, W. E., "A Case History on Job
Shop Simulation," Proceedings, 16th An­
nual S.A.M.-A.S.M.E. Management Engi­
neering Conference, April 1961.

2. BURKHART, L. J., "Application of Simula­
tion to Production and Inventory Control,"
15th Annual S.A.M.-A.S.M.E. Manage­
ment Conference, April 1960.

3. CONWAY, R. W., and MAXWELL, W. L.,
"N etwork Scheduling by the Shortest-Op­
eration Discipline," Dept. of Industrial and
Engineering Administration, Cornell Uni­
versity.

4. I.B.M. Math and Applications Dept., " Job
Shop Simulation Application," M&A-1.,
I.B.M., White Plains, N. Y.

5. KERPELMAN, H. C., "Solution to Problems
of Assembly and Disassembly Operations
in a Job Shop," 19th Annual Meeting, Op­
erations Research Society of America, May
1960.

6. LEGRANDE, EARL, "The Development of a
Factory Simulation Using Actual Operat­
ing Data," Management Technology, May
1963.

7. MARKOWITZ, H. M., HAUSNER, B., and
KARR, H. W:, "SIMSCRIPT: A Simulation
Programming Language," RM-3310-PR,
RAND Corporation, Santa Monica, Calif.,
November 1962 (also Prentice-Hall, 1963).

8. MORGANTHALER, G. W., "The Theory and
Application of Simulation in Operations
Research," Chapter 9 of Progress in Op­
erations Research, Vol. 1, R. L. Ackoff, ed.,
N. Y., John Wiley & Sons, 1961.

9. ROWE, A. J., "Toward a Theory of Schedul­
ing," Report S.P.-61, System Development
Corp., Santa Monica, California.

10. , "Application of Computer Simula-
tion to Production System Design," in
Modern Approaches to Production Plan­
ning and Control, R. A. Pritzker and R. A.
Gring, eds., New York, N. Y., American
Management Association, Inc.

11. SISSON, R. L., "Sequencing Theory," Chap­
ter 7 of Progress in Operations Research,
Vol. 1, R. L. Ackoff, ed., New York, John
Wiley & Sons, 1961.

12. STEINHOFF, H. W., JR., "Daily System for
Sequencing Orders in a Large Scale Job
Shop," 6th Annual ORSA/TIMS Joint
Western Regional Meeting, Orcas Island,
Wash., April 1964.

13. TRILLING, D. R., "Job Shop Simulation of
Orders that are Networks," Westinghouse
Electric Corporation, Pittsburgh, Penn­
sylvania.

14. VAN SLYKE, R. M., "Monte Carlo Methods
and the PERT Problem," Operations Re­
search, September-October 1963.

HYTRAN* - A SOFTWARE SYSTEM TO AID

THE ANALOG PROGRAMMER
Wolfgang Ocker and Sandra Teger

Electronic Associates, Inc., Princeton, New Jersey

1. INTRODUCTION

In recent years much attention has been
given to combined analogi digital computation,
dividing the problem on hand into an analog
and a digital part and letting each task be per­
formed most economically by the part of the
system which suits it best. This philosophy not
only applies to simultaneous analog and digital
computation, but also to a sequential use of
these two means of computation. One such ap­
plication is the use of digital C0111puters in the
programming and checking of analog comput­
ers, a task ideally suited to a digital machine
and especially practical in an hybrid installa­
tion where the digital computer is most readily
available to the analog programmer. HY­
TRAN, a system of software programs has
been developed to provide quick digital assist­
ance in the programming of the analog part of
the HYDAC 2400 hybrid computer system **,
even to the analog programmer unfamiliar with
digital computers.

Since the function of the HYTRAN system
is to replace or complement certain manual pro­
cedures, it is necessary to briefly consider the
manual method of analog programming and
checking on which it is based 1. This method
features a two-way static check and can be
broken down into the following steps:

(1) In order to comply with the voltage
range of the analog computer every

* A service Mark of Electronic Associates, Inc.

problem variable is multiplied by a scale
factor to form the machine variable in
volts.

(2) Parameters stated implicitely have to be
evaluated.

(3) A computer diagram is prepared, show­
ing the analog hardware implementation
of the equations, component modes and
the expressions represented on pot­
sheets and amplifier sheets.

IA\
\'"%1 Potentiometer settings are determined

by evaluating the constant expressions of
the scaled equations.

(5) To check proper scaling and the correct­
ness of the computer diagram, an off­
line static check is carried out as fol­
lows:
(a) The theoretical calculations are per­

formed by substituting into the ori­
ginal equations a test initial condi­
tion for each variable that is repre­
sented by an integrator output, and
solving for their highest derivatives.

(b) After the chosen test initial condi­
tions are scaled and entered into the
computer diagram as integrator out­
put voltages, the programmer cal­
culates and records on the diagram
all component outputs using the
voltages present at their input.

(c) The computed voltages representing
the highest derivatives are com-

** The HYDAC 2400 includes the digital DDP-24 and the analog PACE 231R.

291

292 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

pared with their respective theo­
retical values, any discrepancies are
traced back to their origin and cor­
rected, and finally the static check
voltages are recorded on the poten­
tiometer, multiplier, and amplifier
sheets.

(6) The analog patch-panel is wired accord­
ing to the computer diagram, and the
potentiometers are set.

(7) To insure correct patching and opera­
tional hardware, all amplifiers are read
out on-line and compared with their re­
spective, computed static check values.

HYTRAN has been written to process digit­
ally the following rather tedious routines of
analog programming:

(1) The calculation of the theoretical static
check values, voltage static check values,
and potentiometer settings.

(2) The performance of the static check it­
self, both off-line and on-line *.

(3) The complete documentation of the ana­
log program.

Figure 1 shows the steps required to program
an analog problem with HYTRAN.

The scaling of the physical equations and the
preparation of the computer diagram are still
performed by the programmer who thereby
maintains direct control over the analog imple­
mentation of the problem. In order to permit
the calculation of the theoretical static check
values, HYTRAN must be given the original
problem statement and a set of test initial con­
ditions. To calculate the static check voltages
and to perform the static checks, the input has
to include the patching according to the com­
puter diagram, component settings or modes,
and the highest derivatives with their corres­
ponding integrators and scale factors. Expres­
sions representing other component outputs
may be optionally inputted to aid in the auto­
matic pin-pointing of errors during the off-line
static check. All inputs are punched on paper

*Since the use of an ADIOS desk for input/output to
the analog computer is of particular advantage with
HYTRAN, this discussion presumes its availability for
the automatic setting of potentiometers and perform­
ance of the on-line static check from data punched on
paper tape.

SCALE
EQUATIONS

DRAW
DIAGRAM

'\../

PATCHING

MANUAL
OPERATIONS

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I

'")
v

")
v

OFF-LINE ~ COMPUTE
CHECK 0r PARAMETERS

COMPUTE
POT-

SETTINGS

"\.)7

ON-LINE ~ SET
CHECK Iv- POTS

HYTRAN
OPERATIONS

Figure 1. Programming of an Analog Computer.

tape in an analog oriented format, which uses
patch-panel terminology and allows complex
algebraic expressions.

HYTRAN outputs include the conventional
amplifier and potentiometer sheets, cross-refer­
encing and symbol tables. Potentiometer set­
tings and static check values are put out as
typewriter documents and on paper tape. The
format of this tape allows automatic setting of
potentiometers as well as automatic read-out
and check of static check values by means of
the ADIOS input/output desk. For a more
thorough check of the analog set-up and hard­
ware, the ADIOS tape of measured static check
values can be processed by HYTRAN, provid­
ing a rapid means of locating mispatching or
component failures (Figure 2) .

II STATIC CHECK

The practice of computing two independent
sets of check values has been used as a basis for
the HYTRAN off-line static check. The conven­
tional analog circuit diagram states for at least
some components their expected outputs, by an

HYTRAN---'A SOFTWARE SYSTEM TO AID THE ANALOG PROGRAMMER 293

Figure 2. HYTRAN Inputs and Outputs.

expression in terms of parameters, variables
and scalefactors. By substituting for the para­
meter and variable names in these expressions
their values in physical units, the so-called theo­
retical static check value is obtained.

Further input defines the analog component
interconnections or patching inf()rmation,
which is used to calculate the voltage check
values. In this computation all input voltages
to a component, the kind of input to which they
are connected and the transfer· function of the
component are used to determine its voltage
output.

When both voltage and theoretical values are
available for a component output they.are com­
pared and, if in agreement, they yield the off­
line static check value for that component; If
the values do not agree then the error is isolated
by retaining the theoretical value as static
check value for all subsequent use and an error
message is given. Values exceeding the voltage
range of the computer will also cause error­
messages, but will be retained for further static
check calculations.

The amount of input information required de­
pends upon the degree of checking desired. If
the expression for some component _ output is
omitted the voltage value is retained as static
check value. This has the disadvantage of al­
lowing any undetected error to propagate, rath­
er than isolating it to one component as is
done when the expression is given. Conversely,
if the patching connections are not stated, the
theoretical values are used as _ static check

values. In this case this particular portion of
the computer diagram cannot be checked for
consistency with the problem statement.

In the special case of a high gain amplifier,
checking can be performed only if the expres­
sion at the component output is explicitly
stated. The program here checks that the sum
of the component inputs is zero. Similarly for
an algebraic loop, the output expression of some
component in the loop must be given.

The statements defining the analog connec­
tions need not be given in any particular order.
Since a connection statement can only be evalu­
ated once all· input voltages to the component
have become defined, the resulting static check
values are computed in an order that is different
from the order of their input statements. The
static check values are punched in this computa­
tional order in ADIOS tape format for all com­
ponents with voltage outputs. This is impor­
tant for the on-line static check, which if per­
formed by ADIOS in a conventional way can­
not distinguish propagated errors from original
errors. However, discrepancies typed out in
computational sequence are always preceded by
the original error"thus eliminating any tracing
for the error source~ In addition a typeout of
the errors in computational sequence and an al­
phabetical listing of all component names and
their static check values is gi~en.

III THE ON-LINE STATIC CHECK

While in systems without digital access to the
analog computer the on-line static check must
be performed by manual comparison, the avail­
ability of a digital input/ output. system pro­
vid~s the HYTRAN user. with a choice of two
automatic procedures in systems using ADIOS.
One method is to feed the HYTRAN.generated
static check tape into ADIOS to obtain an auto­
matic comparison between the calculated and
the measured values. It is used whenever the
digital computer is not available at the time of
the analog on-line check.

However if the DDP-24 is available at on­
line check-out time, the use of HYTRAN allows
an improved consistency check that is ex­
pectedto become an invaluable tool for debug­
ging of complex problems as well as for pre­
ventive maintenance. checks. Rather than

294 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

merely comparing the measured component out­
puts with their respective, computed voltages,
the HYTRAN on-line check tests the transfer­
functions of each component used. To accomp­
lish this the voltages present at the inputs of a
particular component as well as its output volt­
age must be known. The outputs are easily
measured since ADIOS allows automatic punch­
ing on paper tape of the output voltages of the
components used. The inputs on the other hand
are either zero (unused) or equal to the voltage
at the output of some component, and are there­
fore easily determined from the connection
statements given by the programmer. HY­
TRAN then computes the output voltages of
each component used in the program and com­
pares it with the measured output, using the
tolerances stated in the individual component
specifications.

In these computations only the measured
voltages are used. The resulting theoretical
outputs are discarded immediately after the
comparison with the measured value. There­
fore, errors do not propagate, but are always
pin-pointed at the component level. As a re­
sult, accumulated errors do not necessarily
cause an error message (as they would in the
conventional on-line check), but the contribu­
tion of. each component involved is investigated
and checked against its specifications.

It is sometimes desirable to repeat the on-line
check at some later time after initial conditions
and parameters have been changed. This is
possible without the manual entry of such
changes, as they are reflected in a change of
potentiometer settings. These settings are up­
dated by reading in a paper tape containing the
actual settings of all potentiometers used, which
can be automatically punched by ADIOS. All al­
gebraic loops, including high-gain amplifier cir­
cuits can be checked in closed-loop fashion even
if their output is unknown, because the on-line
check never uses the given component expres­
sions.

It is also possible to use the on-line check
after switching the analog computer into hold
mode during a problem run for a reading of
component outputs. Because HYTRAN simu­
lates integrators in initial condition mode (i.e.,
the output is solely determined by the voltage
of the initial condition input), a read-out dur-

ing hold causes an error at every integrator
output. But since HYTRAN can distinguish
between actual errors and propagated errors,
the remainder of thp "program can be checked
correctly.

Error messages generated in the on-line
check state the erroneous component, the cor­
rect output voltage, and the actual voltage
measured. We recall that the correct voltage
is computed from the component function and
the connection statement. Therefore, discrep­
ancies can be caused by component failure as
well as by patching errors. These error sources
can be separated if the analog computer hard­
ware is thoroughly checked before the program
is set-up. This hardware check too can be per­
formed with the HYTRAN on-line diagnostic
program, using an artificial problem which has
been correctly and permanently wired on an
analog patch-panel.

IV THE HYTRAN LANGUAGE

The input language used in HYTRAN is ori­
ented toward the analog programming proce­
dure rather than towards the digital machine.
Input data can be written in a form which
closely resembles the programmer's own way of
documenting analog programs. The HYTRAN
inputs fall into two main categories: inputs
which describe the problem to be solved, and
inputs describing its implementation on the
analog computer.

1. The Problem Statement
The problem is usually stated in mathemati­

cal notation. HYTRAN therefore accepts the
problem statement in a mathematically oriented
language which bears resemblance to the pro­
gramming languages ALGO L 6 and FO R­
TAN 7.

The problem information to be inputted in­
cludes parameter values, variable initial condi­
tions, and a set of algebraic and differential
equations-all in terms of physical units.
Parameters can be defined by expressions con­
taining numerical values as well as other
parameters, while initial conditions of variables
can be given in terms of numerical values
parameters, or other initial conditions. All al­
gebraic and differential equations have to be in
explicit form with respect to the unknown vari-

HYTRAN-A SOFTWARE SYSTEM TO AID THE ANALOG PROGRAMMER 295

able, or the highest derivative, respectively.
Otherwise, the equations should be inputted in
their original form so that any errors that may
occur during further manipulations on the
problem equations will be revealed or the theo­
retical static check.

HYTRAN accepts expressions and equations
containing· not only the basic algebraic opera­
tions, but also the functions sine, cosine, arctan­
gent, square root, logarithms to the bases ten
and e, and the exponent of e. In addition, the
program processes certain discontinuous func­
tions which are often used in analog computa­
tion such as absolute value, sign, limits and
dead zones.

Relational operators are another means of ob­
taining step-functions. They are represented by
the relations less than and greater than (for
practical purposes, equal to does not exist in
analog computation). While a logical and can
be performed by multiplication, the or is an ex­
plicit Boolean operator in HYTRAN.

2. Circuit Diagram Information
An analog program is generated in the form

of an analog circuit diagram by which the pro­
grammer states the outputs of components,
their modes, their interconnections (patching),
and in case of potentiometers and switches,
their setting or position. Inputting this infor­
mation enables HYTRAN to check the analog
program both against the original problem in­
put and against the physical set-up on the ana­
log computers. The general form of a com­
ponent statement is:

Component Name and Number, Mode =
Expression; Connection Statement

A console number is given only when a
change from one console to another occurs.
By mode one designates the configuration in
which a component is used, or any special
connections not involving problem variables.
For example amplifiers can be connected in
integrator, summer or high gain mode. The
expression gives the (static check) output of
the analog component in terms of problem
variables and scalefactors, written in the
format used in the problem statement. Fin­
ally, a connection statement is defined as a
sequence of up to 32 input statements. Each

input statement consists of an input designa­
tion (usually identical with the pre-patch
panel input name), followed by the name of
the analog component which is connected to
the specific input.

All computer input data are punched on
paper tape, each type of information being pre­
ceded by one of the following keywords. These
input sections must be presented in the order
given below, although within any section the
statements can be in arbitrary order.

(1) The PARAMETER and VARIABLE
keywords are followed respectively by
parameters as used for the static check,
and all variable initial conditions.
Parameters and variables may be re­
ferred to by mnemonic names which, in
turn, can be defined in terms of other
parameters, initial conditions, or by nu­
merical values. A name thus defined need
not be referred to beforehand, but must
be specified within the same keyword
section.

(2) The EQUATION portion contains the
set of theoretical differential and alge­
braic equations· to "be implemented on the
analog computer.

(3) The keyword COMPONENTS is fol­
lowed by the illforIl1ation contained in
the circuit diagram whcih represents the
analog program.

As a simple example of how the input infor­
mation to HYTRAN is written let us consider
the case of a second order equation (see Figure
3). The inputs shown in Figure 4 should be pro­
vided if a complete check is desired. Note that
comments pertinent to the program input, but
meaningless to the digital program, can be in­
serted if preceded by a tab. The input begins
with the problem identification, which contains
any information the programmer wishes to use
as a heading for all typewriter outputs. The
resulting outputs are shown in Figures 5
through 7.

V. THE INDIVIDUAL HYTRAN PRO­
GRAMS

The HYTRAN system presently consists of
three programs which together provide the

296 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE. 1964

-IOOV +IOOV

Swy/lOO

Swy

ANALOG ,IMPLEMENTATION OF
2

d y 2
--2 +w y=O
dt

- Swy

Figure 3. Sample Problem and Analog Circuit
Diagram.

features described above (see Figure 8). These
programs are:

(a) an interpretive (off-line) static check
generator,

(b) an on-line diagnostic program,
(c) a documenting program.

Each program can be contained in memory,
yet allows enough data storage to process
three, 120 amplifier, analog consoles in an 8K
core.

The off-line static check generator converts
the information on the programmer's input
tape into a compact form suitable for digital
processing. A t the same time, it checks the
input for proper format, typing format-error
messages when necessary. Defined expressions
are evaluated immediately, while expressions
containing undefined symbols are stored in
memory until they become defined by subse­
quent input statements. Static check voltages
are evaluated in a similar manner. Here the
connection statements may be stored awaiting
the calculation of the static check values of all
components mentioned in the statement. Dur­
ing the entire process, an intermediate tape is
punched containing in compact form all in-

PARAMETERS

S =5

A =zo

OMEG = 10

BETA = 10

TO =1/10

VARIABLES

Y' = A*SIN (OMEG*TO)

Y = A*COS(OMEG*TO)/OMEG

EQUATIONS

Y" = - OMEG**Z*Y

COMPONENTS

POO = S*Y'/IOO;+REF

AOO, I=S*Y'; IC:POO

COO = s*y" I(BETA*lO);I:QOO

Q01. = OMEG/BETA;AOO

POI = S*OMEG*Y 1100; -REF

AO!, I = --S*OMEG*Y; IC:POI

S = SCALE FACTOR

A = AMPLITUDE

BETA = ~ = TIME SCALE

COl = -S*OMEG*Y'/(BETA*IO); I:QOl

AOZ, S=S*OMEG*Y; I:AOI

QOO = OMEG/BETA; AOZ
Figure 4. HYTRAN Input Format.

formation necessary to run the remaining
HYTRAN programs, including possible future
extensions of the HYTRAN system.

The inputs to the on-line diagnostic genera­
tor are the intermediate tape punched by the
off-line program, a tape of measured potenti­
ometer settings, and a tape of measured com­
ponent outputs. The intermediate tape pro­
vides the connection statements and potenti­
ometer settings necessary for the computation

STATIC CHECK VALUES

AOO 47.48

AOl 87.99

AOZ 87.99

COO -8.79

COl 4.75

POO -47.48

POI 87.99

QOO 87.99

QOl 4.74

Figure 5. HYTRAN Static Check Output.

HYTRAN-A SOFTWARE SYSTEM TO AID THE ANALOG PROGRAMMER 297

PARAMETERS

A 2.00000 El

BETA 1. 00000 El

OMEG 1. 00000 El

S 5.00000 EO

TO 1. 00000 E-l

VARIABLES

Y 8. 799416E-2

Y' 4.74835E-l

Y" 8.7994l6EO

Figure 6. HYTRAN Symbol Table Output.

of the exact output voltages. The two remain­
ing tapes are direct outputs from the ADIOS
input/output desk. Any measured potentiom­
eter setting read replaces the corresponding
theoretical setting which was read previously
from intermediate tape, however, the reading
of the measured settings is optional and can
be suppressed by the use of a console switch.

The documenting program sorts and con­
verts the compact information on the inter-

COMPONENTS

COMP MODE EXPR SETT

AOO A*S*Y'

AOI ~*S*Y

A02 S A*S*Y

POO A*S*Y'/100 .4748

POI A*S*OMEG*Y /100 .8799

QOO OMEG/BETA 1.0000

001 OMEG/BETA 1. 0000

CROSS REFERENCE

PARAM OCCURRENCE

A POO, POI

OMEG 000,001

S POO, POI

Y POI

Y' POO

Figure 7. HYTRAN Component Sheets and Cross
Reference.

231R

ANALOG

COMPlJTER

~
• 0 ~ HYTRAN

L-,;' OFF -LINE

Cb STATIC

INPUT CHECK

TAPE GENERATOR

ADIOS
TAPES

Cbc)
HYTRAN

ON-LINE

DIAGNOSTIC

PROGRAM

Ir~-CO c) DOCUMENTING

INTERMEDIATE PROGRAM
TAPE

Figure 8. Flow of Information in HYTRAN.

mediate tape, resulting in component sheets
that contain the analog components in an
orderly sequence, together with their modes,
and their outputs or settings in terms of prob­
lem parameters, variables and scalefactors. In
addition, an alphabetic list of values of para­
meters and variables is typed out, and ADIOS
tapes are generated. One ADIOS tape con­
tains all potentiometer settings in a' format
which allows the automatic settings of potent i­
ometers, the other one contains the computed
static check values for on-line static check by
ADIOS.

The documenting program finally generates
a cross-reference sheet which consists of an
alphabetic list of parameters and variables.
Each name is followed by a list of potenti­
ometers, the settings of which are dependent
upon the parameter in question.

VI CONCLUSIONS

HYTRAN is expected to become an im­
portant tool to the analog programmer as it
increases programming efficiency and justifies
a high degree of confidence in the analog solu­
tion. Some of the reasons that lead to this con­
clusion are:

(1) The automatic evaluation of algebraic
expressions saves programming time
and prevents arithmetic errors.

(2) The generation of pot-set tape saves
time and eliminates the errors which
could occur when transferring the nu­
merical settings from the desk-calcula­
tor to the ADIOS keyboard.

298 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

(3) The documentation generated by HY­
TRAN provides a complete, error-free,
and standard documentation of analog
programs. Cross-referencing is ex­
pected to speed-up the changing of
parameters and scalefactors.

(4) The off-line static check will check
every component in the computer dia­
gram. Automatic static check calcula­
tions save time and are error free. The
checking on the component level allows
one to omit the checking of any selected
portion of the computer diagram, such
as circuits that must be checked dy­
namically or that are considered stand­
ard routines. Such an omission does not
prevent the checking of other compo­
nents in the same algebraic chain.

(5) Simple changes of connections, para­
meters or scalefactors may change the
majority of the static check values and
pot-settings in a program, but only a
simple change is necessary on the HY­
TRAN input tape in order to generate
a complete, updated set of ADIOS tapes
and documents. Obviously, when a new
static check is not required, changes can
be made in a conventional way and
there is no need to update the input
tape for every minor change.

(6) When the on-line static check is per­
formed by ADIOS, the computational
sequence of the static check values on
the HYTRAN generated tape eliminates
tracing for the error sources.

(7) The use of the on-line diagnostic pro­
gram allows pin-pointing of errors on
the component level, even for closed
algebraic loops of unknown output.

(8) In conjunction with a permanently
wired test problem, the on-line diagnos­
tic program can be used for daily main­
tenance checks.

Man-power savings from the above benefits
out-weight by far the additional effort involved
in preparing the HYTRAN input tape, a job
that is comparable in size to that of manually
preparing potentiometer and amplifier sheets.

The present system is easily expanded to in­
clude new features (such as the generation of
a digital check solution for example), some of
which may 'evolve from the practical use of
the present HYTRAN system. Since such
additions will require little additional input
information, their benefits will be available at
small extra cost and therefore further increase
the over-all economy of the system.

REFERENCES

1. CARLSON, A. M. and HANNAUER, G., "Hand­
book of Analog Computation" (Electronic
Associates, Inc., 1964).

2. PAYNTER, H., and SUEZ, J., "Automatic
Digital Set-up and Scaling of Analog Com­
puters", ISA Transactions, Jan. 1964.

3. GREEN, G., DEBROUX, A., DEL BIGIO, G., and
D'Hoop, H., "The Code APACHE intended
for the Programming of an Analogue Prob­
lem by Means of a Digital Computer",
Proc. Int. Assoc. Analog Computation, Vol.
5, April 1963, No.2.

4. OHLINGER, L., "ANATRAN-First Step in
Breeding the DIGNALOG," Proc. WJCC,
Vol. 17, May 1960.

5. PROCTOR, W., and MITCHELL, M., "The
P ACE Scaling Routine for Mercury," Com­
puter Journal, Vol. 5, No.1, 1962.

6. NAUR, P., et aI., Report on the Algorithmic
Language ALGOL 60, Com. ACM., Vol. 5,
No.5 (1960).

7. FORTRAN General Information Manual
(International Business Machines Corpora­
tion, 1961) ed. F 28-8074-1.

"PACTOLUS"- A DIGITAL ANALOG SIMULATOR

PROGRAM FOR THE IBM 1620
Robert D. Brennan and Harlan Sano

International Business Machines Corporation
Research Laboratory
San Jose, California

I. INTRODUCTION

Perhaps the most formidable challenge in the
field of digital computer applications is the de­
velopment of equipment and programs which
will extend the creative power of scientific
users. The crux of the problem, of course, is
intimate man-machine communication-a most
elusive and difficult-to-define characteristic. The
engineer requires a conveniently manageable
system; the scientist requires sufficient inti­
macy to provide real insight into the complex
interplay of problem variables; the creative
user requires computing power and flexibility
to permit imaginative use of the computer and
graphic display to permit recognition of inven­
tive solutions. The development of computers
designed specifically for such applications has
been slow due to the difficulty of ascertaining
the proper man-machine relationship.

Simulation is perhaps unique. It does require
close man-machine communication but the na­
ture of this interplay is fairly well known.
Years of experience are available in which
analog computers were used for simulation in
the entire spectrum of scientific disciplines.
The structural organization of the analog com­
puter-its collection of specialized computing
elements which can be interconnected in almost
any desir~d configuration-makes it a most
flexible tool for the engineer, who is trained
to visualize a system as a complex of subsys­
tems. The forte of the analog computer is in

299

the very intimacy of the man-machine com­
munication it permits. Since the nature of the
task can be so well defined for this particular
application, digital simulation seems a most
logical starting point in the quest for more
creative use of computers. Only when we are
able to perform this task well-with ease and
flexibility comparable to simulation using ana­
log computers-only then, should we proceed
to those applications where the man-machine
relationship is more nebulous.

Digital analog simulator programs-pro­
grams which affect the elements and organiza­
tion of analog computers-are no novelty.
Since the first attempt by Selfridge 1 in 1955,
there have appeared a number of such pro­
grams; best known perhaps are DEPI,2
ASTRAL,3 DEPI 4,4 DYSAC,5 PARTNER,G
DAS, 7 JANIS, 8 and MIDAS.9 Significant im­
provements have been made in both the inter­
connection languages and the computational
aspects. The latest and most sophisticated of
these programs is MIDAS; it incorporates the
best features of its predecessors while present­
ing several important innovations. However,
all these previous programs seem to share a
common failing in that while they succeed to
a greater or lesser extent in using block­
oriented languages to express the simulation
configuration, they fail to provide the on-line
operational flexibility of the analog computer.
P ACTOL US is an attempt to focus attention

300 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

upon this seemingly ignored aspect of digital
simulation.

According to ancient myth, everything that
King Midas touched turned into gold. This was
fine until dinner time when his food and drink
also turned into gold and what had seemingly
been a boon wrested from the gods became a
curse. To remedy this golden problem, he was
advised to bathe in the River Pactolus. Digital
simulation programs, particularly MIDAS,
have certainly seemed aurous to many users;
yet they must be regarded with mixed feelings,
at best, by the engineer who is accustomed to
"twisting a pot" or "throwing in a lag circuit"
at an analog computer console. To such a user,
the remoteness of the digital computer and
"turn-around" time seem something of a curse
on digital simulation. P ACTOLUS is intended
to demonstrate that with an appropriate termi­
nal as an operating console, this "curse" can
be remedied. P ACTOL US is designed to per­
mit the user to "modify the patchboard,"
"twist pots," and "watch the plotter" as is the
wont of the analog devotee. The name of the
program was chosen in deference to the struc­
tural and computational excellence of the
MIDAS program and to suggest a direction for
future development.

II. GENERAL DESCRIPTION

Simulation is a well-established engineering
and scientific tool with applications ranging
from simple mechanics to hydrodynamics, aero­
space, and bio-niedical research. It is presently
so widely used that most definitions are unduly
restrictive. An excellent definition which
avoids this fault is the following: "Simulation
is the act of representing some aspects of the
real world by numbers or symbols which may
be easily manipUlated to facilitate their
study."lo Analog and digital computers obvi­
ously differ m3:rkedly in the manner in which
they operate; thus, considerable differences are
to be expected between analog and digital simu­
lation. Digital simulation offers significant ad­
vantages which have been capably described in
References 1-9. The consensus of these is that
for many types of problems, digital simulation
can provide more reliable and accurate results
with less over-all engineering time and effort.
Much of this potential has already been

achieved in the various digital analog simula­
tor programs. In part, the development of
P ACTOL US was intended as a commentary on
the language and computational aspects of
these programs. Primarily, however, we are
concerned with the second half of the defini­
tion; that is, improving the ability of the digi­
tal computer user to manipulate the numbers
or symbols.

PACTOLUS might be described as a block­
oriented interpretive program with on-line
control and input-output capabilities. The pro­
gram, written in FORTRAN II-D, was devel­
oped for the IBM 1620 computer with the 1627
Plotter and the Card Read-Punch. This is a
comparatively small, scientific computer and
several features which might have been incor­
porated with a larger computer had to be fore­
gone. The overriding concern, however, in the
development of this program was the demon­
stration of operational flexibility. For this
purpose, the 1620 with its plotter, typewriter,
and sense switches has been an excellent choice.
The configuration and parameter specifications
may be prepared in advance of a problem ses­
sion in the form of a deck of cards, or this data
may be entered via the typewriter in a simple,
convenient manner. If "patchboard wiring" is
performed at the console by means of the type­
writer, the punch automatically produces a
card which may be added to the previously
prepared deck. The user, observing the pri­
mary output as it is plotted, may interrupt the
run at will to modify the configuration, param­
eters, or initial conditions. The typewriter
provides a neat, permanent record of the con­
figuration and parameter values and any modi­
fications specified by the user. In addition, the
user specifies those variables of secondary in­
terest which will be recorded by the typewriter
at specified intervals during the run.

The program incorporates all the standard
analog computer elements-summing ampli­
fiers, inverters, integrators, multipliers, relays
-plus many special purpose analog circuits­
absolute value, bang-bang, dead space, limiters,
clippers, zero order hold circuits. Table I con­
tains the complete list of the available elements
and symbols. The program is presently limited
to a maximum of 75 blocks in a simulation;
no more than 25 integrators or 25 unit delay

PACTOLUS-A DIGITAL ANALOG SIMULATOR PROGRAM FOR THE IBM 1620 301

NAME

ARCTANGENT

BANG-BANG

COSINE

DEAD SPACE

EXPONENTIAL

FUNCTION
GENERATOR

GAIN

HALF POWER

INTEGRATOR

JITTER

TYPE

I

J

SYMBOL DESCRIPTION

+1 >0
e 0 for e = 0

o -1 i<O

eo .. cos (e
i
) ARGUMENT IN

RADIANS

e = 0
o

eo = Max (O,e
i

- PI) for ei > 0

eo = Min (O,e
i

- P
2
) e

1
< 0

LINEAR INTERPOLATION
10 EVEN SEGMENTS
BETWEEN e

i
'" 0 AND

e
i

=- 100

eo = ~ SQUARE ROOT

e
i
~-eo RANDOMNUMBERGENERATOR
~ BETWEEN:1

Table r. Definition of PACTOLUS Elements.

302 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

NAME

CONSTANT

LIMITER

MAGNITUDE

NEGATIVE
CLIPPER

OFFSET

POSITIVE
CLIPPER

QUIT

RELAY

SINE

TIME PULSE
GENERATOR

TYPE

K

L

N

P

Q

R

S

T

SYMBOL

a-1
n e . 0

e-~e
i~ 0

e.··~e
i~ 0

e··-~e
1 ~ 0

e 1=9-Q n e e 0
2

e ~ e
1 ~ 0

e ~e
i~ 0

DESCRIPTION

e = P
o I

Min(ei , PI) > o·
for e

i
e = o

e
o

e
o

Max(e1"p 2) > 0

o s 0

> 0

QUIT(TERMINATE RUN)
IF e

1
> e2

e
o ~

< 0

e = s1n(e
i
) ARGUMENT

o IN RADIANS

GENERA TES PULSE TRAIN WITH
PERIOD EQUAL TO PI FIRST PULSE

OCCURS WHEN e
1

?! 0

PACTOLUS-A DIGITAL ANALOG SIMULATOR PROGRAM FOR THE IBM 1620 303

NAME TYPE

UNIT DELAY U

VACUOUS V

WEIGHTED
SUMMER W

MULTIPLIER X

WYE Y

ZERO ORDER Z
HOLD

SUMMER +

DIVIDER /

SIGN INVERTER

SPECIAL 1-9

SYMBOL

e~O

e~eo

e~ e P2 n e
Pa 0

e

e~
e l n eo

e1=B>-n e
e

2
0

e~~ e Z n e
I 0

DESCRIPTION

e = ei(t -at/2)
0

eo ;&! f(ei)

USED IN CONJUNCTION
WITH ELEMENT WYE

e = Ple l + P2e2 + Paea 0

e o = e l e2

LOGICAL BRANCH ELEMENT
USED FOR IMPLICIT OPERATIONS

SAMPLES WHENEVER e
2

> 0

e = ±e ±e ±e
o I 2 a

ONLY ELEMENT WHERE NEGATIVE'
SIGN IS PERMISSIBLE IN
CONFIGURA TION SPECIFICATION

e = o

SUBROUTINES SUPPLIED
BY USER

n REPRESENTS THE BLOCK NUMBER

304 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

elements may be used. The program is also
restricted at present to a maximum of three
function generators. The structure of the pro­
gram is sufficiently simple that modifications
or additions to the set of PACTOLUS elements
may easily be made to accommodate the re­
quirements of particular users.

The innovation in PACTOLUS is its atten..,
tion throughout to operational flexibility. In
most other respects, PACTOLUS represents a
conscious synthesis of those features which in
our opinion are the best of the many previous
programs. Its interconnection language is mod­
eled on that of ASTRAL which is flexible yet
simple. Each block is identified by number
which also identifies the output from the block.
The type of element for each block is specified
by a single alphanumeric character or mathe­
matical symbol. The inputs to a block are speci­
fied by listing the block numbers of those ele­
ments which provide the inputs. Structurally,
PACTOLUS is an interpretive program and is
closely modeled on MIDAS. Like MIDAS, it
uses the excellent sorting procedure-a logical
test for determining the proper order for the
block computations-which had been a feature
of the ASTRAL program. The second-order
Runge-Kutta integration scheme used in PAC­
TOLUS is a compromise between the Euler
integration advocated by the developers of DAS
and PARTNER and the more sophisticated
formulas used in many of the other programs.
For those simulations which commonly involve
discontinuous functions, the use of higher­
order numerical integration formulas seems
unwarranted; apart from accuracy considera­
tions, the requirements of the output plotter
demand fairly small time increments even at
the cost of prolonged solution time.

In addition to the complement of computing
elements provided with most of the digital ana­
log simulator programs, PACTOLUS includes
an element similar to the Implicit Function
element which is one of the outstanding fea­
tures of MIDAS. This element is used for the
solution of equations of the form Y = f (Y). It
permits iteration without advancing the time
clock until convergence is (hopefully) achieved.
The implementation of this feature seems
somewhat superior in PACTOLUS; if the con­
vergence criterion is not satisfieq, the computa-

tion proceeds again through those blocks in the
algebraic loop. MIDAS appears to recompute
all the preceding blocks on the sort list, regard­
less of whether or not they pertain to the
Implicit Function. This modification would
seemingly result in a significant reduction of
solution time for large problems involving Im­
plicit Functions.

Another modest contribution in P ACTOL US
is the incorporation of a number of special ele­
ments of unspecified function. An interconnec­
tion specification for one of these special ele­
ments results in a subroutine call during the
interpretive portion of the program. The user
may design any complex function for this ele­
ment by development of the appropriate sub­
routine. This permits the user to add elements
to the. standard complement without repro­
gramming the main P ACTOLUS program. The
JANIS program, although structurally quite
different, must be credited with first utilizing
subroutines to achieve this "do-it-yourself"
capability.ll

III. OPERATING PROCEDURE
AND EXAMPLES

The simulation configuration is the specifica­
tion of the interconnection of the computing
blocks, where each block is one of the standard
set of P ACTOL US elements or one of the nine
special element blocks which the user may pre­
pare for his particular requirements. Each
block has but a single output and no more than
three inputs. The program is incapable of
handling algebraic loops; the existence of such
a loop will result in a "sort failure" message.
Since the digital computer is a serial device,
the various computations specified by the simu­
lation configuration must be performed for
each time cycle in some particular order. The
computation for any block should not be at­
tempted until all its inputs have been computed
during that iteration. The program automati­
cally performs a sorting operation to achieve
this ordering after each configuration change.
It is presumed that each simulation involves at
least one integrator; the program uses a simple
second-order Runge-Kutta numerical integra­
tion formula to approximate the outputs of the
integrators during the specified integration
interval.

PACTOLUS-A DIGITAL ANALOG SIMULATOR PROGRAM FOR THE IBM 1620 305

Example 1: Use of the program is perhaps
best understood by consideration of several
simple examples. Figure 1 is a simulation dia­
gram for a second-order system. The program
presumes that ordinarily the user will approach
the computer with most of the "patchboard"
pre-wired; that is, with a deck of cards specify­
ing the configuration and parameter values.
For this simple example, however, it is as easy
to put a deck of blank cards in the card reader
and do the "wiring" at the console. Figure 2
shows the typewriter record from this problem
session. The user first turned on Sense Switch
1 to indicate his intention to enter configura­
tion specifications from the typewriter. The
computer then typed the following:

Figure 1. Simulation Diagram for Second-Order
System Example.

~ ~o ~~ i
(2.0 ~
(20) ;
(13) ;

CONFIGURATION SPECIFICATION

BLOCK TYPE INPUT 1 INPUT 2 INPUT 3
() () () () ()

The user then turned the typewriter paper
roller back one line and inserted the first speci­
fication within the parentheses. After he
pressed the RS (release and start) key, the

PACTOLUS DIG IT AL ANALOG SIMULATOR PROGRAM

BLOCK
(17)
(IJ6)
(7)
(23)
(IJ)
(13)
(19)
(20)

CONF I GURATION SPEC I F I CATI ON
TYPE INPUT 1 INPUT 2

(K) ~ () ()
(+) (17' (-13)
(I) (IJ6 J; ()
(G) (1) ~ ()
(G) (1); ()
(I) (IJ); ()
(0) (76); ()
(G) (19); ()

INPUT 3
()
(-23) ;
()
()
()
()
()
()

INITIAL CONDITIONS AND PARAMETERS
BLOCK I C/PAR1 PAR2 PAR3

(17) (0.0 ;)
(13) (-100.0;)
(IJ) (1.0 ;)
(23) (0 • 8) ,.
(20) (20.0;)
(19) (-5.0;)

) INTEGRATION INTERVAL
) TOTAL T !ME
) PRINT INTERVAL

HOR I ZONTAL AX I S
VERTICAL AXIS

TIME OUTPUT("6)
0.000 100.00000
2.000 -30.51581
IJ .000 -13.03217
6.000 9.20051
8.000 ."8282

10.000 -1.96715

OUTPUT(7) OUTPUT(13)
0.00000 -100.00000

"1.30857 -1.21098
-11.02521 21.8523"

-6.96698 -3.62699
3.8"609 -3.55969

.50806 1.56010

INITIAL CONDITIONS AND PARAMETERS
BLOCK IC/PAR1 PAR2 PAR3

(23) (1.2 ;

TIME OUTPUT 116 OUTPUT 1 OUTPUT 13
0.000 100.00000 0.00000 -100.00000
2.000 -23.IJ3231 31.60320 -21.691"6
".000 -8.61192" -.65"6" 9."31181
6.000 2.27288 -3.39"39 1.8003§
8.000 .111380 .11838 -.88581

10.000 -.21880 .30531 -.1"76"
INITIAL CONDITIONS AND PARAMETERS

BLOCK Ie/PARI PAR2 PAR3
(23) (0.11 ;

TIME OUTPUT 116 OUTPUT 1 OUTPUT 13
0.000 100.00000 0.00000 -100.00000
2.000 -38.091118 63.26133 12 .19025
".000 -25.5018" -32.190511 38.38"06
6.000 30.08132 -12.01936 -25.21358
8.000 -3.85580 20.56715 -11.37106

10.000 -11.511220 -5.06982 13.51013

OUTPUT< 2 3) ;
0.00000

31.8IJ686
-8.82016
-5.51358

3.07681
."06IJ5

OUTPUT 23
0.00000

"5.123811
-.18556

-IJ.07321

.1"206

.366"5

OUTPUT 23
0.00000

25.30IJ53
-12.81621

-11.807111
8.22686

-2.02192

Figure 2. Typewriter Record for Second-Order System Example.

306 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

typewriter automatically typed another line of
parentheses in anticipation of the next specifi­
cation. In addition, as each configuration speci­
fication was entered from the typewriter, the
punch produced a card with the identical data.
The collection of these cards forms the wired
"patchboard" which may then be saved for
subsequent problem sessions, thereby eliminat­
ing the necessity of re-typing the specifications.
Just as the analog user merely needs to get the
patch-cord into a hole to make a connection, the
PACTOLUS user need only get the proper
block number within the parentheses; he is not
distracted at the console by complicated input
format requirements.

The equivalence of the format of the con­
figuration specifications shown in Figure 2 to
the simulation diagram of Figure 1 should be
obvious. Block 17 is a Constant input (K).
Block 46 is a Summer (+) with inputs from
blocks 17, 13, and 23; sign inversion is indi­
cated for the latter two. In a similar manner,
blocks 4 and 23 are Gain potentiometers (G)
and blocks 7 and 13 are Integrators (I). Thus,
each component is uniquely identified by a
block number. The type of element for each
block is specified by a single letter or symbol.
These have been assigned as either the first
letter of the name of the element or as the
common mathematical symbol for the opera­
tion. Table I contains the complete list of ele­
ments and the corresponding symbols. The
inputs to a block are specified by the block
numbers of the components which provide the
inputs. Block numbers may be assigned arbi­
trarily between 1-75. Block 76 by definition
is the time variable; it appears as the input to
block 19 since ~t is desired to plot the time
response of the second-order system versus
time. It should be noted that the plot size is
fixed at 10 inches square. The origin is at the
center and each axis is scaled for a maximum
of +100.0. In this example, blocks 19 and 20
correspond to the horizontal position and gain
controls of the conventional X-Y recorder.

After entering the last configuration specifi­
cation, the user turned off Sense Switch # 1
and turned on #2 to enter initial condition and
parameter values from the typewriter. Once
again, the typewriter typed a line of paren­
theses to indicate the proper format. Figure 2

shows that the user specified an initial condi­
tion for Integrator 13 at -100.0 and the
damping factor control, Gain potentiometer 23,
at 0.8. After each of these parameter specifi­
cations, the punch again produced a card; thus,
both the configuration and the parameters be­
came part of the permanent deck. After enter­
ing the last of these specifications, the user
turned off the sense switch. The typewriter
then requested timing data for the run and
specification of those outputs which were to be
plotted and those which were to be printed.
These entries are simply performed since it is
only necessary that the typing be within the
parentheses provided. The actual time required
to "wire at the console," "set the pots," and
"adjust the output devices" for this example
was 6V2 minutes. This time cost would seem
to be comparable to that required for the
equivalent analog setup, particularly if we in­
sist that the analog operator prepare a neat,
permanent record of the interconnection and all
parameter values.

The plotter record is shown in Figure 3.
Three runs were made, each for a different
value of the damping factor. Figure 2 shows
the parameter changes for Gain block 23. Each
run required 1 minute, 45 seconds; the "pot"
changes required 15 seconds each. Run times
might have been shortened by increasing the

100 r----------.,.--------...,

Time in seconds

Figure 3. Plotter Record for Second-Order
System Example.

PACTOLUS-A DIGITAL ANALOG SIMULATOR PROGRAM FOR THE IBM 1620 307

typewriter print interval or the integration
step.

Example 2: Let us next consider a slightly
more complicated example which illustrates
how P ACTOL US might be used for a study in
speech synthesis. This particular simulation
is concerned simply with the response of the
first speech formant when driven by a glottal
pulse. The first formant corresponds roughly
to that portion of the speech signal which re­
mains after passing the signal through a 1 KC
low-pass filter. The glottal pulse is closely mod­
eled by the triangular waveform produced by
block 6 of Figure 4; the effect of the vocal tract
is simulated by blocks 7-9. During utterance
of a stop consonant such as the "b" of the word
"bah," the lips must open quickly with a result­
ing rapid rise in the natural frequency of the
vocal tract. This variation in frequency of the
first formant is controlled by blocks 10-12. The
user might experiment with various frequency
changes to match actual speech records. To
add the second or third formants, it would only
be necessary to add additional second-order fil­
ters and their associated frequency controllers.

In preparation for this problem session, the
ll~Pl' pntpl'Pc1 the configuration and parameter
;~~~ifi~~ti-o;;~ on speci;l coding forms which
"I'YIi-nimi'7o r>cmr>ovon ·with data format; from these
~~di~;~f~rv~~~~-; deck of cards was punched. In

PLOTTER
VERTICAL
AXIS

~PWI'TER
76(t) --~=IZONTAL

Figure 4. Simulation Diagram for Speech Synthesis
Example

this sense, the user approached the console with
a "pre-wired patchboard." The specifications
for blocks 10-12 were omitted, however, as
might have occurred from oversight or from
early indecision with the form of this formant
frequency controller portion of the simulation.
The program caused the configuration specifica­
tion cards to be read until a blank card was
encountered; each of these statements was also
printed by the typewriter for the convenience
of the user. Since a block 12 had been specified
as the input to block 13, but block 12 was as
yeturlspecified,\the program recognized an oper­
ator' error. After listing the sort failures as
an aid for debugging, the typewriter produced
a line of parentheses, anticipating that the user
would wish to correct the error or omission.
The user then turned on Sense Switch #1 until
he had entered blocks 10-12. The program
then proceeded to read the parameter specifica­
tion cards until a blank card was encountered.
During this period, the user had turned on
Sense Switch #2 to permit typewriter entry of
the parameters for blocks 10-12.

Figure 5 shows that the user neglected to
depress the numeric shift key of the typewriter
when entering the total time for the run. To
recover from this or any other typing error, the
user simply turns on Sense Switch #4 prior
to pressing the RS key. He would then turn
the switch off and reenter the data on the next
line. Figure 6 shows the plotter output from
this run. The total time for reading the input
deck, adding the three blocks, adj usting their
parameters and performing the run was 11
minutes. The user finally changed the configu­
ration and repeated the run in order to plot the
"glottal pulse." Note that for this purpose, it
was not necessary to change parameters, tim­
ing, or output data; a series of runs can be
performed with a minimum of effort.

Exa1nple 3: The third example is a simula­
tion of a sampled-data feedback control system.
Figure 7 is a diagrammatic representation of
the system; Figure 8 shows the corresponding
simulation diagram. The objective of this
study was to obtain a digital compensator de­
sign which would permit the system output to
respond in an acceptable manner to the flat­
topped ramp input. Of particular interest is
the manner in which the Time Pulse Generator

308 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

PACTOLUS DIGITAL ANALOG SIMULATOR PROGRAM

BLOCK
1
2
3

-5
6
7
I
9

13
n
19
20
50
51
60

CONF I GURA TI ON SPEC I FICA TI ON
TYPE INPUT 1 INPUT 2

G 2 0
I 50 51
R ~ 1

76 -51
3 0
5 0
6 I
9 a
7 0

12 0
13 13
76 0
19 0
o 0
o 0
9 0

INPUT 3
o
o
2
o
o
o
7
o
o
o
o
o
o
o
o
o

SORT FAILURE - BLOCK 7
SORT FA I LURE - BLOCK I
SORT FA I LURE - BLOCK 13
SORT FAI LURE - BLOCK n

(O.O~ t
(UI*' I

12.0 ,
(2.0'
(20) ,
(60)

ClO)
(11)
Cl2)

(K), ()
(I) (10) I
(L) (1111

INITIAL CONDITIONS AND PARAMETERS
BLOCK I C/PARI PAR2 PAR3

1 -1.50000 0.00000 0.00000
5 0.00000 0.00000 0.00000
7 0.00000 -1.00000 -.30000

13 6.21320 0.00000 0.00000
19 16.66666 0.00000 0.00000
20 -100.00000 0.00000 0.00000
50 100.00000 0.00000 0.00000
51 ~.OOOOO 0.00000 0.00000
60 2.00000 0.00000 0.00000

(10) (O.~')))
(11) (0.2,)))
(12) (0.6) 0.0'))

) INTEGRATION INTERVAL
) TOTAL TIME

) PRINT INTERVAL
HORIZONTAL AXIS
VERTI CAL AX I S

TIME OUTPUT(6)
0.000 0.00000
2.000 50.00000
~.OOO 100.00000
6.000 25.00000
1.000 0.00000

10.000 0.00000
12.000 0.00000

OUTPUT(12)
.20000
.21000
.36000 • __ 000

.52000

.60000

.60000

CONFIGURATION SPECIFICATION

OUTPUT(7l
0.00000

n.760U
-5.ln,.
-9.'1651
-2.126-'
-.51610
1.7H51

BLOCK TYPE INPUT 1 INPUT 2 INPUT 3
(60) (.) (611 () ()

INITIAL CONDITIONS AND PARAMETERS
BLOCK IC/PARI PAR2 PAR3

TIME
0.000
2.000
_.000
6.000
1.000

10.000
H.OOO

OUTPUT 6
0.00000

50.00000
100.00000

25.00000
0.00000
0.00000
0.00000

OUTPUT 12
.20000
.21000
.36000
.~_ooo
.52000
.60000
.60000

OUTPUT 7
0.00000

1'.760.0
"-3.11391
-9.'1651
-2.126,7

-.51610
1.rU51

OUTPUT(9)1
0.00000

17.66a5
15.79_76

.56082
-.52720
-.69110
-.27715

OUTPUT 9
0.00000

17 .6&1'5
15.79"6

.56012
-.52720
-.69110
-.27715

Figure 5. Typewriter Record for Speech
Synthesis Example.

element is used in conjunction with Zero Order
Hold and Unit Delay elements to implement the
digital compensator. Block 50 produces a series
of pulses at the sampling rate; these pulses
trigger the hold elements. By alternating hold
and delay elements, one may obtain the sam­
pled-data operators z-I, z-2, etc. The output of
the system is shown in the plotter record, Fig­
ure 9. A number of runs were conducted with
various values for the parameters of blocks 12
and 13 which determine the gain and weighting
factors for the digital controller. Each of these
runs required 1 Y2 minutes, exclusive of the
time required to decide upon the next set of
values.

Special Elements 1-9

When a user finds recurring use for a par­
ticular operation, it may be advantageous to

define a Special element rather than resort to
a number of the standard PACTOLUS ele­
ments. For instance, one might prepare a
defining subroutine for element Special 1 to
perform the function of the digital controller
of the third example:

E() (z) k (I-a Z-l)

(l-b Z-l)

100 r-------------~~-----.----------------------~

-100~ ____________________ ~ __________________ ~

o Time in milliseconds

Figure 6. Plotter Record for Speech Synthesis
Example.

--

I
~

12

Figure 7. Diagrammatic Representation of Sampled­
Data Feedback Control Problem.

TI(I)

PlDI'TD
VllRTlCAL
AD!

~_PL<7M'EII TI(I) __ ~ ~~ORTAL

Figure 8. Simulation Diagram for Sampled-Data
Feedback Control Problem.

PACTOLUS-A DIGITAL ANALOG SIMULATOR PROGRAM FOR THE IBM 1620 309

200 .-------------r--------,----...... SUBROUTINE SUBIIC.PAR.I.J.K.LI
C I NPUT IS CI J I

Time in minutes 2.5

C OUTPUT IS CI I I
DIMENSION CI761.PARI75.31
IF I C(76) I 2.1.2

C INITIALIZE AT T • 0
CAY· PARII.lJ

A .. PARII,21
B .. PARI 1,3 I

EO .. 0.0
ZMIEI .. 0.0
lMIEO .. Q.O

2 IF I CIK) I 4.4,3
C SAMPLING OCCURS WHEN SECOND INPUT IS POSITIVE

EI .. ClJ)
EO .. CAY*IEI - A*ZMIEI) + B*ZMIEO

ZMIEO • EO
ZM1EI .. EI

4 C(I I .. EO
RETURN
END

Figure 10. FORTRAN Program Example for Definition
of Element "Special 1."

Figure 9. Plotter Record for Sampled-Data Feedback
Control Problem.

guage. Figure 10 shows a FORTRAN program
which would perform this operation; it is im­
portant to note that due to the simplicity of the
P ACTOL US program, only modest program­
ming skill is necessary for the definition of the
element. This new element, Special 1, can then
replace blocks 2-15 of Figure 8. The type­
writer record illustrating use of this element
as block 13 is shown in Figure 11.

Such a program might be easily written in
FORTRAN or, for a large simulation in which
speed was critical, in symbolic machine lan-

(0~02 V
(2.5;
(0.5;
(5);
(70);

PACTOLUS DIGITAL ANALOG SIMULATOR PROGRAM

CONFIGURATION SPECIFICATION
BLOCK TYPE INPUT 1 INPUT 2 INPUT 3

1 6l -41 0
13 1 1 50 0
20 I 21 13 0
21 G 20 0 0
30 I 21 0 0
31 G 30 0 0
40 I 41 31 0
41 G 40 0 0
50 T 76 0 0
60 G 76 0 0
61 L 60 0 0
70 0 31 0 0
74 G 76 0 0
75 '0 74 0 0

INITIAL CONDITIONS AND PARAMETERS
BLOCK I C/PARI PAR2 PAR3

20 0.00000 -1.00000 0.00000
21 -10.00000 0.00000 0.00000
30 0.00000 0.00000 0.00000
31 10.00000 0.00000 0.00000
40 0.00000 -1.00000 0.00000
41 -20.00000 0.00000 0.00000
50 .20000 0.00000 0.00000
60 125.00000 0.00000 0.00000
61 125.00000 0.00000 0.00000
70 -100.00000 0.00000 0.00000
74 80.00000 0.00000 0.00000
75 -100.00000 0.00000 0.00000

(13) (0.75) (0.6) (0.5 ~)
) INTEGRATION INTERVAL
) TOTAL TIME
) PRINT INTERVAL

HORIZONTAL AXIS
VERTICAL AXIS

TIME OUTPUT(13)
0.000 0.00000

.500 24.87666
1.000 6. Q5500
1.500 -5.72807
2.000 3.14409
2.500 -3.21131

OUTPUT(21) OUTPUT(31)
0.00000 0.00000

21.64Q80 40.72684
".65402 115.54003

-3.77466 128. Q7023
3.20176 121.58805

-2.35386 127.13260

OUTPUrc4 1>,
o.oonrtl!

31.04115
112.51337
130.}t1467
1?0.33100
128.0!W'-4

Figure 11. Typewriter Record for Sampled-Data Feedback Control
Problem.

310 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Implicit Operations: The "Wye," logical
branch element is used in conjunction with
the Vacuous element V for simulations which
involve implicit equations of the form Y =
f(Y,X). On a digital computer, such an equa­
tion is usually solved by iteration. In a realistic
problem, Y will often be merely an intermedi­
ate variable used in subsequent equations of the
form Z = g (Y,X). It is the function of the
Wye element to determine whether the itera­
tion on Y is sufficient to satisfy the error cri­
terion. If not, further iterations must be made
until the test is (hopefully) satisfied. This iter­
ative procedure must be performed within each
of the integration time steps.

There is no need, however, to recompute X
at each iteration since it is independent of the
iteration. Similarly, the computation of Z
ought not be attempted until the iteration on
Y is satisfied. The MIDAS program was the
first of its kind to have a capability for implicit
equations, but it does not presently incorporate
these considerations. The implementation in
PACTOLUS is presented (as a peace offer­
ing?) for possible improvement of MIDAS and
subsequent programs.

The manner in which the elements are to be
used is indicated in Figure 12. Although block
numbers may be assigned arbitrarily, for illus­
trative purposes they have been assigned in
the same sequence as that determined by the

z

Y test

~---:x~-----~ --..I

Figure 12. Example Use of the Wye and Vacuous
Elements for Simulations Involving Implicit Equations.

sorting operation. Blocks 1-16 compute a
quantity X. The initial estimate for Y is given
as an initial condition for V block 17. Blocks
18-30 compute f (Y,X). Block 31 compares
f (Y,X) with the previous estimate of Y. Pa­
rameter 1 of the Wye element specifies the rela­
tive error criterion. If the relative error be­
tween the outputs of blocks 30 and 17 is less
than specified by that parameter, then the out­
put of block 31 is set equal to that from block
30. Computation of Z then proceeds in normal
manner.

If the error criterion is not satisfied, the
operation of Wye block 31 is as follows:

(1) A new estimate for Y is computed using
parameter 2 of the Wye element

Yn+l = (l - P2) f (Yn,X) + P2Yn ;

(2) Yn +1 replaces the previous Yn as the out­
put of block 17;

(3) The program "branches back" to the
computation of that element on the sort
list which follows the V block-in this
case, it branches to block 18.

The inputs, if any, to the Vacuous element V
do not affect its output. Its initial output is
specified as an initial condition; its subsequent
output is determined by the associated Wye
block. The position of the V element in the sort
list follows that of each of its inputs. Its pur­
pose is to ensure that, when a "branch back"
occurs, these preceding blocks will not be re­
computed. There is no requirement that the
implicit equation actually involve any of the
inputs to the Vacuous block.

Sense Switches

An important factor in the flexibility of ana­
log simulation is the ease with which the oper­
ator can control the run, starting and stopping
it at will. PACTOLUS uses the sense switches
of the 1620 to achieve the same measure of
control provided by the usual "Standby-Initial
Condition-Operate" switch of the analog com­
puter. The operator may terminate a run at
any time by momentarily turning on Sense
Switch .#4. He then sets the sense switches in
accordance with the operational option he de­
sires and presses the Start switch to continue.

PACTOLUS-A DIGITAL ANALOG SIMULATOR PROGRAM FOR THE IBM 1620 311

The sense switch settings for the various op­
tions are as follows:

Sense Switch #1 on permits the operator to
modify both the config­
uration and initial con­
dition/parameter speci­
fications;

Sense Switch #2 on permits the operator to
modify the initial con­
dition/parameter speci­
fications;

Sense Switch #3 on permits the operator to
modify the timing and
output specifications;

Sense Switch #4 on causes the plotter to
move the paper beyond
the present plot and
prepare a new plot
frame.

Sense Switch #3 may be used independently
or in conjunction with Sense Switches .#1 or
#2. Sense Switch #4 is always used in con­
junction with one or more of the other switches.
If the computer is restarted with all switches
off, the program presumes that an entirely new
simulation is to be started and attempts to read
the configuration specifications.

IV. SUMMARY

Our objective in developing PACTOLUS has
been twofold: to make a critical evaluation of
the various techniques employed in previous
digital analog simulator programs and to dem­
onstrate that a modus operandi comparable to
that of analog computer users could be ob­
tained for digital simulation. P ACTOL US em­
bodies the conclusions of that evaluation. No
attempt has been made herein to detail the rea­
sons for accepting certain features while re­
jecting others. With the hope that this" effort
will be of value in the development of subse­
quent simulation programs, we merely wish to
state that this is our considered~ opinion after
serious study.

Whether P ACTOLUS does indeed represent
an innovation in operational flexibility will only
be known after the program achieves much
wider usage. It has been used for a number of

small applications,12 but we readily admit a
measure of bias. We do feel that P ACTOL US
demonstrates that our objective can be ob­
tained. To the user of the small scientific com­
puter, the program offers a means of conveni­
ently solving many of those problems for which
an analog computer would otherwise have been
required. The techniques employed in P ACTO­
LUS are hopefully suggestive of the manner
in which digital simulation might be provided
at remote terminals serviced by a large digital
computer. It is our thought that digital simula­
tion is on the brink of significant expansion.
The availability of appropriate terminals and
visual display units will herald this event.

REFERENCES

1. SELFRIDGE, R. G.: "Coding a General-Pur­
pose Digital Computer to Operate as a" Dif­
ferential Analyzer," Proc. 1955 Western
Joint Computer Conference (IRE).

2. LESH, F.: "Methods of Simulating a Dif­
ferential Analyzer on a Digital Computer,"
J. of the ACM, Volume 5, Number 3,1958.

3. STEIN,-M. L., ROSE, J., and PARKER, D. B.:
"A Compiler with an Analog-Oriented In­
put Language," Proc. 1959 Western Joint
Computer Conference.

4. HURLEY, J. R.: "DEPI 4 (Differential
Equations Pseudo-Code Interpreter) -An
Analog Computer Simulator for the IBM
704," internal memorandum, Allis Chal­
mers Mfg. Co., January 6, 1960.

5. HURLEY, J. R.: "Digital Simulation I:
DYSAC, A Digitally Simulated Analog
Computer,'; AlEE Summer General Meet­
ing, Denver, Colorado, June 17-22, 1962.

6. STOVER, R. F., and KNUDTSON, H. A.: "H-
800 PARTNER-Proof of Analog Results
Through a Numerical Equivalent Rou­
tine," Doc. No. U-ED 15002, Minneapolis­
Honey~ell Regulator Co., Aero. Divn.,
April 30, 1962.

7. GASKILL, R. A., HARRIS, J. W., and Mc­
KNIGHT, A. L.: "DAS-A Digital Analog
Simulator," Proc. 1963 Spring Joint Com­
puter Conference.

312 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

8. BYRNE, E. R.: "JANIS, A Program for a
General-Purpose Digital Computer to Per­
form Analog Type Simulations," ACM
Nat. Conf., Denver, Colorado, August 27,
1963.

9. HARNETT, R. T., SANSOM, F. J., and W AR­

SHAWSKY, L. M.: "MIDAS Programming
Guide," Tech. Doc Report SEG-TDR-
64-1, Analog Computation Divn., Wright­
Patterson Air Force Base, January 1964.

10. McLEOD, J.: "Simulation is Wha-a-t?,"
SIMULATION, Vol. 1, No.1, Fall 1963.

11. LINEBARGER, R. N.: "Digital Simulation
Techniques for Direct Digital Control
Studies," Proc. 19th Annual Conf. of ISA,
New York, October 12, 1964.

12. COWLEY, PERCY E. A.: "An Active Filter
for the Measurement of Process Dynam­
ics," Proc. 19th Annual Conf. of ISA, New
York, October 12, 1964.

,MIDAS - HOW IT WORKS AND HOW IT'S WORKED
Harry E. Petersen, F. John Sansom, Robert T. Hartnett,

and L. Milton Warshawsky
Directorate of Computation
Wright-Patterson AFB, Ohio

INTRODUCTION

The possibility of using a digital computer
to obtain check solutions for the analog was
recognized by many people at the dawn of our
15 year old history. Unfortunately several
problems existed then, mainly at the digital
end, which made this impracticable. Digital
computers of that day were terribly slow, of
small capacity and painfully primitive in their
programming methods. I t was usually the
case when a digital check solution was sought
for an incoming analog problem, that it was
several months after the problem had been
solved on the analog computer and the results
turned over to the customer before the digital
check solution made its appearance. The fact
that the two solutions hardly ever agreed was
another deterrent to the employment of this
system.

As we all know, digital computers have
made tremendous strides in speed, capacity and
programmability. In the area of programming
-and throughout this paper-we're talking of
scientific problems expressible as differential
equations; the main effort has been in the con­
struction of languages such as Fortran, Algol,
etc. to permit entering the problem in a quasi­
mathematical form, with the machine taking
over the job of converting these to the individ­
ual serial elemental steps. While the progress
along this line has been truly awe-inspiring to
an analog man (usually an engineer), the re­
sulting language has become quite foreign to
him so that if he wishes to avail himself of the

313

digital computer he must normally employ an
interpreter in the form of a digital program­
mer (usually a mathematician). This means
that he must describe his engineering problem
in the required form, detail, and with sufficient
technical insight to have the digital program­
mer develop a workable program on the first
try. This doesn't happen very often and it is
the consensus of opinion among computing fa­
cility managers that a maj or source of the
difficulty lies in the fact that the engineer does
not always realize the full mathematical impli­
cations of his problem. For example, in specify­
ing that a displacement is limited, he might
not state what happens to the velocity. This
can lead to all sorts of errors as an analog
programmer would know. It is, of course,
possible for an analog programmer to learn
to program a digital computer by studying
Fortran. This has been attempted here at
Wright-Patterson AF Base with little success,
mainly because, unless used very often, the
knowledge is lost so that each time a consider­
able relearning period is required. Some
computing facilities have even embarked on
cross-training programs so that each type of
programmer knows the other's methods.
While this has much to recommend it, it is
often impracticable.

In March of 1963, Mr. Roger Gaskill of
Martin-Orlando explained to us the operation
of DAS (Digital Analog Simulator) / a block
diagram type of digital program which he in­
tended for use by control system engineers who

314 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

did not have ready access to an analog com­
puter. We immediately recognized in this type
of program the possibility of achieving our
long-sought goal of a means to obtain digital
check solutions to our analog problems by hav­
ing the analog programmer program the
digital computer himself! We found that our
analog engineers became quite proficient in the
use of DAS after about one hour's training
and were obtaining digital solutions that
checked those of the analog.

At this point several limitations of this en­
tire method should be acknowledged. First, the
idea that obtaining agreement between the
digital and analog solutions is very worthwhile
is based mainly on an intuitive approach. After
all both solutions could be wrong since the
same programming error could be made in
both. Secondly, the validity of the mathemati­
cal model is not checked, merely the computed
solution. Finally, it might be argued that the
necessity of the analog man communicating
the problem to his digital counterpart has the
value of making him think clearly and organize
his work well. This is lost if he programs the
digital computer himself. In spite of these
limitations we thought it wise to pursue this
idea.

Although DAS triggered our activity in the
field of analog-type digital programs, several
others preceded it. A partial list of these and
other such programs would include:

DEPP California Institute of Tech-
nology

DYSAC:J University of Wisconsin

DIDAS4 Lockheed-Georgia

P ARTNER5 Honeywell Aeronautical Divi­
sion

DYNASARG General Electric, Jet Engine
Division

Almost all of these-with the possible ex­
ception of PARTNER (Proof of Analog Re­
sults Through a Numerical Equivalent
Routine) -had as their prime purpose the
avoidance of the analog computer. They merely
wished to borrow the beautifully simple pro­
gramming techniques of the electronic differ­
ential analyzer and apply them to the digital
computer.

While DAS proved to be very useful to us,
certain basic modifications were felt to be
necessary to tailor it better to our needs. Prin­
cipal among these modifications was a rather
sophisticated integration routine to replace the
simple fixed interval rectangular type of DAS.
Other important changes were made but the
change in the integration scheme and our wish
to acknowledge our debt to DAS, led us to the
choice of the name MIDAS, an acronym mean­
ing Modified Integration Digital Analog Simu­
lator. In this paper a brief description of the
method of using MIDAS. will be given, fol­
lowed by a summary of our experience in using
it in a large' analog facility for about 18
months.

How MIDAS Works
To a large degree, programming in MIDAS

closely resembles the methods used in DAS
and, therefore, an analog computer. There are
usually three steps we go through in obtaining
a solution. First we prepare a block diagram
very similar to an analog schematic indicating
the operational elements required to solve the
problem. N ext we prepare a listing which is
our means of directing the punching of the
cards, one for each line. This listing indicates
the source of the inputs to each element and
defines the values of the required numerical
data. After the cards have been punched and
checked they are turned in to our IBM 7094
operations group where the information is
placed on magnetic tape and this tape, along
with the MIDAS subroutine, is used to solve
our particular problem. The results are given
to us on printed form according to a rather
fixed format.

As an illustration of the steps involved in
preparing a MIDAS program, let us set up the
classical second-order linear differential equa­
tion for the mass, spring and damper system.

The equation is: ... ~

Mx + Bx + Kx = 0 (1)

with initial conditions:
x(O) = A

~(O) = 0

The MIDAS block diagram for this equation
is shown in Figure 1. The following points
should be noted:

MIDAS-HOW IT WORKS AND HOW IT'S WORKED 315

DESCRIPTION OF MIDAS ELEMENTS

SYMBOL & NAME

1. MATHEMATICAL OPERATIONS
- - --,IC

INTEGRATE ~

SUM
Al~ A2 • S. out
Ak;. l

NEGATIVE

MULTIPLY

DMDE

ABSOLUTE VALUE -ijABSj I ou~
SQUARE ROOT ~ SQRj

EXPONENTIAL ~
NATURAL ~ LOGARITHM LNj

2. SWITCIUNG ELEMENTS

OUTPUT RELAY

~ INPUT RELAY B IRj out
(SPDT)

~ FUNCTION SWITCH
C l (SP3T)

LIMITER ~

OUTPUT

t

Out = fAdt + IC
o

K
Out =1; Ai

i=1

K~6

Out = -A

Out = A/B

Out = IAI

Out = +..[A

Out = eA

Out = inA

Bout=sinA

Cout= cos A

B~O

C out A
D out 0

.. ,{:
00" H

00" H

REMARKS

1. Only one input can be accepted.
2. The initial condition, IC, is transmitted

via an IC card and its corresponding

data card.

The order of listing the inputs is very
important. The numerator, A, must be

listed first.

Defined only for Ali: 0

InA

Defined only for A> 0 14
1. Input angle, A, must be in radians.
2. Since there are two outputs, tbetle moat

be specified as RESjB or RESjC
depe~ on w!!etller tile sine or
cosine Is required. I

1. Output Is an angle In radians.
2. Defined only for the 1st and 4th quadrantst

i.e., -"'/2 ~ out < 11/2 I
SPECIAL NOTE:

Since all of these elements have more

than one input, the listing of inputs

must be in the normal order of A, B, C.

B<O

~ 0 Equivalent to: A +

A - D

Ci!:O

~ Equivalent to:
C<O

D>O

~ D=O Equivalent to: B +
0

D<"O C ~

out
A>B

~ C"A"B Equivalent to:
A<C

B>C

Table~. Description of MIDAS Elements.

316 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

TABLE 1 DESCRIPTION OF MIDAS ELEMENTS (cont'd)

BANG-BANG

DEAD SPACE

5. RUN TERMINA nON

FINISH

6. INSERTION OF NUMERICAL ITEMS

CONSTANT or
PARAMETER

Name "
I

~

r A~O out;

-B A<O

r· A>B

out; 0 C;;A~B

A-C A<C

None

Per Data Card

out

Equivalent to: f.-
out

Equivalent to:

B>C

1. When A ~ B, computation is stopped.
2. Every program must col1taIn at least one

FIN statement.
3. Numbering of FIN statements is not req'd.

1. The name of a constant or parameter can
be composed of at most six alphanumeric
symbols excluding blanks and commas.

2. The names must not be the same as that of
a functional element used In the.problem.

3. The name will appear on a C0N or PAR
card and its numerical value on a data card

4. Do not use these special names:
IT, TR, MININT, !/lPTI0N.

INITIAL CONDITION

41

IC

Ij

Ij(O) 1. The name must be the same as the inte­
grator with which it is associated.

2. The name must appear on an IC (or PAR)
card and its value on a data card.

3. Only non-zero IC's need be specified.
4. Such IC's must be specified for every run

even though they do not change.
SPECIAL STATEMENTS

HEADER HDR

READOUT R0

END END

SPECIAL NAMES

INDEPENDENT IT
VARIABLE

TIME BETWEEN TR
READOUTS

MINIMUM INTERVAL
OF INTEGRA TrON MININT

INTEGRA TION
OPTION 0PTI0Nj

None

None

None

Independent Variable

None

None

None

I. Contents of the HDR statements are
printed at the beglnning of each run.

2. Normally used to name the variables
recorded in each column.

3. HDR cards should precede the R!/lcardB.

Specifies tile sources of the variables to
be recorded for each run.

Signifies the end of the MIDAS symbolic
program. Numerical data follows.

I. Gives the current value of the independent
variable In the approprtate units.

2. Generated Internally, thts variable can be
obtaIned by specifying its source as IT.

1. When listed on a cl/lN or PAR card, TR
gives the increment of the independent
variable, usually time, between successive
readouts.

2. if no value of TR Is given, a standard value
of 0.1 units will be used.

1. When listed on a CI/lN or PAR card, MININT
specifies the smallest Interval that the inte­
gration system is permitted to use.

2. if no value of MININT Ia given, a value of
ZERO is used.

When an Integration method with an error
criterion other than the standard one Ia
deSired, call for !/lPTI!/lNj In columns 1-7
somewhere within the MIDAS program.

Table I

SYMBOL & NAME

3. ARBITRARY FUNCTIONS

For all 4 types of ~tion generators:

FUNCTION

CONSTANT
FUNCTION

CURVE
FOLLOWER

~. out_ --c.r-
~r:l out_ ---c:s---

CONSTANT CURVE ~.~
FOLLOWER ~

4. ITERATIVE ELEMENT

IMPUCIT
FUNCTION

Example:
x=f(x)+y

r-----------...,
<--__;' MIDAS elements •

~f~z:. ~~~_~ ~~~..:

MIDAS-HOW IT WORKS AND HOW IT'S WORKED 317

OUTPUT

Out = f(A)

Out = f(A)

Out = f(A)

Out = f(A)

No direct output

Table I

REMARKS

1. Up to 50 sets of x-y coo,dinates can be
used.

2. Spacing of breakpoints is arbitrary.
3. Slope of the function is zero above aud

below the set of specified points.
4. Method of introducing data Is in the

text.

1. Linear interpolation.
2. Data needed for ~ run.

1. Linear interpolation.
2. Data needed for first run only.

1. Quadratic interpolation.
2. Data needed for ~ run.

1. Quadratic interpolation.
2. Data needed for first run only.

1. Tbe inputs must be llsted in the order A, B.
2. If IA - BI >5x10-6 1A1, iteration occurs

by tra..n..sferring t.l:!e va.!!!e of B into A{B A).
recomputing a new value of B, transferring
it into A, etc., until the error criterion is
sattllfled. I ~BI

3. Criterion for convergence is I ;tAl < 1.

4. An initial estimate of A must be given ,via
a C0N or PAR card aud its associated
data card.

5. When A ls needed elsewhere in the
problem, it can be taken from the C0N or
PAR source. (See suggested method of
usage at the left.)

6. For multiple runs, A must be named on
a PAR card.

318 PROGEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

(1) SI is a summer which adds the quanti­
ties -Bi and -Kx to yield Mx In ac­
cordance with equation 1.

(2) Dl is a divider whose dividend is M~'
(the output of SI) and whose divisor is
a constant called M. Its output is then
+x.

(3) II is an integrator whose input is +~i'
and output is +x. Unlike the case of
analog integrators and summers, there
is no change of sign in the equivalent
MIDAS elements. Since no initial value
is specified the output of II will start at
zero.

(4) I2)s another integrator whose input is
+x and whose output is +x. The initial
value of x is indicated by the dashed
line extra input to 12.

(5) Ml and M2 are multipliers which multi­
ply +x by -B and +x by -K to pro­
vide the required inputs to S1. Unlike
on analog computers the same type of
multiplier is used whether two con­
stants, a variable and a constant, or two
variables are being multiplied.

(6) FIN is a finish element. This element
will stop computation when its A input
(in this case t) equals or exceeds its B
input (in this case the quantity named
STOP) . Computation can be caused to
halt by any of several conditions. A
FIN box is required for each termina­
tion criterion.

(7) When numerical data corresponding to
M, B, K, STOP and x (0) are furnished,
the problem is completely specified. No
scaling will be required since numerical
values ranging betwen 10-37 and 10+37

can be handled.

N ext the listing is prepared. It will contain
the following information:

(1) One card identifying the problem.

(2) A few cards calling out the MIDAS
program.

(3) Cards giving names to the constants
and parameters of the probem, includ­
ing integrators with non-zero initial
values (up to 6 per card).

(4) One card for each MIDAS element in
the block diagram, identifying it by
type and number, and indicating the
source of its inputs (for example S2
meaning summer number 2).

(5) At least one FIN card spe~ifying a con­
dition for finishing a run.

(6) One or more HDR cards and RO cards
specifying the headeT names to be
placed on top of the columns of output
data to be read out at specified incre­
ments of the independent variable.

(7) An END card indicating the end of the
symbolic program and the start of nu­
merical data.

(8) One or more cards assigning numerical
value to the constants, parameters and
initial conditions named in (3) above.

(9) Cards defining arbitrary functions, if
any.

An example of a listing is shown in Figure 2
for the mass, spring, and damper system.

,"

Note the use of a comment card by the pro-
grammer to identify the problem. Also of sig­
nificance is the columnar location of various
types of entries. For example, comment cards
have their first letter in column 1. Operational
elements, constant and parameter naming
cards, HDR and RO cards all have their first
character in column 7. Inputs to these ele­
ments are listed starting in column 15. Nu­
merical data is listed starting in colunms 1,
11, ... 51.

lt should be pointed out that in MIDAS, the
programmer need not concern himself with the
order in which he prepares the listing since a
built-in sorting routine will automatically line
up the program properly. This is another im­
portant difference from MIDAS.' predecessor,
DAS.

The particular listing shown will result in
three runs being made, each starting with
x (0) = 20 and terminating when t = 5. The
mass M will have a value of 10 for each case
since M was named on a constant card. The
three runs will have the following values of
-B and -K, each of which was specified as a
paTameter.

MIDAS-HOW IT WORKS AND HOW IT'S WORKED 319

PROGR ER SflNSOM PHONE 33281 OAT< 20J({L'I 64 PAGE _ OF _ PAGES

PROGR MASS SPIWJ(i DIIIJ1P€f(. SYST6M , ,
FUNCTION INPUTS

1 ,
U "

if.IDANA ftlc/SFlNS(/) 1M. PR(/)Bj61-Z24 • TItnEj5, ailES/SOD

*" XE~

CI1LL" tnID IRs
END .. Mrll

5¢1lUTI l/LN ~~ KIt! 55,,. SPItING, A J)RmPER" SYSTEM

C¢lN M,STd>P

PAR -5,-K

Ie rz
51 IfIl,Jrl2

DI 5/.111

II DI
1Z II

MI -8,II

Ml 11., -I(

FIN IT.ST.P

HDR TIME, Ace., VEL., DISP.

HDR

R$ IT.l)J.II.I2
END

FO'" ASO SEP •• O·490b

MIDAS DATA fORM

PROGRA •• ER SAN~oll1

PROGRA. fY/llSS, SPIW/~ "DAmPER. ~YSr.EM

21

10. S.
-2.5 -8.6
2.0.
-3.2 -8.6
2.0.
-2..5 -15.

ro
I .

Figure 2. Original Listing.

Run 1
Run 2
Run 3

-B = -2.5
-B = -3.2
-B = -2.5

-K = -8.6
-K = -8.6
-K = -15.0

Finally a portion of the printed output of
the IBM 7094 is shown in Figure 3. Several
points are worthy of note.

(1) The printout of the problem l~sting in­
cluding the data for Case 1. Actually
some machine mapping and storage in­
formation precedes this but has been
omitted for clarity.

(2) The format of the output. Note the
headers and the spacing of the four col­
umns of output. Provision exists for
six columns but only four components
were specified to be read out in this
simple problem.

(3) The MAXIMA-MINIMA table. This
feature, unique to MIDAS, provides the

analog programmer with all the infor­
mation needed to scale his analog sche­
matic, both in amplitude and time. It
shows the maximum and minimum
values achieved by every component
during the course of a run, whether
these values occurred at read out inter­
vals or not.

(4) The printout of the parameter and IC
data for Cases 2 and 3, followed by their
output.

(5) The job accounting summary. The
three cases took a total of 44 seconds.

This completes the description of this prob­
lem. Although considerable detail has been
presented, in retrospect it can be seen that the·
main idea was simple. An analog-type block
diagram was drawn and a listing prepared de­
scribing its interconnections. Information pro­
viding numerical data was also furnished.

320 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

MAXIMA
SOLUT 1001 Of' MASS, SPRING, DAM.ER SYSTEM

"INI~'

CON M,STOP IT 5.1000E 00 O.
PAR -8.-K
Ie 12
SI "1."2
01 Sl,M
11 01
12 11
"1 -8,11

12 2.0000E 01 -10I528E 01
SI 1.0535E 02 -1.1200E 02
Ml 4.6"7E 01 -2.6790E 01
M2 9.9142E 01 -1.7200E 02
01 1.0535E 01 -1.7200E 01
11 8.3718E 00 -1.4515E 01

P112 Il.-I\
FIN IT,S TOP
HOR TIME,AtC.,YEl •• DISP.
HDR
RO IT,OI.[1,12
END MAXIMA - MINIMA FOR CASE 2

1.0000E 01 5.0000E 00
-2.5000E 00 -8.6000E 00

2.0oooE 01

SYMBOLIC PROGRAM AND DATA FOR CASE 1
[-2.5000E 00 -1.5000E 01 J 2.0000E 01

DATA FOR CASE 3

TIllE ACC. VEL. DIS ••

O. -1.7200E 01 O. 2.0000£ 01 TIME Ace. Vel. DIS •• 1.0000E-Ol -1.6103E 01 -1.6962E 00 1.9915£ 01
2.0000E-Ol -1.6016E 01 -3.3362E 00 1.9663£ 01 O. -3.0oo0E 01 O. 2.0000E 01 3.0000E-Ol -1.5328£ 01 -4.9014£ 00 1.9250£ 01 1.0000E-Ol -2.9038£ 01 -2.9554E 00 1.9851E 01 ".OOOOE-Ol -1.""'9E 01 -6.3981£ 00 1.868"£ 01 2.0000£-01 -2.7671E 01 -5.7941E 00 1.9"13E 01 5.0000E-Ol -1.3S08£ 01 -1.7911E 00 1.7973£ 01 3.0000E-Ol -2.5927E 01 -8.4770E 00 1.8698E 01 6.0000E-Ol -1.2456£ 01 -9.0966£ 00 1.7I28E 01, 4.00ODE-OI -2.38HE 01 -1.0968E 01 1.7724E 01 1.0000£-01 -1.1324£ 01 -1.0286E 01 1.6158E 01 5.0000E-OI -2.1458E 01 -1.3236E 01 1.6512E 01 8.0000£-01 -1.0124£ 01 -1.1)59E 01 1.507U 01 6.0000E-OI -1.8815E 01 -1.5251E 01 1.5085E 01 9.0000£-01 -1.8610£ 00 -1.2309E 01 1.3890E 01 7.0000E-OI -1.5958E 01 -1.6992E 01 1.3471E 01 10.0000£-01 -1.5676E 00 -1.3131E 01 1.2617£ 01 8.0000£-01 -1.2936£ 01 -1.8437E 01 1.1697£ 01 1.1000£ 00 -6.2351£ 00 -1.3822E 01 1.1268E 01 9.000DE-OI -9.7963£ 00 -1.9575E 01 9.7933E 00 1.2000£ 00 -4.8826E 00 -1.437SE 01 9.8569E 00 10.0000£-01 -6.5891E 00 -2.D394E 01 7.7922E 00

I.IOOOE 00 -3.3648E 00 -2.0892E 01 5.7252E 00
1.2000E 00 -1.696 7E-0 1 -2.1068E 01 3.6245E 00

4.9000E 00 1.0103E-0"1 9.9Z27E 00 -3.6996E 00
5.0000E 00 -1.608IE-OI 9.9495E 00 -2.7053E 00

4.9000E 00 5.1000E 00 -IO.OOOOE-Ol 9.8913E 00 -1.7126E 00 -1.5983E 01 4.1I28E 00 9.9696E 00

-~
5.0000E 00 -1.6018E 01 2.5078E 00 1.0301E 01 - 5.0500E 00 -1.6035E 01 1.1047E 00 1.0406E 01

NUMERICAL RESULTS FOR CASE 1 -
NUMERICAL RESULTS FOR CASE 3

MAXIMA MINIJlU

IT 5.1000E 00 O.
12 2.0000E 01 -1.30HE 01

MAX IMA JIIINI"A

SI 1.1636E 02 -1.1200E 02
HI 3.8119£ 01 -2.4874E 01
H2 1.1211£ 02 -1.1200E 02
01 1.1636E 01 -1.1200£ 01
II 9.9495E 00 -1.5Z48E 01

IT 5.0500E 00 O.
12 2.0000£ 01 -1,"S4E 01
SI 2.2193£ 02 -3.0000E 02
MI 5.2611£ 01 -3.8152E 01
M2 2.1727E 02 -3.0000E 02
01 2.2193E 01 -3.0000E 01
11 1.5261E 01 '-2.1068E 01

MAXIMA' MINIMA FOR CASE 1 ~--~

-3.2000E 00
2.00OD~ 01

-8.6000£ 00

MAXIMA - MINIMA FOR CASE 3

j r------------~_----,
L-______ --------------------------------~

DATA FOR CASE 2

TiME ACC. VEL.

O. -1.1200E 01 O.
I.OOOOE-Ol -1.6586£ 01 -1.6903£ 00
2.0000E-OI -1.5851E 01 -3.3132£ 00
3.0000E-Ol -1.5005E 01 -4.8568E 00
•• OOOOE-Ol -1.4059E 01 -6.3108F ,00
5.0000E-OI -1.3024E 01 -1.6657E 00
6.0000E-OI -1.1'IlE 01 -8.9130E 00
1.0000E-OI -1.OB2E 01 -1.0046E 01
8.0000£-01 -9.5001E 00 -1.IOS8E 01
9.0000E-OI -8.2264£ 00 -1.19"E 01

10.0000E-01 -6.9232E 00 -1.2102E 01
I.IOOOE 00 -5.6025E 00 -1.3328E 01
1.2000E OC -4.276IE DO -1.3822E 01

'.9000E 00 5.02HE-OI 8.3519E 00
5.0000E 00 -2.21~IE-OI 8.3718E 00
5.1000E 00 -9.2155E-OI 8.31"E 00

NUMERICAL RESULTS FOR CASE 2

DIS ••

2.0oo0E 01
1.9915E 01
1.9664£ 01
1.9255£ 01
1.8696E 01
1.1996E 01
1.1I66E 01
1.6211E 01
1.5161E 01
1.4010E 01
1.2777E 01
1.1474E 01
1.0ll5E 01

-3.69'IE 00
-2.8570E 00
-2.0221E 00

(CQNT'D)

JOB ACCOUNTING SU"MARY

DATE 21 JUL 64 BEGAN 13134111 ["OED 1313./55

JOB ACCOUNTING SUMMARY

AFIMGoEIt IS PUT OF A HANOI

HOM IUoNY FING.US DOES JCHt "AYE QI

I :~~~,.:H:~:e!:iF=~Sp::J~: !~~UMf IH'S' Mfa .. s triAS ,,~ ""lUSt!
2

THERE ME hO .'U'S ON USONJ

HOV flANY FIftG,fAS DOES JOHN HAItE eu

3 :::WA::~ ~:::C~E!\=I~S •• Bur I ASSUME IHA51 "E"IIIS (HAS"~ ""USII

::~:;~ .. ~~nNtE IS Alle81GUOU5 •• BUT I ASSUMt IHASI In.,'.tS 1""5 "!I P"It'~.J

HOM ",NY flNGU5 DOtS JOHN HAye QI

IJHf A8UVE SErwJfNC.f IS A"IHGWUS •• ~U' f ASS'J-E !HASt ",UNS IHAS AS PUHIJ
IrHE ANSwtR lS UU

Figure 3. Problem Output.

283 LINES

MIDAS-HOW IT WORKS AND HOW IT'S WORKED 321

This was then converted to punched cards,
turned in to the 7094 operators who subse­
quently supplied the printed output.

This example utilized only a few of the avail­
able MIDAS elements. The entire complement
of them is shown in Table I, along with some
description of their use. The A,B,C lettering
system has significance where an element has
more than one 'input. In this case the order
of the sources of the inputs as given in the
listing (starting in column 15) should be
A,B,C, etc.

Integration System in MIDAS
The integrations in MIDAS are performed

by a variable-step, fifth-order, predict-correct
integration routine.7 This variable-step fea­
ture represents the basic departure of MID AS
from its predecessor, DAS. It relieves the
programmer from the chore of having to spec­
ify a fixed increment of the independent vari­
able, an increment which must be small enough
to handle the highest frequency phenomena in
a problem but not so small as to cause inordi­
nately long solution times. The step size in
the MIDAS integration routine adjusts itself
to meet a certain error criterion, a factor
which allows it to take large steps for those
portions of the solution "when not much is
happening" and small steps for those portions
when one or more variables are changing at
rapid rates.

The net result is that time-scaling, as the
analog programmer knows it, is eliminated in
MIDAS. However, he must still face the time
scaling problem when he prepares his analog
schematic, especially when certain variables in
the problem drive narrow bandwidth analog
components such as servo-multipliers, X~ Y
plotters, etc. MIDAS helps him here, though,
because he can observe the maximum values of
the derivatives of these variables from the
MAXIMA-MINIMA list and he can then make
any necessary time base changes. Fortunately,
for every variable appearing at the output of
a MIDAS integrator, its derivative must ap­
pear at the output of the element feeding the
integrator since integrators can accept only a
single input.

Miscellaneous Information on MIDAS
The MIDAS program has limitations on the

number and characteristics of certain compo-

nents. This information may be of value when
a very large problem is to be solved on MIDAS.

Maximum
Item Number

1. Operational Elements 750
2. Symbols (operational elements,

constants, and header names) 1000
3. Integrators 100
4. Function Generators 40
5. Points for each function gen-

erator 50
6. Inputs for each summer 6

Summary of How MIDAS Works
This has been of necessity a brief review of

the method of using MIDAS. A much more
complete description including several fully
worked out examples is given in Technical
Documentary Report No. SEG-TDR-64-1,
"MIDAS PROGRAMMING GUIDE," dated
January 1964.8 Information on obtaining the
MIDAS program can be obtained by contacting
the authors.

How MIDAS Has Worked
In the following paragraphs, a brief sum­

mary of the experiences of the Wright-Patter­
son AF Base Computation Facility in the use
of MIDAS will be given. Actually, at this
writing, approximately 100 computing facil­
ities throughout the U.S. are using MIDAS;
thus only a small segment of the total experi­
ence can be reported on.

The Analog Computation facility at Wright­
Patterson has used MIDAS in almost every
problem submitted for solution on its large
analog computer. Generally the MIDAS solu­
tion is attempted prior to the analog in order
to achieve the maximum benefits as regards
scaling. Another side benefit of MIDAS has
been the calculation of Problem Check values.
It has been found in many cases that the extra
time involved in programming a MIDAS check
is saved in checkout time on the analog com­
puter. The increased confidence in the validity
of the solutions when a check 'between MIDAS
and the analog solution is obtained is the most
important benefit of the program. Another
side benefit is the broadened horizons achieved

322 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

by the analog programmers in giving them the
ability to program the digital computer. This
should be very valuable when hybrid computers
come into their own. Until now the prob­
lem of finding people with the required capabil­
ity in both areas has proven to be the greatest
deterrent to the growth of these new devices.

While everything mentioned above is on the
positive side, there are quite a few aspects of
MIDAS that are annoying and time consum­
ing. One thing that the analog programmer
learns is that the digital computer brooks no
mistakes. If a "zero" is punched when the
letter "0" is required, the problem comes back
-generally the following day-with a diagnos­
tic telling him of an undefined symbol. A little
thing like a missing decimal point in numerical
data will cause a day to be lost. Another thing
that an analog programmer encounters is that
when an error exists in a MIDAS program
(however not of the type to prevent its run­
ning) , the solutions look just as good (as many
significant figures of output) as they would if
the solution were perfect. On the analog com­
puter errors of the same type would cause
overload lights to flash, etc.

The very sophisticated integration routine
of MIDAS introduces problems at times. For
example, discontinuities in derivatives some-

times make it impossible for the error criterion
to be met even though the increment of the in­
dependent variable is halved many times. This
will cause a solution to "hang up." Provision
has been made to overcome this problem by the
use of MININT (see Table I) but it usually
requires one or more unsatisfactory runs be­
fore the programmer is made aware of the
difficulty.

One rather interesting discovery was the
fact that an operation that was very easy to
perform on an analog computer was very
bothersome on the digital. Specifically, a rather
large missile simulation was performed first on
the analog computer and later using MIDAS.
Quite a few first order lags were present
in the mathematical model in the form of

-S1 . On the analog computer this offers no
T +1
problem. For small values of T one way to
handle this to parallel the feedback resistor of
a summer with a capacitor of T microfarads. In
fact, far from creating a difficulty, it generally
is beneficial to the analog simulation by re­
ducing some of the high frequency "noise."
Using MIDAS, small values of T can cause con­
siderable increase in solution time. For ex­
ample, in this particular problem, when such
transfer functions with T of .001 sees. were

Figure 1. Block Diagram.

~
IT~

MIDAS-HOW IT WORKS AND HOW IT'S WORKED 323

included, the solution time was extrapolated to
be 51f2 hours for 26 seconds of problem time.
This was reduced to 121;2 minutes for the same
length of problem time, simply by neglecting
these small delays, and the effect on the re­
sults was insignificant. Incidentally, the ana­
log solution was in "real time," i.e., 26 seconds.

The subject of solution time is rather im­
portant to a digital programmer. We have
attempted to gather data on the relative speed
of a MIDAS run compared with a Fortran
program produced by a skilled programmer.
With the conditions of the test equalized, the
solution time of the Fortran program was ap­
proximately half as long; however, the pro­
gramming time for MIDAS was much less.
The question of solution time is not very im­
portant for the typical problem handled with
MIDAS because usually we are interested in
one or two runs, so whether they take 3 min­
utes or 5 minutes each is of academic interest
only.

There have been a few problems handled by
MIDAS alone without recourse to the analog
computer. In these cases, program efficiency
was of considerable importance since many
runs were required. Here, in the present stage
of the development of MIDAS, a specially
tailored digital program should receive serious
consideration.

At this point the question should be con­
sidered of whether MIDAS or a similar digital
computer program will take over the role of
the analog computer in the areas where the
latter shines. Since a MIDAS~type program
has appropriated one of the best features of
the analog computer, viz., simple block diagram
programming and the speed and capacity of
digital computers have developed so much,
there is certainly reason to consider this ques­
tion.

While anyone would be foolhardy to give an
answer to hold for all time, it is our opinion
that MIDAS, rather than threatening the ex­
istence of analog computers, has reinforced
their position by increasing confidence in their
output. There are quite a few advantages to
the use of an analog computer which MIDAS
doesn't touch. Among these are:

(1) The intimate relationship between the
engineer and his problem which enables

him to design his system by observing
graphical outputs and changing param­
eters as required.

(2) The ability to tie in physical hardware
to the mathematical simulation.

·(3) The ability to use portions of the com­
puter in direct relationship to the size
of the problem.

(4) The fact that certain mathematical op­
erations are performed better, e.g., inte­
gration.

(5) The very fact that it is a distinctly dif­
ferent technique of solution, thus mak­
ing possible a checking means.

While some progress has been and is being
achieved in items 1, 2, 3 and 4, item 5 will
always remain.

Future of MIDAS

Although MIDAS has proven to be very ef­
fective in accomplishing its purpose, certain
improvements could be made without ma­
terially changing its simple programming
rules. Among such improvements would be
the following:

(1) Increased efficiency, i.e., shorter solu­
tion times without losing programming
simplicity.

(2) Additional flexibility in naming outputs.

(3) Permit the use of fixed point literals in
the body of the program.

(4) A greatly expanded operation list that
would include logical operations such
as AND, OR, NOT, etc. and others
equivalent to the elements found in a
hybrid computer.

A new program is being developed at
Wright-Patterson AF Base which already in­
cludes the improvements listed above. In ad­
dition, it is anticipated that the following
features will be included:

(1) Ability to add new functions external to
the basic program.

(2) Additional controls that would
(a) Allow the results 6f one run to dic­

tate automatically the conditions
for the next.

324 PROCEEDINGS-F ALL JOJNT COMPUTER CONFERENCE, 1964

(b) Permit more "hands on" control of
operation of the program as advo­
cated by Mr. R. Brennan in his
P ACTOLUS!J program.

It is further hoped that an investigation of
various integration routines will result in an
integration system that will 'automatically ac­
count for discontinuities and ·,thus prevent the
solution from "hanging up.'"

The new program, MIMIG, is completely dif­
ferent from MIDAS in concept but it retains
the programming ease of MIDAS. It will be
written as a system to operate under IBJOB
control on an IBM 7090/7094 computer.

It is an assembler type program that gen­
erates machine language code equivalent to the
original problem. The instruction format is
very similar to MIDAS but has been designed
to appeal to both analog and digital program­
mers. If and when this' occurs and both ana­
log and digital programmers employ MIMIC
regularly, a very significant first step in break­
ing down the communications barrier between
the two will have been taken since they will,
for the first time, be speaking the same lan­
guage. Furthermore, just as MIDAS has made
the digital computer accessible to the analog
man, this new program might serve to educate
the digital programmer in analog methods.
The day of the omniscient, triple-threat pro­
grammer might be on the way!

REFERENCES

1. GASKILL, R. A., HARRIS, J. W., and Mc­
KNIGHT, A. L., "DAS-A Digital Analog
Simulator," AFIPS Proceedings, 1963
Spring Joint Computer Conference.

2. LESH, F. H., and CURL, F. G., "DEPI: An
Interpretive Digital-Computer Routine
Simulating Differential-Analyzer Opera­
tions," Jet Propulsion Laboratory, Cali-

fornia Institute of Technology, Pasadena,
California, March 22, 1957.
(Note: DEPI is an acronym for Differ­

ential Equations Pseudocode Inter­
preter.)

3. HURLEY, J. R., and SKILES, J. J., "DYSAC:
A Digitally Simulated Analog Computer,"
AFIPS Proceedings, 1963 Spring Joint
Computer Conference.

·4. SLAYTON, G. R., "DIDAS: A Digital Differ­
ential Analyzer Simulator," Twelfth Na­
tional Meeting of the Association for Com­
puting Machinery, June 1958.

5. KNUDTSON, H. A.,' and STOVER, R. F.,
"PARTNER-Proof of Analog Results
Through a Numerical Equivalent Routine,"
Aeronautical Division, Minneapolis-Honey­
well Regulator Co., MH Aero Document
U-ED 15001, August 22, 1961.

6. MARVIN, I. E., and DURAND, H. P., "Jet En­
gine Control Representation Study," Jet
Engine Division, General Electric Com­
pany, Cincinnati, Ohio, Air Force Technical
Documentary Report ASD-TDR-63-650,
July 1963.
(Note: DYNASAR is an acronym for Dy­

namic Systems Analyzer).

7. MILNE, W. E., and REYNOLDS, R. R., Journal
of the ACM, January 1962.

8. HARNETT, R. T., SANSOM, F. J., and WAR­
SHAWSKY, L. M., "MIDAS Programming
Guide," Air Force Technical Documentary
Report SEG-TDR-64-1, January 1964.
DDC (formerly ASTIA) Report No. AD-
430892. Also available from Office of Tech­
nical Services, U.S. Dept. of Commerce.

9. BRENNAN, R. D., and SANO, H., "PACTO­
LUS-A Digital Analog Simulator Program
for the IBM 1620," IBM San Jose Research
Laboratory, San Jose, California, IBM Re­
search Report RJ-297, May 6, 1964.

THE RAND TABLET:- A MAN-MACHINE GRAPHICAL

COMMUNICATION DEVICe*
M. R. Davis and T. O. Ellis

The RAND Corporation
Santa· Monica, California

Present-day user.:.computer interface mecha­
nisms provide far from optimum communica­
tion, considerably reducing the probability that
full advantage is being taken of the capabil­
ities of either the machine or of the user. A
number of separate research projects are un­
derway, aimed at investigating ways of im­
proving the languages by which man communi­
cates with the computer, and at developing
more useful and more versatile communication
channels. Several of these projects are con­
cerned with the design of "two-dimensional" or
"graphical" man-computer links.

Early in the development of man-machine
studies at RAND, it was felt that exploration
of man's existent dexterity with a free, pen­
like instrument on a horizontal surface, like
a pad of paper, would be fruitful. The concept
of generating hand-directed, two-dimensional
information on a surface not coincident with
the display device (versus a "light pen") is not
new and has been examined by others in the
field. It is felt, however, that the stylus-tablet
device developed at RAND (see Fig. 1) is a
highly practical instrument, allowing further
investigation of new freedoms of expression in
direct communications with computers.

The RAND tablet device generates lO-bit
x and 10-bit y stylus position information. It

is connected to an input channel of a general~
purpose computer and also to an oscilloscope
display. The display control multiplexes the
stylus position information with computer~

generated information in such a way that the
oscilloscope display contains a composite of the
current pen position (represented as a dot) and
the computer output. In addition, the computer
may regenerate meaningful track history on
the CRT, so' that while the· user is writing, it
appears that the pen has "ink." The displayed
"ink" is visualized from the oscilloscope display
while hand-directing the stylus position on the
tablet, as in Fig. 1. Users normally adjust
within a few minutes to the conceptual super­
position of the displayed ink and the actual
off-screen pen movement. There is no apparent
loss of ease or speed in writing, printing, con­
structing arbitrary figures, or even in penning

. one's signature.

To maintain the "naturalness" of the pen
device, a pressure-sensitive switch in the tip
of the stylus indicates "stroke" or intended
input information to the computer. This switch
is actuated by approximately the same pres­
sure normally used in writing with a pencil, so
that· strokes within described symbols are de­
fined in a natural manner.

* This research was supported by the Advanced Research Projects Agency under contract No. SD-79. Any views
or conclusions should not be interpreted as representing the official opinion or policy of ARPA or of the RAND
Corporation.

325

326 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 1. Complete System in Operation.

In addition to the many advantages of a "live
pad of paper" for control and interpretive pur­
poses, the user soon finds it very convenient
to have no part of the "working" surface (the
CRT) covered by the physical pen or the hand.

The gross functioning of the RAND tablet
system is best illustrated through a general
description of the events that occur during a

I~
0

tl
0
-

t2
0

t3
0
-

t"
0
-

t5
0
-

t6 0

t20
0

-
0

t21

0
t22 -
t23 0

-

maj or cycle (220 fLsec; see timing diagram,
Fig. 2). Figure 3 is the system block diagram
with the information flow paths indicated by
the heavier lines. The clock sequencer furnishes
a time sequence of 20 pulses to the blocking
oscillators. During each of the 20 timing peri­
ods, a blocking oscillator gives a coincident
positive and negative pulse on two lines at­
tached to the tablet.

Major cycle
22Op.sec

~ ______ ~I ~p.~c
I

-I

9

Figure 2. Timing Waveforms (JLsec).

THE RAND TABLET: A MAN-MACHINE COMMUNICATION DEVICE 327

Clock
Sequencer

&
Control

Shift Register

20
Gates

Output Register
: Reody 20 Bits

L ____________________ .?_u_!..~ ~t __ I_n..!~ .':..f_Q_c_e ____________________ .J

Figure 3. Graphic Input System Block Diagram.

The pulses are encoded by the tablet as serial
(x,y) Gray-code position information which is
sensed by the high-input-impedance, pen-like
stylus from the epoxy-coated tablet surface. The
pen is of roughly the same size, weight, and
appearance as a normal fountain pen. The pen
information is strobed, converted from Gray
to binary code, assembled in a shift register,
and gated in parallel to an interface register.

The printed-circuit, all digital tablet, com­
plete with printed-circuit encoding, is a rela­
tively new concept made possible economically
by advances in the art of fine-line photoetching.
The tablet is the hub of the graphic input sys­
tem, and its physical construction and the
equivalent circuit of the tablet itself will be
considered before proceeding to the system
detail.

The basic building material for the tablet is
O.5-mil-thick Mylar sheet clad on both sides
with 1;2-ounce copper (approximately 0.6 mils
thick). Both sides of the copper-clad Mylar
sheets are coated with photo resist, exposed to
artwork patterns, and etched using standard
fine-line etching techniques. The result is a
printed circuit on each side of the Mylar, each
side in proper registration with the other. (Ac­
curate registration is important only in the en­
coder sections, as will be seen later.) Figure 4
is a photo of the printed circuit before it has .

been packaged. The double-sided, printed screen
is cemented to a smooth, rigid substrate and
sprayed with a thin coat of epoxy to provide
a good wear surface and to prevent electrical
contact between the stylus and the printed cir­
cuit. The writing ·area on the tablet is 10.24 X
10.24 in. with resolution of 100 lines per inch.
The entire tablet is mounted in a metal case
with only the writing area exposed, as can be
seen in Fig. 1.

Although it would be very difficult to fully
illustrate a 1024 X 1024-line system, it does
seem necessary, for clarity, to present all the
details of the system. Thus, an 8 X 8-line sys­
tem will be used for the system description and

Figure 4. Unmounted Printed Circuit.

328 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

expansion of the concept to larger systems will
be left to the reader.

Figure 5 shows the detailed, printed circuit
on each side of the 0.5-mil Mylar for an 8 X 8-
line system. The top circuit contains the x posi­
tion lines and the two y encoder sections, while
the bottom circuit has the y position lines and
the two x encoder sections. I t should be noted
that the position lines are connected at the
ends to wide, code-coupling buses. These buses
are made as wide as possible in order to obtain
the maximum area, since the encoding scheme
depends on capacitive coupling from the en­
coder sections through the Mylar to these wide
buses. It should be further noted that the posi­
tion lines are alternately connected to wide
buses on opposite ends. This gives symmetry
to the tablet and minimizes the effect of regis­
tration errors.

With reference to Fig. 5, at time tl encoder
pads PI + are pulsed with a positive pulse and
pads PI- are pulsed with a negative pulse.
Pads PI + are capacitively coupled through the
Mylar to y position lines Y5, Y6, y" and Ys, thus
coupling a positive pulse to these lines. Pads
PI - are capacitively coupled to y position lines
Yh Y2, Y3, and Y-l, putting a negative pulse on
these lines. At time t 2 , encoder pads P2 + and
P:! - are pulsed plus and minus, respectively,
putting positive pulses on y position lines y 3,

Y-l, Y5, and yr" and negative pulses on y position

lines YI, Y2, Y7, and Ys. At the end of time t3,
each y position line has been energized with a
unique serial sequence of pulses. If positive
pulses are considered as ones and negative
pulses are zeroes, the Gray-pulse code appear­
ing on the y position wires is as follows:

Yl 000
Y2 001
Y3 011
Y4 010
Y5 110
YG 111
Y7 101
Ys 100

The x encoder pads are now sequentially pulsed
at times t.1, t 5 , and t 6 , giving unique definitions
to each x position line.

If a pen-like stylus with high input imped­
ance is placed anywhere on the tablet, it will
pick up a time sequence of six pulses, indicating
the (x,y) position of the stylus. It should be
pointed out again that the stylus is electro­
statically coupled to the (x,y) position lines
through the thin, epoxy wearcoat.

If the stylus is placed on the tablet surface
at a point (Xt'y~), the pulse stream appearing
at the pen tip would be as indicated in Fig. 6.
This detected pulse pattern will repeat itself
every major cycle as long as the stylus is held
in this position. If the stylus is moved, a differ-

Figure 5. Double-sided Printed-circuit Layout for 8 X 8 System.

THE RAND TABLET: A MAN-MACHINE COMMUNICATION DEVICE 329

Timing pulse

Pulses at position
(x .. ' Ys)

Data ready. ________ ---lnL-____ _
Figure 6. Timing Diagram and Pen Signals for the

Example 8 x 8 System.

ent pulse pattern is sensed, indicating a new
(x,y) position.

Since there are 1024 x position lines and 1024
y position lines, 20 bits are required to define
an (x,y) position. The actual timing used in
the RAND system was shown in Fig. 2. Timing
pulses t 21, t 22, and tzs are additional pulses used
for bookkeeping and data manipulation at the
end of each maj or cycle.

The position lines on the full-size tablet are
3 mils wide with a 7-mil separation. The code­
coupling pads are 16 to 17 mils wide with a 3-
to 4-mil separation. Figure 4 shows that the
encoding pads which couple to the lower set of
position lines (y position lines) are enlarged.
This greater coupling area increases the signal
on the lower lines to compensate for the loss
caused by the shielding effect on the upper
lines (si]lce they lie between the lower lines
and the stylus pick-up). The encoding pad for
the two least-significant bits in both x and y
was also enlarged to offset the effect of neigh­
boring-line cancellations. With these compen­
sations, all pulses received at the stylUS tip are
of approximately the same amplitude.

Figure 7 is an illustration of the approximate
equivalent circuit of the encoder-tablet-stylus
system, along with typical system parameter
values. It is clear that the values of C1 vary
with encoder-pad size, and the value G,I varies
according to whether top or bottom lines are
being considered. The value of C4 is also de­
pendent on the stylus-tip geometry and wear­
coat thickness of the tablet. The signals arriv­
ing at the input to the stylus amplifier are ap-

C 1 = Encoder pad coupling capacity - 5 pf

C2 = Capacity to adjacent parallel wires in tablet - 10 pf

C3 = Capacity to crossing lines in screen - 100 pf

C .. = Stylus-to-tablet coupling capacity - .5 pf

Cs = Sf}'lus input shunt capacity - 5 pf

R = Stylus input resistance - 200 Kn

Figure 7. Equivalent Circuit of Encoder-Tablet-Stylus
Coupling and Attenuating Elements.

proximately 1/300 of the drive-line signals. The
character of the signals at the stylus input is
greatly dependent on the drive-pulse rise time.

Figure 8 is an oscilloscope pattern of the
amplified signals at the stylus output. t These
signals are amplified again and strobed into
a Gray-code toggle. An x bit at ts and a y bit
at t17 are smaller than the rest. This indicates
that the stylus tip is somewhere between lines
and these are the· bits that are changing.

Since the final stages of the amplification and
the strobing circuit are dc-coupled, the system
is vulnerable to shift in the dc signal level. For
this reason, an automatic level control (ALC)
circuit has been provided to insure maximum
recognizability of signals. During the first 180
fLsec of a major cycle, the stylUS is picking up
bits from the tablet. During the last 40 fLsec,
the tablet is quiet-Le., the stylUS is at its
quiescent level. During this 40-fLsec interval,
the quiescent level of the pen is strobed into
the ALC toggle. If the quiescent level is recog­
nized as a zero, the ALC condenser changes
slowly into the proper direction to change the
recognition (via a bias circuit) to a one, and
vice versa. For a perfectly balanced system, the
ALC toggle would alternate between 1 and 0
with each major cycle.

A Gray code was selected so that only one
bit would change value with each wire posi­
tion, giving a complete and unambiguous deter-

t It will be noted in the oscilloscope pattern of Fig.
8 that the pulsing sequence is x first and y last. This
is mentioned only because it is the opposite order of
that shown in the 8 x 8-line example system discussed
above; otherwise, it is unimportant.

330 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

I x pulses I I y pulses ---------1
tit 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 til t 12 t 13 t 14 t 15 t 16 t 17 t 18 t 19 t 20

-2

-4

Figure 8. Oscillogram of Pen Signal and Strobe.

mination of the stylus position. Furthermore,
a reflected Gray code facilitates serial conver­
sion to binary. The conversion logic for an
N -bit number, when N is the most significant
bit, is:

Binary~ = GraYN

B j = (B j +1 1\ Gj) V (B j +1 I\~) . j < N

Time-wise, the bits are received from the stylus
in the order N, ... , j + 1, j, ... ,1. When all 20
bits have been assembled in the shift register,
they are gated to the output register.

As a new (x,y) value is being converted to
binary and shifted into one end of the shift
register, the old binary value is being shifted
out the other end. This old binary information
is serially reconverted to Gray and compared
to the new, incoming Gray value, one bit at a
time. If the old Gray number and incoming
Gray number differ in more than one bit in
either x or y, a "validity" toggle is set to indi­
cate an error. If the two Gray-code series differ
in more than one bit, this indicates that the pen
has moved more than one line during the 220-
/Lsec interval. As this is not probable during
normal usage, it is assumed that an error has
occurred. If a set of data are determined as not
valid, the output register is left with its previ­
ous value, and an "old-value" toggle is flagged.

The binary-to-Gray conversion logic is:

G~ = B:-.;

G j = (B j + 1 1\ B j) V (B j + 1 1\ B j) • j < N

In practice, the validity check rarely detects
errors while the pen is in contact with the
tablet. The pen validity check is used to sup­
press the display of the pen position as the pen
is lifted off the tablet.

The logic and clock systems are made up prin­
cipally with state-of-the-art NOR circuits and
univibrators. The blocking-oscillator circuit
shown in Fig. 9 was designed to drive the
encoder pads. This use of transformer cou­
pling was found to be important since well­
matched positive and negative pulses were re­
quired to obtain proper cancellation at the
tablet surface. The stylus amplifier has a gain
of approximately 30 db with an additional30-db
gain in the principal electronic package.

The total electronic system is assembled in a
5" X 5" X 19" printed-circuit card cage and
contains some 400 transistors and about 220
diodes; however, little attempt has been made
to minimize the number of components. Also,
the electronics could be shared with a number
of tablets in a mUltiple-tablet system.

.01

non
Out+

+40

lN270

30n Out-
lK

Input

lN627

30n

lN270

Figure 9. Blocking Oscillator.

THE RAND TABLET: A MAN-MACHINE COMMUNICATION DEVICE 331

D--A circuits

Sense

(1 line)
Drive

Tablet
control
& buffer

Multiplexing
switch

(20 lines)
Computer

(20 I ine pairs) 1.....-__ ----' (20 lines)

Figure 10. Information Paths in Graphic I/O System.

Figure 10 is a block diagram showing the
graphic input-output system as used at RAND
for the evaluation of hardware, human engi­
neering studies, and investigation of program­
ming implications. The computer used was the
JOHNNIAC, a tube machine of the Princeton
class.

Preliminary studies indicate that with a great
amount of care in construction, a 200-line-per­
inch tablet could be achieved. The resolution of
this line density would not present a major
problem; on the other hand, 100 lines per inch
is adequate for all current intended applications.

It is certainly "\vithin the state of the art to
decrease the major cycle time; however, in
usage at RAND, the 4.5-kc rate has been ade­
quate. When the stylus is swept rapidly across
-the surface of the tablet, it has been found
that an average of two or three complete sets
of position data are obtained for each line. Set­
ting the multiplexing switch (Fig. 10) to dis­
play the stylus position on the scope every 10
msec has proved adequate, and since only 50
fLsec are required to display the point, 99.5 per
cent of the display scope time is left for the
computer.

The tablet currently is in regular use at
RAND in studies toward the development of
on-line graphical programming languages and
on-line interaction with problem parameters. In
addition to its use at RAND, several copies of
the tablet have been supplied to other research­
ers in the field.

The tablet has been found to be particularly
valuable in applications where excellent line-

arity and accuracy are important. N ormal­
thickness C.G.S. maps have been placed over
the tablet to digitize contours by manual trac­
ing with the pen.

Development of the stylus-tablet device has
been carried to the point where, we feel, it
represents a practical and economical tool for
use in many applications. Additional applica­
tion areas might be served by more development
effort in directions such as providing for rear­
proj ection of images onto the (translucent)
tablet panel; provision for use of more than
one sensing element, extension of the surface
dimensions, etc.

BIBLIOGRAPHY

1. LICKLIDER, J. C. R., and CLARK, W. E., "On­
Line Man-Computer Communication," Proc.
1962 SJCC, 113.

2. LOOMIS, H. H., Jr., Graphic Manipulation
Techniques Using the Lincoln TX-2 Com­
puter (Lincoln Laboratory, MIT, Cambridge,
November 11, 1960), 516-0017 (U).

3. MARR{LL, T., et al., "Cyclops-I: A Second­
Generation Recognition System," Proc. 1963
FJCC, 27.

4. STOTZ, R., "Man-Machine Console Facilities
for Computer-Aided Design," Proc. 1963
SJCC, 323.

5. SUTHERLAND, E. E., "Sketchpad: A Man­
Machine Graphical Communication System,"
Proc. 1963 SJCC, 329.

6. TEAGER, H. R., Private Communication, MIT.

A SYSTEM FOR AUTOMATIC RECOGNITION OF

HANDWRITTEN WORDS*

Paul M errnelsteint and Murray Eyden
Department of Electrical Engineering and Research

Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, Massachusetts

INTRODUCTION

The recognition of handwriting can be con­
sidered an important problem in the general
pattern recognition area because the set of pat­
terns, say individual words, possesses a degree
of variability that far exceeds that of problems
where relatively good solutions have been pre­
viously found. Whereas in the case of character
recognition the number of pattern classes con­
sidered different usually does not exceed one
hundred, the number of pattern classes with
which one finds himself confronted here is only
limited by the vocabulary of the language.
Furthermore, the problem is reasonably well­
defined, i.e., in most cases the correct categori­
zation choice is known by comparison with
human performance. In some cases such per­
formance by different people may not result in
complete agreement, but even then the number
of alternative results is restricted to a small
number. Experimental data are readily avail­
able and their variability, insofar as they de­
pend on subject and context, can be easily con­
trolled.

The recognition of complex patterns by their
subdivision into subpatterns deemed simpler to
recognize has found wide application.1

,2 Since
the probability for misrecognition of the in­
dividual subpatterns is finite, unless constraints
are known to exist among the different subpat­
tern categories, the likelihood for correct recog­
nition of the composite pattern decreases rap­
idly as the number subpatterns is illcreased.
The explicii rules for joining adjacent subpat­
terns are in many cases unknown and hence
the constraints may be formulated only in
terms of exhaustive listings of groups of sub­
patterns that mayor may not exist. In other
words, a collection of subpattern categories is
determined to for-m a valid pattern if and only
if there exists a pattern category which may
be mapped into that collection of subpatterns.
The task of testing whether a particular collec­
tion of subpatterns is a valid result is thereby
reduced to the decision of whether such a col­
lection may be generated from the allowable
collection of patterns. Due to the large number
of admissible pattern categories, in order to
demonstrate the usefulness of such procedures,

* This work was supported in part by the U. S. Army, Navy, and Air Force under Contract DA36-039-AMC-
03200(E); and in part by the National Science Foundation (Grant GP-2495), the National Institutes of Health
(Grant MH-04737-04), and the National Aeronautics and Space Administration (Grant NsG-496). It is taken
in part from a thesis submitted by Paul Mermelstein in partial fulfillment of the requirements for the Doctor of
Science degree to the Department of Electrical Engineering, Massachusetts Institute of Technology, January 14,
1964.

t Present address: Bell Telephone Laboratories, Inc., Murray Hill, New Jersey.

333

334 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

not only must we be able to recognize patterns
with good reliability, but the utilization of the
applicable constraints must be sufficiently ef­
ficient so that real time operation is feasible.

This paper reports experiments demon­
strating feasibility for machine recognition of
handwriting, given the pattern as a two-dimen­
sional vector displacement of time. The time­
dependent form of input presentation is used
to limit the scope of the problem tackeld. A
concise numerical presentation for handwriting
deemed more suitable for the programmed re­
covery of the message is presented. This rep­
resentation preserves sufficient information so
that with the aid of a suitable model for hand­
writing generation the two-dimensional pattern
can be regenerated. The alphabetic representa­
tion of the message is recovered from the nu­
merical representation with the aid of statisti­
cal estimates based on an ensemble of writing
samples.

An algorithm for the segmentation of the pen
displacement signal of handwriting into func­
tion segments corresponding to strokes has
been presented.3 This procedure, when re­
peatedly applied to a collection of handwriting
samples yields function segments that may be
classified into categories based on topological
similarities, thereby yielding a representation
for every cursive letter by means of a small
number of permissible alternative sequences of
stroke categories. Such categories are defined
by means of statistical averages of the numeri­
cal representations of the member functions,
and the likelihood of membership of new func­
tion segments in each particular category is
estimated by means of the multi-dimensional
distance between the representation of the new
function and the average for the category.

Constraints are recognized to exist on two
levels, those between stroke categories, se­
quences of which must form valid letter repre­
sentations, and those between letters, sequences
of which must form words within the vocabu­
lary of the system. The result of the recogni­
tion process is that word which is generated
from the stroke category sequence, the constitu­
ent strokes of which correspond to a maximum
total likelihood. Methods are presented which
implement the stroke sequence to word map­
ping in an efficient manner.

Preliminary experiments on the recognition
of words selected from a limited vocabulary
generated with the aid of only nine different
letters have been previously reported.3 These
experiments have shown that good recognition
is obtainable using the downstrokes of the writ­
ing only. A representation in terms of down­
stroke categories only is here given for the
complete alphabet. Experimental results are
reported for the recognition of 254 word sam­
ples under various conditions of machine learn­
ing. The test samples were generated by four
writers from a vocabulary of 32 words in which
each letter of the alphabet occurred at least
twice. A dictionary of the 10,000 most fre­
quently used English words 4 was used to limit
the recognition results to words of the lan­
guage.

METHODOLOGY

A detailed study of the variations in writing
speed for several subjects reveals points of
speed minima predictably situated along the
time axis. Examples of one test word written
in turn by four subjects and the corresponding
pen velocity functions are shown in Fig. 1. The
writing segments delimited by such points of
speed minima are found to correspond to re­
gions in which the vertical component of the
velocity does not change sign, i.e., they form
the upstrokes and downstrokes of the writing.
These segments or strokes are classified into
categories on the basis of topological similari­
ties, corresponding segments from the same
letter as well as similar segments originating
from different letters being assigned to one
category, e.g., the first downstrokes of the let­
ters i, 0, U, v, and w. Similar writing segments
are assigned to the same category unless such
assignment precludes a unique representation
for the letter by means of the categories to
which its constituent stroke segments belong.
An incidental property of this assignment is
the fact that practically unique letter speci­
fication is obtainable by the downstrokes of the
writing only. This representation is given for
the lower case Latin alphabet in Table 1. It
should be noted that in going from a general
stroke representation to one consisting of down­
strokes only, a special downstroke category is
added which consists of strokes introduced at
points where two upstrokes are found to follow

A SYSTEM FOR AUTOMATIC RECOGNITION OF HANDWRITTEN WORDS 335

each other. The representation so obtained is
unique except for the letter pair o-v which
usually can be resolved by the use of the con­
textual environment.

In order to define a measure of similarity be­
tween strokes we first transform the segment
of the function giving pen displacement versus

time into a parameter vector. This vector con­
tains sufficient information so that the displace­
ment function corresponding to the stroke ex­
ecuted may be regenerated with the aid of a
suitable model of handwriting generation 3 and
will exhibit only minor differences with respect
to the original function.

Figure 1. Handwriting samples and corresponding pen velocity functions
redisplayed by the computer-top function y (t), bottom function x (t) .

336 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Table I. Stroke category representation for the lower case Latin Alphabet.

CHARACTER LETTER DOWNSTROKE CATEGORY CHARACTER LETTER DOWNSTROKE CATEGORY
VARIANT SEQUENCE VARIANT SEQUENCE

-Cl, AI 01 02 if?- PI 06 09

,et.. A2 SP 01 02 p.-- P2 06 010 003

'-a A3 001 01 02 .,-- QI 01 016 SP

~ 81 03 SP ~ Q2 01 016 002

{J.J 82 03 002 ~y.~ Q3 001 01 016 SP

'C CI 017 '~/ Q4 001 01 016 002

rC C2 SP 017 -~-' Rl 015

""C C3 001 017 ---1' __ R2 004 015

.dl 01 01 03 4.- SI 018

.d 02 SP 01 03 ;, ... S2 011 SP

;-li 03 001 01 03 of.. S3 011 003

.P, E 04 ... t- TI 012

-{ FI 05 SP ...j' T2 O~ SP

? F2 05 002 -/, T3 03 002

~ GI 01 06 ,U U 02 02

".. G2 SP 01 06 -0--- VI 02 SP

--"9- G3 001 01 06 -0-- V2 02 002

?f H 07 08 V' V3 014 SP

A, I 02 7.}' V4 014 002

1 J 06 ,!.tr WI 02 02 SP

A KI 07 09 --~., W2 02 02 002

-It K2 07 010 003 X, x 013

t L 03 y- Yl 02 06 .
II m. tIo4 014 014 08 Y2 014 06

h" N 014 08 J- Z 014 016

7:r' 01 02 SP , NULL STROKE 017

"t9-/ 02 02 002

LEGEND:

01,02,---, 018 = STANDARD .OOWNSTROKE CATEGORIES.

001,002,---,004 = DOWNSTROKE CATEGORIES FOUND OPTIONAL IN SCRIPT.

SP = SPECIAL CATEGORY DENOTING VIRTUAL DOWNSTROKE OF ZERO LENGTH.

The model used for stroke generation is a
modification of one first presented by Eden 5

and considers the velocity of the penpoint over
any stroke to be representable by two pairs of
quarter-wave sinusoidal segments, one for each
of the horizontal and vertical components of
the writing for the vertically accelerating and
decelerating sections, respectively~ The param-

eter vector components derived from that
model such as displacement, curvature, pen
velocity amplitude, etc. tend to prove useful in
identifying the generated displacement patterns
because they are likely to be invariant particu­
larly with respect to those transformations of
the patterns that leave the communicated in­
formation unchanged.

· A SYSTEM FOR AUTOMATIC RECOGNITION OF HANDWRITTEN WORDS 337

The parameters corresponding to an experi­
mentally obtained function segment are deter­
mined by synthesizing a generating function
that will best match the original function in the
least mean square sense. There being seven in­
dependent parameters in the model, we impose
six constraints on the functions to be generated,
leaving one degree of freedom. Perturbations
are applied to one parameter, the others being
recalculated to satisfy the imposed constraints,
until a local minimum is found for the differ­
ence measure as a function of that parameter.
Further non-independent parameters, consid­
ered as possibly useful for recognition, are ap­
pended to the previous parameter set resulting
in twelve component parameter vectors.

The recognition procedure is effected in two
successive stages. First, an attempt is made at
independent stroke recognition or the classifica­
tion of each function segment independently
into predetermined stroke categories. The re­
liability attained at this stage is strongly de­
pendent upon previous knowledge of the sub­
ject's writing insofar as that information is
represented by the statistics pertaining to the
several categories. Second, ordered sequences
of the selected strokes are considered and the
applicable constraints are used to eliminate the
sequences not corresponding to words, thereby
increasing the likelihood for correct recogni­
tion. This stage is independent of the ensemble
on which the machine's representation of the
writing is based. It is implemented in a manner
that allows the introduction of additional con­
straints while their effects are under investiga­
tion.

Recognition of Strokes
An optimal rule for recognition of member­

ship in categories is one that calculates for all
categories the conditional probability that a
particular stroke parameter vector from a se­
lected category takes on a value identical to
that of the stroke to be identified and assigns
the unknown stroke to that category for which
this conditional probability is maximum.6 In
most pattern recognition problems, including
this particular case, the required parameter
statistics for the several categories are unavail­
able and may be estimated only by a prohibitive
amount of sampling. By making assumptions
about the nature of the probability density

functions of the parameters of the several cate­
gories on the basis of limited data, we may
overcome the estimation problem, but the rec­
ognition results will fall below optimal to the
extent that these assumptions fail to be valid.
In particular, we assume that the parameters
describing the strokes have multivariate normal
distributions with generally unequal covariance
matrices for the several categories.

Statistics consisting of the vector of param­
eter means and the covariance matrix of the
parameters are computed for each stroke cate­
gory from the parameter values of the stroke
segments assigned to those categories. This
assignment is carried out manually, and de­
pending on the source of the samples, the re­
sulting representations may correspond to a
group of writers, or separate representations
are obtainable for individual writers. When
several subject dependent representations are
available the recognition process may be modi­
fied to identify the script of a given word as
corresponding most closely to a particular one
of the available representations.

Recognition of Letter Sequences and Words

The constraints between adjacent strokes are
formulated in terms of stroke sequences which
may correspond to the letters of the alphabet,
and a list of the valid letter sequences, i.e., the
vocabulary of the system. Most stroke se­
quences generated at random are not mappable
into words. We desire to arrive at the sequence
which among those mappable into output words
has maximum likelihood as given by the sum
of the constituent stroke likelihoods. Unless the
sequence formed by the most likely stroke can­
didates is mappable into a word, less likely
stroke candidates must also be considered. Con­
ceivably, whenever an unacceptable sequence is
found, we could make the substitution that least
decreases the total likelihood for the sequence.
Since not only single, but also multiple substitu­
tions, must be considered and the independent
stroke recognition rate is not expected to be
very high, repeated substitutions are necessary
resulting in an impossibly time consuming pro­
cedure. Clearly, the number of ordered se­
quences of all stroke candidates is so large as
to make an unordered consideration prohibi­
tive.

338 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

We may find the most likely sequence with a
high probability by establishing a threshold on
the individual stroke likelihoods and examining
all sequences generatable from the strokes ex­
ceeding that likelihood. If no sequence satis­
fying the constraints is found, the threshold
value may be relaxed and the procedure re­
peated. This procedure will miss the most likely
sequence if that sequence contains one member
having a likelihood appreciably below the mean
likelihood for the sequence, as well as below the
threshold, and there exists a different valid se­
quence with somewhat lower mean likelihood
all of whose members exceed the likelihood
threshold. A strategy of this nature has been
first suggested for the sequential decoding of
information encoded for transmission over
noisy channels. 7

On the assumption that most of the hypo­
thesized stroke sequences will not be trans­
formable into output words, the following pro­
cedure for the exhaustive consideration of all
possible ordered sequences of the stroke candi­
dates proves efficient. Starting with the first
choice for the first stroke, attempt a continua­
tion with the first choice for the next stroke,
continuing until either an illegal sequence (no
corresponding letter sequence) is found or the
last stroke of the word is reached. For illegal
sequences, the last stroke choice selected is
dropped and a continuation is attempted with
the next choice, if any, for the same stroke. If
no such continuation is found possible, one more
stroke is deleted and further choices for that
stroke are considered. Whenever enough
strokes have been processed to complete an
additional letter, the letter string found up to
that point is checked against the output vocabu­
lary for presence as the initial subsequence in
an admissible letter sequence. Words are ac­
cepted as possible results if the last stroke of
the sequence is found to terminate the last
letter of the word and ordered by assigning
likelihoods based on the sum of the constituent
stroke likelihoods.

EXPERIMENTAL RESULTS

Recognition experiments were performed on
a set of 32 different words written repeatedly
by four different subjects. The set of words
was chosen randomly and therefore reflected

roughly the letter distribution in the language,
but contained at least two occurrences of each
letter. Diacritical marks were omitted and sub­
jects were asked to write continuously, not
crossing the letters t and x where it necessi­
tated a break in the continuity of the writing.
A dictionary of the 10,000 most frequently used
English words was used to limit the recognition
results to words of the language.

The words were written individually on a
handwriting transmitter (Telautograph) hav­
ing a 4" x 2" writing surface (see Figure 2).
The transmitter signals corresponding to pen
position were fed to the TX-O computer (De­
partment of Electrical Engineering, Massachu­
setts Institute of Technology), the computer
being used as a multiplexed analog-digital con­
verter and for the recording of data on mag­
netic tape. The IBM 7090 and 7094 computers
of the Computation Center, Massachusetts In­
stitute of Technology, were used for all subse­
quent data processing.

Of the total of 254 samples, 249 were success­
fully segmented into stroke sequences. In the
other five cas'es, as a result of the smoothing of
the normal direction changes in certain con­
texts under conditions of rapid writing, the
last upstroke-downstroke pair of a letter and
the following ligature were found to be in­
separable by the segmentation algorithm used,
as illustrated by writing instead of
In two other cases the words, as segmented by
the program, were not recognizable with the
aid of downstrokes alone because the last down­
stroke of the last letter of the word was not
explicitly executed, e.g.,

Recognition was attempted on the remaining
247 words by using a stroke representation of
the letters based on downstrokes only and com­
piled from the strokes constituting those words.
The stroke partition utilized consisted of 22
downstroke categories, one of which corre­
sponded to downstrokes found at the beginning
and end of words which did not form part of
the first or last letter, and was therefore as­
signed to the null letter. The stroke classifica­
tion was carried out by using all 12 computed
parameters and treating them as if they were
independent. Eighty per cent of the words on
which recognition was attempted were cor-

A SYSTEM FOR AUTOMATIC RECOGNITION OF HANDWRITTEN WORDS 339

Figure 2. Writer using Telautograph transmitter.

rectly identified. Of the 49 samples incorrectly
identified, 14 had the correct word selected as
the second choice, 7 as choices lower than the
second, 26 did not give the correct word as one
of the 20 possible choices in the threshold
range, and recognition of 2 samples had to be
terminated \vhen no result "vas obtained after
20 minutes of processing.

The experimental strategy for word recogni­
tion, namely, repeated attempts with succes­
sively lower stroke-likelihood thresholds, does
not eliminate the possibility that if some lower
initial threshold setting were used, a previously
incorrect decision might be performed correct­
ly or a correct decision might be upset. In
order to observe the frequency of this pheno­
menon, 12 word samples for which the correct
word was initially not selected were reprocessed
by using a value for the initial threshold setting
that permitted consideration of strokes having
likelihoods down to half the previous minimum
likelihood. Six of these -words were now cor­
rectly selected as first choices in the recognition
output. The reason for this improvement in
performance is that in certain cases the correct
category may lie just beyond the likelihood
threshold value and therefore be missed, while
all of the other strokes are correctly recognized.
We may, of course, process all samples ·with the

higher threshold value initially, but this fre­
quently results in an unwarranted sizable in­
crease in the required processing time for word
recognition.

N ext, independent stroke statistics were com­
puted for each subject, and recognition was at­
tempted on the previously incorrectly recog­
nized samples by using representations derived
in each case from the test subject's handwrit­
ing. Forty-three of the previous 49 errors were
now correctly recognized. Since 40 of the 198
samples previously correctly recognized were
correctly recognized now as well, and none was
misrecognized, we may assume that all of the
198 samples would have been correctly recog­
nized thereby resulting in a subject-dependent
recognition rate of 98 per cent. Time require­
ments for recognition in this experiment fell
to an average of 9 sec on the IBM 7094 com­
puter, as compared to 30 sec for the subject in­
dependent recognition.

One may gain insight into the magnitude of
the contribution made by contextual informa­
tion from the fact that in the set of strokes,
when considered individually in the subject in­
dependent experiment, the calculated most
likely category was in fact the correct category
in only 58 per cent of the cases. Hence, the

340 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

probability that none of a sequence of say ten
strokes was in error was (0.58) 10 or 0.43 per
cent.

Clearly, in carrying out the initial attempt
at individual stroke recognition, differences
may be expected between the relative utilities
of the several parameters describing the
strokes. The n1isidentification of a particular
stroke mayor may not result in the misrecogni­
tion of the complete word. The extent of any
improvement in word recognition rates on the
basis of specific improvements in the stroke
recognition rate cannot be readily estimated be­
cause of the complexity of the applicable con­
straints. Therefore all errors were weighted
equally in calculating the overall stroke recog­
nition rates.

For the partition of the downstroke space
corresponding to the alphabet representation
given in Table I, a partial investigation of the
relative contributions of the several parameters
was carried out, based on stroke data from the
above 249 samples. The effect of the assump­
tion that the parameters may be treated as if
they were independent was also investigated.
Although the assumption of independence
among the parameters is known to be invalid,
their treatment as if they were independent is
justifiable if the reduction in complexity of the
required calculations and the amount of addi­
tional statistic~l data required can be obtained
at the cost of only a small reduction in the rec­
ognition rate.

The stroke parameters used in the recogni-
tion experiments are defined below.

1. X component of stroke displacement
2. Y component of stroke displacement
3. X component of initial stroke velocity
4. X component of final stroke velocity
5. Frequency of sinusoid matched to initial

stroke segment

6. Frequency of sinusoid matched to final
stroke segment

7. Initial segment phase shift of x velocity
relative to y velocity

8. Final segment phase shift of x velocity
relative to y velocity

9. Amplitude of matched y velocity sinu­
. soid

10. Amplitude of matched x velocity sinu­
soid for initial segment

11. Amplitude of matched x velocity sinu­
soid for final segment

12. Constant component of matched x veloc­
ity

When the dependence among the parameters
is considered for the subject dependent case,
the stroke recognition rate is increased from
·58 to 62 per cent. Several subsets of param-
eters were considered and none yielded a recog­
nition rate higher than 63 per cent. The cor­
responding stroke recognition rates for the four
subjects treated individually ranged from 68
to 81 per cent, averaging 74 per cent. It should
be noted that the increase in stroke recognition
rate from 58 to 74 per cent was sufficient to
raise the word recognition rate from 80 to 98
per cent. The parameter subset {5-12} con­
taining only parameters used in the handwrit­
ing generation model, when compared to sub­
set {1-4}, the one composed of the arbitrarily
selected parameters, proved significantly poorer
in the subject independent case, yet equally
good in the subject dependent case. Evidently
the detailed dynamic characteristics of the
writing while consistent in the case of par­
ticular subjects reflect too much subject to sub­
ject variation to prove useful for subject
independent recognition. For the subject in­
dependent case, once a minimal set of param­
eters is selected, the stroke recognition rate is
not found to be a very sensitive function of the
number of additional parameters.

CONCLUSIONS

This report presents an approach to machine
recognition of handwritten script words when
written on-line, i.e., with the time information
of the writing available. Experiments carried
out by general purpose computer simulation of
the recognition system reveal that the system
is capable of recognizing well-formed, legible
handwritten words with a reliability that de­
pends on the correspondence between the script
of the writing sample and that of the ensemble
on which the machine's representation of hand­
writing is based. The resulting recognition
rates are found to be significantly better than
those previously reported.8

A SYSTEM FOR AUTOMATIC RECOGNITION OF HANDWRITTEN WORDS 341

A detailed study of the behavior of the recog­
nition system shows the following:

(a) Recognition reliability approaching that
of humans is attainable if the machine's
representation is based on the writing
of the same subject who produced the
samples to be recognized.

(b) When the machine is not given a repre­
sentation originating from the same sub­
ject, but one based on an ensemble writ­
ten by a number of individuals, samples
from that group of individuals are rec­
ognizable, but with lower reliability.

Previous experiments 3 show that performance
deteriorates further when we attempt to rec­
ognize writing samples of subjects not included
in the ensemble from which the machine's rep­
resentation is derived.

The problem of selection of a set of param­
eters for stroke description that is to a large
extent independent of subject and context, one
clearly of great importance for achieving re­
liable recognition, has not been solved with any
degree of finality. The system establishes a
framework within which the utility of the vari­
ous parameters may be investigated. It also
permits the evaluation of the contribution to
recognition which word context provides.

Our simulation experiments demonstrate that
good recognition is obtainable by means of the
downstrokes of the writing only. There exist
a number of ambiguities that are in general
difficult to resolve by means of downstrokes
alone, such as differentiation between the let­
ters p and k or the pair cl and the letter d. It
is suggested that use should be made of up­
strokes as well only in environments giving rise
to such ambiguities, and not otherwise, thereby
reducing the complexity of and time require­
ments for the recognition task.

The program's failure to discriminate cor­
rectly between two strokes can in certain in­
stances be due to the method of partitioning
the stroke space. A point in the parameter
space corresponding to a particular function
segment of the test sample is assigned a likeli­
hood with respect to each stroke category in
the stroke alphabet. However, if the several
hierarchies of constraints restrict the choice
for a given segment to one of a very limited

number of stroke assignments, then we may
possibly make improved discriminations on the
basis of a restricted set of parameters particu­
larly applicable to the discrimination to be
made. It is therefore proposed that the final
discrimination decision be based on the results
of an iterative sequence of successive approxi­
mations to the desired likelihood- measures.

The most important deficiency of the pro­
gram appears to be the lack of facilities for
modifying stroke likelihood decisions on the
basis of the stroke environment. Stroke recog­
nition based on information pertaining only to
individual strokes is found frequently to be in­
adequate in low contextual information situa­
tions. For example, differentiation between the
words fall and full could be appreciably aided
by making available to the recognizer, the hori­
zontal distance between the initial points of the
first and second downstrokes of the letters a
and u. The difficulties, which may in most
cases be recognized by a likelihood ratio be­
tween the two word choices which is nearly one,
are in many cases resolvable if further infor­
mation pertaining to the specific letter-letter
confusion can be supplied on demand from the
recognizer.

The requirements for on-line input of writ­
ing samples places strong limitations on the
practical applications of the methodology -pre­
sented. The underlying stroke representation
may, however, be adapted for such applications
by using functions segmented at the zero spatial
derivative of the y displacement _ function. By
replacing time derivatives by spatial deriva­
tives, we may arrive at a list of parametric de­
scriptors which are adequate to differentiate
among the stroke set. The immediate and most
significant problem that remains is the design
of practically applicable algorithms for spatial
segmentation of handwritten words into
strokes.

REFERENCES

1. BLEDSOE, W. W., and BROWNING, 1., Pattern
Recognition and Reading by Machine, Proc.
Eastern Joint Computer Conference, 1959
Eastern J oint Computer 'Conference, pp.
225-232, (1959).

2. GRIMSDALE, R. L., SUMNER, F. H., TUNIS,
C. J. and KILBURN, T., A System for the

342 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Automatic Recognition of Patterns, Proc.
lEE (London), 106 pt.B., 210-221, (1959).

3. MERMELSTEIN, P. and EDEN, M., Experi­
ments on Computer Recognition of Connect­
ed Handwritten Words, Information and
Control, 7, 255-270, (1964).

4. THORNDIKE, E. L. and LORGE, 1., The Teach­
er's Word Book of 30,000 Words, Columbia
University, New York, (1944).

5. EDEN, M., Handwriting and Pattern Recog­
nition, IRE Trans on Information Theory,
IT-8, 160-166, (1962).

6. MARRILL, T., and GREEN, D. M., Statistical
Recognition Functions and the Design of
Pattern Recognizers, IRE Trans. on Elec­
tronic Computers, EC-9. 472-477, (1960).

7. WOZENCRAFT, J. M. and REIFFEN, B., Se­
quential Decoding, Technology Press and J.
Wiley and Sons, New York~ (1961).

8. FRISHKOPF, L. S. and HARMON, L. D., Ma­
chine Reading of Cursive Script, Informa­
tion Theory, Fourth London Symposium, C.
Cherry, ed., Butterworths, London, pp. 300-
315, (1961).

A LABORATORY FOR THE STUDY OF GRAPHICAL

MAN-MACHINE COMMUNICATION
Edwin L. Jacks

Research Laboratories, General Motors Corporation, Warren, Michigan

INTRODUCTION

Engineering has evolved rapidly during the
last fifteen years as analysis techniques geared
to the computational power of a slide rule and
desk calculator have been replaced by tech­
niques which make extensive use of computers.
During these years, however, graphical tech­
niques for conversion of design ideas to final
products have not changed significantly, nor has
the role of drawings in engineering design
changed. The drawing plays a vital role in each
phase of the evolution of a product. The ori­
ginal design proposals, the engineering anal­
ysis, the design compromises, and the proto­
type product fabrication all depend on graphical
communication among engineers and designers.
Whether the product is to be machined, assem­
bled, stamped, wired, welded or hand modeled,
a drawing is made so that a two-dimensional
representation of the product may be reviewed
by the engineers concerned with the product.
Prior to the final product drawing, many ideas
are exchanged by the use of sketches, drawings,
plots, and engineering reports.

The drawing board is used as the basic mech­
anism for resolving problems in design pack­
aging. For instance, "Where can part B be
located if part A is made larger?" and "Can
part A be assembled to part C?" As the design
evolves, many decisions are made by the engi­
neer while the drawing representing the design
is being produced by the draftsman. The ques­
tions are endless, and, in many design prob-

343

lems, are not finally resolved until after early
prototypes of a product are made.

Two key points in this process are: (1) the
engineer is an integral part of the graphic de­
sign process, and (2) the draftsman is doing a
task that requires considerable attention to de­
tail and mechanical precision. In many me­
chanical design situations the two functions of
engineering and preliminary product drafting
are done by the same man" A drawing serves
as his way of exploring design ideas.

The dependence of engineering design on
graphical techniques is fundamental to the de­
sign process. Graphics serves as a language of
communication among design personnel and, as
outlined above, as a mechanism for design
evolution.

The General Motors Research Laboratories
had been using digital computers for engineer­
ing and scientific analysis for several years dat­
ing back to a card-programmed calculator in
1952, but notably absent from the applications
were problems relating to graphical design. In
the late 1950's, the Research Laboratories ad­
dressed the question, "Could computer tech­
niques significantly improve the design proc­
ess ?". To answer this question, a study was
started on the potential role of computers in
the graphical phases of design. Prototype hard­
ware and software components were developed
to investigate the problems of image process­
ing. A 740 cathode ray tube recorder attached
to the 704 computer was already being used to

344 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

plot results of engineering computations. It
satisfied the requirement for graphical output.
The associated 780 display unit provided a
graphical on-line display which, along with a
simple switchboard, became an elementary
man-machine console. A program-controlled
film scanner was devised using the 740 re­
corder; a photocell detector was substituted for
the film magazine, and its output signal was
connected to a computer sense switch. With
this breadboard setup, lines on film could be
digitized under program control.· Programs
were written for graphic input and output and
for the manipulation of images in three dimen­
sions. These early software and hardware
components were integrated into an operating
system that demonstrated the feasibility of
using the computer as an aid in the graphic de­
sign process.

On the basis of this early feasibility demon­
stration, the decision was'tmade to establish a
more comprehensive laboratory for graphical
man,.machine communication experiments. The
facilities were to permit the computational
power of a large-scale digital computer to be
brought to bear on the problems of graphical
design in a manner which fully recognized the
importance of the man in design. This project
on Design Augmented by Computers has be­
come known as DAC-I.

The initial goal of the Design Augmented by
Computers project was the development of a
combination of. computer hardware and soft"­
ware which (a) would permit "conversational"
man-machine graphical communication and (b)
would provide a maximum programming flexi­
bility and ease of use for experimentation. This
goal was achieved in early 1963. This paper
gives a broad outline of the computer technol­
ogy which was developed to meet the above goal.
Other papers 1,2,3,4 present approaches to solu­
tions and examples of performance of the vari­
ous hardware and software components of the
system.

The present hardware complex co.nsists of an
IBM 7094 computer and an IBM 7960 Special
Image Processing System. The Image Process­
ing System was designed and built by IBM to
specifications provided by the General Motors
Research Laboratories (GMR). 2

The supporting software was developed by
the GM Research Laboratories Computer Tech­
nology Department and includes a multipro­
gramming system, an algebraic compiler
(NOMAD), a data channel command compiler
(MA YBE), a dynamic storage assignment pro­
cedure, and extensive facilities for the storage,
retrieval and editing of programs and data
stored on a disk storage device.1

Each major portion of the DAC-I system­
the 7960 Special Image Processing System,
the computer with its attached disk memory,
the multiprogramming trap control system, the
DAC-I monitor system, the programming lan­
guages used for system development and the
disk filing programs-have, via their design
criteria, all contributed to the system's flexibil­
ity and ease of use for experimentation.

DESIGN OBJECTIVES OF THE IMAGE
PROCESSING HARDWARE

The over-all objective of the image process­
ing system was to achieve the equivalent of
what is possible with graphical man-to-man
communication while utilizing drawings. In es­
tablishing systems specifications, four types of
man-machine communication were sought.

The first type of drawing communication de­
sired was static. The machine should be able
to produce a hard copy drawing for engineering
use. Conversely, it should be able to accept a
drawing and be able, under computer control, to
read the drawing. Because of the nature of au­
tomobile design, it was necessary that the DAC­
I system be able to accept free form curves, i.e.,
curves which are constructed without considera­
tion of particular mathematical representations.
'Furthermore, to provide compatibility with
existing design procedures, precision input and
output of such curves was needed. These re­
quirements ruled against a "sketchpad" type of
operation." The drawing input-output func­
tions have been achieved in the image processor
of the 7960 System by: (a) using a high resolu­
tion cathode ray tube (CRT) under computer
control to record drawings onto 35 millimeter
film and (b) using a second and similar CRT as
a computer-controlled flying spot scanner to
scan 35mm film images of drawings. The image
processor has built into it the ability to photo-

THE STUDY OF GRAPHICAL MAN-MACHINE COMMUNICATION 345

seconds have the film ready for optical scanning.
The output drawings are also ready for viewing
30 seconds after film exposure.

The second type of drawing communication
desired was dynamic. The system should simu­
late the type of man-to-man communication
where one man is drawing or pointing at a par­
ticular part of a drawing while another man is
observing or 'discussing details of the design
with the first man. This capability was provided
in the graphic console of the 7960 through the
combination of a 17 -inch display tube and a de­
vice called a position-indicating pencil. When a
designer touches the pencil to the glass plate in
front of the display tube, the computer program
can detect what position on the tube face is
being pointed to and, hence, can react to any
comments the man may wish to make about the
indicated portion of the display. Thus, after
the computer generates a picture on the display
tube, either the man (by pointing at the dis­
play) or the computer (by placing an "x" on the
displayed picture) can in effect say to the other,
"Consider this portion of the picture."

The third drawing communication objective
was simulation of the comparison function. The
system should allow the overlay of two pictures
to permit comparisons of the differences and
similarities in the information.

This feature was provided by having the
image processor designed such that pictures
can be recorded on two separate film trains and
then projected automatically onto a common
view screen. This feature allows, for exam­
ple, overlay of scanned data with the original
film source for verification. By programming
techniques, the graphic console can also be
readily used to compare drawing information.

The fourth design objective was to achieve
man-machine communication of non-graphic in­
formation. The system should provide, via the
graphic console, a convenient means of com­
municating (a) alphabetic and numeric infor­
mation to the computer, (b) multiple choice de­
cision responses to the computer, and (c)
permissible actions by the man. For alphanu­
meric information, a 36-position keyboard with
upper and lower case and a slow-speed card
reader is part of the graphic console. For com­
munication of gross actions, the console has 36

program control keys and 36 message lights;
the computer receives a signal when a program
control key is depressed by the man, and in­
versely the man receives a visual signal when
the computer turns on a message light.

A detailed description of the 7960 Special
Image Processing System is contained in the
paper by B. Hargreaves, J. D. Joyce and G. L.
Cole, et al. 2

OBJECTIVES OF THE COMPUTER
HARDvV ARE COMPLEX

Studies at the GM Research Laboratories in
1959 and 1960 were made to estimate the com­
puting facilities required to adequately support
the DAC-I project. Considered in the studies
were the number of instructions required to
support the experiments, execution time for the
required programs, and man-machine response
rate. These studies indicated that approxi­
mately 200,000 to 500,000 instructions would be
programmed for the graphic communication ex­
periments. The computation required for
these experiments was estimated in terms of
central processing unit use per hour and
amounted to 6 minutes of 7090 time for each
hour of console use.

The response rate considerations were stated
in terms of system objectives. We wanted the
designer to be essentially working on-line and in
"real time." The measure of real time was that
the man and machine could carryon a mean­
ingful conversation· about a design at a rate
satisfactory to the man. The response consid­
eration then required a real-time approach to
receiving and handling data arriving from the
man. But the computer programs and hardware
did not need to have a fail-safe time limit ap­
proach to sending a response to the man. For
this reason the system is best described as on­
line console system rather than a real-time sys­
tem.

Another more independent consideration was
the computing requirements of the GM Re­
search Laboratories. In 1959 and 1960, a 704
was in use between two and three shifts per
day, and it was forecast that a 7090 or equiva­
lent computer would be reqired by 1961 to sat­
isfy the continuing needs for an engineering
graph 22 x 22 inch drawings and within 30

346 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

and scientific computing facility at GM Re­
search.

The combination of the above requirements,
we believed, could be met by a 70'90' computer *.
The speed of the 70'90' would adequately handle
the computational load and, if properly multi­
programmed, the machine would effectively be
able to give the response time desired for con­
sole communication and computational pur­
poses without wasting the estimated 54 minutes
per hour of non-console use. The requirement
for multiprogramming implied that the com­
puter would need to be modified such that two
independent programs could reside in its core
memory with a minimum risk of either pro­
gram modifying the other program. For this
purpose, a core memory protection system was
designed which prevents instructions from
storing into program-specified 4K blocks of the
memory.

Multiprogramming also implied that for ac­
counting purposes a clock be attached to the
computer so that proper timekeeping could be
performed during the switching from program
to program. A clock was built by the Delco
Radio Division of General Motors for GMR
with a millisecond as its basic interval of time.

The requirements for 0'.5 x 10'6 words of pro­
gram storage could be satisfied by having a disk
memory on the computer. The original 7Q9i­
configuration had a 140'5 disk connected via a
140'1 and a direct data connection to the com­
puter. The current facility uses a 130'1 disk
and three. drum storage units for the program
and data library. The computer complex re­
sulting from the above set of specifications is
shown in Figure 1.

OBJECTIVES OF PROGRAMMING
SYSTEMS SUPPORT

The combination of the IBM 70'90' and the
IBM 7960' system as described above was to
provide an experimental graphical communica­
tion hardware facility. To support this system
from the software standpoint, it was decided
that an investment would be made in program­
ming techniques which would minimize the time

* In 1963, the originally installed 7090 was upgraded
to a 7094.

from the conception of a man-machine com­
munication experiment until the required pro­
grams were operating.

Figure 1 shows the computer as a central
processing unit with five attached data chan­
nels. That is how the machine appears to the
hardware man. To the people responsible for
programming graphical communication ex­
periments, however, the machine was to have
an entirely different appearance. These people
were to be in a programming position in which
a large library of procedures were at the "finger
tips" of their programs.

The programs were to be able to conveniently
display situations to the man. If the man was
expected to require more than a millisecond
to respond, the programs were to be able to
say to a control program, "Control, I am in
standby status now and. when the man answers
my question or takes other action, return con­
trol to me."

For programming convenience, the program­
mer should be able to do all his programming
in a higher level language (higher than an as­
sembly type language at least) including the
programming of the data channel driving the
7960' System, the loading of programs by name
from the disk, and the analysis of all data com­
ing from the image processing or graphic con­
sole equipment. In short, he should be able to
program all of his graphical communication ex­
periments in a language similar to FORTRAN
or ALGOL. An algebraic complier (NOMAD)
and a data channel compiler (MAYBE) were
developed for this purpose.

CHANNEL A
(16K) (16K) CHANNEL C GMR

BATCH

CHANNEL B
MONITOR

PROGRAMS DAC-I
PROGRAMS

TRAP
CHANNEL H CONTROL

SYSTEM

Figure 1. Computer Configuration.

THE STUDY OF GRAPHICAL MAN-MACHINE COMMUNICATION 347

The specifications of the programming sys­
tem revolved around three broad statements
of facility operational policy. First, for pro­
gramming purposes, the 32K computer memory
was to be considered as two 16K blocks of mem­
ory *. This is represented symbolically in Fig­
ure 2, with 16K assigned to the DAC-I console
support programs and 16K assigned to the
standard batch monitor operation.

Second, all input/output programs in both
the DAC-I operation and the batch monitor
operation must use the trapping hardware built
onto the 7090 and all trap program operations
must be compatible 'with a trap control system
(TCS) developed at GM Research.

The third policy statement indicated that the
batch monitor's use of the computer was lim­
ited to channels A and B while the DAC-I con­
sole program's use was limited to channels C
and D. This condition was imposed to prevent
conflicts in hardware use ana means, for in­
stance, that tapes in use by the batch monitor
could not be used by DAC-I during multipro­
gramming. One major exception to this rule
was that the use of the disk was permitted by
programs being executed under batch monitor
control for purposes of compiling or checking
out programs being developed as part of the
n L\,.., T ,....-i"ni­
.L..J'.L.J..'-1-.L .l-'~ VJ 0;:;\ .. -1".

TRAP CONTROL SYSTEM
SPECIFICATIONS

Based on the above operation policies and on
the programming system's objectives, specifica-

* As of March, 1964, the 7094 was expanded to two
32K memories.

7094
COMPUTER

7960 SPECIAL IMAGE
PROCESSING SYSTEM

STORAGE UNITS
DELCO TIME CLOCK

Figure 2. Split-Memory Operation.

tions for the trap control system's performance
in multiprogramming and the programming
techniques for DAC-I were developed.

The trap control system (TCS) was to meet
the following broad specifications: (Refer to
Fig 2)

1. DAC-I channel traps terminate monitor
job central processing unit (CPU) op­
eration. Machine status is saved by TCS
prior to transfer of control to the appro­
priate DAC-I program.

2. If DAC-I has CPU control, monitor job
channel traps are saved for later action.
Monitor job traps are processed immedi­
ately upon return of CPU control from
DAC-I.

3. TCS must switch memory protection re­
gions as CPU control is switched.

4. TCS must honor DAC-I requests for ad­
ditional memory space by a dump and
memory protect release of all remaining
core (except TCS). Restore and restart
procedures for monitor jobs must be pro­
vided.

5. DAC-I channel traps should not be In­
hibited unless absolutely necessary.

MONITOR SYSTEM'S OBJECTIVES

With the above type of trap cOLtrol system,
the batch monitor and DAC-I program se­
quencing monitor each had distinct operating
objectives.

1. The batch monitor should be a general
purpose batch processing monitor and
should be able to execute any program as
long as the program was compatible with
the trap control requirements and the 16K
core limitations.

2. The DAC-I monitor was to accept from
the graphic console card reader a single
card containing job accounting informa­
tion and a program name. The program
name was to be the name of any subrou­
tine stored on disk. The monitor loads
the subroutine and turns control over
to it.

3. Any program being executed on the
DAC-I side should be able to enter a job
into the batch monitor job stack. This
permits conventional printed and punched

348 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

output from a DAC-I program without
using channels A and B at the time the
output is generated. The disk is used as
the temporary storage space for the out­
put while waiting for a between job break
in the monitor operation.

4. The DAC-I programming system should
be duplicated within the scope of the batch
monitor. This permits debugging of pro­
grams independent of the 7960 System
and prior to execution in the DAC-I en­
vironment. When operating in batch
monitor mode a basic monitor facility
must be provided for the compiling of
DAC-I programs in the NOMAD lan­
guage and the subsequent filing of the re­
sulting obj ect program in the disk file.

THE DAC-I MONITOR

The DAC-I operating monitor was developed
around the idea of a disk program library
where all system functions and program execu­
tion sequences are built up from a) the basic
operations of storage, retrieval, and updating
of a library, and b) the allocation by the cur­
rently running program of memory core space
for program and data.

Basic concepts of the system are:

a) The basic unit of a program is a subrou­
tine which has a name, an entry point
name, and a disk file area name.

b) Data for a subroutine may be either
global or transmitted to it by a standard
subroutine calling sequence. A global vari­
able is declared at subroutine compile
time, but no memory locations are as­
signed until the subroutine is loaded into
core.

c) Program execution involves the loading of
subroutines from disk as they are needed.
It is the function of the loaded subroutine
to assign subsequent locations within
memory for whatever additional subrou­
tines and global variable assignments are
required for the program's task.

Based on the above concepts, the DAC-I
monitor was required to provide:

a) A table which contains the location and
size of each subroutine in memory.

b) A table which contains the location and
size of all global variables in memory.

c) The basic codes required to retrieve pro­
grams and data stored in the auxiliary
disk and drum memories.

d) A relocation program which, when given
data in the form of a subroutine in mem­
ory, will relocate the subroutine and as­
sign memory addresses to its global vari­
ables based on the subroutine and global
variable tables mentioned in a) and b).

The basic facility ground rule was that given
essentially the above codes any program written
in NOMAD could then at execution time do its
own storage allocation. The paper by M. Phyl­
lis Cole, Philip H. Dorn, and C. Richard Lewis 1

describes the procedure for storage allocation
(itself written in NOMAD). The method is
basically program subroutine selection at execu­
tion time and it allows a programmer to make
decisions in his programs as to which is the
best method for handling the storage assign­
ment for a given data set at execution time. He
may either keep a large block of data in memory
and pass programs by the data, or keep all his
programs in memory and pass the data by his
programs. In practice, for small data sets, the
programmer keeps all of his program in mem­
ory. As the data set becomes larger, initializa­
tion, computation, and post-processing subrou­
tines are cycled by the data.

With the combined facility of disk program
retrieval by subroutine name and memory stor­
age allocation at execution time, a very useful
feature develops-any alphabetic data can be
viewed as a subroutine name. This permits con­
venient modular expansion of programs.

SYSTEM PERFORMANCE

The system has been in operation eight hours
per day since early 1963. In this time we have
been utilizing extensively the hardware and
software previously outlined.

The paper by F. Krull and J. Foote 4 illus­
trates the combination of computer-controlled
image scanning and man-machine communica­
tion. Where the input film is high contrast and
there are basically no uncertainties, a simple
computer program rapidly solves the problem
of conversion from graphics to binary data.

THE STUDY OF GRAPHICAL MAN-MACHINE COMMUNICATION 349

When uncertainties, such as arise when scan­
ning low contrast film, become the dominant
problem, then the man, as referee, can obtain
control. One can argue that for each uncer­
tainty a program can be written to analyze the
situation and then the man is not needed to aid
the process. The strong point of man-machine
communication via graphic consoles is that for
any given problem, one may now ask which
parts of the problem are easily solved by the
computer and which parts are best solved
heuristically by man. This results in programs
being written which have decision points in
them at which the man at the console can be
asked for advice. Many of the past discussions
of man-machine communication have been
based on the concept of "let the man get to the
computer" so he can directly ask questions of
the computer program. Experience at G MR to
date has been that the payoff from consoles
comes not from asking the computer a question
but assigning the computer a task from which
the response is one of the following: "What is
my next job?" "Here is the answer; what
next?" or, "I don't understand; and here is my
analysis of the situation."

From the standpoint of a laboratory facility,
the system is performing excellently. We are
learning that man and machine can communi­
cate readily via graphical means.

SUMMARY

The software development for the graphical
man-machine communication laboratory has in­
corporated three major departures from con­
ventional higher level language programming:
1) multiprogramming,2) source program stor­
age allocation control, and 3) a disk library of
programs available during program execution.
Each of these programming techniques is es­
sential to the concept of Design Augmented by
Computers. Multiprogramming permits com­
puter programs to be written such that, even
though they work at the man's pace, they
achieve efficient utilization of the computer's
processing unit. Program storage allocation
control allows each program to adjust storage
assignment dynamically as a function of data
needs.

A disk library available at execution time al­
lows a control subroutine to view other subrou-

tines as black boxes which required certain
inputs and produce outputs. The size and name
of the black box does not need to be known at
programming time and, in fact, are data at
execution time, for the control subroutine. This
feature allows continued growth of the design
support programs with no change to control
programs.

The above three software techniques com­
bined with the flexibility of NOMAD, permitted
a fourth major departure from conventional
programming techniques. Ninety percent of
the DAC-I programming system was written
in NOMAD. The trap control system and the
basic subroutine relocation programs were the
major exceptions to the above. With the new
laboratory facilities at GM Research, the proc­
ess of man-machine communication for design
can now be explored with both formal experi­
ments (direct comparisons of methods with
planned testing) and informal experiments
(let's try something to see how it works).

ACKNOWLEDGEMENTS

The DAC-I software system is the product of
many people at the GM Research Laboratories.
The four papel'S (1, 2, 3, 4) associated with
this paper reflects the contributions of their au­
thors. The work on the programming system
was directed by Charles S. Gerrish, and the
batch monitor system was developed under the
guidance of George F. Ryckman. The trap con­
trol system was developed by Floyd Livermore,
and the linkage system to the DAC-I operation
was done by Theodore J. Theodoroff.

Throughout this project Professor Bernard
A. Galler of the University of Michigan has
served as a consultant to the Research Labora­
tories on the development of the DAC-I soft­
ware support program.

REFERENCES

1. COLE, M. P., DORN, P. H., LEWIS, C. R., "Op­
erational Software in a Disc Oriented Sys­
tem," Proceedings of the Fall Joint Com­
puter Conference, San Francisco, California,
October 27-29, 1964, (this issue).

2. HARGREAVES, B., JOYCE, J. D., COLE, G. L.,
et aI., "Image Processing Hardware for a
Man-Machine Graphical Communication

350 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

System", Proceedings of the Fall Joint Com­
puter Conference, San Francisco, California,
October 27-29, 1964, (this issue).

3. ALLEN, T. R., and FOOTE, J. E., "Input/Out­
put Software Capability for a Man-Machine
Communication and Image Processing Sys­
tem," Proceedings of the Fall Joint Com­
puter Conference, San Francisco, Cali­
fornia, October 27-29, 1964, (this issue).

4. KRULL, F. N., and FOOTE, J. E., "A Line
Scanning System Controlled from an On-

Line Console," Proceedings of the Fall Joint
Computer Conference, San Francisco, Cali­
fornia, October 27-29, 1964, (this issue).

5. SUTHERLAND, 1. E., "Sketchpad, A Man­
Machine Communication System," Proceed­
ings of the Spring Joint Computer Confer­
ence, Detroit, Michigan, May 21-23, 1963.

6. PREISS, R. J., "Design Automation Survey­
A Report to the AlEE Membership," AlEE
Winter General Meeting, New York, New
York, January 29-February 3, 1961.

OPERATIONAL SOFTWARE IN A DISK ORIENTED

SYSTEM
M. Phyllis Cole, Philip H. Dorn and C. Richard Lewis

Research Laboratories, General Motors Corporation, Warren, Michigan

1.0 INTRODUCTION

This is one of a series of papers which de­
scribes the General Motors Research Labora­
tories DAC-I (Design Augmented by Com­
puters) System. (1, '2, 4, .5) For a summary of
the overall system objectives and organization,
the reader is referred in particular to the
paper "A Laboratory for the Study of Graph­
ical Man-Machine Communication" by Edwin
L. Jacks.1

In using the DAC-I system, the man at the
console wants to perform the following types
of tasks in solving his problems-

1. Introduce data rapidly and accurately to
the computer.

2. Operate on this data.
3. Observe the results of these operations

and have the ability to modify them
while still in the on-line environment.

4. File the original data and final results
for future references.

To accomplish these tasks requires the inter­
play of the 7960 Special Image Processing
System, * the 7094 Computer Complex, and the
man.

It is the purpose of this paper to discuss the
systems software developed in support of this
interplay.

* The IBM 796'0 Special Image Processing System,
consisting of a graphic console, an image processor, and
a modified data channel, was designed and built by IBM
to specifications provided by GM 2.

351

Requirements of this software system in­
clude:

1. Establishing efficient storage and re­
trieval methods for handling large
numbers of data arrays and subroutines.

2. Creating an environment within the com­
puter which would allow subroutines and
associated data to be brought into mem­
ory, processed, overlayed, filed, etc. based
on the operational denlands TIlade by the
man at the console.

A disk oriented software system (hereafter
referred to as the D-System) has been imple­
mented in order to provide the basic software
support. The objectives of the D-System are
to provide compiler level accessibility to the
new hardware devices and minimize the im­
pact of disk usage on the general programmer.
The D-System provides all of the necessary
subroutines required in using the disk for data
storage and retrieval, for scratch space during
intermediate computation, and for the loading
of subroutines based upon program needs. The
D-System is accessed through a batch monitor
system in order to generate subroutines and
data for storage on disk. Program execution
may be accomplished through the batch moni­
tor or the on-line console.

Establishing an operational computer en­
vironment also required the development of
compilers to satisfy needs for both the obj ect
and system codes which were to be written.
The NOMAD compiler was used extensively

352 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

for central processing unit (CPU) codes and
the MAYBE compiler was developed for 7960
data channel codes. Processors for disk book­
keeping and a complete system for loading and
overlaying subroutines in memory were also
required.

This paper considers first the organization
and maintenance of a disk file and then de­
scribes an operating system based on a disk
with both system and execution time features
detailed. A brief discussion of the on-line D­
System operation is included. Finally, certain
conclusions are drawn based on experience
with a disk-oriented system.

2.0 THE ORGANIZATION AND MAINTE­
NANCE OF A DISK FILE

2.1 Introduction
During 1961, a small disk file was attached

to the computer permitting experiments in
disk file usage. Although the file was both
small and slow, its capacities were sufficient
to allow meaningful simulation of the ultimate
system. When the final D-System (a disk
oriented software system) was being designed,
certain design principles learned during simu­
lation were applied.

It was ascertained that when planning stor­
age allocation for a random access device, the
following design criteria should be followed:

1. An absolute integrity must be maintained
between the data to be stored and the
programs which deal with the data.

2. The programming system shall not im­
pose restrictions on the quantities of data
retrieved from or stored on disk.

3. The system must be free of fixed loca­
tions on the disk file. The optimum is to
provide one fixed track location and ref­
erence all other locations from this one.

4. The design of object time programs
should not be concerned with the manner
in which data is physically stored on
disk.

5. The number and time duration of disk
arm movements to reach a particular
piece of information must be kept to a
minimum even at the cost of inconveni­
ences to the operating system.

6. Efficient disk back-up procedures are
necessary.

In planning the storage allocation, four dif­
ferent types of storage areas were noted. These
were: first, processor areas where subfunc­
tions of the operating system reside; second,
subroutine areas where object time subroutines
are permanently stored; third, data areas; and
fourth, scratch and temporary working areas.
Each of these areas is handled in a unique
manner and the techniques therein involved
will be discussed below.

2.2 Storage of System Processors
A processor is a logical portion of the oper­

ating system which may be called upon to per­
form a unique function. Examples of proc­
essors are the compilers, assembler and a
processor which files subroutines on disk.

Processors* are stored in absolute form.
Filing is handled by a separate non-system
program which blocks relocatable subroutines
into an absolute package. During the filing
process, a dictionary is developed which con­
tains the following information for each proc­
essor:

1. processor name
2. disk location
3. length of processor
4. processor entry point
5. processor loading location

Since both processor storage and retrieval
is by absolute blocks, it may be seen that speed
in loading is a feature of the processors. The
system (using a cylinder reading technique)
loads each processor as an absolute block into
the location specified in the dictionary. Control
is transferred to the entry point as specified by
the processor dictionary. Since no system
processor exceeds the capacity of a disk cylin­
der, no provision has been made for handling
overflow to adjacent cylinders.

2.3 Storage of Subroutines
The disk area reserved for subroutine stor­

age is divided into logical areas with each

* All processors are stored on disk except for the
basic compiler and assembler. Although there is no
logical reason why they could not have been placed on
the disk, as a convenience factor they were left on the
System Mastel' Tape.

OPERATIONAL SOFTWARE IN A DISC-ORIENTED SYSTEM 353

uniquely named area assigned on a project
basis. Each logical area consists of a block of
physically contiguous tracks bounded for min­
imum access time.

A separate dictionary is maintained for each
disk area. Each dictionary entry contains the
following information for each subroutine
wi thin that area:

1. subroutine name

2. disk address of the subroutine

3. length of the subroutine

4. date the subroutine was filed on disk

Subroutines are stored on disk in a blocked,
relocatable binary form. Output from com­
pilers and the assembler is post-processed into
blocked form and then filed in a two record per
track format. Each record contains a pointer
to the following record except the last record
which has a null pointer. When subroutines
are being retrieved, the pointer becomes a
command to the loading routine to access the
next record.

Allocation of a particular location to a sub­
routine is made from a subroutine space as­
signment table. This table contains the
following information for each disk area:

1. area name

2. location of area dictionary

3. next available dictionary track

4. first and next available tracks in the area

5. number of available records in the area

6. next available record in the area.

In addition, the subroutine assignment table
contains the location of a track "pool" to be
used by an area whose basic space allocation
is exhausted. Should this occur, subroutines
enter the "pool". The area limits may be en­
larged during edit time *. Subroutine areas
and their respective indexes are located by
relerencing this table; should it become neces­
sary to redefine any or all areas, only the
assignment table need be changed. The sys­
tem refers to track assignments through the
table; references to absolute disk locations are
not permitted.

* The edit function is explained in Section 2.6 en­
titled, "Disk File Maintenance Procedures".

2.4 PeTmanent Data StoTage
All permanent data is stored in uniquely

numbered files assigned on a project bais. Each
file may contain four different data types
where a data type is defined as one of the four
different record sizes maintained on the disk.
The types are:

type 1: 25 word record~stored 15 records
per track

type 2: 111 word record-stored 4 records
per track

type 3: 229 word record-stored 2 records
per track

type 4: 465 word record-stored 1 record
per track

To establish a data file, the user must indi­
cate how many records of each type his file will
contain *.

A directory table is maintained for each data
file permanently stored on disk. The directory
tables are stored on disk in numeric sequence
beginning with file number 1. The table con­
tains information as to whether this particular
file number has been assigned, and if assigned,
where the first track of each data type may be
located. The location of the first file directory
table is maintained in memory so the operating
system may access the directories quickly.
Given a file number and the number of direc­
tories per track, it is simple arithmetic to
compute the disk address for a file directory
which in turn points to the data file.

Disk space allocation for permanent data is
made. from a table stored on disk. This table
has an entry for each group of uniquely for­
matted tracks.** A group of tracks is called
an area and the entry for each area contains:

1. the first track in the area

2. the currently available track

3. the next available record on the cur­
rently used track

* Space allocations, if not sufficient, may be changed
after the file has been assigned space. This process is
not, however, performed automatically.

** The IBM 1301 requires a strict formatting of any
given cylinder for the size of the records to be main­
tained on the tracks within that cylinder. The file can
be reformatted under program control but this proce­
dure is not generally available to D-System users.

354 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

4. number of available tracks in the area
5. number of available records in the area

System subroutines have been provided to
store and retrieve permanent data. In general,
data files are referred to at execution time as
record N of type M.

2. 5 Scratch Data Storage
A scratch file is available to programmers

for temporary storage of data during execu­
tion. To use the scratch area, a request is
made for n tracks of 465 words to a system
subroutine. Assignment is on a "last-in, first­
out" basis. If the space is available, the sys­
tem returns a key word containing the first
and last track of the area assigned. Any
subsequent storage and retrieval is by record
number with the key being used as a base
address for computation of the physical track
referenced.

When the programmer is finished, he ex­
ecutes a "closing" subroutine and the tracks
which were made available to him will be re­
turned for future assignment.

2.6 Disk File Maintenance Procedures

Because the disk file may have occasional
mechanical, hydraulic or electronic failures, a
back-up procedure was developed to insure
the preservation of the permanently resident
information. Since both data and subroutines
change from day to day, a working procedure
was developed which consists of writing a disk
save tape(s) daily. These areas are the only
disk areas saved. Disk back-up tape (s) are
retained for several days before being released.

Both subroutine and data areas are periodi­
cally edited by separate programs. Editing is
a clean-up procedure; information is physically
moved to designated areas and space made
available by deletions is returned for reassign­
ment.

Subroutine editing is basically the process of
constructing a new area dictionary by omitting
entries for deleted subroutines. ~The sub­
routines are taken off disk and placed on a
scratch tape for temporary holding. At this
point in the edit process any change to the
boundaries of an area may be made. The sub­
routines are then assigned new locations

within the area, the area dictionary is updated
and the subroutines and dictionary written
back onto the disk. At completion of the edit,
all subroutines within an area are sequentially
assigned and remaining space is available for
future changes.

The data editing process is basically similar
to the subroutine edit although the data edit
program has the additional attribute of being
able to operate upon anyone type of data (or
all types if desired) in a given machine run.

Data and subroutine restore programs re­
verse the save procedure and reload the disk
from the last save tape (s). This procedure
normally is used only in the event of maj or ma­
chine failures. A "cold start" procedure in
the event of complete catastrophe includes sub­
routine and data restoration as well as re­
formatting, rewriting of home addresses,
reloading processors and rewriting certain
system control information.

3.0 THE D-SYSTEM

3.1 Introduction
The D-System is a switchbox which ex­

amines the input stream of requests, loads the
appropriate processor and links processors by
passing parameters. A pointer is positioned by
the D-System so that a processor may know
the current position in the input stream. The
D-System is also responsible for collecting
timing information to be used for installation
billing operations.

The basic functional breakdown of the D­
System is outlined in Figure 1 ::' :

Each of these three areas-input, bookkeep­
ing, and execution processing-is described in
succeeding sections.

3.2 Input Processing
Input processing is that set of system func­

tions which results in object programs being

* The execution of the D-System as well as other
systems operated at GM Research is controlled by the
General Monitor Program. The General Monitor de­
cides which system to call in, processes accounting in­
formation, signs tapes on and off the machine, and
provides a means for operator communication to the
programming systems.

OPERATIONAL SOFTWARE IN A DISC-ORIENTED SYSTEM 355
D

SYSTEM

Figure 1. D-System Functions.

placed on the disk. Object programs are placed
in one of two disk areas-either checkout or
scratch, depending on the programmer's re­
quest. Subroutines filed in scratch disappear
at the end of the job while those filed in
checkout remain on disk for approximately one
month.

The input processors are shown diagram­
matically in Figure 2.

3.2.1 The NOMAD Compiler

NOMAD is an algebraic compiler adapted
from the MAD * language to meet the special
needs of this installation. It is a high speed
compiler which permits a wide latitude of gen­
erality in expressions. Since MAD was imple­
mented in a highly modular fashion, there was
little difficulty redefining code generation se­
quences, adding new operators and enlarging
the statement repetoire. Although lVIAll is of
the ALGOL '58 family of languages, it has been
modified considerably since its original design.

The NOMAD dialect developed at GM Re­
search Laboratories has four basic areas of
difference from MAD:

1. additional operators
2. new variable types
3. new relocation scheme
4. real-time statements

Thirteen new operators were added to the
language to permit a full set of logical opera­
tions. Of special note are three bit detection
operators that seek the first, last, and number
of "1" bits in a variable, and a set of address/

* The Michigan Algorithmic Decoder (MAD) is an
algebraic compiler based upon ALGOL '58. It was
originally developed by Arden, Galler, and Graham of
the University of Michigan Computing Center for use
on the IBM 704. The language and compiler have been
updated .through a series of revisions for the 709 and
7090. The NOMAD compiler springs from the earliest
7090 version circa 1961.

decrement packing and unpacking operators.
These operators were especially designed to
permit coding of system subroutines in the
NOMAD language.

A new class of variables, the GLOBAL
V ARI ABLE" was introduced. A global vari­
able is defined as a variable, single or array,
to which storage is not assigned at compile
time. Unlike the COMMON variables in a
FORTRAN program, global variables not used
in a program do not have to be declared merely
for the information of the loader. No special
ordering of global variable declarations is
necessary.

For each global variable used in a NOMAD
program, the compiler generates an entry into
a list attached to the program card informa­
tion **. Each occurrence of a global variable
results in special relocation bits being pro­
duced to indicate that one or more fields of this
instruction are global. Additional bits indicate
the slot in the list to which the global variable
is assigned. If the global variable is sub­
scripted, the numeric subscript is placed in the
field normally assigned to the address.

The relocation scheme is based on a variable
number or bits assigned to each instruction
type (e.g., absolute, relocatable address with
absolute decrement, etc.). The most frequently
used class of instruction is described by one
bit, the second most frequent by two bits, the
next most frequent by three bits, etc. The
first "0" bit reached acts as a delimiter. Com­
parisons made to other schemes have shown
non-trivial operating efficiencies as well as
considerable core and disk space savings.

The real time statements within the NOMAD
compiler seek to acknowledge the presence of
man in the program loop. Since a congole for
display of graphical information is part of the
hardware configuration, system users output
data onto the console display screen rather
than the system output tape. Because the

** A NOMAD subroutine contains on its program
card(s) data relating to the global variable(s), the
entry point (s), the program length and the number of
program cards. When the subroutine is actually filed
on disk, additional information is added during the
blocking process such as the program's checksum and
the length of the transfer vector.

356 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

NOMAD
STATEMENTS

NOMAD OBJECT

SUBROUTINES

MAYBE
STATEMENTS

FAP
INSTRUCTIONS

FAP
INSTRUCTIONS

fAP OBaECT
SUBROUTINES

NOMAD OB.JECT
SUBROUTI NES

NOMAD OBJECT
SUBROUTINES

COMBINE
DESCRIPTIONS

NOMAD OBJECT

SUBROUTINES

Figure 2. D-System Input PrQcessors.

NOMAD statement for writing tape output has
the form:

PRINT FORMAT F, List
where F" is the name of a format and List is
the data to be written, it is appropriate and
logical to give the statement:

DISPLAY FORMAT F, List
for displaying information on a screen. A
similar statement exists for production of hard
copy output through the recording CRT:

RECORD FORMAT F, List
where F and List have the same meanings as
above.

These statements represent steps toward
development of a language which recognizes
parallel processing in a large scale computer.
Since the IBM 7094 has the capability to drive
multiple channels in parallel, it is essential to

permit the direct use of the full capabilities of
the machine at the source language level.

Other features of NOMAD which contribute
to its selection for use in the D-System are
more conventional but still important. NO­
MAD permits a completely general subscrip­
tion expression, a generalized iteration state­
ment, multiple entries and exits from
subroutines, the manipulation of statement
labels, the use of internal procedures, nested
conditional statements and the use of certain
elementary push down list facilities.

3.2.2 The MAYBE Compiler
The I/O devices of the 7960 Image Proces­

sing System are connected to the central com­
puter through a modified 7909 data channel.
The data channel is capable of performing
simple iteration loops, full and partial word

OPERATIONAL SOFTWARE IN A DISC-ORIENTED SYSTEM Rn7

substitution and byte testing as well as driving
I/O devices. It cannot, however, add, sub­
tract, shift or mask. The data channel can be
viewed as a special purpose processor attached
to the 7094 memory and capable of running in
parallel with· the 7094 central processing unit.
It was necessary that means be provided to
program this special purpose computer in a
higher level language.

The MA YBE compiler was designed and
implemented to provide the instructions, com­
mands and orders for operation of the data
channel and 7960 I/O devices. In addition,
MAYBE automatically produces the necessary
system linkages to process the data channel
interrupts and central computer traps. Figure
3 shows the relationships among the computer,
the data channel and the 7960 system.

Each subroutine generated by MAYBE con­
sists of prologue instructions and a main body
of data channel commands and orders. Stripped
of its frills, the MAYBE compiler is a macro­
generator which feeds symbolic input to the
standard assembly program. MAYBE was
coded in NOMAD and utilizes standard system
I/O routines.

The MA YBE language includes approxi­
mately 75 declarations and statements divided
into the following classes:

1. storage allocation declarations
2. replacement statements
3. iteration statements
4. control and linking statements
5. device manipulation statements

MA YBE declarations are essentially the
same ones found in the NOMAD compiler and
provide a means to utili~e local and global
storage for data variables. The replacement

I 70.4 CTItAP:J DATA eNTER. RUPT
COMPUTER CHANNEL

ITART CONTROL

COMPILER

NO .. AD
IIIIITRUCTIONI

COMPILER

MAYSE
COMMANDI

Figure 3. 7909 Relationships.

COMPILER

MAYSE
ORDER I

statements allow substitution of data .variables
even when they are positioned in non-standard
fields *. Iteration statements permit loops
within the data channel and testing of the loop
control index. Control statements permit the
transfer of control within MAYBE subroutines
or externally to other MAYBE or NOMAD
subroutines. Device manipulation statements
permit the starting, continuance and stopping
of I/O devices attached to the 7960 system.

Linkages generated by the MAYBE compiler
permit MA YBE subroutines to interrupt op­
erations and transfer control to NOMAD
(main frame) subroutines. In this way, a
nesting of alternate MAYBE and NOMAD
subroutines is achieved. The maximum depth
of this nesting operation is the programmer's
ability to remember where he is; there is no
system specified limit. At each step, the data
channel and the main frame will be jointly
interrupted and their respective status saved.
Thus, no matter how deep the nesting, the ma­
chine status will be "restored upon return to
each higher level.

MAYBE is essentially a compiler for use .of
system programmers. Most users operate de­
vices through NOMAD statements (such as
DISPLAY or RECORD FORr-,IAT). Sub­
routines coded in MA YBE provide the I/O
commands to drive the requested device.

3.2.3 The Combine Processor
The COMBINE processor permits the D­

System user to reduce a set of NOMAD object
level srib!outines into one physical subroutine.
This installation's programming standards
emphasize subroutinizing as a checkout tech­
nique. Advantages may be gained by using a
combined package of subroutines since the
number. of disk accesses at load time is sharply
reduced as ar"e the bookkeeping tasks during
subroutine execution.

In addition to producing one relocatable sub­
routine from many, the COMBINE processor
has the following features: . ~

1. Global variables used for communication
between the set of subroutines to be com-

* Instruction fields for 7966' commands and orders
vary from the address and decrement fields nprmal to
7094 instructions. Provisions had to be made to handle
fields as small as three bits.

358 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

bined may be drawn inside the package
and assigned local storage or left as ex­
ternal global variables at the user's op­
tion.

2. A merged external transfer vector is
produced for the combined package. In­
ternal connections between the set of
subroutines involved are handled through
an internal transfer vector. References
between one subroutine of the set and
another within the set do not produce an
external transfer vector entry.

3. Any entry point or set of entry points
associated with the subroutines of the
set may be retained, discarded or re­
named at the user's option. A discarded
entry point has no external meaning and
does not exist outside the scope of the
set.

Since all D-System processors ha ve them­
selves been through COMBINE, there remains
only the single merged transfer vector to be
set during processor loading.

3.2.4 The Assembly Program
A standard 7094 assembly program, F Ap3,

has been built into the D-System. Although
it is available for general use, programmers
are discouraged from using it except for highly
special cases where extreme speed or efficiency
is required, or for special purpose utility
routines (such as number conversion and in­
put/output). The bulk of the D-System and
the processors, as well as over 957r of the ap­
plications programs, are coded in NOMAD.

3.3 The Bookkeeping Processors
The bookkeeping processors exist for the

purpose of allowing the programmers to add,
replace, and delete subroutines within the disk
area to which their project has been assigned.
Since the system permits retention of many
subroutines with the same name but allows
only one version to be in any area at any time,
users' are responsible for having the right ver­
sion in the right place at the right time.

The following bookkeeping processors are
available in the D-System:

1. Move
2. Delete

3. Move and Delete

4. List Areas

Subroutines are initially filed in either check­
out or scratch. Programmers generally leave
new subroutines in checkout until debugging
is completed. A facility exists for overriding
normal calls for this particular subroutine * so
that the new version may be debugged as
either an, isolated unit or within the total op­
erating environment. Subroutines may re­
main in checkout for one month after they are
compiled. After that date, if not moved from
checkout, they will be discarded at edit time.
MOVE is the programmer's means of sending
a subroutine to a permanent area.

DELETE allows the programmer to take a
version of a subroutine off the disk when it
has outlived its usefulness.

MOVE AND DELETE performs the dual
function of moving a subroutine to a new area
and deleting it from the old area.

All these processing functions do not physi­
cally move the subroutine involved but merely
make entries (or delete entries) in the sub­
routine dictionary for the area under consid­
eration. Actual moving is done at edit time.
Should a programmer move a subroutine to an
area which already has a same named sub­
routine on file, the new version will automati­
cally override the old version.

LIST AREAS permits a programmer to ob­
tain a full listing of all subroutines in a speci­
fied area (s) along with their lengths and filing
date. The physical disk address is also printed
out at this time **.

3.4 The Execution Phase
D-System exception philosophy diverges

from execution logic in most systems. Taking
a standard FORTRAN batch processing moni-

* This is the USE processor described in the section
on subroutine execution. (Section 3.4.2)

** While printing the actual location of a subroutine
may seem to violate the system criteria' of not allowing
a user to know the physical location of anything on the
disk, it actually is virtually useless information since
the physical layout of an area will change at each edit
pass. Those responsible for the correct operation of the
hardware need this information occasionally after a
machine failure.

OPERATIONAL SOFTWARE IN A DISC-ORIENTED SYSTEM 359

tor for comparison, the following major differ­
ences may be pointed out:

FORTRAN
SYSTEM

Subroutine loaded
from tape
Core loads

Ping-pong and
overlay
COMMON vari­
ables loader as­
signed

3.4.1 Dynamic Loading

D-SYSTEM
Subroutines loaded
from disk
One subroutine loaded
at a time
Continuously chang­
ing core configuration
Global variables not
assigned until needed

While grouping subroutines in a core load is
reasonably efficient when using magnetic tape
as an input medium, this' procedure becomes
wasteful when a random access on-line device
is available. Subroutines can be loaded indi­
vidually from disk as they are needed without
the burden of tape spacing and rewind time.
Variables placed in COMMON in a FORTRAN
system are assigned locations at compile time.
D-System global variables are assigned loca­
tions at execute time when the actual core
availability determines the location assigned.
This floating quality of a global variabie is es­
sential to maintaining a flexible core arrange­
ment.

Since multiple versions of any subroutine
may exist, the D-System loader must receive a
specification of the area in which the sub­
routine is located. When a global variable is
first referenced by a subroutine, the dimension
of the variable is needed to assign space. A
D-System programmer defines the scope of
his program by supplying area information for
his subroutines and dimensions for his global
variables. The D-System performs the func­
tion of an interface between the programmer
and the loader to initiate execution. The sys­
tem accepts the name' and area of one sub­
routine and the dimensions of a set of global
variables and passes this information to the
loader as "starter" parameters. Execution
commences with one "starter" subroutine
which may be located anywhere on disk. The
disk areas of other subroutines and the dimen­
sions of other global variables are dynamically
passed to the loader as execution proceeds.

When a program is in execution, the status
of individual subroutines may vary as indicated
in Figure 4. The status of a given subroutine
is one of the following:

1. Undefined-This status is included for
completeness and indicates the basic state
of all subroutines on the disk.

2. Not In-The subroutine has been lo­
cated on disk and may be loaded as
needed.

3. Active-Whenever a subroutine is ex­
ecuted for the first time, it is loaded from
disk and becomes "Active".

4. Inactive-A subroutine declared "Inac­
tive" by the programmer. remains in core
in anticipation of later use. However, if
additional core storage is required, it is
returned to "Not In" status making the
core location which it occupied available.

When subroutines have served their pur­
pose, they are declared "Out" and return to
undefined status.

The status of global variables may vary as
shown in Figure 5. A global variable is as­
signed. storage when the first subroutine which
references it is loaded from disk. The storage
is released when all subroutines referencing
the global variables are declared "Out".

A vailability of core space is maintained by
the loader as subroutines and global variables
change status. Therefore, the functions of
the loader may be summarized as follows:

1. Change status of subroutines as directed
by the executing program.

DECLAM IUIIIOUTIM ·OUT"

~l ---..-uUII.PIIIID

_ ED-·.or III· ---·ACTlyE·---_p ·"ACTIVE •

liVE
OleIC
Aah

DECLAII.
1.1l0UT1ll.

IIIACTIVI

ADDITIO.AL COlIC ITOIIAH _QUillED

Figure 4. Subroutine Status.

360 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

liVE
DIIIENIION

'IRST SUIIROUTINE IUIIIDUTINE THAT
ENCOUNTERED WHICH RUERENcn THE
RUEIIENcn ILOIAL ILOIAL VARIABLE
VARIABLE. OI!CLARED OUT.

Figure 5. Global Variable Status.

2. Change status of global variables as di­
rected by the executing program.

3. Maintain storage availability.

3.4.2 Dynamic Subroutine Definition
A D-System feature allows the checkout of

a new version of a subroutine without disturb­
ing the production execution of a previous ver­
sion of that subroutine. This is done by placing
the newer version in the scratch or checkout
area. The production programs anticipate
finding the subroutine in a permanent storage
area. However, the loader may override their
instructions and find the subroutine from
scratch or checkout. This is accomplished by
means of the USE processor which transmits
a user's request to the loader. All requests to
load this subroutine will be trapped and the
version from scratch or checkout loaded instead
of the production version.

3.4.3 Error Procedures
The D-System error package operates in one

of two modes. The programmer may elect to
monitor all software error conditions and take
corrective action, or he may allow the error
package to perform standard procedures.
Four classes of error conditions are monitored
in the error package:

1. arithmetic underflow/overflow in float-
ing point operations

2. illegal subroutine parameters

3. I/O format and data errors
4. loading errors

The standard action of the error package is
to reset and continue on underflow/overflow
errors and to emit a diagnostic and a dump of
the programmer's subroutine and data areas
in all other situations *.

* The system is not normally dumped.

When the programmer is monitoring the
error conditions, he may reenter the error
package to obtain the following actions:

1. reset and continue on underflow/overflow
2. reset and continue on loading errors

caused by insufficient core storage avail­
ability. Prior to re-entering the error
package, the programmer must make
additional core storage available by re­
leasing space taken by either global vari­
ables or subroutines. If the same loading
error occurs a second time, the execution
will be terminated by a dump.

3. job termination with a memory dump of
either the programmer's core area or all
of core.

Since core is constantly changing -during a
D-System run, a full or selective core dump
is always accompanied by a core map. The
map contains the following information:

1. the name, location, length and status of
all defined global variables.

2. the name, location, entry points, length
and status of all defined subroutines.

3. the location and length of remaining
available core space.

3.4.4 Data Handling

Data that is to be stored permanently is al­
ways in array form where word one of the
array is the data name and word two contains
the length of the array.

The data name is encoded to contain' a file
number, a key to which record within that file
is being referenced and a record revision num­
ber. Upon the first reference to a file, the di­
rectory table * * is brought into memory and is
used with the data name to compute the track
and record address for the data request.

Should a data array exceed the record length
of the indicated data type, an additional rec­
ord is assigned and chained to the base record
indicated by the data name.

At the beginning of each record is a control
word, CW, containing three flags defined as
follows:

flag 1 == 1 if -revision has been filed, == 0
otherwise

** The directory table is described in section 2.4 deal­
ing with data storage assignment.

OPERATIONAL SOFTWARE IN A DISC-ORIENTED SYSTEM 361

flag 2 = 1 if data has been filed, = 0 other­
wise

flag 3 = 1 if data has been deleted, = 0
otherwise

An example will best illustrate the control
and chaining techniques used. Assume a data
array, TORQ, 129 words long. Assume also
the record revision number is O. The first two
words of TORQ are as follows:

Assume the directory table for this file to be:

The encoded name in TORQ (0) references
the fifth record of data type 2 in file #19. Data
type 2 (stored 111 words per record, 4 records
per track) begins on track 1280 for this file.
Therefore, TORQ (0) points to record 1 of
track 1281. Since the length of the array is
greater than 111 words, the first record will
be chained, as shown on the next page, to an
additional record taken from a pool of avail­
able records.

If it is desired to store a revised version of
the array TORQ at the same time retaining
the original data, a slightly different procedure
is followed. First, the data stored on track
1281, record 1, is moved and the original rec­
ord of 106 words on track 1281 is chained to
the new location. The remaining 23 words on
pool track 1682, record 2, do not move. The
revised data is stored in a newly assigned rec­
ord and another chain in record 1, track 1281
is set to point to the location of the revised
data.

The name given in TORQ (0) identifies re­
vision number 1 of the data. As before, rec­
ord 1 of track 1281 is to be referenced.

Under this addressing scheme, the program­
mer need only give the name of a data array
to retrieve it-the length of the array is stored
in the array itself and wilf govern the number
of words transmitted from the disk.

4.0 ON-LINE EXECUTION

In addition to execution within the batch
monitor system, a D-system program can be
executed on-line from the graphic console. In
this operation the batch monitor is restricted
to half core, and the other half of core is made
available to on-line operation. A simplified

TORQ (0) s OOO~TT" FlL' NU •••• "

~ DATA TYPE 2

RECORD NUMBER !5

RECORD REVISION NUMBER 0

TORQ m ~ It.
Figure 6. Data Name Encoding.

system exists for on-line execution to act as an
interface between the man at the console and a
slightly modified D-system loader. iThe man
at the console indicates to the system the name
and disk area of the subroutine which initiates
execution.

While there is no difference in basic philos­
ophy between batch monitor and on-line execu­
tion, implementation is quite different since
tapes are not used directly when operating on­
line. Graphical output is used whenever pos­
sible to replace normal output tape functions.
When printed output is required, as in produc­
ing core dumps, the information is placed on
the disk and inserted in the output stream of
the batch monitor system between jobs. The
on-line program has the ability to insert jobs
into the batch monitor system via the disk. A
circular file is used to pass data to these jobs.
The program in execution must also use the
disk rather than tape for scratch space.

5.0 CONCLUSIONS

Our experience indicates it is feasible to op­
erate from a disk and gain rapid access to
large amounts of information, thus attaining
considerable on-line capability. To obtain this
on-line capability, users must pay a penalty in
several areas. Core memory space must be re­
served for an in-memory loading and reloca­
tion routine. Machine time must be granted
for disk bookkeeping and editing functions.

DISK TA8LE FOR FILE -II

DATA IEIINNINI N_ROP
TYPE TRACK RECORDS R!SERVED

0010 2!5

2 1210 10

2.80 12

4 8800

Figure 7. File Directory Table.

362 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

TRACK 1281

RECORD I RECORD 2

Figure 8. Data Track Layout.

Compatibility with other installations is com­
pletely lost.

In return for this investment, the system
allows access to an enormous library of
routines without having to deal with an ob­
ject level deck. Large quantities of data are
stored on-line and may be added to, modified,
deleted or used with no difficulty. Both sub­
routines and data are always available; run
preparation time is sharply reduced.

REFERENCES

1. JACKS, E. L., "A Laboratory for the Study
of Graphical Man-Machine Communica­
tion," Proceedings Fall Joint Computer
Conference, San Francisco, California,
Oct., 1964, (this volume).

2. HARGREAVES, B., JOYCE, J. D., COLE, G. L.,
Foss, E. D., GRAY, R. G., SHARP, E. M.,
SIPPEL, R. J., SPELLMAN, T. M., THORPE,

TRACK 1281
RECORD 1

TRACK. 1884

RECOIU) I

TO.Q(~· Qor~

TORQ (I). 155

FI LE NUMBER II

DATA TYPE 2

RECORD NUMBER 5

REVISION NUMBER I

Figure 9. Encoded Revision Name.

R. A., "Image Processing Hardware for a
Man-Machine Graphic Communication Sys­
tem," Proceedings Fall Joint Computer
Conference, San Francisco, California,
Oct., 1964, (this volume).

3. IBM 7090/7094 Programming Systems
FORTRAN II Assembly Program (FAP)
IBM Form C28-6235-2.

4. KRULL, F. N., FOOTE, J. E., "A Line Scan­
ning System Controlled From an On-Line
Console," Proceedings Fall Joint Computer
Conference, San Francisco, California,
Oct. 1964, (this volume).

5. ALLEN, T. R., FOOTE, J. E., "Input/Output
Software Capability For a Man-Machine
Communication and Image Processing Sys­
tem," Proceedings Fall Joint Computer
Conference, San Francisco, California,
Oct. 1964, (this volume).

RECORD 4

RI!COIID 4

108 WORD8) ~
Of DATA > li:J

Figure 10. Revision Track Layout.

IMAGE PROCESSING HARDWARE FOR

A MAN-M,ACHINE GRAPHICAL COMMUNICATION

SYSTEM
Barrett Hargreaves, John D. Joyce and George L. Cole

Research Laboratories, General Motors Corporation,
TVarren, Michigan

and
Ernest D. Foss, Richard G. Gray, Elmer M. Sharp, Robert J. Sippel, Thomas M. Spellman and

Robert A. Thorpe
Data Systems Division, International Business Machines Corporation,

Kingston, New York

INTRODUCTION

The General Motors Research Laboratories
(G MR) obtained the IBlVI 7960 Special Image
Processing System in order to provide a labora­
tory for the study of graphic data processing
and related man-machine communication prob­
lems. The IBM 7960, designed and built by the
IBM Data Systems Division to specifications
provided by GMR, consists of:

a) A graphic console which includes a dis­
play tube, control buttons and lights, a
card reader, an alphanumeric keyboard
and a position indicating pencil.

b) An image processor which permits com­
puter-controlled scanning of film images
and computer-controlled recording on
35mm film.

This paper is divided into two parts. Part I,
written by the IBM authors, describes the de­
sign of the special image processing components
and the integration of these components into
the system. The main functional requirements
for these components are computer compatible
image generation speeds and high image qual­
ity. The design shows how the diverse technol-

363

ogies of analog circuits, cathode ray tubes,
optics and film processing were successfully
combined to provide a new type of image proc­
essing system.

Part II, written by the GM authors, is a re­
view of GM's experience with the hardware as
a component in the General Motors Research
Laboratories' DAC-I (Design Augmented by
Computers) System. Other papers in this
series (1, 2, 3, 4) cover various aspects of this
system.

The hardware is a working model of auxil­
iary computer equipment for designers. Pre­
viously, experiments have been conducted on
individual components of equipment such as
man-machine consoles or light pens, or image
digitizers or image recorders or plotters. These
experiments have pointed out possibilities for
future developments in computer-aided design
equipment. Now, all the necessary hardware
components have been developed and put to use
as a complete DAC-I hardware system.

In addition to having demonstrated the capa­
bilities of this equipment for man-machine re­
lationships in design experiments during the

364 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

past one and one-half years, GM Research has
created and used extensively new types of pro­
grams that both improve the effectiveness of
the hardware by calibration and evaluate and
display the status of the hardware for the user
or maintenance engineer. One test program is
described briefly as an example.

PART I-ENGINEERING DESIGN

FUNCTIONAL DESCRIPTION

A block diagram of the 7960 Special Image
Processing System is shown in Figure 1-1. The
attachment of this system to the central proc­
essing complex is through data-channel logic.
In relation to the central processing system, the
Special Image Processing System appears al­
most identical with any of the other data chan­
nels which may be attached to the system. In
fact, the special data channel is an IBM 7909
Data Channel, modified slightly to make it bet­
ter suited to the particular tempo of data flow
that exists with this system.

The 7960 system comprises three basic units.
The display adapter unit performs such func­
tions as control of the basic system, control unit
selection, and digital-to-analog conversion.

TAPES II
CARDS

PRlNTERI
_______ ...1

Figure 1-1. System Block Diagram.

I
I
I
I
I
I
I
I
I

The image processor provides for the input
and output of data in graphic form. The unit
contains a CRT photo recorder, projectors, CRT
photo scanner, an input camera (for photo­
graphing drawings and documents), and rapid
film-processing equipment. (Figures 1-2 and
1-3) .

The graphic console is the primary system
control point (Figure 1-4). It contains a CRT
display, graphic pencil input, alphanumeric in­
put from keys and punched cards, special func~
tion inputs from keys, and status and program
status indicators. Information may be entered
or modified in the system through the use of the
graphic pencil, the program control keys, and
alpha-numeric keys, or the card input. The
results of calculations are displayed on the
cathode ray tube or indicated on the status
lights. Detailed descriptions of each of these
units follow.

Display Adapter Unit

The display adapter unit controls the trans­
mission of data, unit control information, and
unit status information, and the sequencing and
synchronizing of the various units in the sys­
tem. In addition, digital data received from

Figure 1-2. Image Processor Unit.

MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 365

Figure 1-3. Image Processor Unit.

computer storage is formatted for deflection
commands for the CRT devices.

The display adapter unit and the data chan­
nel recognize five states that may exist. Four
standard commands (control, write, read, and
sem~e), perform all data movements in the sys­
tem. These commands serve to transfer data in
6-bit bytes, which contain the encoded informa­
tion associated with the. operation to be per­
formed. The fifth state, an interrupt signal, is
used to notify the data channel when operator
action requires a branch in the program.

Image Processor
The image processor provides the input and

output of data in graphic form. The unit con­
tains two photographic-film transport units
which are similar iIi operation but which differ
in the functions that they perform. For con­
venience, they. are designated transport A and
transport B. Figure 1-5 is a simplified repre­
sentation of the film transport and optical sys­
tem.

Transport A:

a. Exposes film from a high-resolution re­
cording cathode-ray tube.

b. Exposes film from a paper input station.
c. Processes the film (develops, fixes, wash­

es, and dries).
d. Scans processed film for computer input

at the read station using a high-resolution
scanning CRT.

e. Projects the processed film from the read
station to a 20 x 22-inch rear-projection
screen located at the front of the unit.

Transport B:

a. Exposes film from the record CRT.
b. Processes the exposed film.
c. Projects processed film.

Both transports can be operated independent­
ly and simultaneously, within the limits im­
posed by the optical and shared data paths for
the CRT's. For example, exposing film from
the record CRT involves a mirror which directs
the image to the selected film transport; there­
fore, only one film may be exposed at a time.

Image Input
The source document for an image-processing

design system is normally graphic information
on paper. The paper documents will include
engineering drawings, sketches, or graphs

Figure 1-4. Graphic Console Unit.

366 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

which must be converted by a digitizing process
into a form acceptable to the computer. In the
7960 System, paper documents are photo­
gra phed on 35mm film and the film is used as
the media for the image input process, as shown
in Figure 1-5.

Film was chosen as the media to be scanned
because of the need of being capable of process­
ing a range of paper sizes and image qualities.
The reduction of various document sizes to a
standard image size for scanning permits high­
er scanning speeds and the ability to control
image quality.

Paper documents up to 22 inches square are
reduced to a 1.2-inch square on sprocketless
35mm film by the paper input camera. To ex­
pose the paper it is positioned in the paper­
input drawer and held flat by means of a
vacuum. An array of eight flood lamps il­
luminates the paper. The intensity of the
illumination is under operator control and
exposure can be varied to adjust for differences
in image density and contrast on the paper. A
paper-input shutter provides a timed exposure.

The use of 35mm silver film as the image in­
put media requires an on-line-computer-con-

r-
I
I
I
I
I

~
/~I ,I __ .. RROII

--~ I
I
I

,/ SCAHCRr

\7
Figure 1-5. Image Processor Schematic.

trolled, rapid-film processor so that the exposed
film can be developed for immediate scanning.
A three-station cup application process was
chosen to provide an image with uniform den­
sity, high-image stability and a resolution com­
parable to that obtained by hand-processing
methods.

The processed film image is digitized under
computer control by a flying-spot, CRT scanner
(Figure 1-5). A CRT scanner was chosen for
the reductlon of graphic data to digital compu­
ter data because of the CRT scanner's compu­
ter-compatible speeds and flexibility. The CRT
beam can be scanned over the 1.2-inch square
film image area under program control. Light
from the CR Tpasses through the film and is
intensity-modulated by the dark and light areas
of the image. The modulated light is detected
by a photo-multiplier and the amplitude-modu­
lated signal is converted to digital information.

The primary considerations in the design of
the scanner were high scanning speed and ac­
curacy. Accuracy includes both the reliability
of detected data and the high relative positional
stability over the period that the image is being
scanned. The CRT beam is moved from point
to point over the image by vectors composed of
straight-line segments of varying length. This
method of beam positioning is called an end­
point vector method because, regardless of the
length or direction of a vector, only the new
end-point must be specified. This results in
minimum computer data to control the scanning
vector.

The data required to draw one vector is given
by the computer in 12 bits for X position and
12 bits for Y position. These digital values are
converted to analog voltages which determine
the deflection current applied to the deflection
yoke of the CRT. The scanning beam can be po­
sitioned over 4096 x 4096 addressable positions.
An effective increase in positional resolution of
the scanner is obtained by the use of a constant­
time-scan vector system. In the course of a
vector, the light passing through the film inter­
cepts a line or lines of the image contained in
the frame. Each line interception is sensed by
the PMT and is called a strike. With a constant
time vector system, it is possible to divide a
vector into time segments which can be related
to position. A strike occurring during a par-

MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 367

ticular time segment can be related to the posi­
tion on the image corresponding to the position
of the scanning vector at that time. Scanning
response resolution to a fractional part of the
vector length can be obtained by this method.

In the scanner, the time required to draw a
vector is either 32 or 256 usec. The 32-usec­
scan-vector time is used for short vectors; the
256-usec-time for long vectors. 'To accommo­
date a wide range of images with varying
image density, contrast and line widths, it is
necessary to provide program controlled
scanner detection sensitivity. The detection
threshold of the strikes or hits can be varied
by commands so that optimum detection sen­
sitivity can be selected by the program.

Image Output
After an image is processed by the computer

program and modified and verified by the op­
erator at the graphic console, it is frequently
necessary to produce a permanent output docu­
ment of the processed image. Film is used for
the output image media, as for the input
media, because of its compatibility with com­
puter speeds, flexibility of use, and high image
quality.

CR T recording on silver film permits images
to be generated by computer control at com­
puter-data-channel speeds. The CRT used for
output image recording is similar to the type
used for input image scanning. As in the
scanner, a CRT image is formed by vectors
drawn on the CRT screen. The vector trace is
visible when the beam is unblanked, in order
tha t the beam trace can be recorded on the
film. When the beam is blanked, the trace is
not visible and the beam can be positioned over
the image without exposing the film. An
imag~for example, a drawing-is divided
into straight line segments. Core storage
contains the· X and Y coordinates of the end
point of each vector. Vectors may vary in
length from the very' short traces required to
form a smooth arc to longer traces which are
used for straight line segments of the drawing.

The deflection circuits used for CRT record­
ingare the same as those used for CRT scan­
ning and graphic console display. Therefore,
two fixed vector times are available for image
recording : 32-usec vector time, generally used

for drawing short vectors, and 256 usec gen­
erally used for long vectors. Four vector line
widths are selectable: basic, 2x basic, 4x basic
and 6x basic. A constant vector time system
for recording results in a beam velocity that
varies with vector length. If not compen­
sated, this would result in varying film ex­
posure and therefore, varying density on the
recorded image. To provide even exposure for
all vector lengths and vector widths, dynamic
intensity control is used. This analog circuit
provides continuous compensation for beam
speed and line width.

Other analog circuit corrections must be
used to obtain a hIgh quality, high resolution,
linear image on film. Continuous beam focus
compensation is required to maintain a per­
fectly focused beam over the CRT face. The
flat screens of the record CRT and scan CRT
require focus compensation that is a maximum
when the beam is deflected to the edges of the
screen, and follows a parabolic function which
gradually diminishes to zero compensation
when the beam is at the center of the screen.

The X and Y signals, which cause beam de­
flection at the record and scan CRT's must be
corrected to prevent "pin cushion" effect. This
effect is inherent in fiat CRT screens and
causes the sides of a square to become concave
arcs and the overall area to be enlarged. An
analog pin cushion corrector is used to modify
the deflection current to make the beam posi­
tion a linear function of the angular position
of the beam.

The output image is exposed to film at the
expose station of either Transport A or B of
the CRT recorder. The film is pulled through
the expose station in one-frame increments,
and is exposed to an image from the record
CRT as for the paper input. The exposed film
is accumulated in a storage loop until a suffi­
cient quantity of film is available for rapid
processing. A loop .of film is maintained in
front of the expose station so that the frame
can be quickly pulled down by the drive mech­
anism. The processing of the exposed film is
identical to that which occurs after paper in­
put exposure.

After the output image is processed, it may
be immediately viewed by the operator by pro-

368 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

jecting the film image onto a 20-inch by 22-
inch rear projection screen (See Figure 1-5).
At the projection station the film may be ad­
vanced or backspaced one frame at a time
under computer control or advanced or back­
spaced incrementally under operator control.
By utilizing both of the film transports, each
with a projection station capable of projecting
a film image onto the common projection
screen, it is possible to compare two images or
to produce 3-dimensional effects on the screen.

The large screen proj ector permits the op­
erator to study the output image off line from
the computer. The image is larger and of
higher quality than can be obtained on the
graphic console and the image can be studied
and compared with drawings or other graphic
console images.

Graphic Console
The graphic console (See Figure 1-4) pro­

vides primary system control. The man-ma­
chine - communication components of the
graphic console are:

1. A 10-inch-square CRT display surface,
and a position-indicating pencil.

2. Thirty-six program-status lights (with a
message overlay) and 36 program con­
trol keys.

3. An alphanumeric keyboard.
4. A card reader.

The 10-inch-square display surface is a CRT
display with a phosphor coating designed to
control flicker and improve viewing comfort.
As with the scanner and recorder, the display
is created by having the computer specify the
end points of the vector to be drawn. The dy­
namic CRT display utilizes a transparent con­
ductive screen with an impressed voltage
gradient and a voltage-pickup position. pencil
to aid in operator modification of the displayed
image. Basically, the data read under pro­
gram control notifies the tracking routine
whether the pencil position is to the left or
right and above or below a particular (X,Y)
position.

Thirty-six program control keys are pro­
vided for use in addition to the input pencil.
The function of a particular program control
key is assigned by the program and can be

changed from program to program. Replace­
able overlays (See Figure 1-6) are used to
identify the function of each key for each
application. The descriptive labels on the
overlay can be illuminated by the program­
status indicators which are also under program
control. An alphanumeric keyboard, consist­
ing of 36 keys arranged in a 6-by-6 key matrix
pattern enables the operator to enter data at
the console. When the keyboard is operated
in conjunction with an upper and lower case
switch, alphabetic, numeric and special char­
acter codes can be generated. There is, in
addition, a manually-fed, card-reader input for
the entry of limited amounts of data.

The code generated by either the keyboard
or the card reader can be interpreted by the
program as desired, giving additional flexi­
bility to these devices.

ENGINEERING DESCRIPTION

Film Transport Control
A film transport consists of the following

units (Figure 1-7) :
1. A film supply cassette and takeup cas­

sette.
2. Drive motors, clutches, film guides and

other controls that move the film from
the supply cassette.

3. An expose station.
4. A - process station with its associated

processor - applicator - elevating mecha­
nism.

5. A read station for projection or scan­
ning.

Figure 1-6. View of Graphic Console Overlay.

MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 369

FILM PATH

FEEOLOOP I
". ",--------.-L---.J - ~E

EXPOSE _

STATION

I
STORAGE LOOP I

1
PROCESS
STATION

_ TAKE-UP
CASSETTE

~ READ STATION

- STORAGE LOOP 2

Figure 1-7. Film Transport.

Film is fed from a supply cassette capable of
holding 400 feet of 35mm unsprocketed film.
The film is moved through the channel to a
takeup cassette by means of a friction drive.

Initially, the film motion controls thread the
film through the film transport. Independent
motions at each of the three stations (expose,
process and read) are permitted within the
limits imposed by film storage loops between
stations.

A small loop of film (Loop Feed) is main­
tained prior to the expose station so that the
film can be quickly pulled down by the drive
mechanism without encountering excessive
drag. The film is pulled through the expose
station in one-frame increments at a rate of
approximately one frame every 210 ms by the
expose station drive motor. The exposed film
is accumulated in Storage Loop 1 until proc­
essing is desired. The maximum capacity of
Storage Loop 1 is 20 frames before processing
must be performed. When the computer sig­
nals the channel to process the exposed film,
the film is moved through the process station
at a rate of 31 inches per minute by the proc­
essor drive motor.

Storage Loop 2 (between the process and
read stations) accumulates the processed film
until the computer advances the film to the
read station. If Storage Loop 2 becomes full
and processing is still going on, film is forced
to advance through the read station. In this
way, processing is not interrupted to prevent
film from being ruined through over-develop­
ment or under-development. Film can be
backspaced at the read station into Storage

Loop 2; its maximum capacity is 20 frames.
At the read station, film may be advanced or
backspaced one frame at a time under compu­
ter control at a rate of approximately one
frame every 170 ms or advanced or backspaced
under operator control at one of two speeds:
1;4 inch or one inch per second as seen on the
screen.

Photographic System

Optical Elements
There are five essentially independent opti-

cal systems in the image processor:

1. Input camera system
2. Scanner system
3. Recorder system
4. Projection system
5. Alignment system

'The first four systems are used in the opera­
tion of the image processor while the fifth is a
maintenance aid. All of the optical paths (ex­
cept alignment) are shown schematically in
Figure 1-5.

The input camera system consists of a 22.,­
inch-square, paper-input drawer (See Figure
1-2) with a vacuum-actuated platen to keep
documents fiat; a series of tungsten, line-fila­
ment, light sources located above the drawer;
a series of reflecting mirrors; a 4-inch, f/4.0
lens with an electrically-actuated shutter and
an expose station on channel A.

In operation the drawer would be extended
. outside the image processor, a document placed
in the drawer, and the hold-platen actuated.
Upon depression of a control switch, the
drawer with the document on it will automati­
cally return to its normal position, the light
sources will be turned on, the shutter will be
opened, and an exposure made on 35mm film
at a reduction of 18.3X. Both the intensity of
the light sources and the shutter timing are
variable to provide for flexibility of exposure.
The resolution of the optical system at the
film plane is approximately 150 lines/mm.

Film images at the channel A· read station
can be projected for visual examination or can
be scanned electronically by means of the fly­
ing spot scanner. Optical switching is used to

370 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

obtain the functional selection (See Figure
1-5). A 9-inch, f/4.5 CRT lens was designed
to reduce the CRT presentation 2.5X to scan
the 35mm film. The lens, corrected for the
P16 phosphor emission band, yields a resolu­
tion at the image plane of 160 lines/mm with
a distortion of less than 0.1 %.

A collector lens is placed behind the film
image which images the exit pupil of the scan­
ner lens on the sensitive cathode of a photo­
multiplier tube (PMT) detector. This lens
serves to uniformly distribute the light passing
through the film over the PMT cathode.

Dual-channel recorder optics are provided
to expose film on either channel A or channel
B (See Figure 1-5) using a common CRT
source with optical switching. Optical switch­
ing is also used to select the exposure source
from either the paper input or the recording
CRT on channel A. The recording operation
utilizes a lens similar to that used in the scan­
ner optics except that it is corrected for the
Pll phosphor enlission band.

The simultaneous projection of film images
in the read stations of the two channels to a
common viewing screen is provided (See Fig­
ure 1-8). The same lens as that used in the
paper input camera was selected for projec­
tion. Off-axis projection, using the displaced
image plane technique, gives maximum screen
illumination with minimum distortion. Super­
position of the two projected images is ac­
hieved by moving the film along the vertical
axis of the screen and by racking the channel
B projector lens along the horizontal axis.

Color filters are provided in the projector
lamphouses to aid in differentiating the two
images at the screen while projecting simul­
taneously into the projectors to provide stero­
scopic or 3-D viewing. When these filters are
introduced by electrical command into the pro­
jector light path, the projected images are
selectively polarized. Complementary polariz­
ing glasses must be worn by the viewer. The
capability of advancing and backspacing the
film in the read station is provided. A mag­
nification of 18.3X is used in projecting the
film on the 20 by 22 inch projection screen.

The CRT's internal alignment optics serve as
a reference to which the recorder and scanner

FILM
TRANSPORT

B

FILM
TRANSPORT

A

+ n COLOR FILTER (e-G)

--g
L3 + POLARIZED FILTER

~--=-~ -=-=1'
L2 tit I

I J
I I

------~I--~ I
I I
I I
I • n COLOR FILTER I
~- -~~ (R-Ol I

-------- I
I
I

10 SCREEN 4-----~

Figure 1-8. Simultaneous A-B Projection, Simplified
Diagram.

cathode ray tubes are aligned. An illuminated
reticle is brought into visual superposition
with either CRT display. Switching from the
recorder CRT display to the scanner CRT dis­
play is accomplished by manual rotation of a
beam splitter. Variable magnification of the
alignment system allows for both gross and
detailed inspection of the CRT displays.

Recording Media
The selection of photosensitive material re­

quired the weighing of several desired char­
acteristics. For document-recording, a film in
the microfilm resolution class was desired. For
CRT recording, a film with an extremely high
sensitivity was desired. An additional design
criterion was that of elevated temperature,
short-time film processing. The silver halide
film emulsion designed for this unit has a high
blue sensitivity, a reasonably high resolution-
130 lines/mm, medium contrast and capability
of withstanding the rigors of a high-tempera­
ture process.

MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 371

Rapid Film Processing
Upon a command, the exposed film is auto­

matically processed in the rapid-film processor,
which brings chemicals for processing at high
temperatures in contact with the film emulsion.
This high temperature increases the chemical
activity of the solution such that the film can
be processed with a total contact time in the
developer, fixer and rinse of only five seconds.

A negative-pressure, cup-application method
was selected for the processing (S.ee Figure
1-9). The compliant rubber lips on the solu­
tion-applicator cavities form a seal with the
film emulsion. Pumps situated in the heated­
fluid container draw the solution from the con­
tainer through the hose to the applicator cav­
ities and back to the pump. The negative­
pressure fluid system greatly reduces liquid
spillage hazards since any leakage in the liquid
circuit results in air being drawn into the cir­
cuit. This is particularly important when a
process such as this one is integrated into a
complex electronic device. The rubber lips on
the applicator act as squeegees between the
sequential processing steps to minimize con­
tamination of solutions. The exit lip of the
applicator removes the surface moisture from

Figure 1-9. Film Processing System.

the film to minimize drying time. The film
dryer directs high-velocity heated air against
the film emulsion which is thus dried in ap­
proximately one second. Vent valves located
in the return line to the pump are used when
the processor is moved away from the film.
When these valves are actuated, air enters the
fluid line allowing for gravity drain of the
applicator cavities. The applicator can then
be lowered away from the film, without spil­
ling any chemicals.

The processor processes film at a 31 inches/
minute rate. The compartmented solution
tank has a volume to accommodate the proces­
sing of 400 feet of film. The solutions in the
tank are maintained at 1300 F through the use
of a blanket heater and a temperature control­
ler. The one solution tank and two sets of
solution pumps supply the solution to the two
rapid film processors, one for each of the two
channels.

Analog System

General Description

The analog system, which controls the scan,
display, and record CRT's, scan detection, and
position-pencil operation, is shown in Figure
1-10. As can be seen, a single set of analog
circuits is used to control all three CRTs.
Switching between tubes is done with relays
and is under computer control.

The control circuits relating to the CRTs
perform three basic functions. The deflection­
control system precisely controls the position
of the electron beam on the face of a given
CRT as a result of a sequence of digital X, Y
addresses supplied by the computer through
the control unit. The focus control provides
a uniform (in size), round CRT beam over the
entire usable area of the flat-face record and
scan CRTs. Without this control, the CRT
beam would increase in size and become astig­
matic (oval) as the beam position moved off­
axis. A farther requirement of this control
is to provide for four program-selectable line
widths (CRT beam sizes) for film recording.
The intensity control is required to maintain
constant beam brightness in the system CR Ts,
independently of beam size (line width) and
beam velocity.

372 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

X DIGITAL
ADDRESS

fRECORD CRT
lint. Focus Defl.

I
I
I
I L_

Y DIGITAL
ADDRESS

-,.----
IISCAN CRT
IIBIank- Focus DefI.

Lens IIUn 0111 I so XY

711
Film II

II _ ___JL...

r-----
I
I
I
I
I
I
I --....""L-_~
I

r STATIC

I
I
I
I
I
I
I
I L.. _____ _

LW SEL.ECTo---~

ThrnhoId Select -------------

I
I
I
I
I
I
I
I
I

l
I
I

I
I
I
I
I
I

-----~

LW SELECT

r-------
I INTENSITY
CONTROL

y
SELECT

Figure 1-10. Analog System Block Diagram.

The position-pencil control system allows the
pencil, when in contact with the conductive
glass screen of the GCU, to be located by the
computer such that the CRT beam (either
blanked or unblanked) appears at the pencil
location. The scan detection system senses the
light output of the scanner CRT which is mod­
ulated by the film image being scanned and
correlates the amount of light received at a
particular time to a position of the film image.
There are 64 program selectable threshold
levels representing image transmissivities
from 0 to 100 0/0.

The following sections describe each of these
major control systems.

Deflection Control
The deflection control circuits utilized in the

7960 System are shown in block diagram form
in Figure 1-10. Note that the circuit config­
uration is identical for both X- and Y - deflec­
tion channels. The main elements of the X-

deflection Y - deflection control circuits are the
12-bit, digital-to-analog converter or decoder,
the waveform shaper, the integrating network,
the pre-amplifier and the deflection yoke cur­
rent amplifier. Another circuit which is com­
mon to both the X and Y channels is the dis­
tortion correction system which provides de­
flection yoke current compensation to minimize
pin-cushioning effects on the flat-face record
and scan CR Ts.

The decoders convert the digital addresses
received from the computer into an analog
signal proportional to the 12 binary-weighted
bits. The output of the decoder is a current
level which remains constant until a new ad­
dress is received from the computer. The out­
put then changes in a step-like manner to the
new current level where it remains until still
another address is received.

The decoder output is then fed into the
waveform shaper network which converts the

MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 373

current steps into a voltage waveform. As
may be recalled, the 7960 System operational
characteristics require a so called constant­
time, end-point, vector-generation mode in
which the CRT beam is deflected from a previ­
ous end-point address to a new end point ad­
dress in a straight line and in a constant time,
T, regardless of the distance between the
points. A further requirement imposed by the
scanning system was that the beam move be­
tween the points at a rate linear with time. In
other words, the beam would move one quarter
of the distance between points in a time T /,4,
half the distance in T /2, etc. In order to
achIeve these two objectives, it is necessary to
generate a deflection waveform in which the
change in current or voltage from one level to
the next takes place in a constant time T and
at a linear rate. The shaper output, when in­
tegrated, provides such a waveform. The time
period, T, is program selectable to be either 32
or 256 microseconds. Restrictions on dynamic
ranges of the circuits limit the maximum posi­
tional change in anyone cycle to 1/8 of the
total X, Y positions in the 32-microsecond
mode, and 14 of the total X, Y positions in the
256-microsecond mode. The output of the in-
tegrator is then fed into a preamplifier which
provides an impedance match with the deflec­
tion-yoke power amplifier and also converts
the single-ended input signal into a push-pull
output signal.

The deflection-yoke power amplifier pro­
vides the current into a high-performance
push-pull deflection yoke for driving the 5-
inch record and scan CRTs. The yoke was
selected for maximum perpendicularity and
linearity, and minimum residual magnetism
(or hysterisis). The power amplifier drives a
lower performance, push-pull deflection yoke
when connected to the 17-inch display CRT.
The maximum display area utilized is 10 inches
square.

The record and scan CR Ts are provided with
optically-flat faceplates for utilization with an
optics system. Because of the flat faceplate and
the fact that a change in deflection current pro­
duces a proportional change in the sine of the
deflection angle, an optical distortion known
as pin-cushion is observed at the faceplate.
This distortion can be explained best with the

aid of Figure 1-11. If the face of a CRT had
a radius of curvature equal to the distance
from the center of the deflection coil to the
screen, the deflection distance A would be
proportional to the sine of the deflection angle
and thus to the deflection current. The image
thus produced by independent X, Y deflection
would appear, when viewed from a distance,
to be undi~torted as indicated by the inside
box in the figure.

With flat-faced CRTs, however, the deflec­
tion distance, AI, is proportional to the tangent
of the deflection angle and thus proportional,
non-linearly, with deflection current. The ef­
fect of this is that deflection distance increases
somewhat faster than the current. Under
these condtions, the X and Y deflection compo­
nents interact, producing the pin-cushion pat­
tern shown in the diagram. For the maximum
angles of deflection utilized in the record and
scan CR Ts, the maximum displacement error
at a corner of the image would correspond to
approximately +6% (proportionate distance
between Band B 1) . To correct for this error
and meet the requirements for positional ac­
curacy, a distortion correction circuit is uti­
lized to provide correction which can be ex­
pressed mathematically as follows:

FLAT FACE
CRT SCREEN

Figure 1-11. CRT Pin-Cushion Distortion.

37 4 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

where ~ X and ~ Yare the deflection correc­
tion currents, K is a proportionality constant
which is a function of the system geometry,
and X and Yare the deflection currents.

Focus Control
The focus control system provides two sepa­

rate and concurrent functions:

1. A dynamic control to compensate for
beam defocussing as a function of beam
position.

2. A static control to generate the correct
size of the CRT beam as determined by
the programmed line-width selection.

The requirement for dynamic focus compen­
sation is, like pin-cushion, caused by the op­
tically flat faceplate of the CRT. As the
beam is deflected off-axis, the distance to the
screen increases and, for a constant value of
focus current, the beam defocusses. By chang­
ing the current in the focus coil, and thus the
magnetic field, the beam can be refocussed at
any point on the CRT screen.

Because the CRT geometry is radially sym­
metrical, the focus error function is also radi­
ally symmetrical and mathematically approxi­
mates a parabolic function. The block diagram
of the focus control is shown in Figure 1-10.

The rho generator produces a signal which
is the approximate vectorial addition of the X
and Y deflection components referenced to the
electrical geometric center of the CRT. The
output of the rho generator is then fed into a
parabola generator which provides an increas­
ingly large amount of compensating signal
through the dynamic focus coil driver as rho
increases (or as the beam moves toward the
edge of the CRT screen).

The static focus circuit produces the current
required to provide four different spot sizes.
It is static in the sense that for a given spot
size, the current in the static focus coil re­
mains constant regardless of beam position.
The smallest beam spot is the true focus con­
dition; the larger spots are obtained by de­
focussing. Each spot size provides different
line widths for image recording of vectors.
The line widths are provided in the ratio of
1 :2 :4: 6 where the minimum spot size or line

width relative to the 1.2-inch square film image
is less than 0.001 inch. Line-width control is
provided by relay selection under computer
control.

Intensity Control
Intensity compensation is required to main­

tain constant beam brightness in the CRT's.
Two operating conditions account for this
requirement.

1. Beam sweep speed. Because the vector
time, T, is constant (either 32 or 256
microseconds) regardless of vector
length, the beam sweep speed or velocity
varies. In order to maintain constant
brightness, the CRT beam current must
be increased proportionately with vector
length.

2. Line width. As line width is increased,
the beam current is effectively spread out
over a larger area. In order to maintain
equal brightness over all line widths,
beam current must be increased propor­
tionately to the increased line width.

The requirement for intensity compensation
applies only to the record and display CRT's:
the record CRT to provide an even exposure of
the film; the display CRT to provide an evenly
illuminated display. The beam velocity range
of the scan CRT is much more restricted and
only the basic line width is utilized. Thus, no
compensation is required for the scan CRT.

Dynamic beam intensity compensation is
accomplished by determining the status of the
three variable quantities:

1. Vector length (continually variable from
zero to 14 full image size).

2. Line width (basic, 2X basic, 4X basic,
6X basic).

3. Vector time (32 or 256 microseconds).

A block diagram of the intensity control
circuits is shown in Figure 1-10.

The length of each vector is determined by
sampling the X, Y deflection signals, differen­
tiating and rectifying these signals, and then
feeding them into a rho generator. The rho
generator produces an output signal which is
the approximate vectorial addition of the
change in the X and Y deflection components.

MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 375

The output of the rho generator is thus a sig­
nal proportional to vector length or velocity.
This signal is fed into a circuit called a line­
width multiplier. This circuit is controlled
by the status of two digital lines from the
computer which relate to the particular line
width selected at any given time. The signal
out of the line width multiplier is proportioned
in the same ratio as the line width options
(1 :2: 4 :6). For example, if the 4X basic line
width is selected, the output is four times as
great as when the basic line width is selected
for a vector of a given length. Another input
to this circuit is the vector time selection. The
signal level, as described above, is further
modified as a function of the vector time, 32
or 256 microseconds.

The CRT beam intensity is, for all practical
purposes, linearily proportional to the beam
current. The intensity control circuit changes
grid voltage to control this beam current. How­
ever, the CRT grid voltage-to-cathode (beam)
current transfer charactertistic is not linear.
Therefore, it is necessary to provide a non­
linear function generator circuit which compen­
sates for the CRT charactertistic such that the
intensity compensating signal, as derived from
the output of the line width multiplier, pro­
vides a non-linear grid voltage signal in such
a way as to provide the proper level of beam
current. The final block is the intensity drive
amplifier which is a gated amplifier controlled
by the blank/unblank line from the computer.

The intensity control is capable of providing
an intensity level for film reeording that per­
mits lines of varying lengths and thicknesses
to maintain a density tolerance of ±O.lD about
a nominal level of 0.7D after rapid processing.

Position Pencil Control
The position-pencil control system allows the

pencil, when in contact with the conductive
glass screen of the graphic console, to be lo­
cated by the computer and a CRT beam
(blanked or unblanked) to appear at the pencil
location. By sampling at a rate high in com-
parison with the motion of the pencil, the po­
sition-pencil control system can maintain the
position of the beam under the pencil, making
it appear that the pencil traces an image on
the CRT screen.

The block diagram of this system is shown
in Figure 1-10. The conductive screen is a
piece of glass 14 inches square, coated with a
thin transparent layer of tin oxide and placed
directly in front of the display CRT. A voltage
is alternately applied to the screen through the
X, Y glass switches causing a voltage gradient
to develop on the screen, which is oriented left
to right (X) or top to bottom (Y). The pencil
when in contact with the screen will thus al­
ternately detect a voltage which is proportional
to the distance that the pencil is from the left
side of the screen or the top of the screen. This
voltage is fed into one side of the voltage com­
parator. The opposite side of the comparator
is supplied with a signal alternately from the
X and Y deflection decoder. A comparison is
thus made at a given time of the Y position of
the pencil and the Y position of the CRT beam
or the X position of the pencil and the X po­
sition of the CRT beam. The output of the
comparator is two digital lines to the computer
which indicate that the pencil coincides with
the CRT beam, is to the right or left (for X)
or above or below (for Y) the CRT beam, or
that the pencil is not touching the conductive
screen.

Programs have been written which use the
interpretation of the digital output of the com­
parator to direct the CRT beam to coincide
with the location of the pencil to accomplish
pencil tracking.

Scan Control
The scan operation is initiated by an un­

blanked (visible) beam deflection, or scan vec­
tor, written on the scan CRT screen under
program control. Light produced by the sweep­
ing beam is sensed by photomultiplier tubes
PMT 1 and PMT 2 (see Figure 1-10). PMT 1
receives light directly from the CRT screen.
Consequently, PMT 1 receives light whenever
the beam is sweeping. PMT 2 receives light
from the CRT screen through the film image.
Thus, PMT 2 receives light only when the beam
sweeps through the clear areas of the film.

The object of writing a scan vector is to in­
tercept the lines on the film image as the beam
sweeps. Thus, assuming that the film image
is composed of black lines on a clear back­
ground (positive mode), the beam light sensed

376 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

by PMT 2 will be momentarily interrupted
when the sweeping beam intercepts each line.
Assuming that the film image is composed of
clear lines on a black background (negative
mode), PMT 2 will sense light momentarily
when the sweeping beam intercepts the clear
lines.

However, the PMT 2 output depends on the
relationships of beam speed, beam spot diam­
eter, and width of the intercepted line (Figure
1-12). Section A shows positive-mode scan­
ning, in which the line width is greater than
the beam-spot diameter. In this case, when the
beam intercepts the line, PMT 2 senses total
darkness and, accordingly, produces a maxi­
mum amplitude level. Section B shows the same
beam spot intercepting a line whose width is
smaller than the beam diameter. In this case,
PMT 2 does not sense total darkness but a de­
gree of light dimming called gray level. The
PMT 2 output then reflects this gray level with
a signal of proportional amplitude. Sections C
and D illustrate negative mode scanning where
line width is greater and smaller than beam
spot diameter.

In practical operation, the most common oc­
currence is that interceptions with lines of
average width produce different gray levels.
The PMT 2 signal indicates a gradual transi­
tion from light to dark and dark to light. This
corresponds to the gradual dimming of the
beam in either transition.

A B

BEAM SPOT o----R---f--- ~.wk..TION
DARK

LIGHT ~
VIDEO
SIGNAL
LEVEL

C D

~LINE
BEAM SPOTC>-"'OLI]-" INTERCEPTION

DARK

LIGHT

VIDEO
SIGNAL
LEVEL

Figure 1-12. Scan Signal Generation.

POSITIVE
MODE

NEGATIVE
MODE

Since line width is sensed by PMT 2 in terms
of varying gray levels, a search is required to
make sure that all interceptions, or meaningful
levels, are accounted for in the scan process.
This search is done by comparing the signal
level with a reference level which can be varied
by predetermined values. Figure 1-13 illus­
trates this comparison with examples of typical
vector scan operations. In this figure it is as­
sumed that the positive and negative versions
of the same image are being scanned and that
the sweeping beam makes two line intercep­
tions.

Section A of the figure shows that the ref­
erence level, which lasts for the length of the
scan vector, can be set to anyone of 64 thresh­
old levels by computer program.

Section B shows (1) the superimposed signal
and reference levels as they are placed for
comparison at the differential amplifier (Fig­
ure 1-10) and (2) the threshold levels which
are lowered until they cross the higher level
signal. Thereafter, the search process requires
an additional scan operation with a lower ref­
erence threshold to cross the lower-level signal.

Section C indicates the output signal trans­
ferred to the control unit to indicate a strike
in positive-mode scanning.

Sections D and E indicate the search for sig­
nal levels in the negative mode in which the
program raises the threshold until it crosses

1------------~ 63 } :::: =-== -= ===-===~ TH~ESHOLD SET REFERENCE A ___________ BY ROGRAM LEVEL

==_-_-=--=--=--===== .t:R~~ LEVEL

C---u _____ _

,~ : 63

D l----------~l RAISE ;::=.=.::: =-= -= _--=_-_- THRESHOLD
~---------- - 00

E--11 _______ _

}

REFERENCE
SEARCHING
FOR POSITIVE
MODE SIGNAL

}
SCAN OUTPUT TO
DAU

}

REFERENCE
SEARCHING
FOR NEGATIVE
MODE SIGNAL

}
SCAN OUTPUT TO
DAU

Figure 1-13. Scan Output Generation.

MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 377

the higher-level signal; an additional scan op­
eration with a higher reference threshold is
required to cross the lower-level signal.

In the section on deflection control, it was
stated that a requirement of the deflection sig­
nal was that it be linear with time. The reason
for this is that the strike or output data from
the scanner is sampled at 16 equal intervals
during one vector time. Thus, in the 32 micro­
second mode, the scan output is sampled and
stored every 2 microseconds; in the 256 micro­
second mode, the output is sampled every 16
microseconds. By making the deflection signal,
and therefore the scan vector, linear with time,
the time segment during which an output was
sensed from the scanner can be correlated to
beam position. This is extremely useful in
either one of two ways. It provides the equiva­
lent of 16 separate vector scans in one scan
vector time period thereby increasing the effec­
tive scan rate by 16, or it can be considered to
increase the resolution capability of the scanner
for a scan vector of a given length by a factor
of 16. The example shown in Figure 1-14
illustrates this point. A scan vector is gen­
erated which traverses from point A to point B,
intercepting four lines on the film image. If
the scan output was sampled only once per scan
vector, the only information which would be
retrieved would be that a line or lines were
located somewhere between points A and B.
By sampling 16 times during the generation of
the single scan vector, not only was it deter­
mined that there were four lines but the loca­
tions of the lines relative to points A and B
can be computed to within one part in sixteen
of the distance between the points.

The maximum length of the scan vector (and
therefore the CRT beam velocity) is restricted
by the band width of the scan deflection circuits
which are in turn restricted in order to mini­
mize noise. The resolution of the scanner is
primarily a function of CRT spot size. The
scanner can resolve lines 0.0005 of an inch
thick separated by 0.0015 of an inch relative
to the 1.2-inch-square film image.

Cathode-Ray and Photomultiplier Tubes
The CRT's utilized for scanning and record­

ing are identical except for their phosphors.
Each is a 5-inch, round, high-resolution CRT

ONE VECTOR CYCL
TIMET

2 3 4

A ~~-It---It---.,...--B SCAN VECTOR

DARK 1 II I n I r
LIGHT UULJUU

J1flflf1fUlf1fl
I 2 3 4 5 6 7 8 9 10 1112 13141516

--IL-IL-fl--JL-
3 6 10 14

VIDEO SIGNAL
OUT OF PMTJI

SCAN OUTPUT

16 SEGMENT
TIME SAMPLE

16 POSITION STRIKE SHIFT
REGISTER INPUT

Figure 1-14. Scan Output Time Sampling.

with an optically flat faceplate. Both the de­
flection and focus is magnetic. Nominal spot
size at the CRT screen is 0.001 inch.

The scan CRT employs a P16 phosphor which
was selected because of its ultra-fast light­
decay characteristic. It has a spectral energy
distribution which peaks around 3800 A (violet
and near UV). The scan lens is color-compen­
sated for this spectrum and the scan detection
photomultipliers employ an S11 photo cathode
which is quite sensitive to the P16 spectrum.

The record CRT employs a P11 phosphor
which was selected because of its high light­
output capability, which is required for expos­
ing film .. It has a spectral distribution which
peaks around 4600 A (blue) and is considered
medium fast relative to its decay characteristic.

The display CRT is a 17-inch, rectangular
CRT with a curved faceplate and requires mag­
netic focus and deflection. The nominal spot
size is 0.020 inch and the P19 phosphor peaks
around 5900 A (orange). This phosphor was
selected for its long persistance characteristic.
The usable display area is 10 inches square.
The focus control is not connected to the dis­
play CRT. Because of the larger spot size and
the curved faceplate, a permanent magnet focus
was determined to be adequate.

378 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

PART II OPERATIONAL EXPERIENCE
INTRODUCTION TO PART II

The specifications developed by General
Motors Research for new man-machine graphi­
cal communication hardware evolved from ex­
perience with early GMR Laboratory equip­
ment and from projected requirements of a
designer in a computerized design process. The
designer, unconcerned with the hardware speci­
fications outlined in part I of this paper, enters
the computer room with a drawing or sketch of
standard drawing quality as input to the design
process. While in the computer room, he uses
the graphic console and the computer as tools
for rapidly developing, modifying, and review­
ing his design. When he leaves, he expects to
take with him (without delay) a roll of paper
documenting his computer-aided design.

The remainder of this paper evaluates the
degree to which the hardware has approached
the requirements of a designer in the process
of design. In addition, some programming
techniques for improving the effectiveness of
the hardware by testing and calibration are
described.

THE GRAPHIC CONSOLE AS A
MAN-MACHINE INTERFACE

Continued use of the graphic console by a
large number of people has led to some con­
clusions regarding the equipment as a tool in
a design environment.

The CRT and pencil have proven to be a
highly successful man-machine interface in
spite of the small screen size (10" x 10"). Ex­
cept for a period of two months when a lower
persistance phosphor tube was tested in the
unit, there have been no serious operator com­
plaints directed toward use of the display tube.
The lower persistance phosphor caused a highly
objectionable flicker when large amounts of
data were displayed. The operator antagonism
toward this flicker was sufficiently severe in
some cases to keep the individual from the
equipment.

The position-indicating pencil has been found
to be functionally very suitable. One reason
for this is the positive action-reaction; that is,

the program is alerted whenever the pencil
touches the screen. Contrast this action with
a light pen which must be placed close to a
specific area of interest and requires in addi­
tion some type of manual switch to alert the
program. Another advantage of the pencil
compared to a light pen is that pencil position
can be determined in milliseconds when the
pencil is pointing at a void portion of the image
area. This quick position location is essential
in an on-line problem solving environment.
Users of the pencil must be able to quickly lo­
cate in real dimensions any point of the dis­
play area. With a light pen it is necessary for
the user either to wait for a searching opera­
tion or to point at part of a display and then
track the pen to an area of interest.

The speed and positive action characteristics
make the pencil a comfortable tool in an alpha­
numeric display-and-correct mode in which the
user points to a character of the display and
uses the alphanumeric keyboard for correction.
The user of the pencil need only touch the
screen in the general vicinity of a particular
character and the program can determine
which character is to be replaced. Users have
adapted very rapidly to using the pencil as a
pointer.

One disadvantage of a position-indicating
pencil when compared to a light pen is that the
pencil does not establish a positive reference
to a particular line of the displayed composite
line image. It is necessary to compare pencil
position with the position of each of the dis­
played lines to determine at which line the pen­
cil is pointing.

From these experiences with the use of the
pencil, we have learned that the functional
characteristics of a device for pen-pencil man­
machine communication should include modes
such that:

1. The control program is alerted each and
every time the pencil touches the display
surface.

2. The control program is able to determine
within milliseconds the position of the
pencil on the screen independently of the
presence or absence of any display.

MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 379

3. The control program is able to establish
a positive identification by the pencil of
a particular line of a displayed image.

The use of a man-computer pen or pencil for
the input of graphic data is an interesting topic
in itself. When analyzing the tracking mode,
however, it is difficult to separate the charac­
teristics of the hardware, the programming and
the application. While the pencil or a light pen
could be used for entering images consisting
of connected straight lines, a highly sophisti­
cated program would be required to track and
accurately digitize drawings of curves which
are connected to form an image. In the GMR
DAC-I System, precision graphic data input is
entered through the paper input facility of the
image processor.

The program status lights and control keys
have also proven to be excellent both for the
programmers and for the man at the console.
The alphanumeric keyboard, on the other hand,
has been an object of much discussion from
which the following controversial points have
arisen:

1. The keyboard should be a standard type­
writer keyboard to take advantage of the
speed of those who know how to type.

2. The typist-designer intersection is small;
therefore, -use a keyboard that is arranged
in some order to minimize learning.

3. The typewriter should be installed imme­
diately in front of the display tube to
maximize display feedback of a typed
message.

4. The space in front of the display tube
should be reserved as a work area for
listings, drawings, note pads, etc.

5. The typewriter would be of great value
for long message input.

6. No long messages should be entered at
the graphic console.

This type of discussion can be and has been
carried out to great lengths by human factors
people. Our experience has shown that an
alphanumeric keyboard is difficult to cope with
and not a natural device for man-machine com­
munication. Until a pencil entry device accom­
panied by character recognition is available,
however, the keyboard must remain an im­
portant part of the man-machine interface.

EVALUATION OF THE
IMAGE PROCESSOR

The graphic console provides the user with
the facility for a dynamic display of compara­
tively low accuracy and repeatability. The
voltage pencil is also dynamic in its functional
capabilities and not intended to be used for the
entry of precision graphic data. The image
processor on the other hand is expected to pro­
vide the more static man-machine graphic com­
munication with higher precision input and
output.

When establishing criteria for the evaluation
of image processing equipment, it is essential
that the criteria be defined in terms that give
an overall evaluation of the unit, encompassing
electronic circuits, optics and photography. The
resolution of the CRT as measured by the
shrunken raster method, for instance, is of
little interest to the user of an image recorder.
For Design Augmented by Computers the user
wants to know, first of all, the line width and
resolution as measured on the paper of the
hardcopy output from the recorder. If he must
supply his own hard copy machine, the user
wants the specifications as measured on the
processed photographic film. From the user's
standpoint, all specifications must be based
upon the re&ponse of the unit in the finaL out­
put state- and the specifications must be'meas­
urable at that final output state.

What-follows is an important subset of
image processing evaluation criteria and pro­
grams resulting from daily use of the image
processor since early 1963. The criteria are
specified in a manner that allows rapid evalua­
tion whenever possible. The programs are in­
tended to provide versatility for the evaluation
of the equipment over a wide range of condi­
tions and requirements.

Accuracy
The user of image processing equipment for

Design Augmented by Computers wants to
know the accuracy of the positioning of a point
on the output image when referred to any other
point on the image. He wishes to measure with
a rule the distance between two points and
know his confidence limits. Accuracy to the
user is then defined as the maximum error in
the distance between any two points on an

380 PROCEEDINGS-FALL JOINT COMPUTER CONFE-RENCE, 1964

image. It is measured by recording a pattern
of vectors with known spacings. The distance
between vector endpoints is measured on hard
copy if provided, on the' film image with an
opticalcompax;a'tor, or on the film image using
the' image scanner. The maximum error en­
countered in measuring the distance between
any two' points is the accuracy characteristic of
the unit. With a little ~xperience, the ,~ser
learns the particular pattern and vector, end­
points that demonstrate t~e maximum error.

Figure 2-6 shows the accuracy errors of vari­
ous points (referred to th~ ,center point) on the
scanIler image magnified by a constant factor.
Note 'that although the accuracy figure is:stated
in te.rms of, per cent ,or image size, the error
measured is an absolute value that includes
pIncushion error (distortion corrected) and all
other electronic, photographic and optical er­
rors. Note also that this method of measuring
accuracy results in a figure nominally twice
that of those techniques that measure accuracy
as the error of one point referred to an origin.
This method does, however, yield a value of ac­
curacy such as a designer would measure with
his rule.

Users of the equipment are not completely
satisfied with the accuracy (approximately
17c) resulting from uncalibrated scanning in­
put and output recordings in spite of the fact
that the equipment represents an advanced
state of the art. Calibrated input and output
accurate to 0.2 % barely meets the requirements
of static man-machine communication.

Stability and Repeatability
To the user of DAC-I image processing

equipment, stability means freedom from drift
of analog components including power supplies
and deft.ection circuitry. This specification is
important since it is essential in maintaining
constant raster shape and size on a recorder
and scanner CRT. Accuracy can be improved
by calibration procedures, if and only if the
hardware stability is such that the calibration
runs can be spaced at practical intervals of
time. A practical interval of time might be ap­
proximately one hour unless some form of auto­
matic calibration is provided.

Repeatability is the degree of capability of
the hardware to exactly duplicate an output

condition after an intervening number of ran­
dom input conditions. Other definitions of re­
peatability 'which are dependent on repeating
a sequence of inputs are of little or no value
to the users of image processing equipment.

Imperfect vector en d poi n trepeatability
shows up dramatically in circles (see Figure
2-1) which do not close properly and at inter­
sections of a number of lines which are all- sup­
posed to.pass through the same point. Another
example of repeatability error is the case where
two or more lines are spaced close together.
The lines may touch or even cross if the re­
peatability is poor. Although this type of error
may be aesthetically less troublesome than poor
repeatability at intersections and at closing
points of circles, it would be important if a user
were trying to evaluate positions of edges of
parts which, are to fit together.

It has been observed that it is the natural
tendency of the human eye to notice the worst
case of repeatability on recorded output even
if all the remainder of the drawing represents
high-quality output in terms of repeatability
and accuracy. The width of the lines affects
the aesthetic appearance of the output. The
observer immediately spots repeatability errors
at the junction of thin lines while the same
errors with thicker lines are overlooked. Since
thin lines are normally more desirable on re­
corded output, some compromise is frequently
required.

Figure 2-1. Circle Pattern for Demonstrating
Repeatability.

MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 381

The pattern in Figure 2-1 has proven to be
excellent in showing the limit of the recorder
repeatability for quick approximations. The
errors in the closing of the circles can be ob­
served in terms of line widths and then con­
verted to per cent of image size. The maximum
repeatability error for the circles, for instance,
might be approximated at one line width.

Repeatability is also an important factor in
scanning operations. In line tracking, repeata­
bility is particularly important when input lines
have small changes in curvature ·and the po­
sitions of inflection points are important. Re­
peatability errors also put a limit on the effec­
tiveness of calibrating for improved accuracy.

Experience has shown that the effective re­
peatability of the scanner can be improved by
repeated scanning at a given region and then
averaging the results of these several scans.
However, this does not eliminate repeatability
errors, but merely reduces the magnitude of
the errors when using the scanner.

Line Width and Intensity

Recorder line width must be defined in terms
of measurements on micro-densitometer record­
ings from the output film. The width of the
line is arbitrarily defined as the width of the
line at the mean light transmission level vrhere
the mean is the average of the film background
light transmission and the transmission at the
peak of the line. Use of the microdensitometer
gives a numerical measurement of the line
width independent of human· observation. Line
intensity of recorder output film is defined as
the optical density of a line at the center point.

Variations in the optical density and line
width are very noticeable to users of the image
processor recorder. Line density and thickness
variations with vector length frequently result
in short vectors having a greater density than
the longer vectors. This is particularly objec­
tionable in areas of a drawing where informa­
tion in the form of sharply curved lines is con­
centrated. In this case,' sharply curved lines re­
quire many short vectors with a corresponding
high density and loss of fine detail. In addition,
small alphabetic characters, normally readable,
may become illegible when line width and in­
tensity are out of adjustment for short vectors.
Variations in line density and width with vec-

tor direction and position has also proven to be
very noticeable to the equipment users. Even
if drawings are made accurately with only
small repeatability errors, poorly controlled
line widths and peak densities will make the
recorded output look poor.

The pattern of Figure 2-2 was generated by
a program that has proven excellent in testing
for the conditions mentioned above. The po­
sition, direction, and lengths of the vectors
were selected at the graphic console to show
how uniform the line widths and intensities are
over a wide range of these parameters.

Film Processing Time
It has been observed that any time an opera­

tor has nothing to do, or no drawings or dis­
plays to review, a forced delay of one minute
or even half a minute becomes annoying. Even
though the rapid film processor develops, fixes,
rinses and dries film at a rate of approximately
one frame every three seconds, a minimum of
25 seconds is required to process the first frame
plus three seconds for each additional frame.

Whenever practical, the graphic console op­
erator should be given a choice of other func­
tions to perform while film is being processed
for the best man-machine interaction, at least
until film processing speeds increase by another
order of magnitude or some other more rapid

Figure 2-2. Intensity Control Pattern for Demonstrat­
ing Line Intensity and Width Conditions.

382 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

form of static image documentation is avail­
able.

Scanner Sensitivity

The sensitivity of the scanner is defined by
the thinnest line the scanner can consistently
detect and the range of thresholds for this de­
tection. Typically, the scanner, using the paper
input facility, can consistently detect lines .01"
wide (on the 22 x 22 inch paper) over a range
of three thresholds.

A considerably more complex algorithm can
be used to define the sensitivity of the scanner
over a range of line and background densities.
This is essential for determining which photo­
graphic images can be expected to be scanned.
A simple definition and measuring technique is
necessary, however, for determining the hard­
ware sensitivity.

Figure 2-3 shows what is displayed on the
graphic console within two minutes after the
start of the sensitivity test. This display dem­
onstrates to the user that lines nominally 9.8
raster units wide (referred to the 0-4095 raster
unit image) can be detected over a range of
17. thresholds. It further points out the line
thickness that one may expect at each of the
threshold levels. It is now standard practice
to test the equipment daily using test programs
which are highly application oriented and

which can analyze the equipment and display
the results for immediate review by the mainte­
nance engineers or by users of the equipment.

TEST PROGRAMS

I t is no small task to define the exact per­
formance status of electronic systems which
are comprised only of digital components. It is
still harder to define the status of electrome­
chanical units. In the first instance, it is the
complexity of the system that causes the dif­
ficulty even though the system operates at a
discrete level for performance evaluation. In
the second case, the mechanical positioning in­
volved may result in a series of discrete levels
that must be evaluated. Defining the perform­
ance level of an analog-digital-mechanical sys­
tem such as the image processor is still more
difficult because of the continuous range of the
operational status which is biased by the dis­
crete digital-mechanical levels. Test programs
which are understood and used by botl~_ the
maintenance people and the operators of the
equipment have proven essential in obtaining
the maximum performance from the equipment
for the operator and computer time involved.

Hardware test programs for the DAC-I sys­
tem have been written primarily for the scan­
ner and the recorder. The recorder programs
basically provide a variety of test patterns to

Figure 2-3. Scan Sensitivity Test Program Display.

MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 383

show recorder repeatability, accuracy, line in­
tensity, width and smoothness. The patterns
are selected to demonstrate dramatically each
characteristic to be tested. This frequently al­
lows preliminary evaluation at the projection
station. Detailed evaluation is made with test
instruments when necessary. Test programs
for the scanner include the program for line
sensitivity described earlier, line resolution,
threshold characteristics and scanner and re­
corder accuracy and repeatability.

With a man-machine console, test programs
should include the following features:

1. rapid measurements
2. rapid editing of the measured data so

that only a small amount of important
information will be displayed

3. rapid display of results
4. options to record results on film
5. pictorial rather than numeric display of

measurements when requested
6. options for conventional printout
7. facilities to easily change and display pro­

gram parameters.

Permanent records of test program results
are kept to monitor and signal when a long­
term decrease in hardware performance should
be corrected. These records also aid in the
evaluation of changes in the hardware.

Sometimes adjustments or changes are made
that result in a temporary improvement in the
quality of the hardware. The test program re­
sults, when analyzed over a period of time,
show if the change corrected a problem o~
merely adjusted around it temporarily. To il­
lustrate some of these desirable characteristics
of test programs, we will outline as an example
the main features of the calibration test pro­
gram for scanner and recorder accuracy.

The calibration test program uses the scan­
ner to measure the nonlinearities of both the
scanner and recorder caused by electronic and
optical effects. The magnitudes and positions
of these non-linearities are displayed for imme­
diate review and stored for later calibration of
both scanner input data and output recordings.

The reference for linearity and size measure­
ments is a metal plate with grid lines inked

on its surface. The locations of all the inter­
sections have been previously stored in the
computer. The grid is exposed onto film through
the paper input station, processed, and moved
to the scan station.

Before executing a complete scan of the grid,
a preliminary scan for the four-corner crosses
and the center cross is made. (See Figure 2-4)
This allows the operator to check the image
size and the optical alignment of the system and
insures that the entire image to be scanned is
aligned optically and electronically within the
scan raster.

Figure 2-5 shows the type of alphanumeric
information displayed after scanning every grid
intersection and comparing the scanned iter­
section locations to the reference values. Here
a large amount of data has been condensed to
a few numbers giving the most pertinent in­
formation about the raster size and linearity of
the raster. This reduces the question of ac­
ceptability of the machine to a matter of com­
paring the numbers on the graphic console to
figures which are previously defined to be ac­
ceptable.

For diagnostic purposes, the information
shown in Figure 2-6 is most useful. The errors
associated with each point are magnified by a
factor and added to the reference points to
produce an exaggerated representation of the
non-linearity and size of the raster (see Figure
2-6. This graphic presentation shows the non­
linearity of the raster size and shape. A nu­
merical figure for scanner repeatability is dis­
played by the calibration program if repeated
scans of the grid pattern are executed.

Experience has shown that test programs
such as the calibration program have been able
to define scanning status before actual digitiz­
ing begins and have maximized the usefulness
of the scanner operation. Programs like the
calibration program are also valuable in sep­
arating hardware deficiencies from errors in
new programs; that is, if new programs fail
but the test programs run normally, then it is
likely that the new programs are either in
error or expecting too much from the analog
hardware.

The calibration program illustrated above
has resulted in improved scanning and record-

384 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 2-4. Corner and Center Crosses on Scan Program.

ing to the extent of nearly one order of magni­
tude. The hardware has proven itself suffici­
ently stable to allow a significant improvement
in scanner accuracy by a calibration procedure
which uses the error data measured by the test
program.

The recorded output can also be calibrated to
show a significant improvement in accuracy.
The scanner is used to scan recorded output
and the errors of the recorder raster relative
to the scanner raster are then modified by the

scanner errors and stored for calibration by
recording programs. Two of the most impor­
tant values of these GM test programs are that
they provide a good overall test of the system
and they are oriented to evaluating the user's
requirements.

SUMMARY

The IBM 7960 Special Image Processing Sys­
tem was designed and built by IBM to speci­
fications provided by the General Motors Re-

Figure 2-5. Scanner Accuracy and Raster Size.

MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 385

Figure 2-6. Accuracy Errors Multiplied by a Constant.

search Laboratories. The system is the man­
machine and image processing hardware for
the GM Research DAC-I system.

The design shows how the functional require­
ments for an image processing system were im­
plemented to achieve a new type of computer
input-output system. The components were
chosen for characteristics that ·were compatible
with digital computer speed and accuracy.
Technologies normally foreign to computer
technology were successfully integrated by
careful consideration of the interface between
components and the effect of each component
on the total system performance. Some of the
features of the new hardware system such as
the high resolution, the excellent accuracy and
the rapidly processed film for pictorial input
and output have been extensions of the state of
their respective arts. These features have also
indicated the necessary quality and speed for
a graphical machine to interact with a man in
the iterations of a design cycle.

The hardware has proven to be valuable as
a laboratory tool for the analysis of equipment
required in an online computer aided design
facility.

The use of image processing equipment in a
computing facility has also pointed out some of
its interesting operational characteristics. The

digital program-analog response characteristic
of the hardware makes system testing and
status documentation a necessary part of op­
erational procedures. In addition, program­
ming techniques that improve the apparent per­
formance of the hardware must be used. Man­
machine programs such as the calibration pro­
gram described in this paper have proven to
be a solution to these requirements.

REFERENCES

1. JACKS, E. L., "A Laboratory For The Study
of Graphical Man-Machine Communica­
tion," Proceedings Fall Joint Computer
Conference, San Francisco, California, Oct.
1964, (this volume).

2. COLE, M. P., DORN, P. H., LEWIS, C. R.,
"Operational Software In a Disc Oriented
System," Proceedings Fall Joint Computer
Conference, San Francisco, California, Oct.
1964, (this volume) 0

3. ALLEN, T. R., FOOTE, J. E., "Input/Output
Software Capability For a Man-Machine
Communication and Image Processing Sys­
tem," Proceedings Fall J oint Computer
Conference, San Francisco, California, Oct.
1964, (this volume).

40 KRULL, F. No, FOOTE, Jo E., "A Line Scan­
ning System Controlled From an On-Line

386 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Console," Proceedings Fall Joint Computer
Conference, San Francisco, California, Oct.
1964, (this volume).

5. LAZOVICK, P. B., TROST, J. C., REICKORD,
A. W., GREEN, R. S., "A Versatile Man-Ma­
chine Communication Console," Proceedings
(1961) Eastern Joint Computer Conference,
Washington, D.C., Volume 20.

6. STOTZ, R., "Man-Machine Console Facilities
For Computer Aided Design," Proceedings
(1963) Spring Joint Computer Conference,
Detroit, Michigan, Volume 23.

7. LICKLIDER, J. C. R., "Man Computer Sym·
biosis," IRE Transactions on Human Fac·
tors in Electronics, Volume HFE, March
1960.

INPUT/OUTPUT SOFTWARE CAPABILITY FOR A

MAN-MACHINE COMUNICATION AND IMAGE

PROCESSING SYSTEM

Thomas R. Allen and James E. Foote
Research Laboratories. General Motors Corporation, Warren, Michigan

INTRODUCTION

Consistent with the design objectives of the
General Motors Research Laboratories DAC-I
(Design Augmented by Computers) project,t
the IBM 7960 Special Image Processing System
has· extensive input/output (I/O) capabili­
ties.3 ,4 In order to facilitate the programmed
control of this new hardware, the NOMAD and
MAYBE programming languages were devel­
oped.2 However, while these languages provided
the programmer with an effective . means of
controlling the new hardware, they offered
little assistance in meeting the hardware data
format requirements. The programmer still
would have had to convert his output informa­
tion from his own internal format tb the output
format required by the hardware. Similarly,
all input from the hardware would have had to
be converted by the programmer back to a form
suitable for his own use. Moreover, these con­
version processes are typically very involved
and complicated. In short, the programmer was
still not in a position to make easy, efficient,
and flexible use of the I/O capabilities of the
new hardware system. Thus, the need to pro­
vide a layer of general purpose I/O software
between the programmer and the hardware was
very apparent.

The effort to develop a general purpose I/O
software capability resulted in a hierarchy of
utility routines. At the lowest level of this

387

hierarchy is a set of very basic utility codes.
These include numeric-to-BCD (binary coded
alphanumeric information) conversion rou­
tines, BCD-to-vectors character generation
routines,5 simple display and recording routines,
and basic film train operation codes, all of
which permit the programmer, if he so desires,
to operate very close to the basic hardware
without having to understand ali of the intrica­
cies of the hardware's operation. Each of these
basic codes represents an implementation of
only a very small facet of the total I/O capa­
bility but, as such, serves as a building block
for subsequent level codes in the hierarchy.
These higher level I/O utility codes are pro­
gressively more inclusive in their total I/O
capabilities and, at the same time, relieve the
user of the task of dealing with the hardware
on its own terms.

This effort to develop an I/O software capa­
bility was not designed to culminate in one
single all-inclusive routine. Rather, the aim
was to produce a set of sophisticated, general
purpose, problem oriented subroutines and
source languages statements, each of which
would serve as a powerful tool in the utilization
of the various I/O capabilities of the new hard­
ware. The body of this paper describes five
representative utility subroutines, three source
language I/O statements, and some typical ex­
amples of their application.

388 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

UTILITY SUBROUTINES

This section describes five different tasks and
the I/O utility subroutines which were devel­
oped to meet their requirements. The basic
problem associated with all of these tasks is
that of requesting various types of information
from the graphic console operator. Hence, the
emphasis is on the implementation of the vari­
ous input devices associated with the graphic
console .. The graphic console di~play CRT
(cathode ray tube) is used to indicate what
type of information is required.

Alphanumeric Input
Subroutines names, variable names, titles fOl'

recorded film output, etc. constitute one type of
information frequently required from the

*
!

8
,
H

• N

•

graphic console operator. This information is
most conveniently handled by the programmer
in the form of BCD character strings. Thus, the
task here was to provide a facility for request­
ing and accepting these strings. Two input de­
vices are appropriate: the alphanumeric key­
board and the card reader (see Figure 1).

In addition to the primary requirement that
the I/O. subroutine for this task be simple for

. the programmer to use, two other requirements
were felt to be important. First, there was the
need to give the graphic console operator imme­
diate feedback which would permit him to
verify that each character has been entered
correctly. Concomitant with this was the need
to provide the operator with a means of cor­
recting erroneously entered characters.

\ 2
C 0 E

..... A- 5
J K

"... e
Q
\(.

W

Figure 1. The 7960 Alphanumeric Keyboard and Card Reader.

The subroutine RINSE (Request for INfor­
mation SubroutinE) was developed for this
task. To use this subroutine, the programmer
specifies three items of information: (1) the
symbolic name (i.e., location in core) of an
array which contains the request message in
BCD format, (2) the maximum number of BCD
characters which the operator is allowed to en­
ter, and (3) the symbolic name of an array in
which to store these characters. Figure 2 shows
a typical set of source language statements for
utilizing the RINSE subroutine. The DIMEN­
sIoN declaration is used to reserve space for
an array at compile time. The VECTOR
VALUES declaration is used to preset an array
(Le., vector) at compile time. The EXECU-
TIVE statement generates a call to a subrou­
tine.

In Figure 3 the request message in the ex­
ample above is shown as it would appear on the
display CRT upon the execution of RINSE.

Assume that the graphic console operator
wishes to enter the subroutine name: ABC. At
this point, the operator can either type in the
subroutine name at the alphanumeric keyboard
or insert a card in the card reader. If he elects
to type in the name, each character will be
added, one at a time, to the display. If he in­
serts a card in the card reader, characters will
be added to the display sequentially as they are
read from the card. The console operator can
intermix these two modes of input. Figure 4
shows the display as it would appear after the
subroutine name has been entered.

The operator can delete the last character in
the string by depressing the BACKSPACE key
or delete the entire string by depressing the
RESTART key (see Figure 1). He may then
enter more characters. In this manner, errone­
ous characters may be corrected. Once the in­
put is satisfactory, the operator depresses the
END key, the display is terminated and the
BCD character string is passed back to the
calling program.

Figure 2. Source Language Statements for the RINSE
Subroutine.

INPUT/OUTPUT SOFTWARE CAPABILITY 389

Figure 3. RINSE Subroutine Display.

Numeric Input
Another type of information which the pro­

grammer may require from the graphic console
operator is numeric data. The task here is one
of providing a facility for initializing and/or
modifying data variables. Two subroutines
were developed to meet this requirement. The
difference between these two routines stems
from the hvo basically different 'ways in which
data variables can be defined: as elements of an
array or as a set of distinct variables vlhich
may be widely scattered throughout memory.
In the first case, each variable is referenced by
giving the name of the data array and the sub­
script of the particular item. In the second case,
each variable has its own unique name.

Figure 4. RINSE Subroutine Display.

390 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

In addition to the three task requirements
mentioned in connection with the RINSE sub­
routine (i.e., ease of use, visual feedback to
permit verification, and an error correction pro­
cedure) there was the additional requirement
that the operator be· able to enter numeric data
in either floating point, integer or octal mode.
For this task, the only input device which has
been implemented is the alphanumeric key­
board.

The subroutine SETDA (SET up Data Ar­
ray) permits the inspection and modification of
items in a data array. To use SETDA, the pro­
grammer specifies four items of information
(see Figure 5) : (1) the BCD name of the data
array, (2) the length of the data array, (3) the
symbolic name (i.e., location in core) of a sec­
ond array which defines the mode (integer,
floating point or octal) of each item in the data
array, and (4) the symbolic name of the data
array. If each item in the data array has the
same mode, the mode need only be specified
once for the whole array.

Figure 6 shows the display which will be gen­
erated upon execution of SETDA, as indicated
in Figure 5.

At this point, the operator can modify the
value of the current item, step the display to
the next item in the data array, define the sub­
script of any item in the data array which he
wishes to see displayed next, or terminate the
subroutine.

The operator enters a new value for the cur­
rent data item by using the alphanumeric key­
board. The visual feedback and error correction
procedures are identical to those described for
the RINSE subroutine. Figure 7 shows how
the display would appear during this process.
The operator can cause the new value of 27 to
be stored in DATA (0) by depressing the END
key.

V~~TOR VALUE~ NA~E = ~CATAII
VECTOR VALUFS DATIII :: 2.3.-1.77K

!:':xrCUT':::_ SFT[)A. (NAME .~hfJ,ODE .DATII I)

Figure 5. Source Language Statements for SETDA
Subroutine.

Figure 6. SETDA Subroutine Display.

If the operator tries to store a number of the
wrong mode, the display changes to that shown
in Figure 8.

If the operator wishes to step the display
(Figure 6) to the next item in the data array,
he depresses the alphanumeric key labeled","
and the upper portion of the display changes
appropriately. If, on the other hand, the opera­
tor wishes to "move" the display directly to any
item in the data array, he first depresses the
"=" key. The display then changes to that
shown in Figure 9 and the operator enters the
subscript of the desired item.

If the operator tries to enter a subscript
which is too large, the display changes to that
shown in Figure 10.

Control is returned to the calling program
when the operator depresses the END key from
the display indicated by Figure 6.

The second subroutine (SETPAR) developed
to facilitate numeric input permits the inspec­
tion and modification of a set of distinct data
variables. The programmer uses this subrou­
tine in essentially the same manner as SETDA.
However, the format in which the current
status of the data variables is displayed was
altered in an attempt to gain insight and ex­
perience in the presentation of information. The
information display technique used by the
SETDA subroutine can be characterized as the
"player-piano" approach: the data items appear
as if they were listed sequentially on a long
strip of paper which is being moved back and
forth past a one-item viewer under the opera-

Figure 7. SETDA Subroutine Display.

tor's control. SETP AR uses a "page" approach
as the information display technique. This tech­
nique treats the data variables as if they were
listed, up to 16 to a page, in a loose-leaf note­
book. As each "page" is presented to the
graphic console operator, he has the options of
modifying the values of any data items listed
on that page, turning to the next "page", or
"closing the book" (Le., terminating the sub­
routine) .

Figure 11 shows a typical "page" display.

If the operator wishes to change the value of
any data variable in the displayed list, he uses

TH[CURRENT ITEM IS

DATA1 (0)

I TS CURRENT VALUE IS

2

I T8 M9DE IS

ILLEGAL M90[, TRY AGA IN

. Figure 8. SETDA Subroutine Display.

INPUT/OUTPUT SOFTWARE CAPABILITY 391

ENTER VALUE SF
NEW SUSSeR I PT

Figure 9. SETDA Subroutine Display.

the alphanumeric keys labeled" t " and" t " to
move the pointer to the desired data item and
then enters the new value of this item using
the alphanumeric keys exactly as in the SETDA
subroutine. To "turn the page" the operator
depresses the "," key and to terminate the sub­
routine he hits the END key.

Positional Data Input
Since the GM Research Laboratories DAC-I

system was developed specifically to investigate
the field of graphic data processing, it was
necessary to provide a capability for presenting
the graphic console operator with a display of
graphic information and receiving positional
input from him relative to this display. The
position indicating pencil provided the basic
hard,vare capability necessary to meet this
need. The requirements for this task were: (1)
to display the graphic information specified by
the calling program, (2) to determine the posi­
tion of the pencil relative to this display, and
(3) to return this position to the calling pro-
gram when the pencil was removed from the
screen .

Figure 10. SETDA Subroutine Display.

392 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

DATAl 12 I
DATA2 1 I
CATA3 3.14159 F
DATA4 = 1 a F
DATAS =212223242526 K
DATAS =000000010000 K
DATA7 41 I
DATA8 0 F
DATA9 =000000000000 K
DATA10=OOOOOOOOOOOO K
DATA11= 0 F
O!\TA12= 0 I
DATA\3= 0 F
DATA14= 0 I
D~TAi5=000000000000 K
D~TA18=OOOOOOOOOOOO K ----

--~----------------

~\~ :., KEY 18 lURN PAGE.
I, c..ND KEY WHEN 08NE.

Figure 11. SETPAR Subroutine Display.

Because of the very general nature of graphic
information, no attempt was made to assist the
programmer in formating his display. To in­
crease the flexibility of the I/O utility subrou­
tine designed for this task (PEN2) an option
was added which allows the graphic console
operator to terminate the display by depressing
either an alphanumeric key or a program con­
trol button. In any case, however, the calling
program is fully informed as to the condition
which terminated the display.

Figure 12 shows the source language state­
ment necessary to execute PEN2. The 2nd and
3rd arguments define the location and size of
the array containing the graphical information.
The 4th argument describes the condition \vhich
terminated the display. The 1st argument pro­
vides information pertaining to the pencil.

Upon execution of PEN2, a display of the
specified information begins. At this point, the
graphic console operator can depress an alpha-

FXFCUTE PEN2.cPEN,ARRAY,SIZE,RETURN)

Figure 12. Soul'ce Language Statements for PEN2
Subroutine.

numeric key, a program control button, or bring
the position indicating pencil into contact with
the display CRT. If a key or button is de­
pressed, the display is immediately terminated
and control passes back to the calling program.
If the pencil is touched to the screen, a small
cross appears superimposed on the display. This
cross defines the position of the pencil relative
to the display and provides the operator with
visual feedback. The visual feedback is particu­
larly important here because of severe parallax
problems. If the pencil is moved across the
screen, the cross will follow. When the pencil
leaves the screen, the display is terminated and
the last location of the cross is returned to the
calling program. Figure 13 shows the pencil
being used to point to a region on a grid.

This subroutine has proven to be very flexible
and easy to use, resulting in a wide variety of
applications. One such application of PEN2
was in the development of a higher level I/O
utility subroutine permitting the entry of de­
cision type information.

Decision Information Input
The task associated with the entry of decision

information is to present the graphic console
operator with a set of possible actions available
to the controlling program and to allow him to
select an ordered subset of these actions.

The I/O subroutine CHOICE was developed
for this task and requires three items of infor­
mation from the calling program: (1) the num­
ber of alternatives to be presented, (2) the
symbolic name (i.e., location in core) of an

Figure 13. Positional Input Via the PEN2 Subroutine.

array containing the' BCD messages describing
the alternatives, and (3) the symbolic name of
an array provided for the list of selected ,al-
ternatives (see Figure 14). "

The execution of this subroutine begins with
a display of the alternatives, as shown in Fig­
ure 15.

The operator may now select his first alterna­
tive by pointing to the appropriate field with
the voltage pencil and then removing th~ pencil
from the screen. Immediate visual verification
of the choice is provided by the digit 1 at the
right hand side of the selected field as shown
in Figure 16. .

The operator proceeds in this manner to com­
plete his, selection of the desired alternatives.
When he is done, he selects the field labeled
"DONE" and control is returned to the calling
program.' If the operator makes a mistake or
cha.nges his mind, he can "erase" his last selec­
tion by selecting the field labeled BACKSPACE.

SOURCE LANGUAGE STATEMENTS

In the first section of this paper, five sub­
routines were described which are representa­
tive of a class of subroutines whose primary
objective is to facilitate the on-line input of
various types of information. In the following
section, we describe three source language
statements which provide the programmer with
the capability of generating various types of
on-line output in an easy, efficient, and flexible
manner. In the development of these state­
ments, an effort was made to conform (insofar
as possible) to' the precedents established by the
normal I/O source statements appearing in the
NOMAD language. It was felt that, in so do­
ing, the resulting statements would be much
easier for the programmer to use.

Display Format Statement
"DISPLAY FORMAT" was designed to per­

mit the programmer to use the graphic console

EXECUTE CHOICE.(ALT~RS.5.SFLFCT)

Figure 14. Source Language Statement for CHOICE
Subroutine.

INPUT/OUTPUT SOFTWARE CAPABILITY 393

THIS SPACE IS
ALLeTED T9 THE
FIRST ALTERNATIVE

TH I S SPACE IS
ALL8TED T9 THE
SEC9ND ALTERNATIVE

THIS SPACE IS
ALL8TED T9· THE
THIRD ALTERNATIVE

THIS SPACE is
ALL8TED T9 THE
F8RTH ALTERNATiVE

THIS SPACE IS
ALL8TED T8 THE
FIFTH ALTERNATIVE

BACK SPACE

Figure 15. CHOICE Subroutine Display.

display CRT in ,llluch the same way as the on­
line printer was used in "the good old days."
The implementation of this "on-line print"
capability provides the programmer with a very
convenient· way of presenting a wide variety
of information to the graphic console operator.

The maximum amount of information which
can be displayed by DISPLAY FORMAT (i.e.,
its unit record) is 480 characters. These 480
available character positions are in the form
of 20 lines on the CRT with 24 character posi­
tions per line.

THIS SPACE IS
AlLeTED T9 THE
FIRST ALTERNATIVE

TH I S SPACE IS
ALL9TED T9 THE
SEC9ND ALTERNATIVE

THIS SPACE IS
ALL9TED T9 THE
THIRD ALTERNATIVE

THIS SPACE IS
ALL6TED T9 THE
F8RTH ALTERNATIVE

THIS SPACE IS
ALL6TED T6 THE
FIFTH ALTERNATIVE

BACK SPACE

Figure 16. CHOICE Subroutine Display.

394 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

The DISPLAY FORMAT statement has a
list and a format associated with it. The list
gives the values and items to be displayed and
the format gives the display pattern to be used.
The format is composed of a sequence of for­
mat specifications of the form CWo The char­
acter C is the control character and defines the
type of operation or conversion to be per­
formed. In general, 1,0 refers to the number of
character positions associated with the opera­
tion defined by C. If, in any format specifica­
tion, the field width 1,0 is zero, that format speci­
fication and its associated list item (if any)
are ignored.

There are three types of format specifications
available for the conversion of numeric data.
Octal and decimal integers are generated by
using the Kw and Iw specifications respectively.
The F'lO specification provides for floating point
variables which will be displayed as either float­
ing point decimals (e.g., .2E-3) or fixed point
decimals (e.g., .0002) depending on which form
produces the fewest characters for display.

There are two types of format specifications
available ,foT,the conversion of BCD informa­
tion. The A 10 specification is identical with
that used in other NOMAD I/O statements. In
particular, one word ·(six . characters) will be
picked up from the list and right justified or
truncated on the right, depending on whether
w > 6 or w < 6. The Hw specification differs
from ordinary I/O statement usage in that the
Hollerith information is specified in the list
rather than in the format.

The specification X 1,0 provides 1,0 blanks in the
display. The specification /1,0 results in a down­
space of 1,0 lines. An automatic downs pace of
one line results when the number of characters
on a line reaches 24. The specification Pw (1,0

has no particular significance in this case un­
less it is 0) resets the current character posi­
tion to the first character position of the first
line. This specification has proven very useful
when putting out columns of information which
comes from several different arrays in memory.

The specification Rw causes the succeeding
portion of the format to be repeated, if neces­
sary, until the list is exhausted (1,0, again, has
no particular significance unless it is 0). If the
specification Rw does not appear anywhere in

the format, the entire format will be repeated
until the list is exhausted.

The form of the "DISPLAY FORMAT"
statement and a sample format is shown in
Figure 17.

Perhaps the most radical departure of the
DISPLAY FORMAT statement from standard
NOMAD I/O statements involves the use of its
second "argument" (i.e., the item called 1NOUT
in Figure 17) .

INOUT will, in general, be the first cell of a
short array in which the program using D 1S­
PLAY FORMAT can:

a) specify the status light configuration dur­
ing and upon termination of the display,

b) specify the input devices which the
graphic console operator will be permitted
to use in terminating the display.

c) receive a description of the condition
which caused the termination of the dis­
play.

The graphic console display shown in Figure
18 corresponds to the DISPLAY FORMAT
statement of Figure 17.

Because of its flexibility and ease of use, the
DISPLAY FORMAT statement has been a
valuable aid in the development of a cooperative
man-machine problem-solving system.

Record Format Statement
The RECORD FORMAT statement provides

a means of producing hard copy alphanumeric
output through the use of the recording feature
of the image processor. The form of the REC­
ORD FORMAT statement is identical to that
of DISPLAY FORMAT (i.e., RECORD FOR­
MAT FMT, INOUT, Ll, L2, L3, ...). RECORD
FORMA T recognizes all of the format specifica-

VECTOR VALUES LJ = $C~O~S LOCATIONS$

VECTOR VALUES X = X

VFC':TOR VALIIFc:. V = V

VECTOR VALUES LEVEL = $LEVEL$

VECTQQ VALUES FMT = $(X5.H15./1.X3.HM.X4.F6./1.
1 X7.Hl.XS.Hl.X3.HS.R5./1.X5.14.X2..14.X4.12)$

DISPLAY FORMAT FMT.INOUT.Ll.DATE.TIME.X.V,LEVEL.
1 DATA (1 1 ... DATA(\51

Figure 17. Source Language Statements for DISPLAY
FORMAT.

CROSS LOCA T IONS
06/24/54 20 17 . 4

X Y LEVEL
205 , 79 I I

]955 215 I I
189 J943 I I

]9JJ J950 f I
2083 2055 t 5
Figure 18. Application of DISPLAY FORMAT.

tions and conventions used by DISPLAY FOR­
MAT.

The unit record for RECORD FORMAT is
12,000 characters per film frame. These 12,000
available character positions are in the form of
100 lines of 120 character positions each.

With RECORD FORMAT, INOUT is a single
cell and is used by the calling program to
specify the desired film train operations asso­
ciated with the recording. Appropriate bytes in
INOUT define which film train is to be used,
how many frames are to be advanced before
and after the recording is performed, and when
developing of the film frame is to occur (if at
all) .

RECORD FORMAT enables the programmer
to use the image processor as he would use an
off line printer with the added advantage that
his turnaround time is measured in minutes
rather than hours. The output can be developed
immediately and moved to the project station
of the image processor for on-the-spot review
and then placed on an aperture card for hard
copy reproduction. The hard copy output is
very similar to that produced by an IBM 1403
printer.

Generate Format Statement
The DISPLAY FORMAT and RECORD

FORMAT statements enable the programmer
to easily produce alphanumeric output. How­
ever, it is frequently necessary to produce either
displays or recordings which contain a combi­
nation of grap,hic data and alphanumeric char­
acters of different sizes (see Figure 19). In
addition, it is desirable to have the capability
of altering a small part of a display without
having to regenerate the whole display. The
value of such a capability is best illustrated in

INPUT/OUTPUT SOFTWARE CAPABILITY 395

the operation of the CHOICE subroutine (see
Figures 15 and 16). The GENERATE FOR­
MAT statement was specifically designed to
meet these needs.

With respect to formats, input lists, and
statement form (i.e., GENERATE FORMAT
FMT, INOUT, Ll, L2, L3, ...), GENERATE
FORMAT is identical to the previous two state­
ments. However, instead of producing output
directly (as is the case with DISPLAY FOR­
MAT and RECORD FORMAT), GENERATE
FORMAT provides the programmer with the
array of CRT coordinates needed to produce a
display of the alphanumeric information. In
addition, GENERATE FORMAT enables the
programmer to specify character size and line
spacing (i.e., the user can define his own unit
record) .

By executing GENERATE FORMAT several
times with different unit record specifications
and combining the resultant arrays of CRT co­
ordinates with an array of coordinates repre­
senting graphic data, the programmer can,
through the use of a basic display or recording
subroutine, produce output of the type shown in
Figure 19.

{The special reatures or GENERATE FOR­
MAT were utilized in the I/O utility subrou­
tines SETDA, SETP AR, and CHOICE to
quickly and efficiently produce sequences of dis­
plays in which only portions of the basic dis­
play are altered. For instance, Figure 16 can

Figure 19. Application of GENERATE FORMAT.

396 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

be produced from Figure 15 simply by adding
the three coordinate pairs necessary to generate
the character 1 to the large coordinate array
for the basic display.

The DISPLAY FORMAT and RECORD
FORMAT statements provide the programmer
with an easy and efficient method of utilizing
the output capabilities of the 7960 system. The
GENERATE FORMAT statement rounds 'out
the output software package by providing the
additional flexibility needed to handle the situa­
tions described above.

SUMMARY

Any attempt to implement a system which
stresses cooperative man-machine interaction
must concern itself primarily with the problem
of man-machine communication. Furthermore,
the man-machine communication will typically
take place in a wide variety of situations and
at many levels of problem discourse. Attempts
to define all possible communication situations
and develop specific programs for each will lead
to a tremendous amount of redundancy and
duplication of effort. It is possible to avoid this
problem by realizing that all man-machine com­
munication must pass through the I/O hard­
ware interface. Thus, by providing an exten­
sive, flexible, and powerful I/O software capa­
bility, the presence of the hardware interface
need not concern the programmer and he can
devote his whole attention to the more signifi­
cant aspects of man-machine communication.
The software described in the body of this
paper has proven to' be an immensely powerful
tool which has enabled programmers to rapidly
design and evaluate the wide variety of com­
munication techniques necessary to any man­
machine problem-solving system.

ACKNOWLEDGEM~NTS '
The" material'described' in this:p~wr is'not

solely thew:ork of the~uthors,. Significant con­
tributions, 'were 'made, by other' members of the
programming staff.' In',p~rticular,'; we would
like to ,acknowledge the contributions 'of 'C.
Richard Lewis, of' the Computer Technology
Department, G M Research Laboratories, and
Martin Weinrich. *

REFERENCES

1. JACKS, E. L., "A Laboratory for the Study
of Graphical Man-Machine Communica­
tion," Proceedings Fall Joint Computer Con­
ference, San Francisco, California, Oct.
1964, (this volume).

2. COLE, M. P., DORN, P. H., LEWIS, C. R.,
"Operational Software in a Disk Oriented
System," Proceedings Fall Joint Computer
Conference, San Francisco, California, Oct.
1964, (this volume).

3. HARGREAVES, B., JOYCE, J. D., COLE, G. L.,
Foss, E. D., GRAY, R. G., SHARP, E. M.,
SIPPEL, R. J., SPELLMAN, T. M. THORPE , ,
R. A., "Image Processing Hardware for a
Man-Machine Graphic Communication Sys­
tem," Proceedings Fall Joint Computer Con­
ference, San Francisco, California, Oct.
1964, (this volume).

4. KRULL, F. N., FOOTE, J. E., "A Line Scan­
ning System Controlled from an On-Line
Console," Proceedings Fall Joint Computer
Conference, San Francisco, California, Oct.
1964, (this volume).

5. FREEMAN, H., "On the Encoding of Arbi­
trary Geometric Configurations," IRE
Transactions on Electronic Computers,
June, 1961.

* Now at the Univerf'ity of Michigan.

A LINE SCANNING SYSTEM CONTROLLED FROM AN

ON-LINE CONSOLE
Fred N. Krull and James E. Foote

Research Laboratories, General Motors Corporation, Warren, Michigan

INTRODUCTION

Direct graphical input is one of the newest
and most exciting sources of digital computer
input. Programming techniques and hard­
ware are beginning to appear which are
designed to automatically process graphic in­
formation. l , 2, ·3, 4 This paper describes an ex­
perimental system which has been designed to
facilitate the digitizing of line images. The
equipment which is used for this purpose is an
IBM 7960 Special Image Processing System,
consisting of graphic console, image processor,
and a modified data channel. 7 The image proc­
essor (Figure 1) contains a programmable
Cathode Ray Tube (CRT) scanner, a CRT re­
corder, a 35mm camera, and film processing
equipment.

The graphic console (Figure 2) contains de­
vices to communicate with the operator and to
control the image processor.

Both of these devices are tied directly to a
computer via a modified data channel.

The principal objective of this portion of
DAC-I (Design Augmented by Computers)
project 5,6,7,8 was to utilize the full capabilities
of the image processor, graphic console, and
digital computer to digitize a variety of line
images to a high degree of accuracy. Program
system objectives dictated that line widths
.05% of image size (.01 inches on 20x20 inch
document) must be detectable to an over-all
system accuracy of ±.05% of image size. Thus,
this system was designed to provide a rapid,

397

versatile, and accurate method for converting
graphical data to digital form. While it pro­
vides only for the digitizing of lines, a natural
outgrowth of the work will be a library of pat­
tern and character processors to be used by pro­
grammers in much the same manner as card
and tape input/output (I/O) routines are used
now.

The application requirements of the DAC-I
project dictated that one of two approaches be
used for the analysis and processing of a two
dimensional graphical form:

a) Algorithms are specified which prescribe
the rules for analyzing a graphical image.
This approach assumes a structure for
each characteristic image, and relies upon
the availability of individual pattern proc­
essors to detect image components.

b) No fixed structure is assumed for the in­
put document. Minimal restrictions are
placed on image quality only. Emphasis
is placed upon providing elementary
functions which an operator may call
upon and combine in order to process a
complex form. All decision capability
and selection of functions is left to the
operator who is controlling the scanning
device from an on-line console.

The second approach was selected since at
this point in the project it was not possible to
specify the structure of the large variety of in­
put documents anticipated. We felt, for in­
stance, that the system would be used to digitize

398 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 1. Image Processor.

documents ranging from mathematical graphs
to engineering drawings. Therefore, it seemed
advisable to concentrate our efforts on provid­
ing a reliable set of basic pattern analyzers.
These elementary functions would then provide
the basis for processing much more complex
forms.

Since the console operator now becomes an
essential part of the scanning sequence, it was
necessary to devote considerable effort to the
problem of man-machine communication. De­
velopment of the system has permitted us to
carry out a series of experiments, designed to
discover the best interface between man and
computer. Scanning functions have been made
automatic when practical, but the decision capa­
bility of the human operator is still used to best
advantage. Thus, flow diagrams for scanning
functions in many instances contain a block in
which the operator is controlling the selection

of a branch or setting the value of a parameter.
Each situation has warranted an investigation
to answer the question: "Who can perform the
job better-man or machine?"

An essential part of this process was to eco­
nomically match the speed of the computer with
the speed of man. The solution was to multi­
program a 32K digital computer being used to
process regular compilations and executions
under batch monitor contro!.;;' G A 16K-16K
logical core split was made available for use by
the on-line operation and the batch monitor
programs *. The on-line console operation has
millisecond access to the CPU of the computer
on a demand basis. When use of the CPU is no
longer required, control is returned to the batch
monitor program.

* This configuration has been updated to a 64K mem­
ory with a 32K-32K logical core split.

A LINE SCANNING SYSTEM CONTROLLED FROM AN ON-LINE CONSOLE 399

A dynamic storage allocation system and exe­
cution processor 6 occupy almost half of the 16K
memory cells devoted to on-line console opera­
tion. The remainder of the core space (approx­
imately 8K) is available for use by the scanning
system programs and data tables. The scan­
ning programs total more than 40K cells, ex­
clusive of memory data tables. Hence, the
dynamic storage allocation scheme is utilized to
overlay subroutines as they are required. The
entire scanning system was written in an alge­
braic language called NOMAD and a channel
language called MAYBE.6

All functions are made available to the op­
erator via program control buttons on the
graphic console. There is almost a one-to-one
correspondence between operational capability
and program control buttons. The organiza­
tion of this type of system is illustrated in
schematic form in Figure 3.

This concept allows the operator to depress a
button and execute a wide range of functions.
Upon completion, the system may return to
standby and wait for the next selection, or each
function may automatically call on other func­
tions. For example, an operator may depress
the DISPLAY button to obtain a graphical im-

age on the graphic console CRT. Similarly, a
scanning function may display intermediate re­
sults by logically depressing the DISPLAY but­
ton. Thus, one function may logically depress
other program control buttons. In addition,
while one function is being performed, it may
be advantageous to make other functions op­
tionally available. Thus, function (B) can al­
low program control buttons (A) or (C) to be
depressed, and subsequently signal the control
program which option has been selected.

The functions themselves logically fall into
four distinct areas: Film Operations, Scanning
Operations, Display and Review Operations,
and Modify and Store Operations. Each area
presented the same problem; namely, how to
best communicate with the man in order to
perform a specific operation. The variety of
solutions that have been employed are discussed
in the remainder of this paper.

FILM OPERATIONS

A line scanning problem will, in general, re­
quire more than.one film frame (i.e., more than
one input document) and the user. may wish to
use either the exposure and rapid processing
facilities of the image processor or off-line film

Figure 2. Graphic Console.

400 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 3. System Organization.

which has been pre-exposed and mayor may
not have been processed. During the course of
the scanning operation, the user may at appro­
priate times wish to record current results on
film either for purposes of verification or to
form a permanent record of his work.

It was therefore necessary to include in this
line scanning system a facility for the console
control of both of the film trains 7 in the image
processor which is shown schematically in Fig­
ure 4.

One film train (train B) may be used only
for recording and reviewing output. The other
film train (train A) may be used either for re­
cording or for exposing input documents onto
film and scanning the resulting film images.
Both film trains can process an exposed film
frame in approximately 30 seconds and project
the image onto the 22x20 inch viewing screen.

RECORD OR
EXPOSE STATION

BUFFER I

BUFFER 1

The 22x22 inch paper input station can ac­
cept documents for exposure onto raw film in
train A. Alternatively, pre-exposed microfilm
may be inserted in the supply cassette. Film
transport commands allow the film to be ad­
vanced into buffer 1, developed, and advanced
or backspaced into buffer 2 under program
control.

The console operator is provided with several
film functions which make use of these facili­
ties. An exposure processing function readies
the paper input station to accept documents.
The operator may then insert documents and
make exposures by depressing an EXPOSE
button on the side of the image processor. Each
exposure is automatically advanced into buffer
L A count of the number of exposures is dis­
played on the graphic console screen. When all
exposures have been completed, the operator

BUFFER 2

TRAIN A

BUFFER 2

PROJECT
STATION

PROJECT OR
SCAN STATION

figure 4. Film Train Configuration.

A LINE SCANNING SYSTEM CONTROLLED FROM AN ON-LINE CONSOLE 401

may initiate the processing cycle. The film
transport is programmed to develop all of the
exposed film in buffer 1 after adding a trailer to
the exposures, and position the first exposure at
the scan-proj ect station. The operator may
utilize manual controls on the image processor
to advance or backspace frames that are in
buffer 2 or on the take-up reel. Operational ex­
perience has shown the value of providing the
console operator with a rapid means of prepar­
ing a film image suitable for scanning. A cer­
tain amount of flexibility and film quality is lost
through the utilization of rapid processing, but
this seems to be more than offset by the con­
venience of short turn-around time.

An auxiliary film processing function is
available if off-line film is to be used. Utiliza­
tion of pre-exposed film. allows for a wider
variety of input quality and document sizes.
This film is inserted in the supply cassette and
spliced to the film in train A. When the proc­
essing is initiated, both film buffers are emptied
(i.e., the film is pulled tight). They remain
empty as the film passes from the supply cas­
sette, through the developer and then past the
scan-project station. The graphic console op­
erator can monitor the operation on the projec­
tion screen. Depressing the END key on the
alphanumeric keyboard will halt the develop­
ing. In this manner rapid processing film 1Nhich
has been pre-exposed can be developed. Stand­
ard microfilm or rapid processing film that has
been preprocessed is not significantly affected
by passing through the developer during this
operation. The use of preprocessed high con­
trast microfilm permits the scanning of mate­
rial which is of much poorer quality than can
be accepted at the paper input station.

During the course of 'various scan operations,
it is frequently necessary to make a permanent
record of the results. Selection of a recording
function causes all current scan results to be
recorded on film train B. The material record­
ed on film is the same as that which is shown on
the graphic console by the DrSPLA Y function
discussed later in the paper. After recording
is completed, the frame will be automatically
advanced into the first film buffer of train B.
The developing process will be initiated auto­
matically after six recordings but can be ini­
tiated at 'any time via a FILM CONTROL func-

tion. By means of manual controls on the image
processor, a processed frame can be centered on
the viewing screen. By appropriate manipula­
tion of both film train projection lamp rheostats
and positional controls (2 dimensional motion
is possible on train B), both the scan results on
train B and the original document on train A
can be superimposed on the viewing screen for
purposes of comparison.

The user also has at his disposal the ability to
develop or clear film which has been moved into
any of the film buffers. Clearing the film moves
all exposures onto the take-up reel from which
they can be removed and mounted in aperture
cards. One of the accessory pieces of equip­
ment available to the user is an aperture card
printer. Thus, hard copy output is available to
the user in a matter of minutes after he leaves
the console. We find that this is particularly
valuable in evaluating results and maintaining
a record of work accomplished.

SCAN OPERATIONS

The unique feature of this line scanning sys­
tem is that only those elements of an image
which are selected by the console operator will
be scanned and digitized. The basic element of
an image is a line segment defined as a contin­
uous curve terminated by two ends, two junc­
tions or a combination of both. Since compli­
cated images may contain many intersecting
curves, a line will, in general, consist of several
segments which must be added together logic­
ally. Experience has shown the j unction to be
a far more accurate delimiter than the end of a
curve. The normal procedure of this system
has been, therefore, to define the end points of
lines precisely by means of perpendicular slash
marks. Figure 5 shows a typical document
from which line AD is to be digitized. Line AD
consists of segments AB, BC, and CD. A line
may, of course, consist of only one segment.

The requirement of digitizing selected lines
which represent only a small fraction of the
entire image suggested a line tracking tech­
nique. Analysis of a raster scan of the entire
image area was deemed impractical because of
the volume of data involved.

The automatic line tracking procedure which
forms the heart of this line scanning system is
described briefly below. Figure 6 shows a typi-

402 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

ROll RESPONSE

VI w
J:
u
~

~ A
w
0
:;)

5
~ D

'"

o

TIME IN SECONDS

Figure 5. Sample Document.

cal line with two points (P A and PB) that have
been sampled. The next point is estimated to
be P'c : a distance (~H) away from PB on the
line defined by points P A and PB. Two "scan
feeler vectors" (P1-P2) and (P3-P-l) are then
plotted on the CRT parallel to and a distance
(~V) away from the line (PB-P' c). ~H and ~ V
are specified by the console operator.

If nothing is encountered by either feeler
vector, a scan vector (Pz-P-I) is plotted and the
next point Pc is determined by the intersection
of (P2-P-l) with the line as shown in Figure 7.

The procedure is repeated until the line ends
or one of the feeler scan vectors gets a "hit"
indicating that either a junction has been en­
countered, or that the tracking step size (~H)
and the feeler vector spacing (.o!l V) are not
compatible with the curvature of the line. When
this occurs, a block of code will be called upon
to analyze the situation, and action will be re­
quested from the operator if necessary.

At each point, the threshold level (detection
sensitivity of the scanner) is adjusted within
rigid bounds, based on results at the last point,

P
1

Figure 6. Line Tracking Procedure.

P2

Figure 7. Line Tracking Procedure.

to the minimum necessary for line detection.
When a new point is obtained, the threshold
level bounds are modified if necessary. In this
manner, large variations in density across a
film frame can be accommodated while still pre­
venting erroneous scanner responses due to im­
proper threshold level. The threshold level
bounds, along with tracking step size, feeler
vector spacing and several other scanning pa­
rameters can be modified if necessary by the
user at the console via a CHANGE PARAM­
ETERS function.

The automatic method of line tracking is
utilized by the user whenever possible. If areas
of difficulty occur, the user may request or the
scan program will automatically generate a call
for a raster sweep (TV scan) of the area of
difficulty. The user may then utilize the sweep
display on the graphic console screen for diag­
nostic purposes.

The graphic console operator is required to
combine those functions which will enable him
to process a complicated image. It is assumed
that a film frame has been centered in the scan
gate before any scan functions are selected. A
RESTART function readies the system to ac­
cept results from a new image. All previous
scan results are deleted.

A REGISTRATION function may be used to
search for a border around the image corres­
ponding to a 20x20 inch square border on the
input document. The main function of this
border is to provide an easy means of supplying
the scanning system with coordinate and scal­
ing data. The coordinates of the border are as­
sumed to be (0,0), (0,20), (20,20), (20,0) but
can be modified by the console operator by using
a CHANGE PARAMETERS function. If regis­
tration is successful, the border, plus lines di­
viding each side of the border into quarters, will

A LINE SCANNING SYSTEM CONTROLLED FROM AN ON-LINE CONSOLE 408

be displayed on the graphic console CRT. This
grid aids the console operator in using the posi­
tion indicating pencil to select lines for scan­
ning. It is not necessary to register, however,
in order to proceed with scanning since there
are alternate methods for the system to obtain
coordinate and scaling data.

A SCAN A LINE function readies the sys­
tem to begin scanning the first segment of a
new line. The user will immediately be re­
quested (via appropriate comment on the
graphic console screen) to select by means of a
position-indicating pencil the approximate area
for the scanning to begin. The user may then
point directly to an area. on the screen (using
the display of previous results and the regis­
tration grid as a guide, if available). Alter­
natively, the console operator may request a
gross raster scan and display of the entire
image. He may then select a line with the
pencil as shown in Figure 8.

Once a starting area has been supplied, a
search wiJI begin for two points on the first
segment. These points will then be used to
initiate the automatic line tracking procedure
which will track to both ends of the segment in
two steps. If any difficuity is encountered dur­
ing this operation, the results up to that point

along with an appropriate comment and a box
indicating the region of trouble will be dis­
played. The operator must then take the proper
action which usually begins with a TV sweep of
the problem area. After a portion of a line has
been scanned, an ADD A SEGMENT function
may be used to add segments to the given line.
Selecting this function (active only after the
first segment of the current line has been
scanned) readies the system to scan a segment
adjacent to one end of the current line and add
it to the current line.

The user is immediately requested to indicate
with the position-indicating pencil the approxi­
mate location and initial slope of the next seg­
ment. A search will then be initiated for a
point on the next segment which is separated
from the endpoint of the current line by a dis­
stance equal to the tracking step size (6H).
This point and the endpoint will then be used
to initiate line tracking which will proceed to
the end of the segment. If any difficulty is en­
countered during this operation, all previous
scan results, plus an appropriate comment and
a box indicating the problem area, will be dis­
played. The user must then take appropriate
action. If this entire operation is successful,
the segment will be added logically to the cur­
rent line to form the new current line.

Figure 8. Line Selection.

404 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

A TV SWEEP function allows the user to ex­
amine a localized area for diagnostic or correc­
tive purposes. This function will be initiated
automatically whenever the tracking procedure
encounters difficulty. The console operator may
also use this function to investigate any data
point along a line by selecting the point of in­
terest with the position-indicating pencil. The
scan responses are analyzed and a display is
generated which nominally fills the entire
graphic console screen. This enables the user
to observe a magnified view of a localized area
on the image (as it appears to the scanner).
Figure 9 shows a TV sweep display of a typi­
cal junction. The size of the sweep area is ap­
proximately .5 x .5 inches on a 20x20 inch docu­
ment.

The "X" indicates the center of the scan
raster. The user may adjust the threshold
level or change the location of the scan raster
via appropriate alphanumeric keys. The raster
may also be moved by indicating a desired lo­
cation with the pencil. A new raster scan and
display will then be generated. The system un­
derstands that the position-indicating pencil
position superimposed over the TV sweep dis­
play refers to the corresponding position in
the actual scan raster. Other appropriate sys­
tem operations may be initiated from this mode
at any time.

If a diagnostic study reveals that automatic
line tracking is impractical for some reason,
coordinate points may be stored in conjunction

Figure 9. Junction of Two Lines.

with the TV sweep facility. This function al­
lows. the user to add the current center of the
scan raster as a data point and thereby move
manually over an area of difficulty before re­
suming automatic tracking. Under extraordi­
nary circumstances (e.g., very poor film, POOl'

document quality, or an extremely congested
image), an entire line can be digitized in this
manner.

The CHANG E PARAMETERS function al­
lows the user, through a combination of multi­
ple choice and alphanumeric keyboard re­
sponses, to change many of the scan param­
eters. The value of each parameter is displayed
on the graphic console CRT along with suitable
descriptions (Figure 10). Through the use of
a multiple choice sequence employing the posi­
tion-indicating pencil, the user may select a
parameter and type in a new value for that
parameter. This function allows the user to
lnaterially change the performance of a subrou­
tine from the console. These parameters are
used within the programs both as numeric
constants and as switches for branching opera­
tions.

DISPLAY AND REVIEW OPERATIONS

The graphic console 10xl0 inch CRT is the
principal medium by which the computer com­
municates with the user. Throughout the sys-

ENTER NEW VALUES

HeRZ. eR/G/N= 0 +-
VERT. eR/GIN= 0 BeRDER SIZE = 2011
SEGMENT AREA= 5011
LINE AREA = 20011
MINIMUM STEP= 25. MAXIMUM STEP= 40011
EPS I LeN : 211 RES9LUTI8N = 2511
SCAN RAD I US = 5011 CURRENT TL = 35. MINIMUM TL = 30. MAXIMUM TL = 40. START SWITCH: 1 •

Figure 10. Parameter List.

A LINE SCANNING SYSTEM CONTROLLED FROM AN ON-LINE CONSOLE 405

tern, messages are continually being displayed
on the CRT to which the user must respond. Al­
though this display is low in accuracy with re­
spect to the scanner or recorder, it is also util­
ized for the purpose . of displaying scanned
results. A display of the scan results may be
used to check for completeness and to monitor
the progress of the scanner. To some degree,
the accuracy of the scanned results may also
be checked at the graphic console.

As a film image is scanned, the digitized co­
ordinate points are stored in an in-memory
table. The structure of this table is quite sim­
ple. Each element of scanned data is stored as
a linear array, with suitable identifiers and
pointers to the next element of data. The scan
operations may at any point in their logical se­
quence call upon the display operation to gen­
erate a pictorial representation of the in-mem­
ory scan data. A typical display is shown in
Figure 11.

If an error condition has occurred during
some previous function, the display operation
may be so signalled. This will result in a small
box being superimposed over the location of the
error, plus addition of a suitable error comment
(~; noll ... a 1') \
\ ..a: ~b \.4...1. """ .L I •

After the scan results appear on the graphic
console CRT, the following review operations
become available.

a) Increase Scale
b) Change Mode
c) Identify Dimensions
d) Identify Coordinates

By selecting the INCREASE SCALE func­
tion, the size of the display will be doubled.

Figure 11. Display of Scan Results.

Figure 12. Error in Scanning.

Any scan data which falls outside of the field
of the CRT is deleted by appropriate program­
ming. Reselection of a display returns the scan
results to their original scale. The CHANGE
MODE function may be used to display all lines
either as a continuous curve or as a series of
crosses. The latter mode allows the user to
ascertain the number and location of each single
digitized point. The ability to view individual
scanned points is essential when the scanner is
being used to capture a minute feature of a
line.

If some portion of the display outside the
field of view is desired, the pencil may be used
to point to the edge of the field. Removing the
pencil from the screen will cause the scanned
data to be redisplayed with the selected point
relocated at the center of the field of view; Fig­
ure 13 illustrates a display in which the user
has reviewed his scanned results by centering
the field on the end of a line and magnified the
scale four times to examine an end condition in
detail.

Within the operation of the scaling and field
centering mechanism can be found a lesson in
man-machine interaction. A variety of func­
tions can be selected subsequent to a display.
Typical of these is the LINE SCAN function.
After this function is selected, the user is re­
quested (by comment on the graphic console
screen) to use the pencil to point to a location
on the screen. Thus, the sequence of opera­
tions was to select a function (by depressing a

406 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 13. Magnified Display.

program control button) and then point. Our
initial operational experience taught us that the
more natural instinct was to point and then se­
lect an operation. Similar instances of man­
machine interaction being uncomfortable were
noticed throughout the development of the sys­
tem. In most cases, the problem was rectified
after user and programmer discussed alterna­
tive sequences of operation. Thus, many op­
erations communicate with the man in more
than one way, thereby anticipating the variety
of ways in which a man may respond to a given
situation.

While in review mode, the user is also fre­
quently concerned with the accuracy of his
results. The system provides two means for
reviewing the. accuracy of the scan data before
storing the data on disk. If a square border
has been registered from the film image
(1.09x1.09 inches on film), all interior points
are related to the coordinates of the corners of
the border through the use of a four point per­
spective transformation. At the paper input
station, the border would normally appear
20x20 inches square. The user through the use

of the CHANGE PARAMETERS function may
define the coordinates of the corners of the
border. Thus, the user may select any point
interior to the border and receive the inch co­
ordinates of that point. The point may be se­
lected by pointing with the position-indicating
pencil or by using linear arrows on the alpha­
numeric keyboard to vernier a pointer.

If no border registration is available, the
only accuracy test which can be made is to
check the chordal distance between two points.
For example, if the scanner were used to dig­
itize a sine wave consisting of two cycles, the
user could measure the chordal distance in
inches between the ends of the cycles on the
original document. An IDENTIFY DIMEN­
sIoN function allows the user to use the pencil
to point to two locations on a line and receive a
display of the chordal distance between the two
points. In this case, the program searches for
the two points on the scanned line nearest to the
two locations selected by the user. The pro­
gram displays the distance assuming an 18.33
reduction ratio between document and film
image.

MODIFY AND STORE OPERATIONS

The development of an elementary set of
modify operations was a direct result of monit­
oring the use to which various users put the
system. The most frequent request was for
operations to delete erroneous data. Here again
let us emphasize that the scanner and computer
are utilized to perform the elementary opera­
tions while the user (through graphic console
displays) retains judgment as to the correct­
ness of the results.

A typical situation might be that the scanner
began to digitize a scratch on the film rather
than a line on the film image. The requirement
for data deletion operations led to three meth­
ods for deleting data. The console operator may
select a DELETE LAST SEGMENT function
and cause the last element of scanned data to be
deleted from in-memory storage. An entire line
or a single point may be deleted by pointing to
a location on the graphic console screen with
the pencil and selecting the desired operation.
In these two cases, the item of scanned data, be
it a line or point, nearest to the selected loca­
tion is deleted from in-memory storage.

A LINE SCANNING SYSTEM CONTROLLED FROM AN ON-LINE CONSOLE 407

Another frequently requested operation was
the ability to add intermediate points to a
display of scan results. Because of its finite
sampling capability, the scanner may miss a
particularly critical point on a line. In these
cases, the user may point at the display with
the pencil and cause a coordinate point to be
inserted in the scanned results at that point. A
high degree of accuracy may be obtained by
adding coordinates in this manner, particularly
if the scale of the image is enlarged before any
operation is attempted.

After all scanning, review, and modify opera­
tions have been completed, the user can choose
to save these results by storing them on a ran­
dom access disk file. For our purposes, each
digitized line is assigned a unique data name
(e.g., LN5-1-537-R) which determines its stor­
age location on disk. 7 Any other application­
oriented program may have access to this data
by referring to the same data name. Library
I/O subroutines are available to the program­
mer for storing and retrieving data from the
disk.

The function which stores data on disk pro-
vides the facility for transforming the digitized
points to any desired coordinate system. The
manner in which this is accomplished is for the
user to provide the desired coordinates of two
of the scanned points (usually the left and right
end point). This data enables the STORE
function to compute a linear transformation be­
tween the raster unit coordinate system of the
scanner and the desired output coordinate sys­
tem.

Since the STORE function requires alphanu­
meric input, we were interested in the variety
of ways in which a man could communicate this
data. The devices which could be made avail­
able for the transmission of alphanumeric data
are as follows:

a) Alphanumeric keyboard used as a type­
writer

b) On-line card reader
c) Scan and recognition of characters in the

field of the image
d) Writing with the position-indicating pen­

cil on the face of the graphic console CRT

e) Multiple choice operations by pointing
with the position-indicating pencil on the
face of the graphic console CRT

The options which are currently available
are (a), (b), and (e). Our experience leads
us to believe that (d) is not practical, simply
because of the ease of using a typewriter and
monitoring the message on the face of a CRT.
Scanning and recognition of character sets on
the film image is obviously very desirable. This
work is under current development but will
not be reported on in this paper.

When a line or series of lines have been
scanned, reviewed, and modified, the console
operator may elect to save the results by
choosing the STORE function. At this point,
all scanned data is corrected according to a
table of calibration data stored on disk each
morning by maintenance personnel. The cali­
bration data gives a measure of the distortions
in the scan raster. This data is obtained by
scanning a high accuracy metal target. The
calibration data may then be used to correct
subsequent scan results.

After correction, all extraneous coordinate
poin~s (those lying within an epsilon of a
straight line) are removed from the line. Re­
sultant lines are then displayed singly on the
graphic console CRT. A typical display is
shown in Figure 14.

The density of points will be a function of
line curvature. The user then has a multiple
choice option in which he may choose to utilize
card data, typed data, or border data for sup­
plying coordinate information relative to the
line. 'The pencil must be used to point to one
of the fields in order to select the appropriate
mode of input. We have found that when
processing a volume of information, the users
will prepare data cards ahead of time and
utilize this mode of alphanumeric input. If
only one or two lines are to be processed, the
typed input will more likely be selected. In
this case, the STORE function leads the user
through a series of questions and responses,
in which he is either required to make a choice
or type in a reply at the alphanumeric key­
board. In all cases, a message on the graphic
console CRT instructs the user as to the next
operation or required response. As an added

408 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 14. Display of Sampled Line.

feature, the user may select the BORDER
DAT A option, in which case the coordinates of
all digitized points are related to the coordi­
nates of the corners of a 20x20 inch border.
The coordinate values of the corners of the
border are assumed to ha ve been preset by
the CHANGE PARAMETERS function.

After all alphanumeric information has been
entered, a summarizing message is displayed
on the graphic console screen. An example is
shown in Figure 15. The console operator is
requested to pass judgment on the quality of
the results before they are stored on disk.

RESULTS

The actual performance of the equipment
and system can best be measured by the ac­
curacy and detection capability of the scanning
operations. For these reasons, a series of ex­
periments was conducted, aimed at determin­
ing the accuracy and detection capability of
the device under various operating conditions.
Figure 16 is a plot of the distribution of errors
in scanning a vertical straight line located at
the center of the image field.

Figure 15. Summary Display.

It should be noted that this figure was gen­
erated via the CRT recorder which is a fea­
ture of the image processor. Also note that
the unit squares along the chordal length of
the line are measured in units of 5 inches, while
the deviations are measured in units of .05
inches. As can be noted, the maximum devia­
tion of the data from a straight line is ± .02
inches and there is a high frequency noise level
of ±.005 inches. The original system objec­
tive was ± .01 inches average deviation on a
20x20 inch document. If this test is repeated
with no utilization of calibration correction,
the results are as shown in Figure 17.

Notice that while the high frequency noise
level does not change, the maximum deviation
or distortion is now .04 inches.

q'
o
~~~----~----~~------+-----~ 

~ 
5 
~ 

~ 

CHORD DISTANCES 
IN INCREMENTS Of 5 INCI'ES 

Figure 16. Error Distribution With Calibration. 



A LINE SCANNING SYSTEM CONTROLLED FROM AN ON-LINE CONSOLE 409 

CHORD DISTANCES 
IN INCREMENTS OF 5 INCHES 

Figure 17. Error Distribution Without Calibration. 

The second measure of system performance 
is the detection capability of the scanner. The 
range of threshold over which a line can be 
located is a measure ·.-of detection capability. 
Below a certain threshold level, the scanner 
can not detect any changes in the percentage 
of light transmission between background and 
lines. Above a certain threshold, the scanner 
will detect light over the entire image. This 
type of data may be plotted for a single film 
document for lines of various thickness. Fig­
ure 18 is a typical plot of minimum and maxi­
mum threshold level versus line width. 

The maximum threshold level is the noise 
level, or the point at which the photomultiplier 
will always see light. This is a fairly constant 
value over the entire film image. The mini­
mum threshold level is, of course, a function 
of line width, until such time as the line widths 
become appreciably greater than the effective 
CRT spot diameter. Various qualities of docu­
ments and various film exposures will move the 
wedge left or right and widen or close the 
wedge. For each particular digitizing applica­
tion, wedge samples may be taken to determine 
the limits of detection. Optimum operating 

60 

NOISE LEVEL 

.. ~ MINIMUM DmcrloN <ML 

20 

.01 .02 .03 

LINE WIDTH (INCHES) 

Figure 18. Detection Wedge. 

performance may be obtained from the com­
bination' of parameters which provide the 
widest wedge located furthest to the left with 
respect to line width. Extensive tests are now 
being conducted on a range of documents to 
determine these limits of detection. These test 
results will serve as a guide line for judging 
the quality of all documents. 

CONCLUSIONS 

This system can best be described as a line 
digitizer which is being used as an experiment 
in processing graphical data. It combines the 
speed and accuracy of automatic line tracking 
with the decision capability of a human oper­
ator. The system as conceived and imple­
mented has proven the feasibility of close 
man-machine interaction. While it is' not 
practical to operate the equipment and system 
with no training, users have become proficient 
in its use after only one or two hours of in­
struction. Through the use of graphic dis­
plays, it has been possible to program the 
computer to communicate with a console op­
erator in a medium which is easily understand­
able. Thus, the utilization of a human operator 
as the key system component has been very 
successtul. This has been particularly true 
when automatic line tracking is impractical 
and the user has had to intercede to assist the 
scanning. 

ACKNOWLEDGEMENT 

The line scanning system described in this 
paper was made possible through the efforts of 
many members of the Computer Technology 
Department programming staff. In particu­
lar, the authors would like to acknowledge the 
contributions of Gerald J. Devere and Dennis 
M. Walker. 

REFERENCES 

1. GRIMSDALE, R. L., "A System for the Auto­
matic Recognition of Patterns," The Insti­
tution of Electrical Engineers, Dec. 1958. 

2. GREANIAS, E. C., "The Recognition of Hand­
written Numerals by Contour Analysis," 
IBM Journal, Jan. 1963. 

3. FULTON, R. L., "Visual Input to Com­
puters," Datamation, Aug. 1963. 



410 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

4. MCCORMICK, B. H., "The Illinois Pattern 
Recognition Computer-Illiac III," IEEE 
Transactions on Electronic Computers, Dec. 
1963. 

5. JACKS, E. L., "A Laboratory for the Study 
of Graphical Man-Machine Communica­
tion," Proceedings of the Fall Joint Com­
puter Conference, San Francisco, Califor­
nia, Oct. 1964, (this volume). 

6. COLE, M. P., DORN, P. H., LEWIS, C. R., 
"Operational Software in a Disc Oriented 
System," Proceedings of the Fall Joint Com­
puter Conference, San Francisco, Califor­
nia, Oct. 1964, (this volume). 

7. HARGREAVES, B., JOYCE, J. D., COLE, G. L., 
Foss, E. D., GRAY, R. G., SHARP, E. M., 
SIPPEL, R. J., SPELLMAN, T. M., THORPE, 
R. A., "Image Processing Hardware for a 
Man-Machine Graphic Communication Sys­
tem," Proceedings of the Fall Joint Com­
puter Conference, San Francisco, California, 
Oct. 1964, (this volume). 

8. ALLEN, T. R., FOOTE, J. A., "Input/Output 
Software Capability for a Man-Machine 
Communication and Image Processing Sys­
tem," Proceedings of the Fall Joint Com­
puter Conference, San Francisco, Califor­
nia, Oct. 1964, (this volume). 



A GENERAL PURPOSE PROGRAMMING SYSTEM FOR 

RANDOM ACCESS MEMORIES 
C. W. Bachman 

General Electric Company 
Phoenix, Arizona 

and 
S. B. Williams 

General Electric Company 
New York, New York 

I. INTRODUCTION 

During the past ten years, information proc­
essing technology has made significant advances 
in many directions. Faster, less expensive, more 
flexible hardware has been continually an-
nounced by the various computer manufadur-
ers. In the software area, the FORTRAN, 

retrieved, communicated, and processed concur­
rent with the flow of orders and materials. 

The information processing field seems to be 
moving exponentially in the direction of "real 
time" and total or highly integrated informa­
tion systems. This movement has been acceler­
ated by the introduction of larger, faster, and 

ALGOL, and COBOL languages have been de- nl0re economical mass random access memory 
veloped and improved and more efficient com- devices coupled with faster computers and bet-
pilers are now available. Applications now ter communication 'equiprrrent. These new facili-
include the complete spectrum ranging,from-'-----· ties offer the information system designer a 
free-standing analytical programs to large com- new opportunity 1) to organize his information 
plex information processing systems. files with minimum duplication and redundancy, 

Computers have been applied to business in­
formation processing problems with varying 
degrees of success. Many accounting operations 
and facets of historical record-keeping have 
been mechanized with proven time, cost, and 
accuracy benefits. Those types of business op­
erations dealin~ with planning and control (or 
command and control if you are part of a mili­
tary establishment) are receiving considerable 
attention from the mechanization standpoint. 
While many mechanization attempts have been 
made in this area, the proven successes are few. 
To some extent this can be attributed to the 
greater complexity of these classes {)f problems 
and the fact that information must be stored, 

411 

2) to provide a better man-machine interface 
by giving people quick access to information, 
3) to store, retrieve, and process information 
when the need arises rather than when the 
computer schedules dictate, 4) to provide a 
single data base for many applications as op­
posed to the arbitrary sequencing of single files 
for each particular application. 

Any attempt to exploit the opportunities pre­
sented by the new mass memory devices places 
a high burden on the information system de­
signers and programmers. This is true because 
it is difficult to structure and organize complex 
information relationships within the parame­
ters of the mass memory devices. It is also 



412 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

very difficult to write computer programs to 
store, maintain, retrieve, and process the com­
plex data. To date there has been little if any 
software available to facilitate these problems. 

The General Electric Company through its 
Corporate Services has been conducting a con­
tinuing research program on the manufactur­
ing control problem since 1956. The decision 
table .and TABSOL techniques re~ulting from 
this research work were described to the in­
formation processing world iI\ 1960.1 During 
the past four years a considerable effort has 
gone into studying the information require­
ments for manufacturing control and how the 
information might be organized and processed 
more effectively by using mass memory devices. 
As a result of this work, a new approach has 
been developed-the Integrated Data Store. 

II. THE INTEGRATED DATA STORE­
A NEW APPROACH' 

The purpose of this paper is to introduce the 
Integrated Data Store, a general purpose pro­
gramming system for mass random access stor­
age devices. The particular implementation 
that will be described is now being installed at 
several General Electric sites using a GE-215 or 
GE-225 computer. The Integrated Data Store 
language and functions will be available early 
in 1965 as extensions to the COBOL compilers 
for the new GE-400 and 600 series computers. 
The principles involved, however, are com­
pletely general purpose and could be readily 
adapted to any general purpose comptlter to 
which a mass memory device can be attached. 

The Integrated Data Store has been designed 
from a user's point of view by users. Further­
more, it is a product that draws upon the inter­
est and ideas of many General Electric ·people 
with vast and diverse experience as users of 
computers in business. Particular credit is due 
Homer Carney of the New York Information 
Processing Center (GE Computer Department) 
who long served as the senior programmer on 
the project and Irv Burch and Bill Helgeson of 
the Internal Automation Operation whose 
ideas heavily influenced the current organiza­
tion of the system. Jerry Aman, Ed Dodge, Phil 
Farmer, John Gallagher, Jane Gilbane, George 
Hess, Dave Johnson, Dave Lattemore, Ron 
Pulfer, and Tom Waldron are others who have 

had a significant impact upon the specification 
or programming of the system. Many others 
have been helpful since the beginning of the 
Integrated Data Store work in 1961. 

III. INTEGRATED DATA STORE­
ADVANTAGES 

The original Integrated Data Store software 
package was ~sed in mid 1963 to make compari­
sons against conventional random access pro­
gramming techniques in systems design effort, 
programming effort; file utilization, and com­
'puter running time. The IDS compared very 
favorable on all counts. Since that time, further 
refinements have been made to the software 
package. 

Experience to date using IDS has demon­
strated the following advantages: 

1. Greater insight and understanding of in­
formation relationships. 

2. Reduced time and cost to design, program, 
an~ test comparable applications. 

3. More efficient computer processing. 
4. Better data storage unit utilization 

through redundancy elimination. 

IV. INTEGRATED DATA STORE­
ORGANIZATION 

The IDS can be described best if it is divided 
into three areas of discussion: 

a. Data Organization-Technique for Mass 
Memory 

b. Data and Procedural Language 
c. Input/Output Controller 

Data Organization refers to the establish­
ment of inter record relationships within the 
IDS. This association is achieved through the 
use of chains which provide cross reference 
linkages between records. These chains provide 
the integrated force which is implied in the 
name, "Integrated Data Store." 

Data and Procedural Language refers to the 
definition of records and their chain associa­
tions, and the procedural verbs by which these 
records are stored and retrieved. 

The Input/Output Controller refers to the 
physical manipulation of the mass random ac­
cess device and the buffering and housekeeping 



PROGRAMMING SYSTEM FOR RANDOM ACCESS MEMORIES 418 

associated with temporarily storing blocks of 
data in core memory. 

A. Data Organization. The record is the 
major unit of data organization in the Inte­
grated Data Store. 

This is a record in the GECOM (General 
Compiler) and COBOL sense. It contains a set 
of data fields which collectively describe the 
event, thing, status, or plan· that the record 
represents. The Integrated Data Store aug­
ments these records with additional fields' called 
chain fields which contain the address of other 
Integrated Data Store records. The chain fields 
point from one record to the next creating a 
serial association of records. 

This association is constructed according to 
the data definitions and the executed procedural 
commands. The chain is the record organiza­
tion technique used by the IDS for meaningful 
associations of records. 

B. Data and Procedural Language. The In­
tegrated Data Store provides its user with the 
ability and requirement to predefine his rec­
ords, their data fields, and their chain fields. 
Once these records and fields have been defined, 
the user is free to operate upon the records 
without concern for the physical aspects of in­
put or output, the lihking of records into ,chains, 
or the protec~ion of the data from erroneous 
access. 

A. RECORD CONSISTS OF 
DATA FIELDS 
CHAIN FIELDS 

DESCRIBING AN EVENT 

A THING 
PLAN 
STATUS 

Figure 1. Record Definition. 

A CHAIN CON$ISTS OF 

A SERIAL ASSOCIATION 
OF RECORDS 

Figure 2. Chain Definition. 

The user has four new commands or pro­
cedural verbs at his disposal. These verbs 
provide for the execution of the four basic 
record processing functions and are comple­
mentary to existing COBOL and FORTRAN 
procedural verbs. These are; "PUT" to store a 
new record into the file and link it into chains 
as specified in the data description, "GET" to 
retrieve a record already in the system, 
"MODIFY" to change the content of one or sev­
eral data fields with automatic relinking of 
chains, if necessary, and "DELETE" to delink 
a record from its chains and remove it from 
the file. 

C. Input/Output Controller. The Input/ 
Output Controller of the IDS controls the data 
storage device. 

It transfers data blocks in and out of core in 
response to commands to retrieve a specific 
record, to store a specific record, or to expand 
or contract a specific record. In order to mini­
mize the data storage device seek and transfer 
time, an inventory of data blocks is maintained 
in core memory. These blocks are stored in 
numerous buffers in core. The, number of buff­
ers depends on the amount of space available 
after the IDS subroutines and the problem solv­
ing routine have been loaded. The larger the 
number of data blocks stored in core, the greater 



414 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

Input / Output Controller 

disc memory 

IDS 

Program 

data block 

core memory 

Figure 3. Input/Output Controller. 

the possibility that the one needed next will 
already be in core. To improve the probability 
of finding the block desired in core, the I/O 
Controller keeps track of the sequence of bloa 
retrieval and utilization and holds the most 
recently active data blocks in the buffers. Blocks 
which are not frequently· accessed ,are retired 
from core to make room as others are caned in. 
The I/O Controller notes which- blocks "have 
been ~?dified and writes only the modified 
blocks back to the data storage unit. The IDS 
data block manipUlation is analogous to the 
program block "page turning" of the Ferranti 
Atlas computer. 

V. DATA BLOCKS 

Looking closer at IDS data blocks, the fol­
lowing characteristics should be observed. 

They have a fixed maximum size which is an 
environmental constant. They consist of one 
or more data records which collectively repre­
sent the actual size of the block. The maximum 
number of data records is controlled by the size 

of the maximum block. Every block begins 
with a block header record. The block header 
record contains several data fields used by the 
system. One indicates the space available in 
the block for additional records, or record ex­
pansion within the block. Another indicates 
whether the block has been altered since re­
trieval. Still another is a chain field which 
indicates the address of the first record of a 
chain of records, all of which randomized to 
that block. 

VI. DATA RECORDS AND FIELDS 

The records of the IDS are fixed format, fixed 
length records in the GECOM, COBOL tradi­
tion, i.e. a specific type of record such as a pay­
roll or inventory record has a fixed length and 
format. Variability in the conventional sense 
of record length is automatically achieved 
through the IDS techniques of data structuring. 
A master record is used with a variable num­
ber of detail records. 

Records of many different types, each with dif­
fering length an<l format may be used in the 
system and may be stored within the same 

Record 0 I Record 1 

I Record 2 

I Record 5 IRecord 7 

I Record 8 

I Record 9 

Record 17 I 

Empty Space 

Figure 4. IDS Data Block. 



PROGRAMMING SYSTEM FOR RANDOM ACCESS MEMORIES 415 

Reference 

Address 

Record 
type 

Record 
length 

Figure 5. IDS Record Structure. 

block. In order that control may be maintained, 
each record has the same three fields at the 
very beginning. These fields are the reference 
code (block number and intra-block record 
number) , the record type, and the record length. 
The balance of the record consists of data and 
chain fields in the number and variety to suit 
the application requirements. Data fields may 
be defined as being in a logical mode (bits), 
signed binary numeric mode (one or two 
words) or an alphanumeric mode (characters). 
Fields may vary in size from a one bit switch 
up to many characters for a drawing and part 
number or a man's name. These fields will be 
specified by the systems designer. 

Chain fields are defined for each chain in 
which a record participates. Experience in IDS 
systems indicates that the average record is in 
only two chains, and an occasional pivotal rec­
ord in the information integration may be in 
six or eight chains. There is no upper limit on 
data or chain fields except that which is pro­
vided by the maximum block size. The average 
record in installations today has been eight to 
twelve words in total length, with an occasional 

record type in the forty to sixty word size. 
These are twenty bit, three character words. 

The reference codes in the IDS chain fields 
are not physical addresses which specify par­
ticular discs, tracks and heads. They are more 
properly described as relative addresses which 
indicate a relative position in the total environ­
ment of mass storage. Therefore, an expansion 
or contraction of the number or size of the data 
storage units does not destroy the. existing ref­
erence codes. It merely changes the mapping 
function which translates a particular reference 
code into its disc, track, and head number. 

The IDS Records are stored only once in 
the IDS. 

This has three important advantages. First, 
the additional space required for duplicate rec­
ords is eliminated, resulting in a reduction in 
the total storage capacity required. Second, the 
work of data maintenance is greatly reduced as 
there is onlyone record to retrieve and modify. 
This eliminates the possibility that one of the 
copies of a record will not be properly modified. 
As there is only one copy of a record, all users 

• Have any number of 
data fields. 

• May be . linked into any 
number of chains. 

• Are stored only once 
in the IDS 

Chain B 

Chain C 

Figure 6. IDS Record/Chain Structure. 



416 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

have their eyes on it and incorrect information 
will be quickly spotted and corrected. Finally, 
all reports, drawn from the file, will be con­
sistent since there is only one set of facts 
(records) . 

VII. CHAINS 

The IDS chains ha ve several structural 
aspects which should be emphasized. 

Each chain has only one master record. The 
record type of the master is specified when the 
chain is defined in the data definitions. When­
ever a master record in "PUT" into the IDS, 
a chain is created which has no details in it. 
The chain field in the master record stores the 
reference code of the next record in the chain, 
which initially is the reference code of the 
master record itself. AS.i additional records, 
that are specified as details, are "PUT" into 
the file, they are linked into the chain. How­
ever, the chain always closes back on its master. 
The position in the chain of a new detail de­
pends on the chain specifications. 

• Have one master record 
and any number of details. 

• Link records together in 
an endless loop. 

• Associate related records 
in meaningful sequences. 

Figure 7. IDS Chain Structure. 

It was previously stated that a record may be 
in any number of chains. Now it is worth ex­
panding this statement to read that a record 
may serve as a master or detail in any number 
of chains. The only restraint is that no record 
may be a detail of itself directly, or through the 
interaction of several chains. 

VIII. DATA STRUCTURE SHORTHAND 

It is frequently desirable to display pictori­
ally the relationship between records. This is 
particularly important in developing an overall 
view when planning an information system. A 
special graphic technique has been developed to 
display records and their master-detail (chain) 
relationships. 

This technique uses a block shape to desig­
nate a record type and an arrow connecting two 
blocks to designate a chain. The arrow points 
from the master to the detail. This picture of 
block, arrow, block carries the following mes­
sage: 1) there are some number of records 
in the system of the master type; 2) each of 
these records is the master of a chain of the 
specified type; 3) there are some number of 
records of the detail type (0, 1, 2, 3, ... , n) in 

chain 

~ 
chain 

~ 

Figure 8. IDS Data Structure Shorthand. 



PROGRAMMING SYSTEM FOR RANDOM ACCESS MEMORIES 417 

each such chain. Using this graphic technique, 
very complex data structures may be presented 
in a condensed and understandable form. 

It is believed that the long sought informa­
tionalgebra may be developed around this nota­
tion. A new set theory is needed in which the 
master record is represented by the empty set, 
and details repr.esent the ordered members of 
the set. 

x. SAMPLE DATA STRUCTURE 
(PURCHASE ORDER) 

The information contained on a purchase 
order can furnish an example of how informa­
tion might be structured. 

Looking at a purchase order form, three 
groups of information may be seen. One group 
is concerned with information about the vendor, 
i.e. his name, address, and vendor code. Another 
group is concerned with information about the 
order, i.e. the order number, due date, mode of 
transportation, and dollar value. The third 
group is concerned with the information about 
a particular item to be purchased, i.e. its identi­
fication, description, quantity, unit price, and 

Vendor 34692 

Orderl47A 

item t 

Item 2 

item 3 I 
Order Chain 

Item Chain 

Figure 9. Purchase Order Data Structure. 

extended dollar value. Three different records 
might be designed in order to carry the in­
formation contained in these three groups. 
These three records would be a vendor record, 
order record, and item record. If a purchasing 
information system were established along 
these lines, there would be a vendor record for 
every vendor with whom the business is con­
cerned. The vendor record would be the master 
record of an order chain. There would be an 
order record for each order currently stored in 
the system. It would be a detail in an order 
chain. Each order record would, in turn, be 
the master of an item chain. This item chain 
would contain one or more item records depend­
ing on the number of items on the purchase 
order. This example contains three records and 
two chains. The vendor record is only a master. 
The order record is both a master and a detail. 
Finally, the item record is only a detail. The 
IDS Data Structure Shorthand shows all this 
with only three blocks and two arrows. Very 
complex systems with thirty or more record 
types have been clearly described using the 
IDS shorthand. 

A data description for the sample problem 
is shown in figure 10. Each record must be 
clearly defined as to the data fields which it con­
tains as well as the chains in which it partici­
pates. The appropriate IDS controls for stor­
age and chaining must also be described. 

A look at part of a network created by the 
vendor, order, and item records illustrates both 
the need for the data structure shprthand and 

Record 
Nam.e 

Field 
Name 

Record VENDORl I 
~-iel-1. VENDOR VE,~DORNO 
~!"':.:: VENDOR VENDORNA:vfE 

~:~~ ;~~~~ i ,. g~R::!TE 
e!.;. :':J= all fields in VENDOR record 

Q.am Master 'VENDOR I ORDERCHAIN I 
"-cccrd ORDER I 
:"le_d ORDER VENDORNO 
-: "_0 ORDER ORDERNO 
';- .• :j ORDER I ORDERDATE 
.:;".c. for all fields in ORDER record 
C:-.air. ;).::!ail I ORDER I ORDERCHAIN 
'::>.a'~ con. troJ I ORDER . ORDERCHAIN VE.'lDORNO 
C:'ain Control ORDER ORDERCHAIN ORDERNO 
C:'..::.in )..!aster ORDER ITEMCHAIN 

:<'eco!·ci I ITEM 
i="i:::ld ITEM 

Field 
IDS Control s Image 

Calculated 
Unique X(b) 

X(lo) 
X(24) 
X\2~) 

Sequenced 

Calculated 
Redundant 
Unique X(JZ) 

999 

Match 
Ascending 
Sequenced 

I 
Secondary I 

~;~~ I :i~ ITEMNO Unique X(3) 
ORDERNO Unique, Redundantl 

Field ITEM 
etc. for all fields in ITEM record 

Chai" Detail I ITEM I ITEMCHAIN 
Chain Control ITEM ITEMCHAIN 
Chai!J. Control ITEM ITEMCHAIN 

MATLIDENT X(JS) 

ORDEROTY 'I 9999V9 

Prime 
ORDERNO Match I 
ITEMNO ASCending 

Figure 10. Purchase Order Data Description. 



418 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

its power. The arrows indicate that one record 
"points" to the next record in a chain and that 
each chain "closes" onto the master record of 
the chain. Regardless of how many chains a 
record is in, the record exists in the file only 
once. It may be "pointed at" by many other 
records. 

Still another way of illustrating the data con­
tained in the sample problem is shown in figure 
12. Here the chaining is represented by the 
appropriate reference addresses. 

X. Procedural Commands 
The functional verbs PUT, GET, MODIFY, 

and DELETE, previously introduced, require 
further explanation for better understanding. 
These verbs may be used in a GECOM, COBOL, 
or FORTRAN sense. In fact, there is reason 
to wonder when they will move out of the de­
velopmental world and become part of the in­
dustry standard languages. Perhaps, a better 
phraseology would be to ask whether the indus­
try languages committees will take advantage 
of IDS to catch up with data storage units, real 
time, and command and control systems pro-

Item Chain 

Figure 11. Purchase Order Data Structure. 

VENDOR RECORD 

ORDER RECORD 

ORDER RECORD 

ITEM RECORD 

ITEM RECORD 

ITEM RECORD 

Figure 12. Purchase Order Data Structure. 

gramming. They are part of the COBOL com­
piler language for the GE-400 and 600 series 
computers now. 

The following are examples of procedural 
statements which would cause the IDS to exe­
cute certain actions. The letters in capitals are 
the required words of the IDS language. The 
lower case letters are data and procedural vari­
ables, i.e. record names, chain names, field 
names, and sentence names. 

A. Example i-PUT. "PUT vendor REC­
ORD." This command stores a new vendor rec­
ord in accordance \vith its data description. Its 
fields' values would be picked up from working 
storage and packed into the new record skele­
ton in a data block. The order chain field in the 
new record would be packed with the reference 
code of the new vendor record itself because 
there are no details at this moment and the 
next record in the order chain is the vendor 
record. 

B. Example 2-GET. "GET NEXT order 
RECORD OF order chain, OR IF vendor REC­
ORD GO TO location---a." This command 
would retrieve the next record of the order 
chain and unpack its fields into working stor-



PROGRAMMING SYSTEM FOR RANDOM ACCESS MEMORIES 419 

age. If the next record is an order record, the 
control would be transferred to the succeeding 
command. If the next record is a vendor rec­
ord, control would be transferred to the com­
mand identified by the sentence name "loca­
tiont-'a." The actual record retrieved is not 
accessible to the programmer-however, the 
contents of its data fields are unpacked and 
made available in working storage. This serves 
two purposes. First, protection is given to the 
data in the file in a father-son type sense. Sec­
ond, it means that the data from a record will 
remain in working storage until another record 
of the same type is retrieved and unpacked into 
the same working storage fields. For example, 
if an item record were first retrieved, followed 
by its order record, then the order record's 
vendor record, the fields from all three records 
would be simultaneously available in working 
storage for processing. 

C. Example 3-MODIFY. "MODIFY CUR­
RENT item RECORD, REPLACE quantity 
FIELD." This command will modify the cur­
rent item record, i.e. the last item record ac­
cessed, regardless of what has transpired since 
it was processed. I t will pack the content of the 
working storage field "quantity" into the cor­
responding data field of the record replacing 
the existing value. A modify command will 
modify one or several fields in accordance with 
those specified in the command. Fields may 
also be modified by adding or subtracting the 
contents of working storage to that of a record. 
The appropriate commands would be MODIFY 
recordname RECORD, ADD field name FIELD, 
or SUBTRACT fieldname FIELD. 

It was mentioned earlier that fields were fre­
quently used to sequence the detail records in a 
chain. These fields are called sequence control 
fields. If a sequence control field is modified, 
the detail will be automatically delinked from 
its master and relinked to it again in accord­
ance with the new value of its sequence control 
field. 

Fields are also used to control the selection 
of the master records and chains in which to 
insert detail records. These fields are called 
match control fields. If a match control field 
of a detail record is modified, the rec~rd will 
automatically be delinked from its old master. 

I ts new master will be retrieved, and the record 
linked to its new master according to the order­
ing rule specified for the chain. 

D. Example 4-DELETE. "DELETE ven­
dor RECORD, IF ERROR GO TO errort-'a." 
This command will retrieve the vendor record 
specified by the code stored in the "vendor 
code" field in working storage. If there is no 
vendor record with that specific vendor code, 
the command will respond by setting up an 
error code to specify the nature of the "fault" 
and transfer control to the command identified 
by sentence named, "errort-'a." If the vendor 
record is successfully retrieved, its deletion 
process will begin. If a vendor record is to be 
deleted, its order chain must be deleted too. 
Consequently, if a vendor record is to be de­
leted, its order chain must be searched to ascer­
tain that there are no order records in it. If 
there are order records, they must be deleted 
before the vendor record is deleted. In the 
same manner, an order record may not be de­
leted if there are any item records in its item 
chain. Therefore, all item records in an item 
chain must be deleted before the order record 
is deleted. This makes the deletion command a 
very powerful command and one to be used 
with due respect. 

Two optional features have been provided 
which aid the programmer in using the delete 
command. If the programmer anticipates that 
order records may be linked to the vendor rec­
ord (that a detail may be linked to its master) , 
he may wish to print a control report of the 
orders deleted by using the phrase "AND IF 
order RECORD PERFOR]\{ reportlinet-'l" 
with his delete command. This will cause the 
deletion process to be interrupted everytime 
an order record has been deleted. The subrou­
tine identified by the sentence name, "report­
linet-' I" will be executed. Because of the fre­
quent desire to produce some form of a control 
report on deletions, the delete command actu­
ally retrieves and unpacks, into working stor­
age, the data fields of a record prior to deleting 
it. 

The second optional feature of the DELETE 
command permits the programmer to attach 
an escape phrase. For example, the program­
mer might attach the phrase, "BUT IF order 



420 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

RECORD GO TO statement,--a." In this case, 
the detection of an order record as a detail to 
the vendor record would immediately terminate 
the deletion command without the order record, 
its item records, or the vendor record being 
deleted. Using the DELETE command in this 
manner, the programmer need not test to deter­
mine the presence of an order record prior to 
initiating the DELETE command. He may 
boldly set out to delete a master record, and 
still escape from the deletion if there is a detail 
that he wants to protect. 

All of the commands, GET, PUT, MODIFY, 
and DELETE, permit the addition of error 
test and branch. The user is urged to use them 
so that he is immediately aware of any fault 
that occurs and the nature of that fault. A typi­
cal fault that could occur during a "PUT" is 
attempting to put a duplica.te record which is 
prohibited according to the data definitions. 

XI. RECORD RETRIEVAL SPECIFIERS 
AND RULES 

Three of the IDS macro instructions require 
that a record be retrieved so that it may be 
operated on. GET means retrieve a record and 
unpack its data fields into working storage. 
MODIFY means retrieve a record and modify 
specified fields in the record according to the 
command the the contents of working storage. 
DELETE means retrieve a record, unpack its 
data fields into working storage, delete any 
detail records, and finally, delete the specified 
record. Only the PUT command lacks the re­
trieval aspect. It means find space for a new 
record, link it into its chains, and pack its data 
fields from working storage. 

There are six different retrieval rules from 
which the programmer may choose. These rules 
may be used in conj unction with the functional 
processes; GET, MODIFY, and DELETE. Ex­
amples 2, 3, and 4 in Section X used three 
of these rules, respectively, "NEXT OF 
CHAIN," "CURRENT" and the associative re­
trieval rule which is specified by the absence 
of a record specifier adjective. These rules may 
be sub-divided into two classes. The two rules 
which are absolute in their nature, i.e. there is 
only one record that satisfies their specifica­
tions regardless of when they are executed. 
They.will be discussed first. The other four 

rules are relevant to what has transpired pre­
vious to their execution. 

A. " " specifier. The absence of a 
specifier indicates that the record to be proc­
essed is identified by the data values stored in 
the fields of working storage. The particular 
fields concerned are those fields which have 
been described in the data description of the 
specified record as the unique fields for that 
record. 

B. "DIRECT" specifier. This specifies that the 
record is to be retrieved based on the reference 
code (address) stored in the communications 
field named, "QDIRF" (DIRECT REFER­
ENCE). The programmer may store any ref­
erence code there and then retrieve the rec­
ord associated with that reference code. 

The IDS system is so designed that once the 
reference code is assigned to a record, it is 
permanent. The addition or subtraction of data 
storage units will not affect it. The modifica­
tion of the record to add or delete either data 
or chain fields or modify their content will not 
affect it. In fact, the uniqueness and perma­
nence of the reference codes make them ideal 
candidates for dual use as reference code and 
invoice number, order number, pay number, 
vendor code, customer code, dra,ving number, 
or stock number. 

C. "CURRENT" specifier. The "CUR­
RENT" record specifier instructs the system 
to reretrieve the last record of that type proc­
essed by a GET, PUT, or MODIFY command. 
If the last command executed for a given rec­
ord type were a DELETE command, the last 
record would have been deleted and it would be 
impossible to retrieve the current record of that 
type because there is none. This would create 
a "fault" and an error would be signalled. 

D. "NEXT" specifier. The "NEXT" speci­
fier is one of a set of three chain processing 
specifiers. These specifiers require that a chain 
name be appended so that the specification 
would be complete. As an example, the com­
mand below specifies that the programmer 
wishes the program to access the next item rec­
ord in the item chain: 

"GET NEXT item RECORD OF item 
CHAIN." The particular record accessed 



PROGRAMMING SYSTEM FOR RANDOM ACCESS MEMORIES 421 

clearly depends upon which record is the cur­
rent record in the item chain when the com­
mand is executed. An IDS command must have 
been executed prior to executing any of the 
chain processing commands. This prior com­
mand must have accessed a record in the de­
sired chain and therefore established the cur­
rent record in the chain. Only then does the 
phrase "NEXT RECORD OF CHAIN" have 
any meaning. 

E. "PRIOR" specifier. The "PRIOR" speci­
fier is used to specify that the chain is to be 
processed in a backward direction. This com­
mand contains the same restraint as the 
"NEXT" specifier,. that the current record of 
the chain must have been established. The abil­
ity to process a chain. backwards is optional 
and dependent upon the chain having been 
specified in the data description, as a "PRIOR" 
chain. 

F. "MASTER" specifier. The "MASTER" 
specifier directs the chain processing to proceed 
directly to the master record of the specified 
chains, accessing but ignoring all intermediate 
detail records. The optional specification of the 
~hain as a "HEADED" chain provides an addi­
tional pointer field in each detail record con­
taining the reference code of the master 
record. In the presence of this option, the 
"MASTER" specifier will proceed directly to 
the master record without accessing the inter­
mediate detail records. As with the other chain 
processing specifiers, the chain must have been 
accessed and a ·current record established, prior 
to executing a "MASTER" command. 

Alternate Retrieval. The retrieval rules 
using the record specifiers, NEXT, PRIOR, and 
DIRECT exist under conditions where the type 
of record to be retrieved cannot always be pre­
dicted. These commands, therefore, permit the 
insertion of one or more "OR IF recordname 
RECORD GO TO sentence name" phrases. The 
program logic is then able to branch to the 
specified sentence following the execution of 
the functional portion of the command in ac­
cordance with the record retrieved. The use 
of an "IF record name RECORD GO TO sen­
tence name" phrase (note the "OR" is missing) 
will cause the program logic to branch after 
retrieval, but before the execution of the func-

tional portion of the command. This permits 
the execution of the functional portion of the 
command (GET, MODIFY, or DELETE) 
when using the record specifiers DIRECT, 
NEXT or PRIOR on selected record types and 
the by-passing of the function if other types 
are retrieved. As an example, the following 
command might be used: 

"DELETE NEXT order RECORD OF order-­
CHAIN, IF vendor RECORD GO TO sen­
tence--, a." 

The repeated use of this command would delete 
successive order records which are in the order 
chain. However, when the vendor record is 
retrieved, it will not be deleted and control will 
be transferred to sentence--,a. 

The data structuring abilities of the IDS 
permit the definition of more than one detail 
record type in a chain. In the case of the 
PRIOR and NEXT OF CHAIN retrieval 
actions, unspecified record types in the chain 
will be accessed and skipped over until a record 
of a specified type is retrieved. If the chain is 
completely traversed without the retrieval of 
a specified record type, an error is signalled. 
The retrieval of an unspecified record type by 
the DIRECT specifier will cause an error to be 
signalled. 

Error Conditions. All of the commands of 
the IDS are structured with the provision for 
an error statement: As an example: 

"GET item RECORD, IF ERROR GO TO 
sentence--,b." 

If this command were attempted and had 
failed because no item record could be retrieved 
with an order' number and line number, match­
ing those in working storage, then the program 
control would be transferred to sentence--,b. 
This permits the program to test whether the 
function has been carried out successfully. If 
the command has not been successful, the error 
condition may be tested to determine the na­
ture of the fault and the appropriate action 
initiated. 

XII. HISTORY OF DEVELOPMENT 

Historically, the IDS's foundation in well 
disciplined data structure goes back to the file 



422 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

structures developed by General Electric at 
Hanford for their 702 Report Generator and 
File Maintenance System,'2 These structures 
reached greater generality and power in the 
SHARE 9P AC system which was largely guided 
and programmed by GE Hanford and sup­
ported by The Dow Chemical Company, Union 
Carbide Company, GE Heavy Military Elec­
tronics Department and others. The delibera­
tions of the SHARE committee on The Theory 
of Information Handling3 also contributed to 
the early thinking on the Integrated Data 
Store. 

The current implementation of the Integrated 
Data Store is based on a set of free standing 
subroutines written in the General Assembly 
Program language for the GE-200 series com­
puters. The original version was prepared as 
an adjunct to GECOM. It had a compiler gen­
erator which processed data definition cards 
and IDS macro instructions and produced 
mixed GECOM and General Assembly Program 
statements which were subsequently compiled 
by'GECOM to produce an object program. The 
macro instructions were executed as generated 
in-line coding. IDS was first operated in this 
form in January, 1963, with hand compiled 
macro instructions. The application that it was 
applied to was the IDS compiler-generator 
itself which was used to generate IDS coding 
for subsequent application programs. The first­
completely generated program was a product 
materials file maintenance and explosion rou­
tine. This routine was used during the summer 
of 1963 to run comparative speed tests with 
another routine performing the identical tasks 
which had been hand coded employing conven­
tional disc programming techniques. The 
machine generated IDS program ran twice as 
fast as the comparison program and used less 
file space to store the data. 

During the Fall of 1963, the current imple­
mentation of the IDS was programmed. This 
version switched from compiled in-line coding 
to an interpretive subroutine organization with 
calling sequences. This is another step in the 
separation of the data structure from pro­
cedural logic and parallels the dictionary used 
by 9P AC which was brought together with the 
procedure at load time. The parametric ver-

sion appears to operate at about the same speed 
as the in-line coding version. 

XIII. SUMMARY 

The Integrated Data Store is an operational 
tool for programming the GE-225 with Disc 
Storage Unit. It automatically processes the 
complex file maintenance and retrieval prob­
lems presented by a data storage unit. It gives 
a high degree of file protection and through 
data structuring and redundancy elimination, 
it accomplishes considerable file compression. 
The user has the option of many storage and 
retrieval techniques. It yields efficient pro­
grams with buffered operation of the disc file. 
The requirement to structure the data before 
programming greatly reduces redesign and de­
bugging problems. IDS provides for the first 
time an effective method for describing the 
complex interrelationships of data present in 
most information systems. It further provides 
the means for efficiently processing and main­
taining these in the environment of a mass 
memory system. It moves list processing tech­
niques out of current limitations of core mem­
ory and thus makes them available for practical 
data processing. 

We challenge the national standards com­
mittees for COBOL, FORTRAN, and ALGOL 
and the designers of the "New Programming 
Language" to survey their current accomplish­
ments, which are many, and to determine 
whether the above capabilities offered by IDS 
should be added to their languages. 

REFERENCES 

1. KAVANAGH, T. F., "TABSOL-A Funda­
mental concept for Systems Oriented Lan­
guages," Eastern Joint Computer Confer­
ence, December, 1960. 

2. McGEE, W. C., "Generalization-Key to 
Successful Electronic Data Processing," 
Journal ACM, January, 1959. 

3. SHARE Committee on Theory of Informa­
tion Handling, "TIH #1 Report," 1959. 

4. BACHMAN, C. W., "The Integrated Data 
Store Function Specifications," General 
Electric Co. internal publication, J anu­
ary, 1962. 



THE IBM HYPERTAPE SYSTEM 
B. E. Cunningham 

Development Lab, Data Systems Div., IBM Corp., Poughkeepsie, N.Y. 

GENERAL DESCRIPTION 

The IBM Hypertape system was designed as a 
high-speed I/O device for the IBM 7074-7080-
7090-7094 computers.* It is composed of a two­
channel control unit, the IBM 7640 (Figure 1), 
and IBM 7340 tape drives (Figure 2). Ten 
7340s can be attached to each 7640 channel. 

The 7640 is attached to a computer through a 
simplex interface consisting of 33 lines. Four 
commands can be issued from the computer to 
the 7640 across this interface-a Read, a Write, 
a Control, and a Sense. The Control command 
instructs the 7640 to perform such operations 
as Space, Backspace, Rewind, etc. The Sense 
conlnland interrogates the status of the 7640 
and 7340. It allows the computer to determine, 
for example, if the tape drive is loaded or busy, 
or what type of errors occurred in the control 
unit on the last operation- The two channels of 
the 7640 time-share a Read and a Write sec­
tion. This allows one channel to write while the 
other channel is reading. Instead of the NRZI 
method of recording, the system uses IBM's 
phase-encoding technique, * * which records a 
signal for both a one and a zero. This system is 
very reliable, since the possibility of either los­
ing a weak signal or picking up noise is greatly 
reduced. 

The tape used is O.l-mil oxide on a i-mil 
polyester base. It is one inch wide, with 1800 
feet on a reel. Written across the tape are ten 
bits ;eight are information bits, and two are 
check bits used for error correction during 

* A modified version is also offered for the IBM Sys-
tem/360 (see page ). 

** Williams Patent #2734186 

423 

reading. These two check bits, in conjunction 
with a signal-strength monitor, provide detec­
tion of all errors and correction of all single­
and 33 of 45 possible double-bit errors. In alpha­
numeric mode, six of the information tracks 
are utilized per character. In packed-numeric 
mode, two four-bit characters are written side 
by side across the tape, as shown in Figure 3. 
The character density is 1511/inch, and tape 
speed is 112.5 inches/sec. This results in an 
alphanumeric data rate of 170,000 characters/ 
sec, or a packed-numericadata rate of 340,000 

Figure 1. IBM 7640 Hypertape Control Unit. 



424 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

• ••• '. ·s 
.. -----

Figure 2. IBM 7340 Hypertape Drive. 

characters/sec. Figure 4 shows a comparison 
of the reel capacity of Hyper and IBM 729 reels. 

The tape has been completely enclosed in a 
dust-resistant cartridge to eliminate as much 
contamination as possible, and to provide a 
means of automatic loading and unloading with­
out physically handling the tape. Another ad­
vantage of the cartridge is a programmable file­
protect device. A tape can be file-protected un­
der program control, but it can be "un-file-pro­
tected" only manually· 

An Automatic Cartridge Loader (ACL) is 
available as an optional feature (Figure 5). A 

HYPERTAPE PACKED 
BIT TRACKS BCD FORMAT 

CO CO CO 
C I CI C I 
0 0 8 
I 0 4 
2 B 2 
3 A I 
4 8 8 
5 4 4 
6 2 2 
7 I I 

l'igure 3. Hypertape Character Formats. 

Ci) 
40 

It: 
lJJ 
I-
u 
c:( 
It: 

30 c:( 
:J: 
U 
lL 
0 
(f) 
z 
0 20 :::i 
~ 

~ 

>-
I-
U 10 
~ 
c:( 
u 
~ 729 IV REEL~ 
lJJ DENSITY, 556 CHAR/INCH 
lJJ 
It: 0 

0000 0 0 0 0 0 
0000 0 0 0 0 0 
-101t) .... 0 0 0 0 0 

(IJ 10 .... It) 

CHARACTERS/RECORD 

Figure 4. Comparison of Character Capacities-Hyper 
and IBM 729 Reels. 

cartridge for the next job can be inserted in the 
ACL while the current cartridge is being pro­
cessed. Then, under program control, the pro­
cessed cartridge can be unloaded, and the cart­
ridge which was stored in the ACL can be 
loaded automatically, all within approximately 
40 seconds. 

The average read-write access time is 4.2 mil­
liseconds, and the average gap is 0.45 inches. 
The fast processing time of the Hypertape sys­
tem is accomplished by the high data rate, nar­
row gaps, short access times, ability to read 
backward, and a very low rerun time due to ex­
tremely reliable operation. 

THE IBM 7340 TAPE DRIVE 

A major requirement of the 7340 was high 
reliability. To help achieve this, the tape is de­
signed so that there is no physical contact with 
the oxide side of the tape during motion (Fig­
ure 6). The vacuum columns hold the tape taut 
over the single, rubber-surfaced capstan. The 
capstan can accelerate the tape to nominal ve­
locity or decelerate it to a halt in 3.0 millisec­
onds. Note that the wear of such motion oc­
curs on the Mylar side of the tape. When the 
tape passes by the read-write head, the oxide 
side of the tape rides on an air bearing and 
hence undergoes no wear. 

Once a tape is initially loaded into the dust­
resistant catridge, it is normally opened only in 



Figure 5. The 7340 Hypertape Drive with Automatic 
Cartridge Loader Option. 

the pressurized chamber of the 7340. However 
if the tape in a cartridge must be changed, the 
front of the cartridge can be removed easily by 
means of a small Allen wrench. To load a cart­
ridge into the 7340, the operator must raise the 
top cover of the 7340, and lower the cartridge 
into the cartridge receiver (Figure 7). When 
the top cover is closed, the tape reels in the cart­
ridge are moved backward to engage the reel 
hubs, the servo motors on the hubs release the 
tape from both reels, the vacuum in each column 
draws the tape into the columns, and the head 
moves into place. The load operation takes less 
than 15 seconds. After tape is loaded into the 
columns, it is backspaced a short distance; thus 
the overall effect of the unloading and later re­
loading is to position the head slightly closer to 

THE IBM HypERTAPE SYSTEM 425 

the Beginning Of Tape (BOT) than it was be­
fore unloading. 

Note that tape can be loaded arid unloaded· 
without the operator's hands touching the tape. 
Also, since a cartridge contains two reels, a tape 
no longer need be rewound before it is unloaded. 
This allows off-line rewinds, or a very short 
search on-line for the last record processed be­
fore the tape was unloaded. Rewinding can oc­
cur either under program control by means of a 
Control command, or by pushing the Rewind 
button. Rewind occurs at 112.5 inches/sec 
(normal processing speed) for 10 seconds; if 
the BOT mark is not encountered, the head 
moves 1;4 inch away from the tape and a 225 
inches/sec rewind "in the columns" is initiated. 
Rewind continues at full speed until the BOT is 
sensed; this is made possible through the con­
tinuous tape control provided by the capacita­
tive sensing of the tape location in the vacuum 
column. 

As previously mentioned, each cartridge can 
be "file-protected" either under program con­
trol or manually. The control instruction "Set 
File Protect" will cause a mechanism in the 
7340 to depress a plunger on the back of a 

• 
• 
• TAPE • PHOTOCELLS 

o-c CAPACITIVE 
TAPE SENSING 

• 
• 
• 
• 
• • VACUUM • COLUMNS • • 

Figure 6. Tape Path in the 7340. 



426 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Figure 7. Inserting a Tape Cartridge. 

loaded cartridge; this plunger can also be de­
pressed manually. When the cartridge is file­
protected, an indicator on the back of the cart­
ridge displays the letters "FP." The cartridge 
can be "un-file-protected" only by manually re­
leasing the plunger by means of a slide-release 
mechanism (Figure 8). _ 

The Beginning Of Tape (BOT), End Of 
Tape (EOT), and End Warning Mark (EWM) 
are detected by three photosensed markers. 
Backward tape motion is halted when the BOT 
marker is sensed. The marker is about 15 feet 
from the physical beginning of tape on the take­
up reel; it consists of 12 holes occupying about 
1.5 inches along the edge of tape nearest the 
drive. Forward motion of tape is halted when 
the EOT marker is sensed, and hence tape can­
not run off the end of the reel. This marker is 
about 15 feet from the physical end of tape on 
the supply reel; it also consists of 12 holes, but 
they are located midway between the edges of 
the tape. The EWM is about 40 feet from the 
EOT marker. It consists of 23 holes occupying 
about 1.5 x 0.07 inches along the edge of tape 
nearest the operator; the holes do not interfere 
with recording of data on tape. \Vhen EWM is 
sensed on a selected drive, the end-warning-

area status indication in the IBM 7640 is avail­
able to the program. 

The Automatic Cartridge Loader (ACL) can 
be used very effectively if a number of tapes 
must be loaded at the same time for a new job. 
During the processing of the previous job, the 
operator can insert the next cartridge to be pro­
cessed in the "load storage position" (back of 
the ACL). Then, under program control, all 
the 'ij"oeessed calrtridges can,.l?~ unloaded at the 
same time and deposited in the "discharge stor­
age position" at the front of the ACL, and the 
next cartridges to be processed will be loaded in. 
The entire load operation of all the drives will 
take approximately 40 seconds, and is accom­
plished without operator intervention. 

A cartridge may also be loaded into the ACL­
equipped drive by direct operator control. The 
operator merely places the new cartridge in the 
load-storage position of the ACL, and when the 
door is closed the cartridge automatically is 
loaded into the 7340, if no other cartridge was 
in the loaded position. If a cartridge was in the 
loaded position, the operator would have to push 
the Unload button. The loaded cartridge would 
then be placed automati~;;tlly on the discharge 

Figure 8. Cartridge File-Protect Device. 



shelf at the front of the -A,CL, and the other 
cartridge would be loaded. 

SIMPLEX INTERFACE 

The simplex I/O interface is a set of lines 
which connect the 7640 to the computer. There 
are a total of 33 lines, 18 from the computer to 
the 7640, and 15 from the 7640 to the computer. 
(See Fig. 9.) Generally speaking, any sjgnal 
must be maint_ed until its :ire~ponse, is pro­
vided by the receiving unit. 

The 7640 can be operated in one of three 
modes: CE, Ready, or Diagnostic. Normally 
the 7640 is operated on-line in Ready mode, but 
for testing and repair it can be operated off-line 
in CE (Customer Engineering) mode. Diag­
nostic mode is identical to Ready mode except 
that three switches on the CE panel are oper­
able. These will be discussed later. 

Initially, the computer and 7640 are inter­
locked by the Operational Out line and the Op­
erational In line respectively. The Operational 
In line is conditioned by the 7640 if it receives 
the Operational Out line from the computer and 
it is not in CE mode. 

COMPUTER 7640 

OPERATIONAL .. 
READ 

WRITE 

CONTROL 

SENSE 

WRITE BUS (9 LINES) 

SERVICE RESPONSE 

STOP 

END RESPONSE --
ATTENTION RESPONSE 

- OPERATIONAL 

-- COMMAND RESPONSE 

READ BUS (9 LINES) 

SERVICE REQUEST 

END 

UNUSUAL END 

ATTENTION 

Figure 9. Interface Lines. 

THE IBM HYPERTAPE SYSTEM 427 

An operation is initiated on one of the four 
comma~d lines: Read, Write, Control, or Sense. 
Upon receipt of the command, the 7640 will an­
swer with a signal on the Command Response 
line. 

During both a Write and a Control operation, 
information is transferred from the computer 
to the 7640 via the Write Bus (9 lines). The 
7640 asks for the information by means of a 
signal on the Service Request line,and when 
the information is available on the Write Bus, 
the computer answers with a Service Response. 
The Write command is terminated by a STOP, 
and the Control command is terminated by ei­
ther a STOP or a special instruction called an 
End of Sequence (EOS). The 7640 indicates 
successfut completion of the command by send­
ing an End to the computer, or an unsuccessful 
completion by means of an Unusual End. In 
either case, the computer responds with End 
Response. The cause of an Unusual End may 
be determined by analysis of the status infor­
mation obtained by a subsequent Sense com­
mand. 

During both a Read and a Sense command, 
information is sent to the computer from the 
7640 over the Read Bus (9 lines). \Vhen the 
information is available on the Read Bus, the 
7640 sends a Service Request to the computer. 
When the information has been accepted, a 
Service Response is returned. During a Read 
operation, the transfer of information occurs 
until a STOP is received from the computer or 
the end of the record is reached. At this point 
the 7640 indicates a successful completion 
of the Read by sending an End to the 
computer or an unsuccessful completion by 
means of an Unusual End. The computer 
responds with End Response to either case. 
Since the Sense operation 'is simply a request 
for the status information of the 7640, only an 
End can occur at its completion. The 7640 will 
indicate there is status information on the Read 
Bus by means of a Service Request, and the 
computer will answer with a Service Response 
when this information has been accepted. The 
operation will be terminated when STOP oc­
curs or when 14 "bytes" of information have 
been sent to the computer. End response will 
answer the End signal. 



428 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

WRITE OPERATION 

As previously defined, the vVrite section of 
the 7640 is time-shared between both channels. 
If a Write command occurs in Channel A, and 
then later a Write command occurs in Channel 
B, the command in Channel B will be stacked in 
the 7640 until Channel A releases the Write 
section. 

Upon receiving a Write Command, the 7640 
tests for the following two error conditions: 

1. Operator Required-indicated if the se­
lected drive is not ready; 

2. Program Check-indicated if the selected 
drive is not loaded, or if it is file-pro­
tected, busy, or at EOT. 

If either of these conditions exists, an Unusual 
End will be signaled immediately. If neither 
exists, a write Delay must bel taken before ac­
tual writing can commence. If the Write Com­
mand occurs while the tape is stationary and 
the 7340 is in Write status, a 3.1-msec delay is 
taken before writing is started. The Start spe­
cification of the 7340 is 3.0 msec. To test if the 
proper speed has been achieved, a burst of zeros 
is written in one track for a certain period of 
time; this is called the "velocity burst." The 
7340 has a two-gap head; hence, information 
written on a tape passes under the read head 
approximately 1.3 msec later. At this time the 
duration of the velocity burst is checked. If 
the tape was not up to speed when the velocity 
burst was written, the burst's duration win be 
less than expected. * A variation of approxi­
mately minus 10% is allowed before an Unusual 
End is signaled. The error is identified as a 
Track Start in the Sense Data, and the pro­
grammer has the option of rewriting the record. 

As previously stated, the stop time of the 
7340 is 3.0 msec. After the Move Tape line 
from the 7640 to the 7340 is deconditioned, 
there is a period of 300 p'sec during which the 
line could be conditioned again. This is allowed 
because of the mechanical delays in actuating 
the stop mechanism. If the Move Tape line does 
not rise again during this time interval, the 
tape must be allowed to stop completely before 
it can be told to move again. However, the 
7640 provides to the computer a 1.0-msec time 
interval, during which the computer can rein-

* Patent applied for. 

struct with another Write command and the 
tape will not stop between Writes. This is ac­
complished, in conjunction with the above-de­
scribed 300 p'sec, by holding up the Move line 
for 700 p'sec after the completion of a Write. 
Upon completion of any Write operation, an­
other Write operation is anticipated, and a 
short write delay of 2.6 msec is started. If the 
Write command does not materialize in the al­
lotted 1 msec, the tape is stopped. From the 
time the Move line is deconditioned, a 3-msec 
interlock prevents the Move line from being 
conditioned again except during the initial 300 
p.sec. Reinstruct within the 1.0 msec results in 
minimum gaps and fast access times. This is 
called a Continuous Write, for which there is 
no velocity burst since tape continued to move 
at nominal velocity. Figure 10 illustrates the 
1.0-msec Reinstruct. * 

The 7340 is in Write status if the last opera­
tion it performed ,:vas a Write operation. If a 
Write command is sent from the computer to 
the 7640, and the 7340 is not in Write status, 
a "backhitch" (reorienting of the head in rela­
tion to the previous record) must occur. This 
is because the previous operation could have 
been a Backspace or a Read, etc., and the exact 
position of the read-write head in the gap would 
be unknown. A Write without reorienting the 
head could result in a partially erased record in 
the gap. Thus, in order to erase a proper gap, 
a Write command, with the 7340 not in Write 
status, will cause the tape to backspace until 
the previous record is encountered. The tape 
will stop, and then move forward out of the 
record. Just as the read head leaves the rec­
ord, Write status will be set, and a 2.6-msec 
Write delay will be taken at full velocity. In 
addition to eliminating the partially erased re­
cord in the gap, the "backhitch" results ih a 
minimum interrecord gap. 

As previously mentioned, the Hypertape sys­
tem uses a phase-encoding type of recording 
rather than NRZI. With phase-encoding record­
ing a signal exists for both ones and zeros, with 
their differentiation depending on the phase (or 
direction) rather than on the magnetic strength 
of the recorded signal. Thus, phase encoding is 
less sensitive to noise than NRZI, and hence is 
inherently more reliable. 



_TE~ ~ -,==-r: 
WRITE STATUS ....::o!iiJ 3.1ua. 91OC1J-i=J {31 __ ~-~~@00N~~r-------,~~-------
SERVICE REQUEST PlLSES _________ -IL -"L-' _+-1 __ .....J ..... _______ _ 

STOP 

ANlSH READ Q£CKING 

WRITTEN DATA FORMAT 
(ONE TRACK) 

------------~~~~---------
------------~~~~~~~ 

(71 m 

NO"" 
0)" n.....p. ..... n..~Wri_~oceurrioI>gotlloe---~~poa.>ble.. 

K .. --.dWri.=--dhcod_durirlgth.7ODpHCoh-&rd.Ib. ........ TapeI ... -W 
.-t-..~. 

Ithe-.dWri .. .....--.IIoo:od_ ....... d.I.o--n-t ........... ~line-'1cI 
ha...hadlDr-.0<It3.0_.~ .... ich,....Ihe._ldhove*'A*f. n-th.3.1_ 
deIoy_IcI'--IDIIIo!,."*-'_~l'orlMr_Wri_-.d. 

(2) S-- ... w.:-ht.todo:l __ root", ..... Mow Tape I .. _ccndi .............. ,.. 

(3) A2.~WrU.DeIoy • ....."..,~)'oftw ... &odoflM~WriJII.io~ipcotiaoo :.ao::;-_w.::..==te:not_wilDinl.O_,Cl3.1_de&a:yil.tabn .... 
(~ Durillljlthe-ttinQoIo-a .... Ern.Iop. ............ -u~. SO"C' ............. <:Jf1he 

noacICIOId...ri ........ O.IS .... ocWoyofl.1 __ be ...... ..-lIoebtbit.writWn"'" 
........ oIloowotl ... dalaa..p.-undwllh...-IhMdliordwcklng. 

(5J s.- .. .-.dWrtt.~occurndin300p-=.IiMoMow 1nhrIodt_~. 

Figure 10. 1.0-msec Reinstruct (Write Operation). 

Figure 11 illustrates the phase relationship of 
a one and zero. As mentioned, the data rate of 
the 7640 is 170 kc. If the data is all-ones or 
all-zeros, this results in 340,000 flux changes/ 
sec to produce the 170,000 characters/sec. When 
data switches from a one to a zero or from a 
zero to a one, a long wavelength results. Hence, 
data consisting of alternating ones and zeros 
results in 170,000 flux changes/sec. Figure 12 
shows a series of bits for one of the ten tracks. 
Note that a long wavelength marks a change 
from a one to a zero or vice versa, rather than 
the presence or absence of a signal. 

After the velocity burst is written, or after 
a 2.6-ms Continuous Write delay is taken, a 
synchronizing burst of 40 zeros is written on all 
tracks, followed by a one in all tracks, followed 
by the data. (See the data format in Figure 
10.) After a STOP is received from 
the computer by the 7640, another all-one 
marker is written, followed by another synchro­
nizing burst of 40 zeros. Hence, the record is 
symmetrical and can be read backward or for­
ward. The synchronizing bursts are used dur­
ing reading to synchronize the read clocks and 
phase the data properly. The all-one marker 
indicates that data will follow. As previously 
described, the transfer of information from 
the computer to the 7640 over the 9-line Write 
Bus occurs on a Service Request, Service Re-

1 o 

I r 
L 

Figure 11. IBM Phase-Encoding "1" and "0" 
Waveforms. 

THE IBM HYPERTAPE SYSTEM 429 

r 
11 

CHARACTER 
RECORD l 

IIII I I III IIIII I II 
III I I I I I I I J J I 11" \ \ \ \ \ 

f I ", 
I I I I 1 I I , I , " I I I , \ \ \ \ \ \ 

I I I I I J I I I , I I I I I I , \ , \ \ \ 
I I I I 1 , I , I I I I I I • , , \ , , \ \ 

, I I I I I I , I • I. I •• I , \ , \ \ \ 
1IIIIII'fl •• """\\\\ ""1/1"", 11 •• ",\\\ 

111111"" •• 11"'\,\,\ 11'""."" I •• ",.", 111;;./j,ji ••••• 1.\ .. , .. , 111"',.,." " •• I.\.\", """,."" ...... \"", 11111.,."" ••••• , ... \ ... 1'.11.,." •• ••••• \ .. \ .... 
I • • • I • I • I • •• ••••• \ .. \ .. .. 

• • • • I • , • , • •• ••••• \ • , • , .... ,.,., ... ..... ,.,., , ... ,.'., ........ ,.' .. .. 
•••• ,.,. , ••• 1 ••••• '., .. .. 

• • • • I • , • , • • • I • • • • • , • \ • , 
• • • • I • , • , • • • I • • • • • \ • \ • , 

, , , , I • I • I • • • 1 • • • • • \ • \ • • 

I;;;: I : : t: : = : = = ; ; ~ \ \ \ " 
'n:m:n+Tlnn~ 
U~:LlJU:UUL4-1IL. 
I : I 10 : I 10: 0 : I : I I I 10: I 

I I I I I 
1 I 
I 
I 
I 

Figure 12. Waveforms for a Series of Bits. 

sponse basis. Eight of the lines are for data, 
and the ninth is a parity check. The 7640 
checks the parity of every character received on 
the Write Bus, and will call an Unusual End at 
the completion of the Write operation if incor­
rect parity is received. If the computer does 
not answer a Service Request with a Service 
Response before the next Service Request oc­
curs, an Overrun Error is called resulting in an 
Unusual End. 

In alphanumeric mode, only six of the eight 
lines contain data for each Service Response. 
In packed-numeric mode, two 4-bit characters 
are sent to the 7640 with each Service Response. 
Actually, no packing or unpacking is done in 
the 7640. It simply writes the information on 
the Write Bus on tape, along with two check 
bits. The check bits are generated during the 
Write operation according to the following two 
equations. * 

Co V 10 V 11 V 13 V 14 V Is V 17 = 1 

C1 V 10 V 1:2 V 13 V 15 V 16 = 1 

where V means Exclusive Or, 

C is a check bit, and 

I is an information bit. 

* Patent applied for. 



430 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

The generated check bits are rechecked again 
during writing, and if they are wrong, a Code 
Check indication is stored for later sensing, and 
an Unusual End will occur at the termination of 
the Write operation. The check bits are reO'en­
erated during a Read operation and are used in 
conjunction with the amplitude of the Read 
signal to correct all single errors and most dou­
ble errors. 

During a Write operation, as the written data 
passes under the read head it is monitored by a 
Motion Integrator. If the signal amplitude of 
the envelope in anyone track drops below a 
specified level, an Envelope Check is stored in 
the 7640 to be later sensed. This error will re­
sult in an Unusual End at the termination of the 
Write operation. At this point it is recom­
mended that the programmr perform a Back­
space and an Erase over the faulty section of 
tape. The Erase is called an Erase Long Gap 
(ERG), and is a Control instruction. It will 
result in the erasure of eight inches of tape. 
Then the error record should be rewritten. 

When the EWM is sensed by the 7340 during 
a Write operation, an Exceptional condition is 
stored for sensing and an Unusual End will ter­
minate the operation. Hence the programmer 
is informed he is near the end of tape. 

READ OPERATION 

Channel A and B time-share the Read section 
in the same manner they share the Write sec­
tion. A Read command will be stacked in one 
channel if the other channel is utilizing the 
Read sectiop. When the Read section is avail­
able the 7640 checks for Operator Required and 
Program Check, as described for a Write opera­
tion. If no errors exist, the Move Tape line is 
activated to the 7340, and a 2-msec Read de­
lay is taken. After this delay, the Motion In­
tegrators start to look for a record. The ten 
tracks are divided into three different groups, 
and a signal in one track of each of the three 
groups will identify a record. The group ap­
proach was used to eliminate noise from being 
recognized as a record. As in writing, 1 msec 
is allowed by the 7640 for a Read Reinstruct 
without stopping tape. Again the Move Tape 
line is held up for 700 p'sec after recognizing 
the end of data in a record. The additional 300 

p'sec is the time during which the Move Tape 
line can be deactivated and activated again 
without affecting the stop mechanism of the 
7340. 

Clearly the optimum use is made of the Hy­
pertape system if the tape does not stop be­
tween records. 

Once a record is recognized, a variable-fre­
quency clock (VFC) in each track must be 
given time to synchronize with data. Since 
there is a signal for both a one and a zero~ the 
problem of a clock dropping out of sync during 
a long string of zeros does not exist. After ap­
proximately 25 zeros of the start burst have 
been read, the VFCs should be synchronized, 
and the phase of the signal in the detection 
circuitry must be corrected if necessary. The 
detection circuitry will be interpreting the start 
burst as either zeros or ones, since it will either 
be in or out of phase respectively. At this 
point, the data is sampled. If the data is not 
recognized as zeros, the phase is incorrect and 
has to be inverted. After this has been done, a 
search is started for the all-one marker which 
will indicate that data will follow immediately. 

One problem in reading a wide, high-density 
tape is skew in the characters across tape. This 
is handled in the 7640 by means of a six-posi­
tion skew buffer and a Read-In Counter (RIC), 
for each track, which counts the bits 1 through 
6 which have been read from tape. Pulses gen­
erated from the VFCs step the RICs midway 
between the data bits and hence act as gates 
into the skew buffer. A single Read-Out Coun­
ter (ROC) controls the reading of deskewed 
characters. When all the RICs have stepped 
ahead of the ROC, a character has been de­
skewed and can be read from the skew buffer 
into the Error Correction Register. Between 
four and five bits of skew can be handled in the 
skew buffer. Under normal operation the skew 
is less than two bits. If the skew is so great 
that the RIC overlaps the ROC, an "excessive 
skew error" is stored for sensing and an Un­
usual End is signaled at the termination of the 
Read operation. 

Once the characters have been deskewed and 
gated into the Error Correction Register, the 
check bits Co and C1 are regenerated and com­
pared with Go and C1 read from tape. 



The bits can be divided into three zones from 
the two check-bit equations: 

Zone 1 contains the bits only in the Co equa­
tion 

Zone 2 contains the bits only in the C1 equa­
tion 

Zone 3 contains the bits only in both the Co 
and C1 equations 

Hence, 

Zone 1 contains bits Co, 11, 14 , 17 
Zone 2 contains bits C1 , 12 , 15 
Zone 3 contains bits 10, 13 , 16 

An Envelope Detector in each track monitors 
the read-detector amplitude. If the signal from 
the read detector drops below a certain level in 
one track, the track is "dead tracked." This 
essentially resets that track for the rest of the 
record, since it is assumed that the VFC could 
have lost synchronization. If a parity error is 
found to occur in the zone containing the "dead 
track," the track which has been "dead tracked" 
is assumed to be in error, and the output. of 
that particular track's Error Correction Regis­
ter is inverted. Hence a zero is made a one or 
vice versa, and single-error correction is ac­
complished. 

If two tracks in the same zone are dead 
tracked, or more than two tracks are dead 
tracked, an un correctable error called an En­
velope Check is stored for sensing. This will 
result in an Unusual End at the termination of 
the Read operation. Two tracks in the same 
zone are obviously uncorrectable since the par­
ity error would be negated. However, the Co, 
C1 equations were generated such that no ad­
jacent tracks would be in the same zone. Hence, 
all adjacent double errors are correctable along 
with some nonadjacent double errors. Any 
double error that does occur is more likely to 
be an adjacent double error due to the character 
of tape defects. 

There are 45 possible combinations of double 
errors, of which 33 are correctable. When a· 
correctable double error occurs, a dead track 
exists in two different zones, with the parity 
error appearing to be in the third zone. For 
example, consider the case of a dead track in 
both 10 and L. If both bits were incorrect they 
would negate each other in equation Co,. but 

THE IBM HYPERTAPE SYSTEM 431 

equation C1 would appear incorrect. Hence, the 
parity error would appear to be in zone 2. 

If a parity error occurs without a corre­
sponding dead track, an uncorrectable error 
called a Code Check is stored for sensing and 
an Unusual End is signaled at the end of the 
Read operation. For both a Code Check and 
an Envelope Check, the 7640 sends the first un­
correctable character to the computer with in­
correct parity. No further characters are sent 
to the computer for the duration of the record. 
This is to prevent uncorrected characters from 
appearing like packed characters and hence 
overflowing allotted memory when unpacked. 
If the complete record is desired, HECF (Error 
Correction Off) may be programmed prior to 
the Read command. This Control instruction 
will allow uncorrectable characters to be trans­
mitted. 

Another error that can occur on a Read is 
an Overrun Error. During reading the 7640 
sends a Service Request to the computer when 
data is available on the Read Bus. A Service 

. Response from the computer indicates the in­
formation was received. If the Service Re­
sponse does not come back from the computer 
before the next Service Request is issued, an 
Overrun condition exists, and the computer 
could miss a character. The Overrun Error is 
stored for sensing later and an Unusual End is 
initiated at the termination of the Read opera­
tion. 

CONTROL OPERATIONS 

The Control command transmits instructions 
such as Backspace, Backspace File, Space, Re­
wind, Write Tape Mark, etc., to the 7640 from 
computer core storage. Each instruction is de­
fined by an 8-bit code. The instruction is as­
similated in the 7640 Instruction Register by 
means of two 4-bit bytes. The computer sends 
a Control command to the 7640, which responds 
with a Command Response. The 7640 then ob­
tains two 4-bit bytes of information from the 
computer through a Service Request, Service 
Response exchange. The instruction is decoded 
and the 7640 checks to see if the operation can 
be done. If the instruction is a Select, a third 
4-bit byte is requested to identify the drive to 
be selected. If there is an error condition, an 
Unusual End is signaled immediately to the 



432 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

computer. If there is no error condition, the 
operation is started. Upon successful comple­
tion of the operation, the 7640 will request two 
more bytes of information, assemble them and 
decode the instruction, etc. This processing of 
a so-called "chained sequence of instructions" 
will continue until either a STOP is received 
from the computer or an End of Sequence 
(EOS) instruction is received. Either will 
cause the 7640 to terminate the Control com­
mand with an End signal. At all times any 
error condition will break the chain and an U n­
usual End will be sent to the computer. There 
are five "free-running' control operations, 
HCHC (Change Cartridge), HCCR (Change 
Cartridge and Rewind), HRUNL (Rewind and 
Unload), HFPN (file Protect ON), and HRWD 
(Rewind). These operations are initiated in 
the 7340 by a Control command, and then the 
7640 continues on to the n~xt instruction as if 
the free-running instruction had been com­
plet~d. A drive performing a free-running op­
eration is in Busy status, but the 7640 channel 
which initiated the operation is free to perform 
other instructions, internally, or on other 
drives. Additional instructions to a busy drive 
must be delayed until the drive indicates the 
completion of the free-running operation with 
an Attention signal. 

Upon receipt of an Attention pulse, the com­
puter responds with an Attention Response. All 
Attention pulses are stored in the 7640 relative 
to a specific drive address, such that the pro­
gram can sense to see which drive completed 
the free-running operation. The next operation 
(other than a Sense) done on that selected 

drive resets the stored Attention. 

A group of control instructions exists for 
diagnostic purposes only. They allow diagnostic 
functions to be performed on-line under pro­
gram control. These functions can also be per­
formed off-line by means of toggle switches on 
the Customer Engineering panel (as described 
in the following section on "Customer Engi­
neering Facilities"). 

SENSE OPERATION 
A Sense operation enables the computer to 

learn the cause of an Unusual End, the status 
of the 7340 and 7640, and which 7340 signalled 
Attention. 

A Sense command from the computer causes 
a Command Response from the 7640. Then the 
7640 gates the status condition of the 7340 and 
7640 to the computer by means of 14 four-bit 
bytes of information over the Read Bus. Again 
the transfer of information occurs on a Service 
Request, Service Response basis. The sense 
bytes contain information such as Operator Re­
quired; the selected drive address; reasons for 
a Program Check or Data Check-e. g., Select­
ed drive Busy, or a Code Check, respectively; 
'Attention pulses from drives which completed 
free-running operations; Diagnostic conditions; 
etc. 

The Sense operation is terminated either by 
a STOP signal from the computer or by the 
7640 after the 14-byte transfer is complete. 
Since the Sense operation is merely a status 
transfer, it can be terminated only by an End, 
rather than an Unusual End. 

CUSTOMER ENGINEERING (CE) 
FACILITIES 

In order to use the entire CE section of the 
7640 for off-line debugging, the Mode switch 
must be set to CE Test. However the 7640 can 
also be operated in a Diagnostic mode which 
makes some of the CE switches functional dur­
ing computer usage. 

The CE panel (Figure 13) attempts to simu­
late a computer. A three-step program loop is 
available with all four commands, Read, Write, 
Control, and Sense, and' also with HNOP (No 
Operation), HBSR (Backspace), and Read 
Backward. Switch controls govern the tape se­
lected, the number of characters/record during 
a Write, and the loop interval (the time be­
tween the termination of one command and the 
issuance of the next). The loop interval can 
vary from eight microseconds to two seconds. 

A Write command causes the information in 
the bit switches of bytes 1 through 4 to be writ­
ten on tape until the record length is satisfied, 
determined by the Characters per Record 
switch. A Read operation can then be per­
formed to check the record written. If the Read 
Compare toggle is on, the characters read from 
tape are compared bit for bit with the charac­
ters set up in the byte switches. The Stop On 
Check toggle switch will cause the loop to stop 



Figure 13. CE Panel on the 7640. 

immediately on any error, including any com­
pare error that might occur. It is also possible 
to stop at the end of an operation on all errors, 
except compare errors, by using the Stop on 
Unusual End toggle. 

For debugging purposes, a Single Cycle but­
ton and a Single Step Loop button are provided. 
The Single Cycle button is used in conjunction 
with the appropriate Single Cycle toggle switch 
to single-step through a Write, Control, or 
Sense; while the Single ·Step Loop button 
merely steps the program loop one step at a 
time, as opposed to running continuously if the 
Start button is pushed. 

A number of indicators in the 7340 are not 
reset at the start of a new operation if a switch 
called Enable Monitor Reset is on. This toggle 
prevents all normal resets from resetting these 
holdover indicators until a Monitor Reset but­
ton is pushed. This allows selected indicators 
to be monitored over a period of time. 

The error-correction circuitry can be tested 
through manipulation of a Force Envelope 
Check switch. During a Write operation this 
switch will cause groups of 16 information bits 

THE IBM HYPERTAPE SYSTEM 433 

to be degated from tracks selected by a rotary 
switch. Hence, during a Read operation, the 
Envelope Detectors should sense the absence of 
signal in these tracks and indicate the appro­
priate "dead track," causing the error correc­
tion and detection circuitry to be exercised. 

The Reset Start toggle switch is used to help 
debug a failing operation. Operations which 
are functioning properly are set up in steps 1 
and 2 of the program loop, and the failing op­
eration is set up in the third step. Pushing 
the Start button will cause the first two steps 
to be performed, and the failing third step will 
be attempted. After a certain time has elapsed, 
depending on the loop interval selected, a Reset 
will be initiated and the loop will step back to 
program step 1. Hence, an oscilloscope can be 
conveniently used on the failing operation, since 
it is repetitive. 

Another very powerful CE tool is the Loop 
Write to Read (LWR). It essentially gates the 
information, which is normally written on tape., 
directly from the Write section into the read­
detection circuitry. Thus the tape path is eli­
minated. Two modes associated with LWR are 
Write Clock Fast (HWCF) and Write Clock 
Slow (HWCS). These modes are selected by 
toggle switches and cause either a 10%-fast 
oscillator or a 10%-slow oscillator to be gated 
into the write clock. The functions performed 
by these toggle switches are also programma­
ble. 

If the 7640 mode switch is in the previously 
mentioned Diagnostic position, the relation be­
tween the computer and the 7640 is exactly the 
same as in Ready mode, except that the follow­
ing three toggle switches on the CE panel are 
operable: 

1. Enable Monitor Reset 
2. Stop On Check 
3. Enable Force Envelope Check 

Hence, these three switches may be used while 
running programs on the computer. 

OFF-LINE EQUIPMENT 

A low-speed, single-channel control unit, the 
7641, is available to connect into an IBM 1401, 
an IBM 1410, or an IBM 1460 computer. The 
7641 controls a drive, the 7340 Model 2, which 



434 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

has a data rate of 34kc. There is complete com­
patibility of tapes between the 7340 Model 1 
and the 7340 Model 2. Therefore, for example, 
a job can be processed on an IBM 7094 com­
puter using 7340s, and the off -line printing can 
be handled on a 1401 or 1410 using a 7340 
Model 2. 

HYPERTAPE MODIFIED FOR 
IBM SYSTEM/360 

A version of the Hypertape system is now 
offered as I/O for the new IBM System/360. A 
slightly modified 7340, designated as the 7340 
Model 3 Tape Drive, is controlled by a single­
channel control unit, the IBM 2802, attached 
to a CPU channel through a new interface. The 
7340 Model 3 tape speed is 112.5 inches/sec, 
but the bit density has been increased to 1511 
or 3022 bits/inch. Hence the data rate is either 
170,000 or 340,000 alphanumeric characters/ 
sec, or 340,000 or 680,000 packed-numeric 
characters/sec. The desired data rate is pro­
gram-selected. The lower data rate allows in­
terchangeability with the 7340 Model 1 or 2. 
The nominal gap has been reduced to 0.38 
inches and the average access time is 3.5 msec. 

The 2802 consists of five major sections­
Read, Write, Control, Sense, and Customer En-

gineering Facilities-all of which function in a 
manner similar to those described in the 7640. 
r:che major differences are: 

1. Employment of miniature c i r cui try 
(IBM's Solid Logic Technology) ; 

2. A modified control section ~ue to the Sys­
tem/360 interface; 

3. Reduction of the Sense information to 
four bytes; 

4. No overlap of operations because of the 
single-channel design ; 

5. Increased data rate under program con­
trol. 

The 2802 Hypertape control unit can con­
trol up to eight drives. However, an optional 
sixteen-address feature enables the 2802 to 
address as many as sixteen drives when used 
with the IBM 2816 Switching Unit Model 2, 
which is available for switching 4, 8, 12, or 16 
drives to anyone of up to four 2802 units (un­
der program control) . 

The 2802 controlling 7340 Model 3 Tape 
Drives maintains the high reliability previously 
described for the' Hypertape System, while in­
creasing the data rates by a factor of two, and 
decreasing the interrecord gap and access time 
~.ppreciably . 



DESIGN CONSIDERATIONS OF A RANDOM ACCESS 

STORAGE DEVICE USING MAGNETIC TAPE LOOPS 
Andrew Gabor, Janos T. Barany, Louis G. Metzger, 

and Eleuthere Poumakis 
Potter Instrument Company, Inc. 

Plainview, New York 

SUMMARY 

The random access storage device described 
in this paper is a cartridge loaded machine 
which uses continuous magnetic tape loops for 
storage medium. Cartridges may be built to 
cover' a range of storage capacities; the one de­
scribed in this paper contains 16 loops of one 
inch wide tape, each approximately 3 feet in 
circumference. 

Storage capacity of each cartridge ranges 
from 3 million to 40 million alpha-numeric char­
acters depending on both the cartridge and the 
machine. Storage capacity in a cartridge may 
be increased with a corresponding increase in 
access time. Average random access time for 
the smallest cartridge is 168 milliseconds. 

In the interest of long tape life the loops are 
air floated and, in one machine configuration, 
are stopped when not engaged in data process­
ing. During read-write operation only the one 
selected loop is in motion; all other loops re­
main stationary until specifically addressed. 

Lateral head positioning is accomplished by 
means of a binary whiffle-tree mechanism. A 
novel head construction permits "write-wide, 
read-narrow" operation with a single read­
write gap. Information is recorded in single 
channel serial-serial format, using the self­
clocking double transition recording method. 

435 

Typical loading time for a cartridge is 18 
seconds. 

General Design Considerations 

The tape loop storage device was designed to 
have p'erformance characteristics comparable to 
those of some other random access devices of 
the replaceable cartridge type, such as machines 
with disk cartridges and magnetic cards. While 
the inherent performance capabilities, such as 
storage capacity and access time, of the tape 
loop approach were found to be quite similar 
to those of the other devices, there are a number 
of factors in favor of the tape loop system. 

In contrast with disks, the tape loop system 
uses a flexible substrate and thus renders the 
cartridge free of critical mechanical require­
ments, resulting in a package that is lower in 
cost and less susceptible to damage by external 
mechanical influences, such as shock and 
vibration. 

In contrast with magnetic cards, the tape 
loops are at all times under the positive mechani­
cal control of the machine, the handling of the 
medium is gentle and shock-free, all moving 
parts have small mechanical excursions, and the 
recording medium never makes contact with 
any solid matter, thus minimizing wear and con­
tamination. The inactive side of the substrate 
is in light non-slipping contact with a plastic­
coated capstan, which is the only surface the 



436 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

loop ever touches, all other points being air 
floated. The results are highly reliable opera­
tion, low maintenance cost, and long life ex­
pectancy on both machine and cartridge. 

The following paragraphs describe in some 
detail the operating principles and performance 
characteristics. The discussion will be limited 
to the minimum capacity cartridge. 

The Basic Storage Ele'ment 

A 38 inch long continuous loop of standard 
computer grade magnetic tape forms the basic 
storage element (see Figure 1). The loops are 
first cut to length and then spliced using an 
ultrasonic sealing process. Special tooling per­
mits the fabrication of loops without manual 
handling, and with mechanical handling only 
in the immediate vicinity of the seam. When 
recording on the loop, the splice area is mag­
netically sensed and avoided. Thus, the longi­
tudinal recording format.~s keyed to the splice. 

The tape is recorded serially a single channel 
at a time with a longitudinal density of 750 bits 
per inch. There are 48 tracks recorded across 
the one inch width of the tape. 

There is, as will be seen later, a plurality of 
such loops in each cartridge. 

The Individual Tape Drive Unit 

Figure 2 is a schematic illustration of the 
tape drive principle. The upper and lower turn-

PACKING DENSITY [1 
1000 BITS PER ! 
INCH, TYPICAL I 

i 

48 TRACKS, TYPICAL~ 
SERIALLY RECORDED 

1 

OXIDE COATING 
FACING OUTWARD 

38 INCHES 
TOTAL LOOP 
LENGTH, TYPICAL 

Figure 1. The Basic Storage Element. 

FIXED UPPER 
TURN-AROUND 

TAPE LOOP 

AIR,PRESSURIZED 
---CAPSTAN VACUUM BUFFER 0 

( AIR,PRE~~~~~:~D 

Figure 2. Individual Tape Drive Unit in "Drive" 
Condition. 

arounds are hollow cylinders provided with air 
holes which supply pressurized air for the air 
bearings. The tape loops turn around stationary 
cylinders called "turn-arounds." The loops are 
permanently supported by the turn-arounds and 
both are integral with the cartridge while 
everything else in the figure is part of the 
machine. 

The "two-way valve" on Figure 2 is shown 
to be evacuating buffer "A" (capstan vacuum 
buffer), causing the tape to be wrapped around 
the constantly turning capstan. The wrap and 
air pressure combined with the friction between 
the tape and the rubber coated capstan are suffi­
cient to drive the loop which, as a result of air 
lubrication, offers virtually no drag. Thus, tape 
drive is afforded by friction against the non­
coated side only. 

As mentioned above, the non-coated side of 
the tape runs over air cushions except for the 
capstan where the driving is effected. Let us 
now examine the coated side. As may be seen 
on Figure 2, the only questionable point is the 
head since there is nothing else on the coated 
side that the tape could make contact with. 
While there is no pressurized air supplied to 
this -point by the machine, the tape flies on 
air-cushion nevertheless, for the fast moving 
tape (400 inches per second) and cylindrical 
head column form a perfect foil bearing.1 ,2,3 

Thus, the pressure which provides the tape with 
an air cushion at the head is derived from aero­
dynamic effects. The flying altitude of the tape 
may be controlled by tape speed, tape tension, 
and radius of head column. However, for a 



RANDOM ACCESS INFORMATION STORAGE DEVICE 437 

given set of these conditions the flying altitude 
remains remarkably stable and consistent. 

Figure 3 shows the tape drive unit with the 
valve turned to evacuate buffer B. In this con­
dition the tape is drawn away from both the 
capstan and the head and consequently remains 
stationary. This is the stand-by condition for 
any loop not in the process of data transfer. 

The Multiple Loop Cartridge 

A random access storage device using the 
single loop with its drive, as described in the 
preceding two paragraphs, would be limited to 
a rather small storage capacity. Making the 
loop longer would increase the storage capacity 
but only at the cost of increasing the access time 
in roughly the same proportion. To obtain the 
desired storage capacity and still maintain a 
reasonable access time, multiple loops must be 
used. Figure 4 shows how an array of 16 loops 
is contained in a single cartridge. Since the 
turn-arounds air-lubricate every loop, each 
loop is able to move or stand by independently. 

The shell of the cartridge keeps the loops en­
closed and protected from dust. However, owing 
to the flexible medium, the loops are far less 
sensitive to dust than random access storage 
devices using rigid media. Indeed, since the 
loops are floated, they are less critical to en­
vironmental conditions than tapes in conven­
tional tape handlers. 

While the cartridge is fully enclosed for shelf 
storage, one side may be opened when the 
cartridge is loaded into the machine. During 
operation the front plate of the machine covers 
the removed side of the cartridge with a small 

AIR BEARINGS 

2 WAY 
VALVE 

FIXED UPPER 
TURN-AROUND 

FIXED LOWER 
TURN-AROUND 

Figure 3. Tape Loop in "Stand-By" Condition. 

ENVELOPE OF --------JII 

CARTRIDGE 

8 LOOPS ON EACH ----#+----4-11 

TURN-AROUND GROUP 

16 LOOPS IN A CARTRIDGE 

Figure 4. Multiple Loop Cartridge. 

clearance to allow outward air flow from the 
pressurized turn-arounds. 

Multiple Drive Blocks 

The multiple loop cartridge requires a multi­
ple tape drive unit in the machine, i.e., a sepa­
rate drive to each loop. Figure 5 shows how 
this is arranged. Each of the two blocks has a 
single capstan long enough to cover the width 
of eight tapes. Each block has eight separate 
conlparbllents for both lower and upper vacuum 
chambers, and eight separate valves actuated 
by separate solenoids for routing the vacuum 
to the upper or lower chamber as required for 
tape driving. 

The blocks are easily removable for cleaning 
the tape path, the capstan, and the head. 

8 ASSEMBLIES 
EACH SIDE -----"---'"-

16 DRIVE BLOCKS 
TO CORRESPOND WITH 
THE 16 LOOPS IN 
THE CARTRIDGE 

Figure 5. Multiple Drive Blocks. 

MULTIPLE 
CAPSTAN 
DRIVE 



438 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Read-W rite Head 

A single head post, as shown on Figure 6, 
serves as read-write head for all sixteen tape 
loops. The head post contains three tracks of 
read-write head for each tape, giving twenty­
four tracks (8 X 3) per head face, a total of 
forty-eight read-write tracks. The head post is 
axially positioned to one of sixteen discrete posi­
tions, thus covering each of the forty-eight 
track positions on each tape loop. (Note: the 
reader may find the recurrence of the· number 
48 confusing. Actually, 48 being the total num­
ber of read-write tracks on the head post as 
well as the number of tracks per tape loop is 
merely a coincidence.) 

The physical configuration of head a.nd tape 
was designed to satisfy the requirements of the 
flying tape. The cone-shaped nose, as will be 
seen later, plays an important role during the 
loading of a cartridge. 

H ead Pos'l~tioningi Mechanism 

Figure 7 is a schematic illustration of the 
head positioning mechanism. Four solenoids 
with mechanical stops adjusted for equal 
strokes act as prime movers. Each actuator has 
two discrete mechanical positions, thus the com­
plete system may be regarded as a mechanical 
digital-to-analog converter having a four-bit 
binary input. The levers, called whiffle-trees, 
and linkages connect the head post with the 

8 GROUPS OF 3 HEADS 
ON EACH SIDE WRITE 
BROAD-READ NARROW 
ON A SINGLE GAP 

GROUPS OF 3 HEADS PER LOOP IN A 
IS-POSITION SYSTEM PERMIT ACCESS 
TO ALL 48 TRACKS ON EACH LOOP 

Figure 6. Read-Write Head. 

ll--

II m 

SWIVEL 
BEARING 

ACTUATOR 

Figure 7. Head Positioning Mechanism. 

actuators through backlash-free flexural spring 
pivots, thus, errors arising from bearing incon­
sistencies and wear are eliminated. 

There are other binary-input mechanical head 
positioners in existence. The following error 
analysis will point out the advantages of the 
whiffle-tree mechanism. Following the notations 
of Figure 8, the four actuators, according to 
their binary significance, are designated 1, 2, 
4, 8. The connecting levers have the lengths 
It, 12, L, and the swivel points are at fractional 
lengths kh k2' and ka, respectively. Let us first 
find the nominal arm ratios for the error-free 
case. The following four equations may be 
written: 

(1) 

where d is the required unit increment for the 
head (or track pitch on the tape), and S is the 
actuator stroke (all actuators have equal nomi-

(l-k 3 )13 k313 

'r---13 

(I-k l )1, k,ll k212 (I-k2 )12 

1---1, I---L2 

g g g 
2 8 4 

Figure 8. Illustration to the Error Analysis of the 
Whiffletree Mechanism. 



RANDOM ACCESS INFORMATION STORAGE DEVICE 439 

nal strokes). By first adding the four equations, 
then successively eliminating the variables, the 
four unknowns are found to be 

S = 15d ) 
k1 = 1/3 ~ 
k2 = 1/3 ( 
ka = 1/5 ) 

(2) 

which is in agreement with the arm ratios in­
dicated on Figure 7. 

Let us examine now the effect of an error in 
the location of any of the swivel points, i.e., 
k1' k2' and ka are assumed to have values slightly 
different from those in (2). It will be shown 
that such errors may be compensated for by ad­
justing the actuator strokes. The four equations 
in (?) are the same as in (1) except that the 
strokes are generally all different and k1' k2' 
and ka are now known but slightly different 
from their ideal values. 

(3) 

The solutions for the strokes 

2d 
82 = (1 - k ) k 

1 3 

(4) 
4d 

84 = k~ (1 - k3) 

8d 
88 =-------

(1 - k 2 ) (1 - k{) 

are unique, thus the compensation is always 
possible. 

Let us examine now the effect of a small error 
in the stroke. For the purposes of the analysis 
equal nominal strokes and ideal arm ratios will 
be assumed. Modifying equation (1) for the 
present model we get 

k1ka (8 -+- 68) = d + £1 ) 
(1 - k 1 ) ka (8 -+- 6S) = 2d + £2 ~ 
k2 (1 - ka) (S -+- 6 S) = 4d + £4 ( 5) 
(1 - kz) (1 - k a) (S -+- 68) = 8d + £8) 

where 68 is the magnitude of the error in 
stroke and £I, £2, etc. are the errors in the output 
head position. For £1, £2, etc. we get 

(6) 

which means that the output error contributions 
are binary weighted fractions of the input error 
(error in actuator stroke) , the largest contribu­
tion being 8/15 or little over one half of the 
input error. Furthermore, the magnitude of the 
total error at the maximum output stroke is 

I £1 + £2 + £4 + £8 I = 

68 I ± 1 ±~:= 4 ± 8 I < .6..8 (7) 

This means that the maximum output position­
ing error can never be greater than the largest 
of the four input errors. This feature marks a 
contrast between the whiffle-tree positioner and 
the connnonly used mechanism which stacks 
segments of varying length to obtain mechani­
cal binary to analog conversion. In the latter 
system the output error is a direct algebraic 
sum of the input errors. Another advantage of 
the whiffle-tree positioner is that it permits a 
fixed mounting of the actuators. This in turn 
allows the use of ordinary solenoids, thus the 
need for hydraulic actuators is eliminated. 

Typical dynamic responses of the whiffle-tree 
positioner are shown in Figure 9. The two 
oscillograms show head position vs. time for 
minimum ~and maximum strokes, respectively. 
It may b~ seen tJ:i1tt the head is positioned to 
within .001" in 50 msec for the minimum stroke 
and 80 msec for the maximum stroke. 

Cartridge Loading 
The smooth execution of moving the loops 

into operating position, and out of the machine, 
requires certain features from the machine. 
Figure 10 shows how the conical nose of the 
head post and the retractable constraining arms 



440 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

.001" 
per em 

20msecicm 
Figure 9. Dynamic Responses of the 

Whiffletree Position. 

act as tape deflectors during loading and un­
loading of the cartridge. Figure 11 is a photo­
graph of an experimental cartridge in pre-load­
ing position with the head post and one of the 
tape drive blocks removed for clear visibility. 

The loading and unloading involve several 
automatically cycled steps such as extruding 
and -retracting the constraining arms, turning 
air pressures on and off, etc. Total loading 
time, after the cartridge is manually inserted, is 
18 seconds. 

Packaging 

Figure 12 shows a photograph of the main 
panel with the tape drive blocks and cartridge 
carriage. Figure 13 is a photograph of the fin­
ished unit. Overall dimensions are 36" X 
25" X 53" high. 

(fri) ~lOC.T""S(41 
,,11.\ 

~~1")"'­
._~'v 

T APE DEFLECTION 
DURING LOADING 

CONICAL HEADPOST 
FOR TAPE LEAD-IN 

CONSTRAINING ARM 

Figure 10. Loading Features. 

Figure 11. Experimental Cartridge in Loading Position. 

Performance Characteristics 

The following list shows typical operating 
ranges for various machine configurations. 

Loops per cartridge up to 16 
Length of loop, inches 20 - 300 
Tape width, inches 1- 2 

Figure 12. Photograph of Front Panel with Tape 
Drive Blocks and Loading CaTriage. 



RANDOM ACCESS INFORMATION STORAGE DEVICE 441 

Tape speed, IPS 
Rotation time, msec 
Head positioning time, minimum, 

msec 
Head positioning time, maximum, 

msec 
Tracks per inch 
Longitudinal density, bits per 

inch 
Information per cartridge, 

characters 
Tape loop life expectancy, num­

ber of actuations 

Conclusion 

400 - 800 
25 -750 

30-40 

70-80 
50 

750 -1000 
3 million-

40 million 

30 million 

The concept described in this paper repre­
sents the outgrowth of a long evolutionary de­
velopment of mass storage devices at Potter 
Instrument Company and elsewhere. The ex­
perimental results obtained on the first model 
and many breadboard tests indicate that tape 
loop random access storage devices offer per­
formance characteristics comparable to those 
obtained with oth~r media but have several 
advantages. 

Acknowledgment 
The authors are grateful for the many help­

ful suggestions made by Messrs. G. E. Comstock, 
3rd, T. P. Foley, L. J. Higgins and J. T. Potter. 

REFERENCES 

1. GROSS, W. A., Gas Film Lubrication (John 
Wiley & Sons, 1962). 

Figure 13. Photograph of Random Access Memory 
Prototype. 

2. LANGLOIS, W. E., "The Lightly Loaded Foil 
Bearing at Zero Angle of Wrap." I ElvI 
Journal of Research and Development, Vol. 
7, Number 2, April 1963. 

3. BAUMEISTER, H. K., "Nominal Clearance of 
the Foil Bearing," IBM Journal of Research 
and Development, Vol. 7, Number 2, April 
1963. 





THE TIME·SHARING MONITOR SYSTEM 
H. A. Kinslow 

International Business Machines Corporation 
Advanced Systems Development Division 

2651 Strang Blvd., Yorktown H eights, New York 
PEekskill 7-6600 

INTRODUCTION 

The IBM Advanced Systems Development 
Division is currently operating the Time-Shared 
Monitor System (TSM), an experimental, gen­
eral-purpose, time-sharing system based on the 
IBM 7090 Data Processing System. This sys­
tem is capable of serving 24 remote users simul­
taneously. It requires a minimum of comput­
ing equipment, and gives the remotely located 
user a maximum amount of control over the 
7090 itself; and over the content of his pro­
gram files within it. 

The basic programming language of the sys­
tem is Fortran Assembly Program (FAP) sym­
bolic. (1) Th~re are no restrictions on the type 
of language capability which can be added to 
the system, or on the type of programs which 
the system will accept, compile and execute. At 
the present time the system contains a FOR= 
TRAN compiler, a time-sharing version of the 
General Purpose Systems Simulator (GPSS) ('2), 

and an interpretive sub-system called PAT 
(Personalized Array Translator) (3). 

Users' programs, and the data files which 
they operate upon, are permanently stored in 
an IBM 1301 Disk File. A user of the TSM 
system submits his program once, either from 
a remote terminal or by a batch run in the ma­
chine room. Thereafter the program is part of 
the system's memory and can be manipulated at 
will from the terminal. 

The F AP lan~uage and assembly capability 
of the system is nearly identical to that in com-

443 

mon use at other 7090 installations. One instruc­
tion (Load Channel-LCH) has been deleted 
from the 7090 instruction set, and some new in­
structions have been added. The added instruc­
tions allow a complete range of conversational 
capability, both between a single program and 
its terminal and among a group of programs 
associated with a group of terminals. 

THE COMPUTER SYSTEM 

Figure 1 is a schematic diagram of the hard­
ware complex in the TSM system. It is a single­
processor, single-memory 7090 system. The bulk 
storage device for programs, data files, and 
most of the TSM system itself is the 1301 Disk 
File. A 7320 Drum Storage is used as an ad­
junct to core memory for program-swapping 
purposes. Each of these units has its own 7909 
Data ChanneL There are two 7607 Data Chan­
nels for tapes and a 7281-II Data Communica­
tions Channel for terminal multiplexing. 

The 7090 CPU is equipped with three extra 
features for time-sharing purposes; relocatabil­
ity, memory protection and an interval timer. 
The relocatability feature allows all programs 
to be compiled at origin 0000 and executed in 
any available memory space. The memory pro­
tection feature sets upper and lower bounds for 
a program and prevents it from referencing 
any space outside those bounds. The interval 
timer, which can be set only by the supervisory 
program, will generate an interrupt at the end 
of any predetermined time interval. This in-



444 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

1401' ~, 
Tape 
Drives 

7607 

79W 
Data 

Channel 

K Buffers 
3 { Terminal 

. ~---!-J 

7281 Data Cammunications 
Channel-Mul tiplexor 

y 
Terminals 

5K 

'IBM Type Nunber Used 

Figure 1. TSM Computer System. 

1301 
Disk 
File 

sures that the supervisor can examine the 
executing program at intervals of its own 
choosing. 

The memory protection feature has one ad­
ditional virtue; it traps all of the 7090 Input/ 
Output instructions before execution. This 
gives the supervisor an opportunity to monitor 
all I/O activity of the executing program. 

The 7281 Channel stores data from terminals 
directly into pre-assigned core memory buffers. 
A unit of information from a terminal is 
usually a character, although it can vary in na­
ture and number of bits according to the 
terminal transmission characteristics. Each 
character, or unit of information, is accumu­
lated by a "subchannel" in the 7281 and stored 
in a single word in the pre-assigned memory 
buffer. When the buffer is full, an interrupt is 
generated. One of the functions of the TSM 
Supervisor is to service these interrupts and 
empty or refill the buffers as needed. 

A 7281 subchannel acts as an interface be­
tween the transmission line and the computer 
memory. The muti plexor has physical space 
for 32 such subchannels, each of which can be 
thought of as an independent avenue of access 
to memory. In practice certain timing and buf-

fer-space parameters indicate that the maxi­
mum number of simultaneously active subchan­
nels should be approximately 24. Therefore 
capacity of the system is said to be 24 active 
terminals, Le., users. 

A sub channel can be designed for virtually 
any type of terminal. At the present time the 
terminals on the system are from the IBM 1050 
Data Communications System. Subchannels 
have been designed for an experimental fac­
simile printer and a cathode-ray tube device . 
The TSM supervisor has been written to be in­
dependent of the nature of the terminal. 

DATA CHANNEL RELOCATION 
AND MEMORY PROTECTION 

All of the above equipment items are either 
taken from the IBM product line or are readily 
available special features. There is one system 
hardware feature which is not standard. This 
is relocatability and memory protection in the 
7909 Data Channel for the 1301 Disk Storage 
file, and in each of the two 7607 Data Channels 
for the tape drives. These features have been 
designed and implemented by our own staff. 

Relocation and memory protection in the data 
channels serve the same purpose as their coun­
terparts in the CPU. They allow channel "pro­
grams" to be executed from any available 
space, and prevent these "programs" from ac­
cessing memory outside their boundaries. 

These features added to the data channels 
mean that a user program being time-shared 
can use tape drives and the 1301 file with a 
great deal of freedom which would not other­
wise be allowed. Without them it would be 
necessary for the TSM supervisor to either in­
terpret all I/O commands, or restrict the user 
to only certain limited command sequences. 
This would not be too great a restriction with 
respect to the 7607 Data Channels, which have 
only a limited command set to begin with. But 
it would cripple the capability of the user to ex­
ploit the potentialities of the disk file. 

Given relocation and memory protection in 
the data channels, which means that the chan­
nels themselves do a fair amount of monitoring, 
the TSM Supervisor has its hands relatively 
free to attend to other work. The net result is 
that there are virtually no restrictions placed on 



a user with respect to Input/Output program­
ming. A program being time-shared can, for 
example, process its own 1301-stored files in 
either serial or random fashion; use cylinder, 
track, or record modes; and establish its own 
data formats. 

THE PROGRAMMING SYSTEM 

The TSMProgramming System is a complete, 
integrated, real-time software complex. -It con­
tains its own self-loading and shutdown mech­
anisms, diagnostics for both programs and 
hardware, and can maintain itself and its files 
while operating. It also contains a large and 
open-ended set of tools for program construc­
tion and maintenance. Some years ago these 
tools would have been called "utility programs." 
In TSM (and in other time-sharing systems) 
they are called "service routines." 

The program components of the system can 
be categorized as follows: 

1. Auxiliary Programs 
These are the Startup and Shutdown 

functions. They are capable of automatic 
loading and initiation of the system and 
subsequent unloading and preservation of 
it. This includes saving and restoration 
of the 1301 file contents, i.e., user pro­
grams and data. The Startup and Shut­
down programs can create and maintain a 
tape which contains the system; they are 
also the basic disaster recovery mechan­
isms. 

2. The Supervisor 
The Supervisor is responsible for pro­

gram scheduling and monitoring, space 
and facility assignment, and message 
transmission. In essence its only func­
tion is to regUlate and protect the sys­
tem. It resides in lower memory at all 
times and is written in "read-only" style 
for self-checking purposes. In a very real 
sense the Supervisor can be thought of as 
an extension of the 7090 CPU to enable 
time-sharing. 

3. Service Routines 
A service routine is a system program 

which is capable of executing a command 
received from a terminal. A terminal com­
mand is usually a request for the system 

THE TIME-SHARING MONITOR SYSTEM 445 

to manipulate a user's program in some 
way; DISPLAY it, for example, or RUN 
it. The basic set of service routines in 
the TSM system is designed to allow a re­
mote terminal to be used as an operating 
console for the 7090. This set is open­
ended and has already passed through 
several evolutionary stages. All service 
routines are time-shared, and all of them 
are permanently stored in the 1301 file. 
Most of the system, in terms of number 
instructions, consists of service routines 
which are retrieved and executed on com­
mand from the terminal. They execute 
in time-shared fashion, obeying substan­
tially the same rules as user programs. 
In fact the only difference between a sys­
tem service routine and a user program is 
that a service routine can access the tables 
and directories of the system while a user 
program cannot. Service routines, in other 
words, operate in a "privileged mode." 

TIME AND SPACE SHARING 

The basic time-sharing strategy of the TSM 
System is nothing new . It is essentially the 
same method employed in the CTSS System at 
lVIIT (4) and the SDC-ARPA Time-Sharing Sys­
tem at SDC (5). Each program in the set which 
is being time-shared is allowed to execute for a 
"slice" of computer time, after which the CPU 
is turned over to the next program in line. In 
theory, each program gains access to the com­
puter often enough so that its operator at the 
terminal appears to have continuous control of 
the machine. The drum is used to store pro­
grams while they are out of memory and wait­
ing for their next slice of time. 

Figure 2 illustrates the time-sharing process. 
Programs A, B, C and D are sharing the ma­
chine. Their combined size exceeds the capacity 
of memory (24,000 words). The solid black 
areas indicate periods of time during which a 
program is being either read from the drum 
into memory, or written from memory on the 
drum. In the first time slice A is operating, 
while Band C are being read in. In the second 
time slice B is operating while A is being writ­
ten out. The diagram also illustrates the fact 
that the system is designed to "space-share" 
core memory as well as "time-share" the CPU. 



446 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

T~ 
I I 
I I 

A. 24K 

tl 

SUPERVISOR 

Figure 2. Time and Space Sharing. 

The TSM supervisor, which regulates this 
process, has been designed to use all the facili­
ties of the computing system as efficiently as 
possible, while at the same time placing the ab­
solute minimum of restrictions on the user. In 
brief its functions are as follows: 

1. Scheduling of programs and transferring 
of programs to and from core memory. 

2. Assignment of core space, drum space and 
1301 file space. 

3. Monitoring and controlled execution of in­
structions trapped by the memory pro­
tection feature. This includes simulation 
of some instructions and address transla­
tion for most of the Input/Output instruc­
tions. 

4. Execution of the pseUdo-instructions 
which transfer data between programs, 
and between a given program and its ter­
minal. These are the conversational mode 
instructions. 

THE BASIC PROGRAMMING LANGUAGE 

Under the TSM system a programmer may 
ignore the fact that the machine is time-shared. 
To a professional programmer at a terminal 
the machine behaves like a normal 7090, and 
the terminal has the same kind of capability as 
the computer console. 

Writing a program to run under TSM is 
equivalent to writing a F AP program for a nor­
mal installation. The instruction set and the 
F AP assembly features are unchanged; the 
computing capabilities of the 7090 are aug­
mented, but not altered. 

Figure 3 will make sense only to readers fa­
miliar with the IBM 7090 instruction set. It is 
a list of all instructions trapped by the memory 
protection feature. All instructions are trapped 
which could do damage to tJle system. In par­
ticular these instructions are: 

1. those which control I/O units, and 
2. those which control the 7090 interrupt (or 

"trapping") system. 

The left-hand set are either simulated or 
"translated" by the supervisor, and in effect 
are executed in normal fashion. "Translation" 
means that any reference to an I/O device is 
translated from what the user thinks he is 
using to what the system has actually assigned 
for him. A reference to tape drive A4, for ex­
ample, may result in an operation on tape 
drive B2. 

The right-hand set are instructions which 
the system considers to be illegal, and which 
will stop the program. When one of these in­
structions is encountered, the user's program 
will leave the time-sharing cycle, to be pre­
served in a memory image area on the disk file. 
The user at the terminal will receive a diagnos­
tic message telling him where the program 
stopped and why. Readers of this article who 
are familiar with the IBM 7090 will note that 
the only real restriction on their programming 
is the fact that they cannot use the LCH (Load 
Channel) instruction. 

PSEUDO-INSTRUCTIONS 

By the addition of "pseudo-instructions" the 
instruction set of the 7090 has been augmented 
to provide for conversational programming and 
communication with the supervisor. These 
pseUdo-instructions are disguised forms of the 
7090 "Store and Trap" instruction. Whenever 
it is executed this instruction generates a trap 
(Le., interrupt) to the supervisor, which pro­
ceeds to decode it and execute the function 

EXECUTE STOP 
1111111111111111' 1111111111111111:11111111111111 I1111111I1II11111111111 

ENB SCH 
ETM SCD 
LTM RDS 
EFTM WRS 
ENK BSR 
LFTM BSF 
lOT REW 
RCT RUN 
ICT RCH 
TEF RSC 

STC 
TCO 
TeN 
BTT 
ETT 
RIC 
ROC 
TRC 

lRI ECTM 
lPI ESTM 
PSl lSNM 
lCH ESNT 
HTR, HPR 
DVH, FDH 

XEC -4 XEC -4 XEC 

Figure 3. 7090 Instructions Trapped by Memory 
Project. 



called for. Control returns after execution to 
the instruction following the pseudo-instruc­
tion. A programmer using these added instruc­
tions need not be aware of the fact that they 
are executed by the TSM Supervisor rather 
than the 7090 CPU. 

CONVERSATIONAL MODE 

Figure 4 illustrates the conversational capa­
bility which has been added to the instruction 
set. A program can converse with its terminal 
by means of two pseudo-instructions called Re­
ceive (RCV) and Transmit (TMT). It can also 
converse with any other program, or set of pro­
grams, using two other instructions called 
TALK and LISN. 

The RCV and TMT instructions allow a user 
to write a program which includes him in the 
feedback loop. This is a man-machine capabil­
ity which can be exploited in many ways, most 
of which are as yet untried. The TSM system's 
own service routines are constantly conversing 
with the terminal operator, either asking for 
instructions or printing out errors. 

The TALK and LISN instructions allow a 
group of programs, and consequently a group 
of terminal operators, to engage in any sort of 
multiple-person computing activity, plus obviat­
ing some otherwise sticky time-sharing prob­
lems. For example: 

1. The computer can be used as a message 
switching center. Data entered at one ter-

RCV TMT 

PROGRAM 
I 

\ 

RCV TMT 

PROGRAM 
2 .. 

TALK _ 
LlSN -. 

T 

RCV TMT 

PROGRAM 
3 

TWO-TERMINAL CONVERSATION 

Figure 4. Conversational Mode. 

J 

THE TIME-SHARING MONITOR SYSTEM 447 

minal can be sent out to any other termi­
nal, or all terminals. 

2. A user at any terminal has direct access 
to the terminal in the machine room. 

3. Unattended "write-only" terminals ( a re­
mote printer for example) can be activ­
ated and controlled from inside the sys­
tem, and automatically shut off when not 
in use. 

4. Experiments in computer-based group 
education can be handled very flexibly. 
There can be a master program, which 
would be activated and controlled by an 
instructor, and a slave program which 
prompts and responds to a student. Mul­
tiple copies of the slave program, one for 
each student in the system, would execute 
independently, each at its own pace and 
communicating with the instructor's pro­
gram as required. 

5. Multiple-person gaming situations are a 
similar application. 

These pseudo-instructions behave like nor­
mal 7090 I/O instructions. They are requests 
for the supervisor to send a block of data to a 
terminal or to another program. With respect 
to terminals the user is not concerned with the 
fact that various buffers are filled and emptied 
periodically while a TMT command is being 
executed. This is an activity executed by the 
supervisor. 

INTER-PROGRAM COMMUNICATION 

For each subchannel on the system there are, 
as mentioned above, a set of terminal message 
buffers. These buffers are normally used as 
storage for incoming or outgoing messages dur­
ing transmission. They are also used as the 
medium of information exchange between in­
dependent time-shared programs. A TALK in­
struction causes the transfer of a block of data 
from the working space of the calling program 
to the message buffers of the called program. 
The LISN instruction allows the called program 
to read the transferred data into its own work­
ing space. It is not necessary for the two pro­
grams exchanging data to be in memory at the 
same time. 

Connections between programs are recorded 
in a "crossbar matrix" within the supervisor 



448 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

(Figure 5). Each subchannel on the system is 
represented by a specific row and column in this 
matrix. A bit in the row of a program is a sig­
nal that some other program is trying to es­
tablish a "connection." The bit position iden­
tifies the program (i.e., subchannel). A pro­
gram may interrogate its matrix row by issuing 
a CHEK pseudo-instruction. This is the equiva­
lent of asking "Has anyone called?" 

A data transfer between two programs pro­
ceeds as follows: 

1. The calling program issues a CONN in­
struction, which sets a bit in the called 
program row. It then CHEK's and waits 
for a response. 

2. The called program CHEK's for an in­
coming call. When a bit appears in its 
row it responds by issuing a CONN in re­
turn. 

3. The calling program issues a TALK, 
which results in the data transfer and re­
sets the CONN bit in the called program 
now. 

4. The called program issues a LISN, which 
reads out its buffers and resets the CONN 
bit in the calling program row. 

Any number of independently time-sharing 
programs may exchange data in this manner. 
The net effect is that a set of programs-and 
hence a set of terminal operators--can interact 
with each other on the solution of a computing 
problem. 

In summary the TSM system does not restrict 
use of the 7090 for conventional computing pur­
poses, nor is the style of programming neces­
sarily different. A wide range of conversational 
capabilities has been added to the computer 
which enable experimentation both with new 
applications, and with new methods of handling 
traditional applications. 

Figure 5. Crossbar Matrix. 

CALUNG 
PROGRAM 
ROW 

CALU:O 
PROGRAM 
ROW 

ADDITIONAL LANGUAGE CAPABILITY 

All of the above comments have been made 
with reference to the basic F AP programming 
language, which assumes a great deal of com­
puter knowledge on the part of the user. This 
is by no means the only language capability of 
the system. The TSM system also contains a 
FORTRAN compiler, a version of the General 
Purpose Systems Simulator, and an interpre­
tive subsystem called PAT. All of these source 
languages are acceptable as input from the ter­
minals. 

THE PAT SUBSYSTEM 

The Personalized Array Translator ( PAT) 
Programming System is a self-contained, inter­
pr.etive subsystem which operates under the 
control of TSM. A terminal operator who is 
using the PAT subsystem is, in effect, using his 
terminal in the PAT mode. All terminal activ­
ity is generated or processed by the P AT Sys­
tem, even though it must pass through TSM in 
transit. 

The PAT language is a subset of the Iverson 
language (6). It permits operations upon entire 
arays of numbers-matrices or vectors-as well 
as characters or bits. It includes relational 
statements for comparison of arrays according 
to various criteria, and statements which will 
generate arrays. This latter feature is valu­
able for obtaining argument arrays and test 
data. 

Included in the PAT subsystem are some 11 
console commands which allow a user to con­
struct, debug and execute a program in source 
language alone. 

USE AND MAINTENANCE OF THE IBM 
1301 DISK FILE 

The 1301 Disk File is the primary medium of 
storage in the TSM System. It contains all of 
the system service routines, all user programs, 
and most of the data files which user programs 
operate upon. 

Each module of the disk file has 40 disks, with 
250 concentric tracks per disk. A vertical sec­
tion of 40 tracks is a "cylinder." Each cylin­
der has a special non-data track called the for­
mat track, which controls the pattern of in-



formation. A special "Write Format" order 
allows the user to specify the number and size 
of records to be filed on all tracks of a cylinder. 
A "Write Track with Addressess" order allows 
records to be given unique identification for 
random record processing purposes. The 1301 
file is a very flexible device, and the TSM sys­
tem is designed to let a user explqit this flexi­
bility. 

The system considers the basic unit of file 
space to be the cylinder: 40 tracks, or approxi­
mately 18,000 words. A program operating un­
der TSM may have up to 150 cylinders assigned 
for its use, which can be as many as 30 separate 
data files. 

The supervisor keeps track of each cylinder 
with respect to occupancy and usage. A cylinder 
is "occupied" if it contains a data file or pro­
gram (or a section thereof). A cylinder which 
is occupied may not be assigned by the system 
for scratch purposes, and it must be saved by 
the system on each shutdown operation and re­
stored at startup time. A cylinder is "in use" 
if it has been assigned to a program for a job 
run. A cylinder in use may be either an occu­
pied cylinder (data file) or a vacant scratch 
cylinder. 

User programs cannot request the use of sys­
tem facilities. All requirements of a program 
-core space, tape drives, data files and scratch 
cylinder space-must be known to the system 
before a program can start execution. Each 
program in the file contains a set of parameters 
which are examined by service routines. The 
service routines request the supervisor to as­
sign such facilities as are needed by the pro­
gram. If these facilities are available, the 
supervisor notes them as being "in use," and 
the user program can then manipulate them 
any way it sees fit. 

The supervisor only keeps track of the status 
of a facility, not of its content. Information 
about the contents of the 500 file cylinders is re­
corded in a system. table which itself is on the 
file. This table has a three-word entry for each 
cylinder. The entry contains the six-character 
name of the file, information about the type of 
file (program, data, read-only, etc.), and the 
job code and serial number of the user. The 

THE TIME-SHARING MONITOR SYSTEM 449 

table is created and maintained by the service 
routines. 

A program or a data file may be entered into 
the system under three levels of protection. It 
can be for use by the user only, by all users 
with the same job code, or by the public in gen­
eral. It can also be file-protected, which will 
prevent either a program or the system from al­
tering it. 

Special format tracks for data cylinders may 
be written by the system at the user's request, 
or by the user's program at execution time. 
Either data files or programs may be many cyl­
inders in length. Even though the TSM system 
may scatter successive cylinders of such a file 
throughout the 1301, the user can manipulate 
them as if they were in contiguous· space. 

A single service routine called LOAD creates 
all initial files. This is a command which is 
available only to operators of the machine 
room terminal. The load program operates 
from a batch tape. From each file on the tape 
it creates a file in the disk. It operates time­
shared, which means that the system can main­
tain its files while it is operating. 

The load program will accept almost any 
form of input; source language programs (or 
subroutines), object code in either relocatable 
or absolute form, data files in either standard 
or special formats. If no format specifications 
are given, a standard one-record-per-track for­
mat is generated, otherwise the format track 
will be written as the user desires. 

A program being processed by the load pro­
gram must have various parameter cards sup­
plied with it. Among other things these param­
eter cards specify the facility requirements of 
the program (tape drives, files to be referenced, 
etc.), and its size in terms of core space. This 
information is attached to the program as it is 
written in the file. Once the program has been 
loaded these specifications may be altered at 
will from a terminal, but they are never acces­
sible by the program itself. 

In writing a· program to use cylinder-stored 
files of data, a user refers to relative cylinder 
numbers in much the same ways as he now 
uses relative tape drive numbers. The load pro­
gram must be told, for example, that as far as 



450 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

the user is concerned, file N is on cylinders 
0000-0002. This information becomes part of 
the program parameters. The load program 
may actually store file N on a set of cyliIiders 
such as 0052, 0267 and 0138. Translation of 
file orders from the relative cylinder numbers 
supplied by the programmer to the absolute lo­
cations assigned by the load program is done 
at execution time by the TSM supervisor. 

Programs are stored in both source language 
and object form. From the terminal a user can 
manipulate either. The same is true of subrou­
tines. A user may have his own collection of 
subroutines stored away, as well as having ac­
cess to the system library. 

The terminal operator can also manipulate 
the facility assignment parameters ·,of a pro­
gram. Among other things this means that he 
can select a program for executitin' and choose, 
from among alternatives, a particular data file 
for it to operate on. 

OPERATING A TSM TERMINAL 

Operation of a TSM Terminal isa process of 
issuing a series of commands to the system. 
Each command is a short message of the form 
"OP ;OPERAND", and is executed by a unique 
service routine. 

The basic set of commands which the system 
will recognize is designed for a user who is op­
erating a machine language program. In this 
mode the terminal is a remote 7090 operating 
console. Figure 6 illustrates the functions of 
the commands in this set. The heart of the 
structure is the Terminal Core Image area. 
Each subchannel in the system has such an area 
on the 1301 file permanently assigned to it. It 
is two cylinders in size, or approximately 36,000 
words. The core image is core memory as far 
as the terminal operator is concerned. When 
his program is actually executing in the time­
shared cycle, it may at any moment be either 
on the drum or in actual core memory. When­
ever it stops executing, for any reason, it re­
turns to the image area. The image area will 
always contain the user's program as it looked 
when it stopped running, plus a complete set of 
status information with respect to the 7090 
itself. 

Figure 6. Service Routines for Program Execution and 
Control. 

A typical execution sequence in this mode of 
operation is: 

1. ID; Operator Number, Project Number. 
This signs the user on the system. 

2. SEL; Program Name. 
This identifies the program to be executed. 
The Select service routine retrieves the 
program from the 1301 file and writes it 
into the core image area. This is the 
equivalent of loading the program into 
memory. 

3. RUN 
Since the program has been identified and 
isolated for action, there is no need to 
keep repeating its name as an operand. 
The RUN service routine performs a non­
trivial function of determining the re­
quirements of the program in terms of 
core space, data files to be operated upon, 
tape reels to be mounted, special instruc­
tions to be sent to the machine room, etc. 
It then informs the TSM Supervisor that 
the program is ready, and the user's pro­
gram enters the time-sharing cycle. 

4. User Program Execution 
The user is on his own. His program is 
executing and in control of the terminal. 



It will continue to time-share until (a) 
the system detects an error, (b) a normal 
program stop is encountered, (c) he hits 
the ATTENTION button on the terminal. 
In all three cases the machine status will 
be preserved and the program will be re­
turned to the core image area. In cases 
(a) and (b) the operator will receive a 
message at the terminal which might be: 

LOCATION 0142 
PROGRAM STOP 

The operator now has a choice of actions. A 
variety of Display commands are available 
which will type out machine status conditions 
or sections of the program (or all of it), and an 
equivalent set of Enter commands which can 
be used to alter either the machine status or the 
program. These commands operate upon the 
contents of the image area, which is the equiva­
lent of patching the program. There is a SAVE 
command which will preserve the image as a 
new file for later reference, and a REPLACE 
command which will dump the image in the 
original file area. A RUN XXXXX command 
can be given, which will restart the program 
from any specified instruction. 

There is also a TRACE command which 
starts controlled execution of the user's pro­
gram. This function has several options such 
as "stop at location X," "stop on reference to 
X," "print all transfers," etc. 

In summary, the operator can manipulate his 
program with a great deal of freedom; more 
freedom, in fact, than the typical computer 
console allows. 

This is the basic set of commands for re­
mote IBM 7090 operation. There are others. 
"PROCESS" is the command which triggers 

the compiler-assembler-loader functions of the 
system (Figure 7). "UPDATE" allows a user 
to make changes to a source language file (or 
data file) in preparation for recompilation or 
reassembly. The command set is easily ex­
panded as need arises, perhaps too easily. It 
has, in fact, a Parkinsonian tendency to grow. 

One other command should be mentioned. 
"CALL; subsystem" is a request for the system 
to switch the terminal over to a specified alter­
nate mode of operation. GPSS is an alternate 

THE TIME-SHARING MONITOR SYSTEM 451 

Note: Entire process is triggered 
by "Process". Mode of 
operation is deduced from 
type of program refer­
enced. 

Figure 7. Program Assembly or Compilation. 

mode. It is a closed, interpretive subset of 
TSM with its own interdependent set of com­
mands and operating procedures. A "CALL; 
GPSS" command will in effect substitute a new 
set of commands for the basic set. The termi­
nal will thereafter operate under control of the 
GPSS subsystem. If a command is issued which 
GPSS does not recognize, the terminal will au­
tomatically revert to the basic TSM mode. 

BACKGROUND OPERATION 

A terminal operator can request that a pro­
gram be executed in the background mode. The 
background is simply a list, maintained by the 
supervisor, of jobs which are to be run as time 
permits. There is no difference between the 
handling of foreground (terminal controlled) 
and background jobs, other than the fact that 
there is no terminal associated with a back­
ground time slice. 

Some background job is always being time­
shared with the terminals. If no terminals are 
active the current background job is run con­
tinuously, and the TSM system behaves very 
much like a normal batch-processing system. If 
one terminal is active it is time-shared with the 



452 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

current background program, with each pro­
gram using the machine 50 % of the time. 

RESPONSE TIME 

The response of the system to a command 
from a terminal is quite variable. It depends 
upon the number of programs being time­
shared at the time the command was received, 
the sizes of those programs, and the size of the 
service routine which must execute the com­
mand. When a command is received by the sys­
tem the service routine must have space as­
signed for it in memory and then it must be re­
trieved from the disk file. Retrieval time varies 
from .2 seconds to 1.8 seconds depending upon 
the size of the service routine. Space assign­
ment time is negligible if the load is light and 
memory is free. In the worst case, where 24 
active users are each running 24,000 word pro­
grams, the response time can be as much as 50 
seconds. Assuming ten active terminals, each 
controlling a 6000-word program, the average 
response time is approximately 3 seconds. 

THE SCHEDULING ALGORITHM 

The TSM Supervisor has been designed to use 
the computing equipment as efficiently as pos­
sible. It "space shares" core memory as well 
as time-sharing the CPU, and takes full advan­
tage of the fact that the data channels can op­
erate in parallel with the computer. 

The Supervisor (Figure 8) is a set of "trap 
processors" (one for each type of trap which 
the hardware system can generate) and "queue 
processors" (one for each shared facility) regu­
lated by a Sequence Control routine. A trap 
processor recognizes the fact that an I/O facil­
ity has completed an operation and is now 
available for use. A queue processor initiates 
an operation on an idle facility. 

A section of the Sequence Control Table, 
which contains the set of queues in the system, 
is pictured in Figure 9. Three system facilities 
are represented: the drum channel, drum space 
and core space. Each facility is represented by 
three words of data: 

1. A status word: if the sign is plus the 
facility is available; if minus it is busy. 
The address portion of the word indicates 

EXECUTING PROGRAM 

or 

Figure 8. The TSM System Supervisor Design. 

the location of the associated queue proc­
essor routine. 

2. The queue: each bit position of this word 
represents a specific terminal. In the ex­
ample shown the programs being time­
shared for terminals 3 and 18 are in the 
core space queue. 

3. A sequencer: this is a single bit which is 
cycled to the right to select the next pro­
gram (i.e., terminal) for use of the facil­
ity. The sequencer always sits at the posi­
tion of the last program chosen. In the 

s . 
I 

I I I I I I I --l I I I I I I PftOC~S.OR ADDIt 

I I I I I I 
I I I I I I 

III I I III 
I I I I I I 
I I I I I I 

HCER I I II:~I I I I 

.---j 

I I "OCE •• CIt ADDR 

NCE" 

,---i ~ I I ",OCE •• Oft ADOII 

D(lUM CHANNEL 

NeE" 

Figure 9. Section of the Sequence Control Table. 



core space block the sequencer has stopped 
at bit 10. The program for terminal 10 
was the most recent one to have been as­
signed core space. Terminal 18 will be 
the next one. 

All trap and queue processors exit to the Se­
quence Control routine upon completion. Se­
quence Control scans its table, looking for the 
combination of an idle facility and a non-zero 
queue. If it finds one it chooses the next pro­
gram for execution on that facility by moving 
the sequencing bit to the right, and then exits 
to the appropriate queue processor. 

The queue processor will initiate operation of 
its facility, and in so doing may move the se­
lected program to another queue. It will re­
turn to Sequence Control, which will scan the 
table again. This succession of events will con­
tinue until Sequence Control is able to make a 
complete pass through its table without finding 
an idle facility which can be put to work. Con­
trol then returns to the interrupted executing 
program. 

This design is a descendent of the control 
program system for Project Mercury (7). It 
has certain advantages: 

1. The supervisor can be and has been writ­
ten as a set or modules (trap and queue 
processors) relatively independent of one 
another. 

2. It operates "asynchronously," keeping all 
facilities of the system continuously busy 
if there is any work which can be done. 

3. It guarantees that all terminals get equal 
treatment. 

4. It is inexpensive. The sequence control 
table together with the sequence control 
program total approximately 100 words 
of space. 

SUMMARY 

The TSM System is experimental. It was 
built as a base for exploration of various ter­
minal designs, terminal-oriented applications, 
human factors considerations, and an entirely 
new mode of computing. It has not yet been in 
operation long enough to allow any firm conclu­
sions to be stated. Our experience in building 

THE TIME-SHARING MONITOR SYSTEM 453 

it has taught us a great deal about general-pur­
pose remote computing with present-day equip­
ment, but we are not yet ready to extrapolate 
this experience into future hardware design. 

Our experience in adding language capability 
to the basic system has been enlightening. Al­
most any existing 7090 compiler or interpreter 
can be made a feature of the TSM system. These 
existing programs can be added to the system 
as service routines by cutting down their size, 
so that they operate in 24,000 words of core 
memory, and revising them to operate on disk 
file data instead of tape-stored data. The most 
difficult part of this process is altering a com­
piler so that it is disk file oriented. It must 
reside in the file, get its source language from 
the file, and write its object program in the file. 
In practice even this has not turned out to be 
particularly difficult. As soon as the modifica­
tions have been made, the revised compiler can 
be added to the file of programs and debugged 
during a normal time-sharing period. 

The result of this process, however, is not 
necessarily a good compiler for time-shared op­
eration. A time-shared computer is not an or­
dinary computer, even though it can be treated 
like one. It is time-shared; which means that 
the start-to-termination time of a specific job 
must be multiplied by the average number of 
users on the system; it has conversational capa­
bility which should be used; and there is a hu­
man being at the terminal who is expecting 
some sort of response. These factors all work 
against the design of existing compilers (and 
applications!), which are usually massive, long­
running, and unsociable. The right way to add 
a language to TSM (or any other basic time­
sharing system) is to create a compiler which 
fits the time-sharing situation. This right way 
is not yet completely defined. Some of the most 
original work in this area to date has been in 
the development of remote computing languages 
based on interpreters rather than compilers, the 
IBM experimental remote FORTRAN system (8) 

being an excellent example, our own PAT sub­
system being another. 

The TSM System is more than a 7090 with 
extra gear and a special software system. It is 
a new type of computer. It is reasonably com­
patible with existing computing capability-



454 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

which is to say that a user can ignore the time­
sharing factor and operate the system as a 7090 
if he sees fit-but it is in fact time-shared and 
conversational. Our experience in adapting 
existing software to this environment indicates 
that while it is feasible to do so, the results are 
not entirely satisfactory. The compilers and 
assemblers run slowly, use the system ineffici­
ently, and behave (as of course they were de­
signed to behave) as if there were no people 
connected with the process. 

The implications are that time-sharing, if it 
proves to be a popular, successful mode of com­
puting, will require a substantial revision of 
software technology, and an equivalent revision 
of application methods. The TSM System has 
been constructed and is being operated as a ve­
hicle for studying these implications. 

REFERENCES 

1. Reference Manual, IBM 709/7090 Program­
ming Systems: FORTRAN Assembly Pro­
gram (F AP), IBM Form Number C28-
6235. 

2. Reference Manual, General Purpose Sys­
tems Simulator II, IBM Form Number B20-
6346. 

3. H. HELLERMAN, "Experimental Personalized 
Array Translator System," Communications 
of the ACM, July, 1964, pp. 433-438. 

4. F. J. CORBATO, et aI, "The Compatible Time­
Sharing System-A Programmer's Guide," 
The MIT Press, May, 1963. 

5. E. G. COFFMAN, JR., J. 1. Schwartz, C. 
Weissman, "A General-Purpose Time-Shar­
ing System," Proceedings of the Spring 
Joint Computer Conference, 1964, pp. 397-
411. 

6. K. IVERSON, "A Programming Language," 
John Wiley and Sons, Inc., 1962. 

7. M. J. BUIST and G. M. WEINBERG, "Real­
Time Multiprogramming in Project Merc­
ury," Ballistic Missile and Space Technol~ 
ogy, Vol. 1, Academic Press, Inc., 1960. 

8. T. M. DUNN and J. H. MORRISSEY, "Remote 
Computing-An Experimental System," 
Proceedings of the Spring Joint Computer 
Conference, 1964, pp. 413-423. 



JOSS: A DESIGNER'S VIEW OF AN EXPERIMENTAL 

ON-LINE COMPUTING SYSTEM* 
J. C. Shaw 

The RAND Corporation, Santa Monica, California 

INTRODUCTION 

The JOHNNIAC Open-Shop System (JOSS) 
is an experimental, on-line, time-shared com­
puting system 1 which has been in daily use by 
staff members of The RAND Corporation since 
January 1964.* It was designed to give the 
individual scientist or engineer an easy, direct 
way of solving his small numerical problems 
without a large investment in learning to use 
an operating system, a compiler, and debug­
ging tools, or in explaining his problems to a 
professional computer programmer and in 
checking the latter's results. The ease and 
directness of JOSS is attributable to an inter­
pretive routine in the JOHNNIAC computer 
which responds quickly to instructions ex­
pressed in a simple language and transmitted 
over telephone lines from convenient remo.te 
electric-typewriter consoles. An evaluation of 
the system has shown that in spite of severe 
constraints on speed and size of program, and 
the use of an aging machine of the vacuum­
tube era, JOSS provides a valuable service for 
computational needs which cannot be satisfied 
by conventional, closed-shop practice. 

'This paper concentrates on the numerous, 
small, hardware and software design decisions 
which have influenced the acceptance of the 
system by its intended users. Several figures, 

produced on-line, are included, providing read­
able examples of features of the JOSS lan­
guage. 

Background 
From the earliest days of construction of 

the JOHNNIAC computer, a Princeton-class 
machine built~at The RAND Corporation in 
1950-53, it has been the author's dream to 
have an economical, personal, remote com­
munication station for on-line control and 
programming of a computer. With so much to 
be learned about programming and operating 
large, general-purpose computers, it isn't sur­
prising that the additional investment in com­
munications equipment, remote stations, and 
corresponding software was postponed. 

In its early days, JOHNNIAC served well 
as a production machine. Then, because it 
has only a 4096-word core memory, a slow 
12,288-word drum, slow copy-logic for card 
I/O and printing, no tapes, and a very austere 
order code, production computing was grad­
ually shifted to more modern IBM equipment. 
Yet, the very accessibility to this unsaturated 
second machine made JOHNNIAC attractive 
as the basis for simplified programming sys­
tems for small, open-shop problems and for 
experimental work in heuristic programming, 

* Any views expressed in this paper are those of the author. They should not be interpreted as reflecting the views 
or opinions of The RAND Corporation or the official opinion or policy of any of its governmental or private re­
search sponsors. 

* An austere version of the system- saw limited use dur ing most of 1963. 

455 



456 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

new software systems, and hardware for better 
interaction with a computer. In November 
1960, after years of discussion of personal re­
mote consoles with T. O. Ellis, I proposed to 
the management of RAND's Computer Sci­
ences Department that JOHNNIAC be com­
mitted full time to providing a modest comput­
ing service to the open-shop via remote 
typewri ters. 

The purpose of the JOSS experiment was 
not to make JOHNNIAC machine language 
available, but rather to provide a service 
through a new, machine-independent language 
which had to be designed specifically for the 
purpose. It was to be an experiment with the 
goal of demonstrating the value of on-line ac­
cess to a computer via an appropriate lan­
guage, and was intended to contribute to a 
project with the long-range goal of a sophis­
ticated information processor. T. O. Ellis, I. 
Nehama, A. Newell, and K. W. Uncapher were 
the other participants in that project. 

In 1961-62, Ellis and M. R. Davis designed 
and directed the construction of the required 
multiple typewriter communication system ad­
junct to JOHNNIAC. The hardware was 
ready well in advance of the first version of 
the system program, and only a few select 
users were subjected to this very limited sys­
tem. Their feedback, including encouraging 
remarks on the usefulness of JOSS, helped 
shape the full version. * 

Comparison 

Other on-line, time-shared computing sys­
tems have become operational in recent 
years."2-(; All are pioneering efforts. By com­
parison, JOSS is special-purpose, even though 
it encompasses a wider class of problems than 
one might guess at first reading. Most of the 
others provide the user with access to ma­
chine language. F. J. Corbat6 has aptly de­
scribed them as open systems and JOSS as a 
closed system. In the open systems, an execu­
tive routine is prepared to help the user at the 
machine-language level or to pass control to 
one of several subsystems providing ada pta-

* We wanted to do a controlled evaluation of the sys­
tem at the time of the introduction of the full version of 
JOSS, but the new users taught others so quickly that 
we had to resort to after-the-fact questionnaires! 

tions of pre-existing programming systems. 
JOSS, however, was designed with on-line in­
teraction in mind, and resources were devoted 
to making it smooth and easy to use. The 
future lies with the open systems, but it re­
mains to be seen whether the open-system ex­
ecutive will absorb JOSS-like systems simply 
as additional subsystems, or whether JOSS­
like systems will absorb the executive func­
tion and thus serve as the user's computing 
aide and single contact with the computer. 

HARDWARE COMPONENTS OF JOSS 

Physically, JOSS consists of the JOHNNIAC 
computer, ten remote consoles, and a multiple 
typewriter communication system to mediate 
between JOHNNIAC and the consoles. 

Johnniac 

RAND, as did several universities and re­
search institutions in the early 1950s, con~ 

structed a computer (called "JOHNNIAC" for 
John von Neumann) more or less on the pat­
tern of the machine of the Institute for Ad­
vanced Study at Princeton. JOHNNIAC was 
upgraded in 1954 with the replacement of the 
original 256-word Selectron memory with a 
4096-word magnetic core memory. The word 
lenth is 40 bits. Because JOHNNIAC was 
ill-equipped to handle the message traffic re­
quired in JOSS service, a special-purpose buf­
fering system was built to process characters 
within messages and to monitor the remote 
stations. The alternative of modifying the 
main frame to handle the message traffic di­
rectly would have required a major rework of 
the JOHNNIAC control and would still have 
yielded degraded performance in JOSS service. 
Thus, JOHNNIAC remains a very primitive 
machine with no indexing, no indirect addres­
sing, no floating point, no error checking, no 
memory protect, no interrupts, no channels, 
no compare, no zero test, a miserable format of 
two single-address instructions per word, and 
a 50-ps add time. 

The JOSS system program runs about 6000 
words, the low-frequency portions residing on 
drum and overlaying each other in core when 
called in for execution. A large part of the 
JOSS system program resides permanently in 
core. It was a considerable challenge to com-



JOSS: A DESIGNER'S VIEW OF AN EXPERIMENTAL ON-LINE COMPUTING SYSTEM 457 

press it sufficiently to leave room for the proc­
essing of a user's block in core. More than 
once I regretted the lack of an adequate sub­
routine linkage operation; it would have saved 
much space in this deeply hierarchical pro­
gram. 

The 12,288-word JOHNNIAC drum is di­
vided into three sections, accessed by moving 
heads at a rate not quite so fast as a modern 
disk unit unless the heads are luckily in the 
correct position. Average swap time (Le., the 
time to write one user's block of information 
out onto drum and read· a second user's block 
into core for processing) is, therefore, quite 
slow at about half a second. 

Communication System 
The multiple typewriter communication sys­

tem provides sixteen line-buffers, controls the 
states of all ten remote consoles, and registers 
signals from them. The limit is 81 consoles­
well beyond our needs and our budget. The 
JOSS system program in JOHNNIAC com­
mands block transfers between core and the 
line buffers. It also commands the communi­
cation system to enable or disable a console, 
request or relinquish control of a console, clear 
a line buffer, assign a line buffer to a console, 
or transmit a line buffer to a console. It also 
commands the communication system to re­
port any signals from consoles indicating a 
carriage return, a page ejection, or the de­
pression of one of the console control keys. 

Remote Console (Fig. 1) 
Lights and switches in a small box augment 

the IBM model 868 typewriter to indicate the 
status and to control the functions of the . local 
communication terminal electronics. The 
switches are: a POWER switch; an ON switch 
to connect the terminal to JOSS; an OFF switch 
to disconnect; a READY switch to reactivate 
the typewriter after inserting a fresh supply of 
paper; and IN switch to request control of the 
typewriter for input; and an OUT switch to 
relinquish control for output. Indicators are 
provided as follows! a POWER light; an EN­
ABLE light showing that JOSS service is 
available; a READY light showing that out­
put is acceptable at the typewriter; a red light 
to show that JOSS controls the typewriter; a 
green light to show that the user controls it; 

an IN REQUEST light to show that the user 
has depressed the IN button for control but 
JOSS hasn't yet responded; and an OUT RE­
QUEST light to inform the user that JOSS has 
an administrative message for him (such as 
"Shutting doum at 2330."). 

The READY light goes out if the paper 
supply is exhausted or if the paper jumps the 
sprockets. The user may also switch the 
READY light off any time he wants to hold up 
output momentarily. To continue with the 
output, the READY light is turned back on; no 
information is lost. The philosophy is one of 
exclusive control of the typewriter. When 
JOSS has control, the red light is on, the key­
board is locked, and the typewriter ribbon 
color is black. As JOSS turns control of the 
typewriter back to the user, the light changes 
to green, the keyboard unlocks, the ribbon color 
changes to green, and a soft gong rings. These 
visual, tactile, and audible signals leave no 
doubt as to who controls the station. 

If a remote typewriter console is to be a 
personal instrument, it must also serve as a 
simple typewriter. This consideration dic-

Figure 1. JOSS Console and Station Local Control Box. 



458 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

tated that the console allow for off-line use and 
that the character set include all the normal 
punctuation of a typewriter. The sprockets 
and paging mechanisms restrict the stations 
from being entirely satisfactory as personal 
typewriters, because of the problem of chang­
ing paper and the excessive noise. However, 
the hard copy produced is excellent-quite ac­
ceptable for reports without further transcrip­
tion and chance for error. 

Keyboard (Fig. 2) 
The choice of character set and key positions 

for anyon-line keyboard input device isn't to 
be taken lightly, especially if one hopes to en­
courage senior technical people to use the key­
board in the direct solution of their problems. 
It is customary for these people to pay others 
to drive teletypewriters, keypunches, and even 
typewriters. For the JOSS remote typewrit­
ers, we left the comma, period, semicolon, 
colon, slash, question mark, quotes, space sign, 
dollar sign, parentheses, and hyphen in their 
customary positions. The less essential char­
acters of standard sets were sacrificed in order 
to make room for all six numerical relation 
symbols. 

To linearize numerical expressions requires 
an explicit sign for exponentiation, for which 
we chose a five-pointed, upward-pointing, 
slightly elevated asterisk in upper case (all of 
which contribute proper associations for ex­
ponentiation) . The plus, minus (hyphen), 
centered dot (for multiplication), slash (for 
division), and equals sign are all in lower case. 
Left and right brackets were included, in place 
of the upper-case comma and period, in order 

Figure 2. JOSS Typewriter Keyboard. 

to improve readability of linearized expres­
sions (otherwise, such expressions tend to be­
come cluttered with parentheses). The abso­
lute value bar also contributes somewhat to 
readability. Parentheses and brackets are in­
terchangeable in pairs for all grouping func­
tions: subexpressions, arguments for func­
tions, indices, and interval size in iteration 
expressions. 

The punctuation and capitalization rules for 
JOSS are quite conventional, but three sym­
bols are used in very special ways. The space 
sign ( #) is used as a strikeover character, 
causing a character already in the input line 
buffer to be replaced by a space. This is 
needed since, if the typed line is to reflect the 
contents of the input buffer, the space bar and 
backspace key must never enter any character 
into the buffer (although they do control posi­
tion). 'The asterisk (*) at either end of an 
instruction input line leads JOSS to ignore the 
line and thus provides a device for annotating 
one's work and for cancelling lines. (For most 
errors, however, the process of simply back­
spacing and striking over is adequate.) The 
dollar sign ($) may be used in any expression 
and carries a numerical value equal to the line 
number (from 1 to 54) of the typewriter's 
current position on the page. This value is 
updated by JOSS so the user can easily control 
format on the page. If no format is specified, 
JOSS supplies an automatic one-inch margin 
at the top and bottom of each page. 

The tab may be used to speed output typing 
by skipping instead of spacing over blank 
positions. The typing speed of ten characters 
per second, less shifting time, has not been a 
source of dissatisfaction. A key interlock, 
intended to insure that only one key at a time 
was depressed, was abandoned because of the 
frustrating effect on the user. The action of 
the keys without the interlock is admirable, but 
it is possible to hit two keys at once, super­
imposing their character codes for transmis­
sio~. This risk is more acceptable than the 
interlock but it means that JOSS must be pre­
pared to receive any 7 -bit character code~not 
just the legal ones. The keyboard lock (not 
to be confused with the now-abandoned key 
interlock) is incomplete in that it locks only 
the typing keys, and even then it can be over-



JOSS: A DESIGNER'S VIEW OF AN EXPERIMENTAL ON-LINE COMPUTING SYSTEM 459 

riden. This deficiency has not been a problem 
however since, at most, the used can spoil only 
his own output by trying to use the typewriter 
out of turn. 

SOFTWARE 

JOSS services the requests of users at the 
remote consoles in such a way that the users' 
activities are logically independent of one an­
other. Up to eight of the ten stations may be 
served concurrently by time-sharing tech­
niques. In addition to administering input/ 
output and swaps of user blocks, JOSS inter­
prets and executes both direct and indirect 
(Le., stored-program) instructions couched in 
a readable and easily learned language. 

Time Sharing 
The basic JOHNNIAC computer provides no 

parallel processing. The multiple typewriter 
communication system does provide for par­
allel activity at many consoles by high-speed 
line-scanning and time-shared use of the logic 
circuits. JOSS takes advantage of this inde­
pendent parallel processing in the communica­
tion system by time sharing-Le., by switching 
its attention rapidly from one user to another 
to give adequate service to all active users. 
Each active user is represented by a block of 
information which resides on the drum, except 
when JOSS is actually processing it in core. 

First priority for JOSS' attention goes to 
the servicing of signals from the consoles: 
carriage return, page, on, off, in, out, and end­
of-transmission. JOSS looks for these signals 
in the communication system when idling, and 
between interpretive steps when executing a 
user's program. An end-of-transmission sig­
nal requires only that JOSS record that the 
line buffer is available, -and direct the trans­
mission of the next line of output to the same 
station if one is ready. JOSS then continues 
with its previous activity. A carriage re­
turn, however, like several other signals, re­
quires that JOSS break off its current activity, 
move the current user's block out to drum, 
move th.e signaling user's block into core, and, 
~nally, Interpret and act on the line of input 
Just released by the carriage return. 

Second priority is given to users who have 
given JOSS output-limited tasks which have 

been set aside until the typewriters have nearly 
caught up. Third priority is given to users 
with unfinished tasks, on which JOSS works 
for two seconds apiece in round-robin fashion. 
A user's priority changes dynamically accord­
ing to this discipline, which successfully 
exploits the parallel processing of the com­
munication system. Under a typical load, 
JOSS responds to simple requests in a fraction 
of a second and rarely in as long as three 
seconds. Users who are skilled in typing can 
maintain impressive rates of interaction with 
JOSS. 

Language 
The reader will observe that throughout 

this section on software, the term "JOSS" 
is used to refer to that single active agent at 
the computer end of the telephone line con­
necting the user's remote console. It is con­
venient to consider JOSS to be a "computing 
aide" interacting with the user by means of a 
simple language. The reader should now read 
the examples (Figs. 3a-3i) before continuing 
in this section. The examples fall short of 
being an adequate instruction manual for the 
system, but they suggest the readability of the 
language, the high degree of interaction, and 
the power of expression. 

A striking feature of the system is that the 
user commands JOSS directly in the same lan­
guage that he uses to define procedures for 
JOSS to carry out indirectly. A numeric label 
as a prefix to a step is an implied command to 
JOSS to store the step in sequence according 
to the numeric value of the label. JOSS differs 
from other on-line systems by requiring the 
user to supply his own step numbers on all 
steps of his stored program. This seems ap­
propriate, for the user always has the option 
of typing a direct command or an indirect 
step, without having to explicitly call for 
another mode to get the desired option. The 
numeric label determines whether an indirect 
step is an addition, an insertion, or a replace­
ment for another step. The step numbers 
really do pay their way. Elsewhere, the lan­
guage is very explicit. For example, it re­
quires full words, in conjunction with numer­
ical expressions, to denote steps, parts, or 
forms. This too contributes to readability. A 
step is limited to a single line, and a line is 



460 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

U: 
J: 

U: 

J: 
U: 
J: 

Type 2+2. 
2+2 -

Set x-3. 
Type x. 

x-
Type x+2, x-2, 

x+2 -
x-2 -
2·x -
x/2 -
x*2 -

4 

3 
2·x. x/2. x*2. 
5 
1 
6 
1.5 
9 

U: TvDe Hlx-51·3+4)·2-15)·3+10. 1(30) 
~J~:-!_~[(t{~1:x~-5~1~·;3+=4~)~'~2-~15~)~.3~+~1~0~--=25~--__ ~ __________ -; 

U: Type Iqrt(3). sqrt(4). 
J: aqrt(3) • 1.73205081 

aqrt(4) • 2 

Type &qrt(-1). 
Error abon: Res.lYa ~ for aqrt. 

U: 
J: 

Set e-2.71828183. 
Type lH(1). 10g(2). log(e). 

logll. 0 
log 2 • .69314718 
log a. 1 

·U: 

J: 

Type eXI(O). exp(.5). exp(1). 
DI!(O. 1 

exp(.5· 1.64872127 
exp(l. 2.71828183 

U: 
J: 

Type dn( .5), eOI( .51, dn( .5)*2+eol( .5)*2. 
aill(.5) • .4711425539 
coa(.5) • .877582562 

aill(.5)*2+coa(.5)-2 • 1 

U: 
J: 

Type arfU:.O). arg(O.l). arl(-1.0). 4'0'1(3,3). U: 
J: arl~1.0. 0 

lirl 011. 1.57079633 
UI - 0). 3.14159265 

~ ___ ~4~.ar~I~(J~.~3~)_. ___ ~3.~14~15~9~26_5 ___________________________ ~I(~) 
Set y • 123.456. 

T~p11;I1:(),) 'tll~I!' dp(y). xp(y). 

fp)' • .456 
dp)' - 1.23456 
XP)'· 2 

~~~6~~~' !O*Ji.456 

U:

J:

U:
J:

TYJN! .SO{ -3.5). al1'(O). 111'(3.5).
ap(-3.5) • -1
a~(O) • 0

ap(3.5) • 1

U:
J:

U: Type aa(1.2.3). ain(1.2.3).
J: aa(1,2.3)· 3 (3e)
~ __ +-~.tD==(~1~,2~.~3~)_. __ ~1~ ________________________ ~

Delete aU. U:

J:

U:

J:

U:

J:

U:

J:

1.1 Do put 2 for boa1(1)a.

2.1 Set c - aqrt(a*2 + b*2).
2.2 Type a. b. c 1n fora 1.

Fora 1: a-_ b -_ c.-_._
Do part
a - 1
a - 2
a· 2
a. 3
a - 3
a - 3

1 for .-1(1)').
b· 1 c­
b - 1 c­
b - 2 c­
b. 1 c-
b - 2 c­
b - 3 c-

Type all atepa.

1.414
2.236
2.828
3.162
3.606
4.243

1.1 Do part 2 for b-l(l)a.

2.1 Set c - Iqrt(a*2 + b*2).
2.2 r,pe,a. b. c ill fora 1.

Type all foraa.

rora 1:
a - _ b. _ c - _._

r,pe all.

1.1 Do part 2 for b-1(1) ••

2.1 Set c - aqrt(a*2 + b*2).
2.2 r,pe a. b. c ill fora 1.

rora 1:
• - _ b· _ c - _._

a· 3

U:

J:

U:

J:

U:

J:
U:

J:

2.15 Line if fp(e)-O.
2.2 Type a 1 b, c: In form 1 if fp(cl-O.
type part 't.
2.1 Set c • aqrt(a*2 + b*2).
2.15 L1ne 1f fp(c)-o.
2.2 Type at b. c ill fora 1 1f fp(c)-o.
Do part 1 ,or .-1(1)15.

• - 4 b - 3 c - 5.000

a· 8 b. 6 c - 10.000

a • 12 b - 5 c - 13.000

a - 12 b· 9 c - 15.000

a - 15 b. 8 c. 17.000

Delete part 2.
Type part 2.
Error above: Ro aucb part.
Type all values.

a· 15
b • 15
c - 21.2132034

(~) L-U_:-i __ ~_l_e_te __ a_l_l. ________________________________ ~

U:

J:

3.1 Type Xl sqrt(x). log(x). exp(x). _.
Do step 3. for x-1.2.3.100.

x - 1
aqrt~x~ - 1 log X. 0
up x - 2.71828183

aro:s:~ :

2
1.41421356

.69314718
7.3890561

3
1.73205081
1.09861229

20.0855369

100
10
4.60517019
2.68811714·10*43 exp~xS • (3f)L-__ L-_____________________________________ ~

U: ~;,!. TJr x, aqrt (x). log(x). exp(x) 1n form 3. ___ ___ _e___
J:

Do atep 3.1 for x • 8.50(.01)8.54(.02)8.60, 9, 9.5.
8.50 2.915 2.1401 4.9iJ 03
8.51 2.917 2.1412 4.964 03
8.52 2.919 2.1424 5.014 03
8.53 2.921 2.1436 5.064 03
8.54 2.922 2.1448 5.115 03
8.56 2.926 2.1471 5.219 03
8.58 2.929 2.1494 5.324 03
8.60 2.933 2.1518 5.432 03
9.00 3.000 2.1972 8.103 03
9.50 3.082 2.2513 1.336 04 (lg)IL-__ J.-____________________________________ ~

U:

J/U:

U:
J:
U:

J:

U:

4.1 DeII80d b(1).
4.2 Set I - a+b(1).

Set 1-0.

Do ~1114.f;I31-1(1)4.
b 2 • 237
b 3 • 411
b 4 - 733

'fype a.
a· 1924

5.1 Set b(1) - bU)/ ••
Do part 5 for 1-1(1)4.

Type b blil - .282224532
b 2 - .123180873
b 3 • .213617464
b 4 - .380977131

Set 1-0.
Do acep 4.2 for 1-1(1)4.
Type a.

J: a - 1
(3h)L-U_:~ __ ~ __ e_te __ ._1_l_. ________________________________ ~

U - Denotes inputs of the JOSS user; normally typed in green.
J - Denotes outputs from JOSS; normally typed in black .

L-__ ~ ____ ~~~: ____ ~l~~~~~a'~~~Q~~---~~--~--~I(~)
FIgure 3. Samples of JOSS Language and InteractIOn.

JOSS: A DESIGNER'S VIEW OF AN EXPERIMENTAL ON-LINE COMPUTING SYSTEM 461
~-. . - . __ .. -- set-•• l~ .-.. - - --. .- -

~ ..
U: 6.1 TR- foXil 61. Set c:-1/SqTt(2'3. 1415926S) •

2:~ ~ :~t 7 for t-O(b)4. Do pet 6.

7.1 Type t. a in fOl'll 61 if fp(t/.S)aG.
J: t Intearal

7.2 Do part 8 far x • t+h·(.S-k). t+h·(.S+k). .00 .0000

8.1 Set Y • c·exp(-X'*2/2).
.SO .1915

1.00 .3413
8.2 Set a • a+.S·h·y. 1.SO .4332

2.00 .4772
rOl'll 61: 2.SO .4938

t lDtegral 3.00 .4987 rcml 62: ~(3i) 3.SO .4998 _.- _.- 4.00 .5000

~ Set -0. igure 3. Samples of JOSS Language and Interaction-Continued

limited to a single step, neither being much of
a constraint. As a result, a step number
serves to identify not only the logical step but
the stored string and typographical line as
well. Arbitrarily com.plex expressions may
be used everywhere, except as step label pre­
fixes which must be explicit decimal numerals.
The 52 upper- and lower-case letters are the
only identifiers to which the user can assign
numerical values. (If pressed, he can extend
the set by indexing letters, but indexing is
normally used in the customary way-to
identify elements of vectors or matrices.)
Again, generality of expression, single-letter
identifiers, and two sets of groupers all con­
tribute to readability. (For an experienced
typist, readability implies writeability as well
-text is easy, expressions take time but can be
mastered, highly encoded implicit material is
"":Hffinn H- \
UJ._U.lvUJ. lI.,

JOSS represents all numbers internally in
scientific notation-nine decimal digits of sig­
nificance and a base-ten scale factor with an
integer exponent in the range -99 through
+99. JOSS presents an exact input interface,
familiar decimal arithmetic internally, and an
exact output interface. Addition, suhstrac­
tion, multiplication, division, and square root
are carried out by JOSS to give true results
rounded to nine significant decimal digits (ex-

\

cept on overflow which yields an error mes-
sage, or on underflow for which zero is sub­
stituted). The decimal nature of JOSS gives
the user easy control over exact calculations
that would require especially careful attention
in a binary system.

The functions in the language include a set
of logical functions which, together with the
numerical relations and and and or, lead to
powerful direct expressions of conditions
which can be attached to any step. Care has
been taken in a basic set of elementary func­
tions to hit certain "magic" values on the nose

and to provide reasonably full significance of
results. The general exponential routine to
compute a*b, for example, factors out error
situations and the special cases of b = 0, a = 0,
b = 1, b an integer and a an integer power of
10, b = .5, b = - .5, and b an integer with 2:::;
b :::; 29, before resorting to exp [b·log(a)].

The interpretive technique on which JOSS
is based enables the user to edit his stored
program freely and quickly-even when JOSS
interrupts at the user's request or suspends
work on a task to report an error. Inserting
and replacing steps or forms is implicit in the
treatment of any new line· of input. Deleting
and typing are called for explicitly and the
language provides "handles" at various levels
of aggregation so the user isn't forced to do
his editing piecemeal at the level of individual
steps, forms, and values. Steps are organized
into parts according to the integer parts of the
step numbers. Parts then become units that
can be typed or deleted, as well as natural units
for specifying proce,dures in hierarchical fash­
ion. Values, too, may be organized into vectors
and arrays if indexed letters are used, and the
letters by themselves may be used to refer to
entire arrays for purposes of typing or delet­
ing. Still higher aggregates may be typed or
deleted by using the expressions: all steps, all
parts., all forms, all values, and all.

JOSS and the user take turns controlling the
typewriter. It is critically important that the
current status of JOSS with respect to any
task it may have been working on be perfectly
clear each time control is returned to the user.
To this end, JOSS transmits error messages,
interrupt messages, and stop messages to dis­
tinguish these states from the state of having
just successfully completed a task. The user
obviously does not want a message for suc­
cessful completion, because it would be so
frequent and because it would intrude on his
formal . output. Error messages are of two

462 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

types: those that report violations of language
constraints (such as indices not within the
permissible range of integers from 0 to 99) ;
and malformations of expressions, steps, etc.
The first type is infrequent and the message is
long enough to be very explicit about the vio­
lation. The second type covers a multitude of
situations which are easy for the human eye to
detect, but for which a precise error message
is extremely difficult. All these errors are re­
ported by the very brief message "Eh?". Thus,
the user is forced to read his step to find the
error, rather than possibly being misled by a
message unrelated to the actual error. In
every error situation, the user is able to pro­
ceed. Frequently he can repair an erroneous
step or form and continue with a Go command.
Some errors may require that the user ask
JOSS to start over after the repair, which is
accomplished by simply giving JOSS the same
Do command used to initiate the task. Even
when JOSs. has run out of space in pursuing
the task, it stands ready to help. The user may
ask JOSS to delete portions of the program
which are no longer essential to getting final
answers (such as forms or steps no longer
needed) and to continue with a Go command,
this time with additional space for JOSS to
work in.

The user need do no preplanning in compos­
ing his procedures before sitting down at the
JOSS console, since he can depend on inter­
acting with JOSS to perfect his program. This
ideal situation holds for the two users in
RAND who have personal consoles. The other
stations are public and, because of heavy usage,
some users prefer to plan their work before
going to the console-but it isn't necessary.

All input to the system is free form. It is
unreasonable to demand that certain items of
input be typed in specified columns on the page.
On output, however, it is important that the
user be able to require that JOSs. type answers
in conveniently specified forms. It is also im­
portant that JOSS choose a reasonable output
form when the user hasn't specified one. JOSS'
choice here is one number per line. Each num­
ber is identified by the very expression used in
the step calling for the output. JOSS tries to
line up equals signs and decimal points, and
uses fixed-point notation except when the

magnitude of the number makes this unrea­
sonable.

For formal output, the user has the entire
width of the line in which to specify the literal
information and the blank fields to be filled in
with numeric answers. Just two types of
fields prove adequate. A string of underscores
with an optional decim~l point indication is
used for fixed point. A string of periods spec­
ifies a tabular form of scientific notation in
which only the digit part and the correspond­
ing exponent part are typed with the base ten
understood. The number of digits typed is
determined by the length of the field, and JOSS
rounds the answers to fit the fields. Page and
Line steps may be used to direct JOSS in for­
matting the putput. As mentioned above,
JOSS relieves the user of having to count out­
put lines, by maintaining the line number on
the page as the value of the dollar sign. The
user can, for example, call for a new page at
line 50 (Le., "Page if $=50."). JOSS pro­
vides margins automatically, and identifies
each page with time, date, and user's initials
typed at the very top, where it can be clipped
off if the page is to be incorporated into a re­
port. The saving of time and errors by elimi­
nating necessity for transcription of results is
no small part of the system's attractiveness.

It should now be clear that the user always
interacts with JOSS at a reasonable language
level, never in machine language, and that the
suggestion to think of JOSS as a computing
aide is entirely appropriate. In fact, except
for machine malfunctions, no lower-level model
of JOSS' activities can be used to explain be­
havior of the system which is not adequately
explained in terms of the simple higher-level
model. TIlus, there are no JOSS system ex­
perts to call in for consultations-the checked­
out user can explain every result even though
he has no knowledge whatever of JOHNNIAC,
the system routines comprising JOSs., or the
representations of the entities of his program.

Implementation
The administration of the time-sharing as­

pects, drum slots, line buffers, states of re­
mote consoles, selection of tasks, etc., is ac­
complished by detailed but straight-forward

JOSS: A DESIGNER'S VIEW OF AN EXPERIMENTAL ON-LINE COMPUTING SYSTEM 463

machine-language routines in JOHNNIAC.
The priority scheme never shuts out any user
indefinitely. It responds quickly to input sig­
nals, such as carriage return, and keeps out­
put-limited stations typing at full speed. The
routines for interpretation, execution, and se­
quence control of the user's program, however,
represent solutions to many new problems.
The user's block of information initially con­
tains certain tables, storage for value assign­
ments (to 52 letters), heads of empty push­
down lists, working storage, and a list of
available space units.

List processing routines are used to store
away the literal strings of characters for steps
and forms as list structures, and to perform
inserts, replacements, and deletes on these
structures. Similar routines are used to build
list structures holding numerical representa­
tions of the elements of arrays, and to perform
inserts, replacements, and deletes on them. A
vector, then, is represented by a list of ele­
ments, each labeled explicitly with its index.
It need not be dense, since values are looked up
by scanning the list for a match on the explicit
index. Similarly, a matrix is represented by a
list of lists of elements where the lists for the
rows also carry explicit indices. Pushdown
lists for operators and operands, as well as
an auxiliary pushdown list, are used in the
process of evaluating a numerical expression.
The evaluation is programmed conveniently as
a recursive routine. The most elaborate list
structure arises in the bookkeeping JOSS must
do to record the current step number at each
level in a hierarchical task. Each Do causes
JOSS to descend a level to perform the re­
quired part as a subroutine, then return and
advance from the Do. If the Do step carries
a for clause, then a list structure is built to
record information essential to control of the
iteration. This discussion is to point out that
list processing is a cornerstone of the JOSS
implementation.7 -!J

But, the list processing too is strictly an in­
ternal matter to JOSS and is completely sealed
off. The user reaps the benefits in flexibility
and interaction at a high language level. The
challenge was not in the list processing as such,
but rather in the clean-up and backing off to

the beginning of a step to report an error to
the user. It was essential that no irreversible
change be made in the user's block until the
interpretation of a step could guarantee that
the execution would proceed to completion
without an error. This consideration had to
be modified slightly for the Do step with a .for
clause, but satisfactory stopping positions were
found, even for the case where the user deletes
a part being iterated. This attention to detail
has paid off. It is most satisfying to watch
open-shop users with no previous computer
experience, and little JOSS training, extract
themselves from errors with JOSS' help, then
continue with their problems.

CONCLUSION

JOSS now has more than 100 qualified users
among staff members at The RAND Corpora­
tion. TheIr most frequent requests have been
for more scheduled JOSS time, for more stor­
age space, and for long-term storage of pro­
grams. * Noone complains of the speed, al­
though JOSS is slow. Everyone is enthusiastic
about the simple language and ease of inter­
action. The distinguishing features of JOSS
are: typewriters with an excellent touch and
carefully selected keyboard; quick response to
trivial requests, report-quality output; highly
readable language; English capitalization and
punctuation rules; exact input; familiar deci­
mal arithmetic; exact output; no declarations;
easy editing; powerful language for small nu­
merical problems; and high-level language
interaction at all times.

In this designer's view, the acceptance of an
open-shop computing system depends on the
little things-hundreds of them!

ACKNOWLEDGMENTS

Many individuals have contributed to the
building and installation of JOSS. The critical
feedback and enthusiastic response of N. Z.
Shapiro, A. C. Smith, and the other initial
users of JOSS was invaluable.

* In July of this year, JOSS service was extended into
the evening hours. At this writing, a version of JOSS
is being prepared to double the present user's block of
512 words and to record programs in punched cards.

464 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

REFERENCES

1. BAKER, C. L., JOSS: Scenario of a Filmed
Report (The RAND Corporation, Santa
Monica, June 1964), RM-4162-PR.

2. BOlLEN, S., FREDKIN, E., LICKLIDER, J. C.
R., and MCCARTHY, J., "A Time-Sharing
Debugging System for a Small Computer,"
Proc. 1963 SJCC, 51.

3. COFFMAN, E. G., JR., SCHWARTZ, J. I., and
WEISSMAN, C., "A General-Purpose Time­
Sharing System," Proc. 1964 SJCC, 397.

4. CORBATO, F. J., MERWIN-DAGGETT, M., and
DALEY, R. C., "An Experimental Time­
Sharing System," Proc. 1962 SJCC, 335.

5. DUNN, T. M., and MORRISSEY, J. H., "Re­
mote Computing-An Experimental Sys-

tern. Part 1: External Specifications,"
Proc. 1964 SJCC, 413.

6. MCCARTHY, J., "Time-Sharing Computer
Systems," Management and the Computer
of the Future (MIT Press, Cambridge, and
Wiley, New York, 1962), p. 221.

7. BOBROW, D. G., and RAPHAEL, B., "A Com­
parison of Li~t-Processing Computer Lan­
guages," Comm. ACM 7, 231 (1964).

8. NEWELL, A., and SHAW, J. C., "Program­
ming the Logic Theory Machine," Proc.
1957 WJCC, 230.

9. SHA W, J. C., NEWELL, A., SIMON, H. A., and
ELLIS, T. 0., "A Command Structure for
Complex Information Processing," Proc.
1958 WJCC, 119.

CONSEQU.ENT PROCEDURES IN CONVENTIONAL

COMPUTERS*

Donabd R. Fitzwater
Institute for Atomic Research and Department of Chemistry

Iowa State University, Ames, Iowa
and

Earl J. Schweppe
Computer Science Center, University of Maryland

College Park, Maryland

1.0 INTRODUCTION

The complexity of the tasks performed by
computer systems has been expanding rapidly
throughout the short history of these machines,
but only in recent years has the basic feature of
sequential control of operations been seriously
violated. The large computing system of the
future will have multiple processing capabilities
and will be operated in a shared manner in or­
der to obtain· the potential efficiencies and ex­
pansions of application areas which are possible
in such a system. A shared computer system
will be heavily dependent on real time interac­
tions with people and other machines. The
effectiveness of such expansion in the applica­
tion areas of shared systems depends upon ad­
vances in both hardward and software struc­
tures, and upon the feedback between them. In
order to solve the language problems of such a
system, it is not sufficient to try to find a more
convenient language to describe conventional
program structures. Brown 1 has indicated the
need for a new concept of programming in the
environment and has discussed many of the
necessary features including the ability to leave
sequencing control in the hands of the system.

The concepts of consequent procedure net­
works, discussed by Schweppe and Fitzwater 2,

provide an effective framework for considera­
tion of hardware and software design for such
systems. Although the use of such general net-
\x/orl{ . implementation in controlling computer
complexes would be quite effective, their full
inlplenlentation within a given conventional
processor becomes inefficient. The purpose of
this paper js to discuss the application of a
related but somewhat degenerate form of conse­
quent procedure networks inside a conventional
computer.

The results of this study have been used in
the design of a shared on-line computer control
system as described by McFarland, Fitzwater
and Stewart 3, 4.

1.1 Need for Consequent Procedure Networks.
The procedures which are available in a com­

plex system must be carried out in a sequence
which is dictated by the demands of the people
or equipment involved and the existence of the
necessary inputs. Since this order is deter­
mined only during execution of the procedures
-and indeed may vary from one execution to

* Contribution No. 1509 work was partially supported by the Ames Laboratory of the U. S. Atomic Energy
Commission and partially by the National AeronauticE and Space Administration under grant N sG-398 to the
Computer Science Center of the University of Maryland.

465

466 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

another-the program structure should be an
invariant of the order of execution. Clearly
most present languages and systems do not al­
low such flexibility. The requested procedure
itself may interact asynchronously with the re­
questing entity as well as other entities and
such interaction may arise from a variety of
causes, some of which are requirements for
competitive processes, random demands for
data acquisition, and indeterminate processing
times. As a result the language used to describe
procedures should contain, neither implicitly or
explicitly, any artificial requirements as to the
order in which operations are to be carried out.

Many ad-hoc system programs have been de­
signed and operated successfully within real
time computers. These systems have usually
been dependent on a specific design for a spe­
cific set of tasks which are known at the time
the system is developed. An excellent example
of this type is the multicomputer programming
system described by Pickering, Mutschler and
Erickson [;. In this case any structure which
will process the specific tasks is satisfactory.
The problem of designing a general purpose
system for processing unspecified procedures
for possibly unspecified users is quite different
and is much more akin to the design of a gen­
eral purpose computer. Obviously, in such a
system, one cannot guarantee that all of the
unspecified requests of the un~pecified users can
be satisfied. The goal is to design a general
purpose system which is capable of satisfying
a large class of such requests. Such a system
must recognize that the structure of the proces­
ses which it must carry out is not sequential in
nature.

An implicit recognition of non-sequentiality
in an on-line system may be effected by the
technique of memory swapping as discussed by
McCarthy, Boilen, Fredkin and Licklider 6. In
this scheme, the currently requested programs
are run for a short time each in sequence. The
turnover rate is made fast enough so that the
effect on the serviced entity is that of a some­
what slower computer. The major advantage
of such a system is that conventional languages
and coding structures may be used in each
user's program.

The major disadvantage of such a technique
is that the consequent relationships of sub-pro-

cedures are not explicitly represented in the
structure of the conventional language and can­
not be implicitly recognized except in rather
special cases. As an example, the use of priority
overlapped input-output equipment in
FORTRAN programs cannot be expressed ex­
plicitly and is only sometimes expressed implic­
itly in the structure of the systems package.
The programmer describing a procedure has no
direct control over such implicit structures. If
the only non-sequential operations to be carried
out by the system involve simultaneous reading,
writing and computing it is possible to provide
implicitly for such operations and some
FORTRAN systems do this. When the system
is operating under a hierarchy of priorities or
priority interrupts the implicit recognition of
non-sequential structures lays impressive de­
mands on the system package design. These
demands become oppressive if further, non­
standard non-sequential operations are re­
quired in describing the procedure. Because
such structures may be peculiar to a specific
task, implicit recognition of such general struc­
tures in the system package is neither feasible
nor desirable.

Although, in a specific system, the decision to
relinquish any part of conventional language
and systems structures must be carefully con­
sidered, the inherent awkwardness of conven­
tional system structures for general purpose
real time systems leads to a hope for a more
natural and effective structure which does not
place such severe demands on the user, pro­
grammer and systems designer.

The use of consequent procedure networks is
an alternate and effective approach to a solution
of the language and system structure problem.
The introduction of non-sequentiality occurs in
a natural and flexible manner.

1.2 Operational Requirements.
The computer system must satisfy the needs

of the user, programmer and systems designer.
There is no a priori reason for assuming that
these needs are identical and can be represented
in the same communication languages and tech­
niques. There is little point in re-examining
language and systems structure unless these
needs are re-examined and the results used in
the language and systems study.

CONSEQUENT PROCEDURES IN CONVENTIONAL COMPUTERS 467

In general the user is interested in requesting
the application of a specific procedure to a
specific set of data to produce certain required
responses. Although the nature of the data,
procedure, or response may vary wi dIy, the re­
quirement that the system must accept and
process such requests for the user is sufficient.
The sequences of such user's requests and the
data descriptions are the responsibility of the
user and he must therefore be given the ability
to define these as he sees fit. The computer sys­
tem must supply a flexible means of communica­
tion for such requests and data and a conve­
nient language in which they may be described.
The user may also be interested in supplying a
priority parameter to be used in scheduling.

At the current level of discussion there is no
implied distinction between human and non­
human users. The formal language or struc­
ture of a request for a non-human user may be
quite different from that appropriate to a
human user. This does not present any serious
problems since the system must be able to ac­
cept requests in a "language" suitable for the
using entity. Of course, not all interacting
entities have the status of a user. Some may
merely supply or receive information.

The programmer has a two fold relationship
with the computer system. First, he must define
the operations which will perform the desired
task in the form of a procedure. Second, he has
the same requirements as a user while entering
the procedure into the system and during the
checkout process. The system must provide an
appropriate language for the definition of a
procedure. There is no reason to assume that
this language should be the same as for the
user's requirements. Because many sequencing
operations are under the control of the user or
the system, the language must provide sequence
independent structures. In general, the pro­
grammer should not care who or what might
call his program into action. The programmer
is merely defining a procedure. The sequences
of such procedures may be dictated by the user
or incorporated in some encompassing proce­
dure. In addition, the execution of a procedure
may involve external real time interaction of
undefined sequence.

The systems designer is responsible for the
choice of computer hardware,. procedure lan-

guages and operating systems. The design must
satisfy the requirements above for users and
programmers and should be realizable in an
efficient manner. The systems designer must
supply translators for the various languages
used and must supply an operating system that
will accept requests and data. The requested
programs must be obtained by the system, sup­
plied with actual parameters, scheduled and ex­
ecuted under system control. Because of the
special requirements of such a system program,
the user and programmer languages may have
to be supplemented with a system language
which gives to the systems programmer com­
plete access to all hardware capabilities. The
programmer languages do not need such com­
plete access and may be designed accordingly.

1.3 Consequent Procedure Networks.
The requirements outlined above can be met

in a natural manner by the use of consequent
procedure networks. The use of procedures in
describing a program has a long history of
effective use. The network description of proc­
essing flow provides a natural way of introduc­
ing non-sequential structures of almost any de­
sired type. A consequent procedure network
consists of procedures, linked into a network by
the programmer, which are executed only when
each recognizes the appropriate conditions for
its execution. These conditions rather than the
sequence of the statements define the network.

In general form, the specifications of the in­
put data entities and the connection network of
the procedures jnvolved is sufficient to define
the program. The mere existence of the speci­
fied data is enough to sequence the various pro­
cedures in a network. In the general form, data
entities will carry network identity and may
have to be stacked in input queues. The manip­
ulation of such entities, in a conventional com­
puter, become somewhat inefficient if full
generality must be maintained.

The general form of consequent procedure
networks loses many of its advantages in sim­
plicity and efficiency when implemented on a
single computer without substantial multi­
processing capabilities. The logical complexities
in implementing such a system on a convential
processor are severe. A degenerate form of the
procedure network is needed in a conventional
computer. The general procedure in a pro-

468 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

cedure network may represent the operation of
a unique piece of hardware or it may represent
a body of coding within a single computer.
Since the first meaning above is appropriate to
a computer complex or to a multiprocessor but
not to a single processor we will use the second
meaning. A procedure represented by a body
of coding may have input queues representing
various calls on the procedure or, for each call,
the body of coding may be replicated as a dis­
tinct entity. For our purposes, the inherent
simplicity of the last interpretation is a very
promising line of approach to the introduction
of non-sequential structures in conventional
computers.

We are thus lead to a dynamic tree structure
in which branches are executed in non-sequen­
tial fashion. The non-sequential characteristics
enter at a very fundamental level in the result­
ing language structure.

2.0 TASK TREE STRUCTURES.

A procedure is a description of a body of
coding designed to operate upon its formal pa­
rameters. When the appropriate activation
conditions are met, a task is created. The
process of creating a task is carried out by the
system in response to a request from an exist­
ing task which recognizes the activation condi­
tions. Although the structure of a procedure
and of the system is unusual in this system, the
creation of a task is essentially that of retrieval
of a subprogram from secondary storage, allo­
cation into primary storage, and of replacement
of formal parameters by actual parameters.
Having created a task, the system will then
schedule the task for execution. The comple­
tion of the task is recognized within the task
itself and the system is requested to erase the
task. Note that a task has only a transient
existence while it is actually operating upon a
specific set of actual parameters. A given pro­
cedure may be used simultaneously in several
separate tasks since each call for the procedure
causes the creation of a unique task. Because
of this, recursive structures may be imple­
mented in recursive calls for procedures with
no further considerations.

A task tree consists of a task and its associ­
ated subtasks. Although a certain task tree
may exist implicitly in a set of library proce-

dures, it exists explicitly only in the primary
memory as a task and a set of subtasks which
may in turn have subtasks. The task tree will
grow in response to requests for subtasks and
will shrink in response to requests for erasures
of tasks.

2.1 The Primary Task.
A mechanism for the creation of task trees in

response to a request from a user is distinct
from the mechanism which is built into the
system to process requests from existing tasks
for new subtasks. The language of such a re­
quest from the user must be designed for the
convenience of .the user. This requires a some­
what more sophisticated analysis by the com­
puter than is required to process internal re­
quests from existing tasks. In addition, the
task tree creation process involves certain
housekeeping which is not required for exten­
sions of an existing task tree. Consequently a
special task, called the primary task, must exist
as the head of all user requested task trees.
This primary task will create a main task of a
task tree in response to each user request.

The services offered to the user by the pri­
luary task depend upon the requirements of a
specific implementation. Since the primary task
is the only place the system interacts with the
user (as distinct from the programmer) much
thought must be given to user language re­
quirements. Many compromises, due to local
conditions, would be expected here. In what
follows, only suggestions of possible features to
be provided by the primary task are made.

The primary task must accept a user request
in the external user language and analyze the
meaning of the request. The primary task will
keep tract of current (or anticipated) hard­
ware requirements and if the current request
cannot be satisfied because of hardware limita­
tions, it can be stacked into secondary storage
for later response. If a priority user request
is permitted, and cannot be satisfied because of
hardware limitations, the primary task may re­
quest (via a global variable) a lower priority
task to terminate its operation and lodge a re­
quest for its later continuation. The priority
request may then be handled in a normal fa­
shion. The low priority tasks would be pro­
grammed in such a manner as to recognize the
suspension of operation request and relinquish

CONSEQUENT PROCEDURES IN CONVENTIONAL COMPUTERS 469

its hardware requirements, leaving only a re­
start task in memory.

If there are hardware facilities which are
currently unused, the primary task will exam­
ine its pool of unprocessed user requests for
suitable tasks. A scheduling algorithm may be
used to prevent the more demanding requests
from being indefinitely postponed.

The system must be stable to transient over­
loads in the sense that it must not saturate in a
logical blockage of processing. A transient
overload may impair, temporarily, the reflex
time of the system but the system must con­
tinue to work on its backlog. One form of
logical blockage which' is quite disastrous is to
find that none of the task trees can be com­
pleted unless a new subtask can be created and
there is no more available core space. This
might be handled by removing, temporarily, a
portion of the task trees in order to finish the
remainder. This procedure is frought with sub­
stantial complications. A simpler and more
satisfactory procedure is to have the primary
task monitor the current core requirements and
reject or stack requests which could result in
this condition. This may be done by supplying,
with each task, a parameter which defines the
minimum core space required for completion.
This minimum may be much less than the max­
imum core space required for completion. This
minimum may be much less than the maximum
because under crowded conditions, some sub­
tasks which might be done in parallel are done
in sequence without intervention by the user or
programmer.

Once the primary task has determined that
the current request can be satisfied by the
available hardware, a normal request of the
system is made for the creation of a task which
will become the main task of the task tree de­
signed to answer the request. The parameters
for this task are provided by the user as a part
of his original request.

The user may wish to monitor or alter the
progress of the program. The primary task
will therefore accept requests for display or
modification of the parameters of the original
user request. Some of these parameters may be
programmed to provide the desired informa­
tion.

The primary task may also provide notifica­
tion t.o the user of the real time suspension or
completion of the requested task if desired.

2.2 Main Task.
A main task is a task which has been created

by a request from the primary task in response
to a request from a user. There will be a main
task for each user request currently being serv­
iced. The main tasks may arise from different
users, thus providing for sharing of the system
among users.

The distinction between a task and a main
task is in its position in a task tree and not in
its procedure. Any task may be requested ex­
plicitly by the user, thus forming a main task,
or implicitly by the user through the task tree,
thus forming a subtask. Any procedure in the
library may be requested as a main task or as a
subtask as is currently required by the user.
For example, a subtask designed to invert a

-matrix may be called as a main task by a user
with a specific matrix or as a subtask to a main
task which is to solve a specific set of equations.
This property has important consequences in
code debugging and in real time control situa­
tions.

2.3 Subtask.
With the exception of priority tasks (which

will be discussed in a later section) all tasks
have the same structure. A simple subtask is a
task which has no associated subtasks. A task
which has potential substaks but does not in
fact request their creation is not a simple
subtask.

A procedure body consists of a sequence of
statements which are executed in a normal fa­
shion. One additional type of statement, a sub­
task call, is provided. A subtask call consists
of library name, an activation parameter, and a
list of actual parameters which provide the in­
formation to be used in a request for the crea­
tion of a subtask. The activation parameter is
a Boolean variable. A true value of the activa­
tion parameter implies that the appropriate
conditions for creation of the specified subtask
do now exist, and that it is appropriate to re­
quest the creation of such a subtask.

If, during the execution of a subtask call, the
activator is false or if the subtask already ex-

470 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

ists, no further action is required and the next
statement will be executed. If, however, the
activator is true and the subtask does not exist,
a request for the creation of the subtask is
lodged with the system and the next instruction
is then executed.

The system will subsequently request the ap­
propriate procedure from secondary storage
and go on about its business. When the specified
procedure is available, allocation of storage is
made, the procedure is relocated, actual param­
eters from the call are supplied and a request
for execution is made of the task scheduler. At
the appropriate time, the scheduler will make
an actual call for the task and cause its execu­
tion.

When the system scheduler executes a task it
does so by turning control over to the coding
body of the task. This coding body acquires
the references to the actual parameters and
executes the set of sequential instructions re­
ferred to above. The process described above
is then repeated. The set of sequential instruc­
tions act primarily as an activation scan of the
potential subtasks. Statements to perform
other useful operations may also be embedded
in the activation scan. Since activation condi­
tions are changing dynamically, further activa­
tion scans must be made at later times. In the
absence of hardware multiprocessing or associ­
ative memories for the storage of activation
parameters, efficiency dictates that the system
must not continually monitor changes in activa­
tion parameters. An effective and economical
compromise is to stimulate an activation scan of
a parent task each time one of its subtasks
either completes or requests an activation scan
of its parent.

The use of an associative memory which
would eliminate the need for scanning activa­
tors would make it possible to reduce the house­
keeping and increase the flexibility cf the
activation concept. An alternative approach
would have a second central processing unit
carry out the scanning, allocation and other
housekeeping. In the later form, queue manip­
ulation becomes feasible and the very powerful
general concepts could be implemented ef­
fectively.

A task is considered completed if, at the end
of the execution of its sequential instructions,
no subtasks are currently active. Upon comple­
tion of a task the system will make the hard­
ware components involved in that task available
for use of other tasks and the task will cease to
exist.

2.4 Simple Tasks.
If the sequence of statements in the body of a

procedure does not contain a subtask call state­
ment, the statements will be executed sequen­
tially and the task is ended. Such a task is
called a simple task. The use of simple tasks
on any level of a task tree is exactly the same as
a conventional subroutine, except for its activa­
tion and scheduling. Indeed, most conventional
programs could be considered to be simple sub­
tasks to the conventional monitor.

2.5 Priority Tasks.
One of the weaknesses of conventional lan­

guages is the difficulty of describing hierarchial
priority interrupt routines. In the present
structure, this is accomplished by a simple task.
There is very little reason for explicit non-se­
quential operation below the priority interrupt
level and so the use of a simple task for priority
routines is quite appropriate.

A priority task differs from a simple task in
that it has three coding bodies associated with
it. The first coding body functions just as a
simple task whose job it is to create an en­
trance to the second coding body which defines
the appropriate process to follow a priority in­
terrupt. The second coding body then awaits
one or more priority interrupts and makes its
own decision on when its task is completed. The
second coding body, when the task is completed,
makes a special request to the scheduler for the
execution of its third coding body. The reason
for the third coding body is that a task may not
relinquish control in the priority mode to any­
thing except the point at which the priority in­
terrupt occurred. The third coding body then
releases control to the parent task.

The first and third coding bodies may be used
also for initiation and termination respectively
of external operations associated with the in­
terrupt.

In the normal mode of operation, the condi­
tions giving rise to an interrupt are not cre-

CONSEQUENT PROCEDURES IN CONVENTIONAL COMPUTERS 471

ated until after the corresponding priority task
has been requested and created. Thus the pri­
ority reflex time is not dependent on secondary
storage or transfer rates. This does imply that
all priority tasks must exist whenever their pri­
ority interrupts are currently expected. The
priority tasks handle the high speed reflex re­
quirements of the system and the non-priority
routines handle housekeeping and on-line proc­
essing. A given task may, of course, involve
subtasks of both types.

A very useful priority task is one which rec­
ognizes a clock pulse as its interrupt entrance
condition. Control is given to the task in the
priority mode and it releases control to the next
clock priority routine in the priority mode. The
system is responsible for recognizing the clock
pulse interrupt and for scheduling the pending
clock priority tasks. Such routines may be used
to monitor control operations or for periodic
data logging.

2.6 Activation.
We can associate a status with each variable.

The status of a variable has two values, active
or inactive. For example a matrix M with
inactive status may be given active status when
a particular set of values have been assigned to
its elements. However, unless we wish to intro­
duce queues, we must not assign a new set of
values to the matrix M until it returns to the
inactive state.

The activation parameter for a subtask call
may be the state of a variable or a Boolean vari­
able derived by logical manipulations of other
variables or states. The concept of the conse­
quent subtask call requires that a request for
the subtask be made of the system each time the
activator goes active. Again, in order to pre­
vent queuing, we must ignore any activator for
a subtask which has already been requested
until that subtask completes. This is where we
lose the major portion of the generality of con­
sequent networks with queues.

The activator is reset to inactive upon com­
pletion of the corresponding subtask and a new
call is permitted if the activator should subse­
quently become active.

The more general concept of activation re­
sults in fascinating program simplicity and in

almost prohibitive housekeeping requirements
in a conventional computer system. We will
consider only the more restricted form which
does not generate queues in this paper. Un­
fortunately, this restricts the programming use
of activators almost to that of binary switches.

3.0 Use of Task Trees.
The use of non-sequential task trees has all

of the advantages of subprogram structures
with the added flexibility that the programmer
need specify sequential relationships only
where they are known. N on-sequential rela­
tionships may be controlled by the system. Be­
cause these relationships are recognized in the
structure of the programming language, the
programmer is relieved of the responsibility for
them and the system is given the information it
needs in order to handle them, thus simplifying
the job for everyone. Storage allocation and
scheduling may be handled by the system. The
programmer need not care when his routine is
to be used or where.

3.1 Natural Description.
The consequent structure is well suited to de­

scribe what systems do whether they be corpo­
rations, job shops or programs. Indeed, this
type of structure could be used to describe the
operations of a business in recognizable form
using programming structures which have their
counterparts in administrative structures. The
restriction of not permitting queues is similar
to abolishing in and out baskets in an office.
This restriction is almost una voidable until we
can get effective computer hardware for such
"baskets" .

The generalized procedure network is an ef­
fective model of the way human organizations
operate and the degenerate form discussed here
is a compromise which retains substantial
power. This natural organization suggests the
basic power and simplicity which is possible in
such a computer system. Many of the burdens
of organization and sequencing are assumed by
the system. Because the language is designed
for this, the system becomes relatively simple.

3.2 Lang'Uage Structures.
We will consider only the language appropri­

ate to the programmer. The language in which

472 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

a user would make a request is simple but quite
dependent on local boundary conditions. The
language used in writing the system might be
any which offers appropriate flexibility in con­
trolling the specific computer.

The object program structure produced by a
source language of the type under discussion is
substantially different from normal usage and
is closely integrated with the operating 'system.
The source language itself is quite similar to
conventional languages and is easily defined.

In FORTRAN, the addition of a subtask
statement (similar to sub-routine) and a call
subtask statement (similar to call) will suffice.
Because of the demand for Boolean variables, a
FORTRAN version permitting such variables
should be used. The ordinary call and sub­
routine statements could be retained if desired.
Note that, although the new language is quite
similar to the old, the method of use of the
language statements is quite different.

In many respects, ALGOL forms an excellent
vehicle for such non-sequential structures. In
this case the procedure would be modified to
include the activator and the subtask would re­
place both the block and the procedure concepts.
This results in a much simpler language which
retains the advantages ogALGOL and the pow­
er of the non-sequential structures.

3.3 Multilevel Control and Debugging.
Since all tasks have the same calling struc­

ture, any task may be used as a main task or as
a subtask. For example, one might have a task
which controls some external equipment
through its use of various subtasks. If the
current control program js unsatisfactory for
some special purpose, the user may assume con­
trol on a lower level of the task tree and de­
termine his own sequencing of the more rudi­
mentary control functions. This is similar to
the operation of a space sate lite in the "fly by
wire" mode.

A further advantage of this mode is in de­
bugging. A task tree may be debugged from
the end of its branches inward by calling each
subtask as a main task and supplying the ap­
propriate test parameters with his request. No
special main program need be written and de­
bugged in order to test an individual procedure.

4.0 AN EXAMPLE OF CONSEQUENT
PROCEDURE USAGE.

In order to give an example of the usage of
consequential procedures it is necessary to in­
troduce a language in which to describe them.
Although the syntax of the language used does
not differ very much from conventional ones,
the way in which the language is used is quite
different and can ,best be appreciated by study
of an example. The following casual definition
of a language based on ALGOL may suffice for
illustrative purposes but is certainly not a suffi­
cient definition for the use in an actual system.
The object program structures are dependent
on a specific computer and are not discussed
here. More details as to a language and system
structure on a specific computer (the SDS 910)
are to be found in the paper by McFarland,
Fitzwater and Stewart 4.

4.1 Language for the Description of the Ex­
ample.

Let a consequent procedure have the form of
an ALGOL procedure whose main program is
the parent task. The procedure body is a block
and contains no further blocks. The procedure
statement is replaced by a subtask call with the
following syntax:

<Subtask Call> :: == <Procedure Identifier>
<Activator>

«Actuator> ; <Actu­
al Parameter List»

<Activator> :: = <Boolean Variable>
I <State of a Variable>

<State of a Variable> :: = r <Variable>].

The state of a variable (active or inactive) is a
Boolean variable associated with each variable.
We will place the further restriction that a sub­
task call may not be used in a compound state­
ment or in a simple or priority subtask.

The coding body of a simple task may be
written in a machine language code which is
otherwise unspecified.

Two pseudo blocks which are executed only
once each may be included as the first and last
statements in the body of a procedure. These
are defined by enter" 'end or exit· . 'end with
enter or exit replacing a begin. An enter block
is executed only on first entrance and in a non-

CONSEQUENT PROCEDURES IN CONVENTIONAL COMPUTERS 473

priority mode. An exit block is executed just
prior to the subtask completion exit and is al­
ways executed in a non-priority mode.

In order to simplify the language description
given here, we will use descriptions of state­
ments in place of the statement when the ex­
plicit syntax for such a statement has not been
given. Such descriptions will be placed be­
tween parenthesis to prevent confusion with
comments.

4.2 Description of Example.
This example involves the control and logging

of data from a simple ~xternal device and will
illustrate the interactions of various priority
and non-priority tasks. The same types of in­
teractions, although there might be no need for
priority tasks, would occur in some data proces­
sing applications.

Let us suppose the external device has three
asynchronous processes. Process one sets a
value of a variable and holds it during the re­
maining two processes. We may modify cer­
tain device parameters so as to cause the vari­
able value to assume the desired value. The
second two processes are very similar but are
not sequentially related. We may initiate either
process and at a later time (signalled by an in­
terrupt) we may read in a vector of 3 values
for each process. Computations using these
values then produce a new setpoint for the first
process which is set and held dynamically for
the remaining two processes. The value of each
setpoint is typed out and a wait, if necessary, is
made to prevent stacking demands on the type­
writer.

In case of failure, for any reason, to com­
plete the above cycle within a specified time
limit, we will assume some disaster has oc­
curred, shut down the external device and re­
move the task tree from storage as an emer­
gency measure. The system will so notify the
user.

The operator may change the value of the
Boolean variable QUIT to true and cause the
task tree to finish· normally.

4.3 Coding for Example.

The user would request the task called
MEASURE and supply appropriate values for

its parameters. The meaning of the param­
eters in MEASURE is as follows

P A, PB-define the priority interrupt en­
trance. If· an interrupt associated with
P A occurs, the priority subtask associated
with PA will be entered in the priority
mode. If the subtask does not exist, it will
be ignored.

LIMIT-is the integral number of clock in­
terrupts which must be received before
disaster is assumed.

I-is a counter for clock interrupts. It may
be reset to zero at any time.

QUIT-is a Boolean variable which, if true,
requests cessation of operation.

D-is a range bound on the value of the vari­
able C.

N A, NB-are the norms of the vectors A, B.
A, B-are vectors whose values are obtained

from the external device.

C-is the value to be held in the external de­
vice by the first process.

READY-is a dummy Boolean variable de­
noting that the setpoint has been reached.

The enter block will establish the priority
subtasks HOLD and TIME which will remain
active for the duration of the control task. This
block is executed only on first entrance to the
task MEASURE.

The subsequent entries to the task, MEAS­
URE, will be made at the first statement fol­
lowing the enter block. Subsequent entries will
be made at the completion of any subtasks of
l\iEASURE.

The calling of the evaluate subtask will be
considered only if its input data, N A and NB,
are available and the last value of C has been
logged.

The remaining subtask calls will be made if
during execution of the task body (an activa­
tion scan) their activators are true. The acti­
vator for a subtask will be set false at comple­
tion of that subtask. Note that the order is not
important since any order of the remaining
statements will produce the same results.

Since the scheduling of the subtask calls is a
function of currently available storage and of

474 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

the occurrence of the priority interrupts the
programmer does not know how much overlap
of subtasks will actually occur on each measure­
ment cycle. If storage is temporarily restricted,
the subtasks would be executed one at a time in
sequence. If the response to INPUT1 is very
fast, NORM (A; A, NA) may be executed dur­
ing INPUT2 and while TYPE is operating.
The system will automatically take advantage
of such overlapping and will give the best re­
sponse, on each cycle, that is possible under the
conditions then prevailing.

complex MEASURE (PA, PB, D, LIMIT,
QUIT); priority P A, PB; real D; integer
LIMIT; Boolean QUIT; begin real N A, NB,
C ;real array A, B [1 :3] ;

subtask EVALUATE, HOLD, TIME, IN­
PUT 1, INPUT 2, TYPE, NORM; Boolean
P, READY;
integer I;
enter C: = 0.0; [C]:=true; READY:=

false; HOLD ([C]; C, READY, QUIT,
I) ; TIME ([C]; LIMIT, I, QUIT) ;

end entrance block;
'if QUIT t1J,en go to EXIT
if [NA] and [NB]and-[C] then P :=true
else go to SKIP; EVALUATE (P; NA,
NB, C, D);

SKIP: NORM ([A]; A, NA) ;
NORM ([B]; B, NB) ;
INPUT1 (READY; A, PA) ;
INPUT2 (READY; B, PB) ;
TYPE ([C]; C);

EXIT: end MEASURE

The subtask HOLD is a clock priority rou­
tine. This implies that an entrance to the body
of the subtask will be made in the priority mode
each time a clock interrupt occurs. The enter
and exit blocks are executed only once and in
the non-priority mode. The variables declared
in hold have the following meaning;

X-is assigned the value at the external ad­
dress DIAL.

DIAL-is an address which selects the reg­
ister in the external device holding the value
to be assigned to X.

ERROR-is the discrepancy between the
setpoint and the current value of DIAL.

The enter block initializes the mode switch
to hold and requests an entrance on the next
clock interrupt. This is executed in the non­
priority mode. Subsequent priority mode en­
trances are made at the first statement after
the enter block.

If the error is large, HOLD assumes that
a new setpoint has been requested and READY
is set false. When the error has been reduced
to an acceptable value, READY is set true to
initiate the appropriate subtask calls in the
parent task. An activation scan of the parent
task is requested to give the parent the oppor­
tunity to make such calls.

The normal exit from the priority mode sec­
tion of HOLD is made by requesfing another
clock interrupt and releasing control.

This subtask will complete only when QUIT
is true by requesting its removal at a later time
in the non-priority mode and releasing control
to the interrupted coding. The system will then
enter the coding body and execute exit block in
the non-priority mode. This results in a return
to the parent task and the destruction of this
subtask.

clock priority HOLD (A1, A2, QUIT, I) ;
real A1,; Boolean A2, QUIT; integer I;

begin real X, ERROR; external address
DIAL:=1234;

switch MODE:=SET, HOLD; integer N;
enter N:=2; (REQUEST CLOCK IN­
TERRUPT) end if QUIT then go to
DONE;

(INPUT VALUE AT DIAL AND AS­
SIGN TO X);

ERROR:= X - A1; go to MODE [N];

SETC: if ABS (ERROR) < 0.01 then
begin [A2]:= true; N:= 2; 1:= 0;
comment this resets the time limit clock
count;

(REQUEST ACTIVATION SCAN OF
PARENT) end;

CORRECT: (INITIATE APPROPRIATE
CORRECTIVE ACTION TO HOLD ER­
ROR AT A MINIMUM); (REQUEST
CLOCK INTERRUPT); (RELEASE PRI­
ORITY);

CONSEQUENT PROCEDURES IN CONVENTIONAL COMPUTERS 475

HOLDC: if ABS (ERROR) >0.5 then begin
[A21:== false; N:== 1 end; go to COR­
RECT;

DONE: (REQUEST PRIORITY TASK
EXIT); (RELEASE PRIORITY CON­
TROL); exit (SHUT DOWN HOLDING
ACTION) end

end hold

The subtask TIME is a clock priority routine
which counts clock interrupts. If the limit is
reached emergency action is taken. This sub­
task is active during the operation of MEAS­
URE and does nothing but count unless QUIT
is true or LIMIT is reached. If QUIT is true,
the subtask completes in the same fashion as
hold. If the limit is reached, something is be­
yond control and the entire device is shut down
and a request to eliminate the entire task tree
is made of the system. When this is accom­
plished, the system will so notify the user.
clock priority TIME (LIMIT, I, QUIT)

integer LIMIT, I; Boolean QUIT;

begin
enter I: = 0; (REQUEST CLOCK IN­
TERRupT) end; if QUIT then go to
DONE"
I: == I + 1; if I == LIMIT then
begin (SHUT DOvVN EXT ERN A L
EQUIPMENT) ;

(REQUEST EMERGENCY ERASURE
OF TASK TREE) ;

DONE: (REQUEST PRIORITY TASK
EXIT)
end LIMIT REACHED
else (REQUEST CLOCK INTERRUPT) ;

(RELEASE PRIORITY CONTROL)

end time

The INPUT 1 and INPUT2 subtasks are iden­
tical, at least to the degree of coding appro­
priate here, and only differ in the external de­
vice addresses which are used to obtain infor­
mation. We will discuss only INPUT 1 which
uses formal parameters corresponding to actual
parameters which have been discussed.

INPUTI is a priority routine whose body is
executed only once. The enter block sets up the
priority entrance and initiates the external
process which will, at a later time, give the de-

sired priority interrupt, PI, which signals that
the values of Al are ready to be read.
priority INPUTI (AI, PI) ;

priority PI ; real array Al ;

begin
enter (REQUEST P RIO R I T Y EN­
TRANCE ON PI);

(INITIATE EXTERNAL ACT ION
WHICH CAUSES PRIORITY INTER­
RUPT PI)

end entrance set up;
(INPUT EXTERNAL VALUES OF Al
AND ASSIGN TO AI) ;
(REQUEST PRIORITY TASK EXIT) ;
[AI] : == true;
(RELEASE PRIORITY)

endINPUTI

The· remaining subtasks, E V A L U ATE,
NORM and TYPE, are simple non-priority
routines that are executed only once per call
and return control to the parent task. The
actual parameters used in the calls have been
discussed and there is little more to say about
these subtasks.

simple EVALUATE (AI, A2, A3, A4) ;
real AI, A2, A3, A4;
begin A3:==(Al + A2)/(Al x A2) + A3
+0.5;

if A3 < A4 then A3: == A4;
[A3] :== true; [AI] :==[A2]: false

end evaluate

simple NORM (A, N)
real N; real array A ;
begin N: == (A [1] i 2 + A [2] i 2 + A [3] i
2) i 0.5; [N]: == true
end norm

simple TYPE (AI) ;
real AI;

begin (TYPE VALUE OF AI) end type

5.0 SYSTEM REQUIREMENTS.

A system of the structure described may be
operated on many levels. It might be used as
shown in the example within a single processor
or it might be used in such a fashion that the
activation of a subtask calls into play a whole
subset of a man-computer-machine complex.

476 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Some of the subtasks might be performed by
people while other people controlled the overall
tree structure by making appropriate requests
of the system. In a multprocessor system it is
not necessary but it may be desirable to spe­
cialize one of the CPU to perform the allocation
and scheduling operations. Such specialization
could also allow queue control and the subse­
quent use of the more general activation con­
cept previously discussed. A small associative
memory would be advantageous for storage of
activator parameters. Indeed, this latter or­
ganization is a very intriguing way to consider
multi-processor systems. We will, however,
confine our subsequent remarks to a single
processor system.

We have implicitly considered that the single
processor has a secondary (or multi-level) store
which has a size sufficient to maintain total
library control and transient data storage. We
are not so concerned about transfer rates be­
tween primary and secondary storage so long
as average rates are satisfactory. Critical re­
sponse loops may be closed through priority
routines which have been installed before the
high speed loop is initiated.

The most significant demand on core space
arises from currently active priority tasks
which must occupy storage until their task is
done in order to give short reflex times. If
longer reflex times are suitable, a small inter­
rupt routine can activate a non-priority task to
do the job.

Dynamic allocation of primary storage is a
critical factor and can easily become the most
time consuming part of the system which other­
wise has a very low duty cycle that is optimum­
ly phased with the workload. It is still feasible

to relocate subtasks as they are entered but it
would be much more desirable if routines could
run wherever they happen to be without reloca­
tion.

The system itself requires only a small
amount of core storage for the control program
and tables and may itself extend into subtasks
for auxiliary operations or extension of facili­
ties.

REFERENCES

1. BROWN, G. W., "A new concept in program­
ming", in Management and the Computer
of the Future, Martin Greenberger editor,
(John Wiley and Sons Inc., New York,
1962), Chap. 7, pp. 250-289.

2. SCHWEPPE, E. J. and FITZWATER, D. R.,
"Consequent Procedure Networks", to be
published.

3. McFARLAND, D. E., FITZWATER, D. R. and
STEWART, R. M., "A Multiprogrammed Real
Time Computer Control System", presented
at the 1963 Fall SDS Users Conference.

4. McFARLAND, D. E., FITZWATER, D. R. and
STEWART, R. M., "A General Control Sys­
tem for Experiments", to be published.

5. PICKERING, G. E., MUTSCHLER, E. G. and
ERICKSON, G. A., "Multicomputer Program­
ming for a Large Scale Real Time Data
Processing System", AFIPS Proc. SJCC
Vol. 25 (1964), pp. 445-461.

6. MCCARTHY, J., BOlLEN, S., FREDKIN, B. and
LICKLIDER, J. C. R., "A Time Sharing De­
bugging System for a Small Computer",
AFIPS Proc. SJCC Vol. 23 (1963), pp. 51-
58.

THE JET PROPULSION LABORATORY

EPHEMERIS TAPE SYSTEM
E. G. Orozco

Jet Propulsion Laboratory
Pasadena, California

INTRODUCTION

Predictions of the motion of celestial bodies
can be presented in tabular form .. These tables,
called ephemerides, list position as a function
of time. Positions at any time point within the
range of the table can be obtained by inter­
polation.

Ephemerides are required in the solution of
problems associated \:trith space exploration. The
solution of these problems is primarily accom­
plished with the aid of digital computers.
Ephemerides are generally tabulated on mag­
netic tape to make them acceptable for use by
computers.

The .Jet Propulsion Laboratory has, in the
past, developed tape ephemerides. Figure 1
summarizes the contents of these tapes and the
programs used to read and interpolate the data.
Because of increased accuracy demands, these
tapes are no longer adequate.

The Ephemeris Tape System was established
solely to meet JPL's needs, but the ephemeris
tapes generated and the program used for read­
ing and interpolating the ephemerides will be
useful to anyone doing interplanetary trajec­
tory work.

GENERAL SYSTEM DESCRIPTION

The ephemeris data generated by the JPL
Ephemeris Tape System covers the period from
1950 to 2000. They include tabulations in

477

rectangular coordinates of position and velocity
components of the Moon and the nine planets.
In addition, nutations in longitude and obliquity
are included. Modified second and fourth differ­
ences of these quantities are tabulated for pur­
poses of interpolation.

Numerical differentiation of tabulated posi­
tions is too inaccurate for problems in which
planetary velocities are critical. For these criti­
cal cases, planetary position and velocity are
simultaneously obtained from a solution of the
equations of motion for the planet. The posi­
tion and velocity components thus generated
are mutually consistent with gravitational
theory to high precision and are the best fit in
the least squares sense to source posi tion
predictions.

No set of predicted motions now available
can be considered final. Accordingly, the JPL
Ephemeris Tape System is designed to permit
the easy updating of data for any body or
bodies.

Positions and velocities are carried as double
precision floating point numbers (that is, to
about 16 decimal places). This allows for pre­
dictions more accurate than those now avail­
able to be readily assimilated into the Ephemeris
Tape System.

The JPL Ephemeris Tape System is designed
to prevent degradation of the accuracy of source
data during the data processing. The use of

478 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Tape Period Inter- Data Bodies on Tape and Data Interval. (da;ys)
polation Record

N\Dllber Covered Length
>. Sub- ~ ~ routine (20-Day s::

~ ~ ~ Record) § l s:: ~
~ >.

~ s::
~ ~ ~ 112 0 ~ ~ ~

....
u u ~ ~ ~ ~ s:: .e E

~ ~
'" ~ .e ~ ..,

'" s:: ~ i s:: g .., .s:: .. .s:: ~
~ § g

~ "So ~ a ..,
~ ';l

~ ~ .; ,. ~ ,. 112

I 1 JAN 60
--19 DEC 69 DITR 596 1 1 4 4 4

II 28 AOO 60
--19 DEC 69 DITR 515 1 4 4 4 4 4 4

III II JAN 50
--27 JUL 81 A!I'l'R 569 1 4 4 4 4 4 4 4

IV 23 JAN 50
~J'UII81 BlI'l'R 623 1 4 4 4 4 4 4 4 4

Figure 1.

double precision contributes toward this end.
Intervals of tabulation were chosen so that
interpolation yields accuracy consistent with
tabulated values. Formal procedures for check­
ing each step of the processing are included to
insure that the published ephemerides are free
from error.

An interpolation program has been written
to read and interpolate the JPL Ephemeris
Tapes. This program includes a number of
useful options along with the interpolation
capability. Coordinates referenced to any of
the tabulated bodies as center may be obtained.
Units may be AU's and AU's per day or Kilo­
meters and Kilometers per second for the
planets. For the Moon, coordinates may be ob­
tained in Earth radii and Earth radii per day
or Kilometers and Kilometers per second. Posi­
tion data only, velocity data only, or position
and velocity data together may be obtained.
Data for all the bodies on the tape or any
subset of these are available as desired. Any
date between 1950 and 2000 is available for the
ten bodies on the tape.

SOURCE THEORY EVALUATION

Source position data as generated from the
theory are kept in a source tape library. The
data included in the current JPL Ephemeris
Tape are the most accurate predictions of lunar
and planetary motion available. At the present
time the best source theory for the Moon is
the Brown Improved Lunar Theory. The New-

comb theories are used for Mercury, for Venus
and for the Earth-Moon barycenter, with cor­
rections to the mean elements deduced for Mer­
cury by Clemence and for Venus and the Earth­
Moon barycenter by Duncombe. The provisional
Hansen-Clemence theory is used for Mars. For
the outer planets, the source data are obtained
from the numerical integration by Eckert,
Brouwer and Clemence, ,vith corrections de­
duced by Clemence to transform the data to
heliocentric coordinates.

Velocities are generated by numerical differ­
entiation for the Moon, Mercury and Neptune
and by solution of the equations of motion for
the other planets. The solution of the equations
of motion for each body is done by a program
that includes a linear regression scheme that
generates and applies differential corrections to
the initial position and velocity until satisfac­
tory least squares fit to the source data is ob­
tained. The perturbing attractions of the other
eight planets are computed from positions ob­
tained from the current Ephemeris Tape. The
integration step size is chosen so as to insure
twelve-figure accuracy in the calculated posi­
tions. The final corrected values of initial posi­
tion and velocity are used to initiate a final
numerical integration. The position-velocity
output tape is written during this final iteration.

OPERATION

The position-velocity tapes (source and
fitted) are processed by a program which cal-

THE JET PROPULSION LABORATORY EPHEMERIS TAPE SYSTEM 479

culates the sixth order central differences of
the data. These differences are plotted. Any
missing point or inconsistent data cause large
discontinuities in the plots of differences. Any
such discontinuities cause rejection of the data.

Accepted data tapes are processed to calcu­
late second and fourth modified differences of
the position and velocity coordinates. A new
tape is then written for each planet containing
the position-velocity coordinates along with
their associated modified differences.

These tapes are then merged onto a JPL
Ephemeris Tape containing data for all ten
bodies. The data for ten bodies are buffered and
overlapped for convenience of interpolation.
Due to the amount of data involved, three tapes
are required to contain the fifty year span from
1950-2000. Figure 2 summarizes the contents
of these tapes.

A consistency check is made between the JPL
Ephemeris Tapes and the data on the pertinent
position-velocity tapes. This assures that no
points have been lost or displaced.

Using the modified differences to interpolate,
a tape is written carrying the positions and
velocities of a given body at the midpoint of its
tabulated dates. These tapes are processed as
source tapes and plots of sixth differences from

8'l'BP KtIIBEII
DlTA T!PI SIZE 07

(DlYS) W<BDS

JIg 0.5 612

MEBCtJRI 2.0 180

VEItl8 4.0 1.08

lWl'l'B-IIXII BAlaC!II'JD 4.0 1.08

IWI8 4.0 loS

JUPl'l'.IIl 4.0 1.08

SA'l.'tlRK 4.0 1.08

UBAIIUS 4.0 1.08

JEPmIE 4.0 1.08

PLU'l'O 4.0 1.08

lIUTA'lICBS 0.5 204

these tapes are checked to insure consistency of
the modified differences.

DOCUMENTATION

A document describing the data on JPL
Ephemeris Tapes is prepared when a tape is
ready for distribution. This document includes
a description of the theory from which each
body's data are generated. A statement as to
the accuracy of the data is included for each
body. Checks performed on the data are men­
tioned. If the data was fitted using the integra­
tion program, this is pointed out. And, finally,
the plots used in checking the data are included
in this document. The Stromberg Carlson 4020
plotter is used for this purpose. An example
is given in Figure 3.

DISTRIBUTION

The first JPL Ephemeris computer package
is currently available for distribution. The dis­
tributed package includes a user's guide, an
interpolation program, a document describing
the tape contents and three magnetic tapes
containing the ephemerides information.

Distribution of these tapes is being handled
h"T i-},.,,.,. T,.,.i- n".",,,,,,.,ln~"',..,. T ""h",,,.,,,,i-,,,,,. .. ? .. u;i-l-. i-l-.~ ""'" /JoY I.oU~ ., ~I.o .J...1. VPU.li:).lV.U .J.....ja,/JV.I. a,I.oV.I..Y vv .1.1.011 1.0111:: ~A-

ception of those involved in the Apollo project.
Distribution for Apollo is being done directly
by NASA.

ICRMAl'

General. f'ormat f'or all ~ data is double precision:
1. X Ccaponent of' Position
2. Second Modified Difference X Caaponent of' Position
3. Fourth Modified Difference X Component of' Position
4. Y Component of' Pod tion
5. Second Modified Difference Y Component of' Position
6. Fourth Modified Difference Y Caaponent of' Position
7. Z Component of' Pod tion
8. Second Modified Difference Z Component of' Position
9. Fourth Modified Difference Z Component ot Position

10. X Component of' Velocity
11. Second Modified Difference X Cauponent of' Velocity
12. Fourth Modified Difference X Component of'Velocity
13. Y Caaponent of'Velocity
14. Second Modified Difference Y Caaponent of'Velocity
15. Fourth Modified Difference Y Caaponent of'Velocity
16. Z Component of' Velocity
17. Second Modified Dif'f'erenee Z Component of' Veloe1 ty
lB. Fourth Modified Difference Z Component of'Velocity

llutationa are expressed u s1Dgle precision values IIDd
include nutation in longitude, nutation in obliquity,
nutation rates, IIDd second IIDd f'ourth IIIOdified differences
f'or each.

(1) Each record eontain8 a double precision Julian date.
(2) Each record eonta.1na a eheelt BUll of' the l.862 data lIOrda.

Figure 2.

480 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

,.

I
I
i

.,--r--.... I i

1 --------I I I 1 ---i---I

/" ~r-.
I
I

I

~ J
-I--

I I~I
i I
i i

/" ~ I~
~ ~ ~ ~

;;==' ~ ~I
I '
I i

·1.0 I I I J
_.1 _.1 _.1 trw... 1'".0 a-.I

SOUlCE YXYZ vs. TIME IN ~YS PAST 2433282.:5 GIL OROZCO
IIODIF lED DIFFERENCES ClEeK FOR E ARTH-MOON BIoRYCENTER X-IE'!, Y-IE'I, Z-I E '!

Figure 3.

JPTRAJ

(THE NEW JPL TRAJECTORY MONITOR)
Nicholas S. Newhall

Jet Propulsion Laboratory
Pasadena, California

INTRODUCTION

The Jet Propulsion Laboratory of the Cali­
fornia Institute of Technology is under contract
to the National Aeronautics and Space Admin­
istration to conduct space projects such as
Ranger, Mariner, and Surveyor. These projects
require an enormous amount of computer sup­
port in both trajectory design and spacecraft
tracking. To this end, three IBM 7094 systems
are always available, and other equipment is
operational during a mission.

A multitude of computer programs must be
run for adequate mission work. These pro­
grams entail every facet of space flight-from
preliminary conic studies to real-time orbit
determination and midcourse maneuver-and
represent the results of years of effort on the
part of programmers. Each is structurally
self-contained and operates alone on the 7094.

In the past, trajectory design was accom­
plished by running a series of individual pro­
grams one at a time and hand-carrying the
results between them. The mission programs
had either to operate their links individually or
to run them successively and share blocks of
common data. The Laboratory needed a sys­
tem which would incorporate the execution and
communication between (perhaps) independ­
ently written programs. A means of providing
a flexible modification and checkout scheme was
required. The system developed to meet these
needs is JPTRAJ, the JPL Trajectory Monitor.

481

The use of JPTRAJ for design and mission
work is illustrated in Section I. Through an
example of the design of an Earth-Moon tra­
jectory, it is shown how JPTRAJ is used to
run a single sequence of programs. Real-time
operation demands the interruptible execution
of many such sequences. This feature along
with the internal operation of JPTRAJ and the
debug capability is described in Section II.

1. USER CONTROL OF JPTRAJ

Much computer time at JPL is devoted to
the design of Ranger lunar trajectories. The
design consists of five steps on the IBM 7094:

1. The Near-Earth Conic program selects
analytically approximate launch time and
burnout energy of the optimum trajectory
(Fig. 1).

2. The Powered Flight program simulates a
rocket burn to compute position and
velocity at injection (burnout) as shown
in Fig. 2.

3. The Space Trajectories program from this
point integrates numerically the flight
path to the Moon (Fig. 3).

4. The Search program recomputes launch
data, if the lunar impact point differs
from the desired one~ and reruns steps 2
and 3 until desired impact has been at­
tained (Fig. 4).

482 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 1. Approximate trajectory computed by
Near Earth Conic.

5. The TV Constraints program uses ter­
minal conditions (outlined in Fig. 5) from
steps 3 and 4 to produce quality informa­
tion about lunar television pictures.

The following set of figures illustrates the way
this sequence can be set up for JPTRAJ. Rather
than run the programs singly, mnemonic names
for them are adopted and listed in Fig. 6 in
the order in which they are to be executed. '

Input data, such as initial launch azimuth
(direction), are needed. In Fig. 7, each pro-:
gram name is followed by the data intended
for it.

The transfer of computed data from one pro­
gram to the next can be effected by the use of
cards, as shown in Fig. 8. Symbols to the left
of the program names may be used for refer­
ence to a specific word or line in the example.

The data transfer (or WANT) instructions
are placed after the program that is to receive
the data. They denote symbolically which pro-

Figure 2. Trajectory segments integrated by
Powered Flight program.

8TH

LAUNCH

I ,
\
\ ' _-

Figure 3. Numerically integrated trajectory computed
from injection conditions supplied in step 2.

gram is to generate the data. The WANT after
POWER may be read: "Launch time (LT)
and energy at burnout (EBO) are needed from
the program at symbolic location A" (NECON
in this example). Step 4 in the example indi­
cates that POWER and SPACE will be rerun
as often as necessary. SEARCH is the driver
and must be reentered each time SPACE com­
pletes execution. It may be denoted symbolically
by the GO card shown in Fig. 9.

At this point, if compared with the five steps
above, Fig. 9 will be seen to represent the logic
flow. One may question the fact that when
SEARCH first executes after NECON, it will
attempt to read computed data from SPACE,
which has not executed before. However,

Figure 4. Converged trajectory resulting from
Newton-Raphson Search.

JPTRAJ (THE NEW JPL TRAJECTORY MONITOR) 483

SEARCH ignores any transferred data on the
initial entry, using them only on subsequent
entries. A more serious problem is that SPACE
will eventually indicate that desired impact has
been attained. The GO statement must be by­
passed so that the TV program may execute.
Under JPTRAJ, SEARCH (and, in fact, any

Figure 5. Phase of trajectory used for television picture
analysis.

NECON (NEAR EARTH
CONIC)

SEARCH (SEARCH)

POWER (POWERED
FLIGHT)

SPACE (SPACE TRA-
JECTORIES)

TV (LUNAR TV
CONSTRAINTS)

Figure 6. Mnemonic names for programs.

NECON
Ar. = 102.0

SEARCH
POWER
SPACE
TV

Figure 7. Specifying input data for a program.

A NECON
Al=I02.0

B SEARCH
WANT D,EC

C POWER
WANT A,LT,EBO

0 SPACE
WANT C,R,V

E TV
WANT D,EC

Figure 8. Transferring computed data between
programs.

484 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

A NECON
Ar.=I02.0

B SEARCH
WANT D.EC

C POWER
WANT A.LT.EBO

0 SPACE
WANT C.R.V

GO B
E TV

WANT D.EC
Figure 9. The use of a GO card to direct program

execution.

program) is capable of selecting a computed
branch or transfer after execution. The symbol
E to the :right of SEARCH in Fig. 10 means
that the Search program will exit to the pro­
gram at location E (the TV program) when
desired impact is reached.

The configuration of symbols and numbers
shown in Fig. 10 is precisely that punched on
cards and used as input to the computer. It is
seen to resemble a limited programming lan­
guage, treating whole programs as built-in
functions. Such a deck of cards is called a
source deck. Most JPTRAJ source decks will
contain a much larger percentage of data cards,

A NECON
Al.-I02.0

B SEARCH E
WANT D. EC (EC-END CONDITIONS)

C POWER (LT-LAUNCH TIME l
WANT A. LT. EBO EBO-ENERGY AT BURNOUT I

D SPACE
WANT C. R.V t ~:~~Jb~~y }

GO B
E TV

WANT D.EC

Figure 10

which were omitted here for clarity. When the
actual cards are punched, an asterisk (*) must
occupy column 1 of any card that is not a data
card, and an END card (shown in Fig. 11)
must be the terminal card of every source
deck.

Such is the type of input to JPTRAJ on the
standard system input tape. This example has
shown how a user- can create a single sequence
of programs to execute. In the following sec­
tion, we shall see the treatment of a source
deck by JPTRAJ, and how many such sequences
can operate intermittently on a time-sharing
basis during a mission.

II. INTERNAL OPERATION OF JPTRAJ

All programs in use by JPTRAJ reside from
day to day in permanent storage on the disk
file. When a program is requested in a source
deck, it is read from the disk file into 7094 core
storage. It is never overwritten on disk during
execution. If it is called later, it will again be
read in fresh from the disk file.

JPTRAJ may be broken internally into four
sections:

1. Compiler
2. Monitor
3. Loader
4. Debug

* A NECON
A~=102.0

* 8 SEARCH E

* WANT D.EC

* C POWER
* WANT A.LT.EBO

* D SPACE

* WANT C.R.V

* GO 8

* E TV

* WANT D.EC

* END

Figure 11. An entire source deck.

JPTRAJ (THE NEW JPL TRAJECTORY MONITOR) 485

Compiler and Monitor

\Vhen a source deck is submitted as input,
the Compiler makes two complete passes over
it and translates it into a block of specially con­
structed words called an object string. (This
is analogous to the operation of a standard com­
piler. The object string is merely an encoded
form of the source deck.) The object string
is stored in a reserved area on the disk file. At
this point, the Compiler is no longer needed and
will not be referenced again. The Monitor, a
small, 640-word program, is now read from disk
into core. I ts sole task is to interpret the ob­
ject string generated by the Compiler. By
proper interpretation, the Monitor performs all
reading of programs, saving and transferring
of data, and executing of programs. It is in
core storage at all times during execution.
Figure 12 shows a simple flow of source deck
processing.

This approach was adopted in lieu of a sim­
ple card interpreter because excessive machine
time would be required for processing a source
deck. The number of disk accesses needed for
such an operation would be more than twice
that for the existing system. This method also
is a powerful tool for real-time mission opera­
tion. A mission can be broken into three cate-
gories: orbit determination, midcourse maneu­
ver, and telemetry processing. Requirements of
incoming data require frequent operation of the
Data Editing program, not part of JPTRAJ.
This demands interrupt and time-sharing capa­
bility of the three mission categories. Orbit
determination may be in operation when inter­
rupted for data editing and then the telemetry
section may be started. Each of these cate­
gories is represented by a JPTRAJ source deck
naming the appropriate programs. For mission
work the JPTRAJ Compiler may be called sev­
eral successive times, each time to compile a

Figure 12. Source deck processing.

separate source deck. By means of the DECK
card shown in Fig. 13, a source deck may be
assigned to a particular task. The resulting
object string is stored in the correct one of sev­
eral pre-specified areas on the disk file. Then,
when the midcourse maneuver, for instance, is
to be performed, the associated object string is
interpreted by the Monitor. If interrupted, in­
terpretation will resume later at the proper­
point.

The passage of data between programs is ac­
complished during execution as follows: When
the program generating the data has completed
execution, the data specified on the WANT
cards are set aside in a buffer within the Moni­
tor. Then, when the program needing the data
is about to execute, the data are recalled from
their "saved" area and inserted into the speci­
fied locations. The Monitor's buffer contains 225
locations, and ample disk storage is available
for overflow. A total of 9,000 words may be
saved on WANT cards per source deck.

Note that data passage between programs
within a single source deck is completely free,
but that there is no facility to pass data be­
tween difJ erent source decks. If programs in
separate source decks are to share data, such
communication must be programmed into them.

Items on data cards are converted and saved
within the object string itself. A GO card
merely transfers interpretation to the appropri­
ate object string word.

Loader
The Compiler and Monitor are employed only

for the execution of programs, and operate for
real-time or production work.

Figure 13. The DECK card and its position.

486 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

The remaInIng section of JPTRAJ, the
Loader, is used for program editing and can be
operated as a non-real-time feature only. The
Loader enables a programmer to add new pro­
grams to disk storage, delete unwanted ones,
and change existing versions. Any number of
programs may be loaded simultaneously, and

ENTRY POINTS TO SUBROUTINES REQUESTED FROM LIBRARY,

compilations, assemblies, and binary object
decks may be included with each program. A
library search is performed for any requested
subroutines not included with the submitted
decks. Upon completion, the Loader prints a
core storage map, as illustrated in Fig. 14, and
writes the program on the disk file. If a source

OEFII~E ltTTACH UPEN READD PROUT CLOSE

THE NAME riF THIS PROGRAM IS IJPTAP I 8/01/64

ENrRY NAME ENTRY ADO. TRANSFER VECTORS LOAl) ADO. OCTAL LENGTH DE:CIMAL LENGTH COMMON BREAK
22331 DEFINE 22300 36616 15758 77461

ATTACH
OPEN
READO
PROUT
CLOSE

PROUT 61132 OUTUS 61116 02631 01439
FGOOUT 62301 ACTIND
PRCNV 61211 BFlG
PROUT2 61204 RESTKA
PROUf3 61210 REQIND
TSU 63200 WRI TE

PRCON
RGGSAV
RGGSTR
CKIND
CKACT

REAOt> 61756 I IOU) 631')5 00365 00245
READS 63760
WR ITF:D 63763
WRITEB 63765
BSREC 64174
8SFIlE 64117
REWIND 64202
UNLOAD 64205
ENOFIL 64210
SETlOW 64166
SETHI 64171
CUNIT) 64336
TAPEIO 64336
, IOU) b434~ "NONE" 64342 00030 00024
aUTU::. 64374 RGGSAV 64372 02320 01232
8FlG 65227 RGGSTR
EHoour 64760
CKINO 66622
CKACT 6666~

REQIND 66621
ACTI"lO 66620
RESTKA 66616
PllCUN 66701
PL2CUN 66702
Pl3CON 66703
PRCO"l 66704
RGGSAV 66712 'NONE' 66712 00133 00091
RGGSTR 66774
10CS 67046 CLOCK 67045 04335 02269
DEFINE 67047
JOIN 67052
ArTACH 6705':>
CLOSE 67060
OPEN 67063
READ 67066
WRtH: 67071
COPY 61074
REw 67071
WEF 67102
BSR 67105
8SF 67110
STASH 67113
CLOCK 73405 "NONE' 13402 00106 00070
MINUTE 73402
XMIN 73402

LOAllING ACCOMPLISHED

UNUSED CORE LIES fRO~ 73510 THROUGH 77461, LEAVING 03752 OCTAL OR 02026 DECIMAL LOCATIONS.

Figure 14. A typical core storage load generated by the Loader.

JPTRAJ (THE NEW JPL TRAJECTORY MONITOR) 487

deck follows a program deck, it is executed
after the program has been loaded, thus pro­
viding a "load-and-go" operation.

The Loader can accept symbolic patches to in­
dividual binary object decks. Patches must im­
mediately follow the intended subroutine, and
facility is included for increasing its length if
necessary. The patches may be in either fixed
or floating point decimal or in octal form. Relo­
cation will be performed if specified. Figure 15
shows a card which will insert a TRA * + 3 at
location 2208 within a subroutine.

Debug

Undoubtedly one of the most powerful fea­
tures of JPTRAJ is Debug. It offers the user
a means of obtaining selective core snapshots in
any mode and at any desired frequency, and
does not decrease the amount of core storage
provided a program. The debug cards are placed
in a source deck much like data for the intended
program. They do not accompany the binary
deck, so the program need not be reloaded if
snaps are desired.

Debugging is done on the basis of locations
relative to a particular subroutine. A typical
debug card is illustrated in Fig. 16. The card
may be interpreted from left to right to read:
in subroutine A, place the snap at location 41.
Print in floating point mode the contents of
subroutine B, relative locations 155s through
267s • This is shown schematically in Fig. 17.
Whenever the instruction on the dotted line is
executed by the computer, the hatched area is
printed in floating point mode.

The debug cards are processed by the Com­
piler, with the aid of the core storage map gen­
erated by the Loader. This map cross-references
subroutine entry names and absolute storage

Figure 15. A symbolic patch for a subroutine binary
deck.

Figure 16. A typical debug card.

addresses. The Compiler translates the debug
cards into part of the object string and over­
lays them in the program after it is read into
core storage. The debug instructions are not
put on the disk and do not affect a program's
permanent operation.

As many as twenty debug cards may appear
in a source deck. The modes of snapping on
any card include floating point and octal with
or without instruction mnemonics. The con­
tents of the panel (all registers and indicators)
may be included on option.

The one restriction on the use of Debug is
that it may be used during checkout only. The
software necessary for real-time data process­
ing does not provide sufficient space for the
debug machinery.

III. CONCLUSION

The New JPL Trajectory Monitor has proved
to be an invaluable asset to the Laboratory's

c
o

R

E

5

T

o

R

A

G

E

267

155

41

Figure 17. The meaning of the debug card shown in
Figure 16.

488 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

space flight operations. It has been working
quite smoothly since the end of 1963. At the
moment, it can operate programs written in
Fortran II, Version 3 system only, but modi­
fication is under way to interface with the
IBJOB programming system. Any program
that operates under JPTRAJ may be operated
in real-time, so JPTRAJ has, in fact, been
JLP's only way to debug mission programs.

It should be evident that nothing limits
JPTRAJ to space flight programs alone. The
designation "Trajectory Monitor" is of histori­
cal origin, and, in fact, many non-trajectory
type programs are operational under JPTRAJ.
Any IBM 7094 system with disk file storage
may use JPTRAJ, and modification will be
completed soon which will allow JPTRAJ to
operate on a "Direct-Couple" system.

ACE·S/C ACCEPTANCE CHECKOUT EQUIPMENT
R. W. Lanzkron

NASA
Manned Spacecraft Center, Houston, Texas

INTRODUCTION

Since the beginning of the space age, space­
craft have increased· in complexity-progress­
ing from such relatively simple vehicles as the
V -2 to the sophisticated Saturn, and from
unmanned satellites to the Apollo three-man
spacecraft. With the entry of man into the
system, the complexity increased an order of
magnitude.

Two aspects of these manned systems de­
mand complexity: first, those problems involved
in the life-support requirements for each sys­
tem and, second, the increased requirements for
reliability and crew safety. Systems are more
sophisticated; at least one backup and usually
more are required. The engineer is confronted
with the difficult task of insuring that the com­
plex system is ready for, launch and that it will
meet mission and crew safety requirements.

Final countdown for early missiles took about
a day. Although countdown in some of the
small, modern missiles has been reduced to
one or two hours, the newer and more com­
plex spacecraft still require about a day. More­
over, to insure mission success and crew safety,
great quantities of data must be monitored in
real time before launch. This was not previous­
ly the case when real-time monitoring involved
only a small percentage of the instrumentation.

To perform checkout and monitor large num­
bers of parameters in real time, automatic
checkout equipment had to be developed. The
Manned Spacecraft Center had two other mo-

489

tives in developing its automatic checkout
equipment. First, due to the complex checkout
procedure and the large booster hazard, check­
out by remote control became essential. Cur­
rent plans call for the checkout equipment to
be located ten miles from the vehicle. (Auto­
matic checkout lends itself extremely well to
remote control.) Second, the cost of the space
program has to be reduced. One of the most
expensive parts of the space program is its as­
sociated Ground Support Equipment (GSE).
Therefore~ by standardizing the checkout equip­
ment while it is being automated, the period of
its use can be prolonged indefinitely. This is
one of the basic requirements placed on MSC's
automatic checkout equipment or, as it is called,
ACE-SIC (Acceptance Checkout Equipment).

The ACE-SIN System has one other unique
feature. It combines the capabilities of manual
and automatic checkout into one system. This
dual capability was incorporated at the request
of the system engineers who are still not ac­
customed to completely automatic systems, and
for whom automation is still in the learning
process.

II. ACE-SIC DEFINITIONS

The ACE-SIC System is composed of two
main parts: the Spacecraft Unique System
(carry-on and facility equipment) and the
Ground System (as shown in Figure 1).

The carry-on and facility equipment is as­
sociated with the spacecraft, for example, the

490 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

ACE 5 C". vice
.=lui,...."t

LEM
corr, on comlllOnd
& ,espons" s,st"ms _--+~_

Oth"rte.tfacilitie~. .

response systems

.'" .

~
I

I ACE· S C command
I & response systems
I
!i

~Digital links

~--/
~I"I

Figure 1. ACE-S C carry-on and facility

Command and Service ModuJ e (C & SM) or
the Lunar Excursion Module (LEM). It con­
sists basically of (1) signal-conditioning equip­
ment which conditions signals transmitted
from the spacecraft, commutates and digitizes
them, and finally converts them into serial
pulse form, and (2) the command system, which
takes computer outputs and presents them to
the spacecraft system. These parts are modu­
lar and, by using the building block concept,
can be used with any spacecraft or flight ve­
hicle. Signal-conditioning is made part of the
ACE-SIC system to minimize fly-away weight.
The carry-on equipment is removed from the
spacecraft 5 hours before launch so that no
scar and tear weight associated with checkout
is flown; thus measurements can be taken up
to the time the spacecraft is sealed.

The second part, the Ground System, takes
the serialized data, decommutates it, and dis­
plays it on meters, lights, oscillographs, or al­
phanumeric displays. The Ground System also
takes system engineering inputs and translates
them into computer language used for com­
mand of the spacecraft. The ground station is
the same for both C & SM checkout and LEM
checkout.

III. CARRY-ON AND FACILITY
EQUIPMENT

The carry-on equipment is divided into two
par.ts: the Uplink (the Digital Test Command
System), and the Downlink (the Digital Test
Monitoring System), as shown in Figure 2.

A. The Uplink or Digital Test Command Sys­
tem (DTCS)

The DTCS, in turn, consists of two parts:
internal and external to the spacecraft. The
DTCS consists of a receiver decoder, base plates,
and pluggable modules. The pluggable modules
are relay and Silicon Controlled Rectifier
(SCR) modules and Digital-to-Analog Con­
verters (DAC). The receiver decoder, the first
portion of the system to receive data in a serial
stream in redundant form, compares the data
and checks for correct codes. The receiver de­
coder stops incorrect information, signals the
Ground Stations that it has received erroneous
data, and indicates the type of error. Informa­
tion may be incorrect because of transmission
or because of errors in the original data sent
to the spacecraft.

From the receiver·decoder, the information is
routed to the base plate, which stores the power

ACE-SIC ACCEPTANCE CHECKOUT EQUIPMENT 491

and the pluggable modules discussed above.
Each base plate contains 4 pluggable modules.
The systt;;m is modular; any module (relay
module, SCR, and DAC) can be selected and
plugged into the base plate. The receiver de­
coder can drive 32 base plates which are
grouped into 4 groups of 8 plates each. The
modules again verify that information received
from the receiver decoder is correct and, by
looking at the address, that the correct base
plate and module have been selected. N otifica­
tion of incorrect information and the type of
error involved is sent to the ground station,
which may not then execute a command. Should
there be no error, verification is sent to the

ground station, and the System Engineer may
then exectue the command.

The relay module is used for turning specific
signals to the spacecraft on or off. The SCR
module is used for high-speed switching and
for high current capacity. The DAC modules
is used for changing the stream of digital data
into an analog signal. This conversion is re­
quired, for example, in torquing a Gyro, where
a series of digital commands are sent to the
vehicle, converted to voltage levels, and in turn
filtered so that the output is smoothed and
looks like an analog sine wa ve. The system
can transmit data in bursts at a rate of 500 k
bits per second. The basic information is

Figure 2. ACE-S C block diagram

492 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

grouped into 24-bit messages. Each message
consists of two 12-bit redundant words, which
are checked at the receiver decoder. It con­
tains the information needed to exercise any
one of the modules.

In addition to the base plate and its three
types of modules, there is a special unit, the
Guidance and Navigation (G & N) Buffer.
This unit acts as a buffer between the Ground
Digital System and the onboard G &N com­
puter. This unit is specialized in the sense
that its output is tailored to a unique digital
computer. The G & N buffer unit is used for
storage verification and shift out of the G &N
digital data. Again, data is verified at the re­
ceiver decoder and in the G & N unit to ensure
its correctness. Additional precautions have
been taken with this unit as the G & N is the
heart of the system. The G & N command uses
15 bits of the 24 for transmitting information.
These 15 bits represent the character, its com­
plement, and the character again. The internal
portion of the DTCS is stored under the left
couch in the Command Module as shown in
Figure 3 and Figure 4. The function of the
DTCS is to exercise the systems aboard the
Command o:Module. This part of the system is
removed 5 hours before launch to minimize
flight weight. The external DTCS is stored on
the Launch Umbilical Tower (as shown in Fig­
ures 1 and 2) since its prime function is to ex­
ercise the G & N system and the servicing

equipment. Because the G & N has to be exer­
cised until the last moment before launch, this
unit operates through the umbilical.

An equivalent type of equipment exists for
the system associated with the LEM. In the
LEM, most of the DTCS functions are available
outside the LEM.

B. The Digital Test Monitoring System
(DTMS)

The DTMS consists of the following parts:
the signal-conditioner, the sampling unit, the
PCM system, the flight PCM system, and the
interleaver. Because minimizing fly-away
checkout weight is a requirement, the signal­
conditioning package was made part of the
carry-on equipment. Again, the package is re­
moved at T-5 hours.

Signal-conditioning consists of converting
analog signals from their level to a O-volt to
5-volt level. It is also used for frequency
count, glitch detection (detection of unpre­
dicted spikes), phase comparison, counting, and
other required functions.

These signal-conditioners are modular and
of th~ same size. They can be plugged into
the main container in any position. If a change
in the signal type or valve is needed, a different
signal-conditioner can be plugged into the same
position in the container. After these signals
have been conditioned, they are sampled and

Figure 3. Left hand couch

ACE-SIC ACCEPTANCE CHECKOUT EQUIPMENT 493

Figure 4. Left hand couch and DTCS

transmitted to a PCM system, which converts
them into a serial form. The PCM train, at
that point, is at the rate of 51.2 k bits per sec­
ond. This information is then combined with
the information available from the flight PCM
which is also 51.2 k bits per second, and the
servicing equipment PCM, also at 51.2 k bits
per second. Note that the servicing equipment
also has associated with it a signal-conditioning
and PCIVI system, which are housed in siightly
different containers; the same type of modular
units are used inside the spacecraft. The sys­
tem used to combine the three 51.2 k-bit trains
is called the interleaver. The interleaver is set
up to receive four streams of inputs, each at a
rate of 51.2 k bits per second, to a total stream

of 204.8 k bits. The interleaver thus has a
reserve capacity for accepting another 51.2 k
bits per second.

The DTMS is divided into two parts: (1)
the signal-conditioner, the sampling unit, and
the PCM system, which are located in the space­
craft (as shown in Figures 5 and 6), and (2)
the interleaver, which is located in the Launch
Umbilical Tower (as shown in Figure 1). The
interleaver is part of the facility equipment.

Because of its shape, the same arrangement
generally holds true for the LEM system. The
containers for the signal-conditioners and the
PCM systems are slightly different, but the
modular pluggable components are the same.

Figure 5. Right hand couch

494 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 6. Right hand and DTMS

IV. THE GROUND STATION

A. General
The Ground Station consists of three rooms:

the control room, the computer room, and the
terminal room (as shown in the artist's concep­
tions included as Figures 7, 8 and 9).

The terminal room contains the timing sys­
tem, the ground portion of the DTCS, and the
formatting equipment for the control room.

The computer room contains the computers
and associated peripheral equipment, the de­
commutator, which is used to decommutate the
information from the interleaver, and the trans­
mission equipment for the DTCS.

The control room contains the control con­
soles at which the systems engineers sit to con­
trol and command the spacecraft systems as
required.

B. Downlink
Figure 10 shows the basic flow for the down­

link. In the figure, information from the in­
terleaver is directly recorded and at the same
time flows into a decommutator. The system
has two decommutators which provides re­
dundance and also allows the airborne telemetry
to be routed through one of the decoms and
the rest of the information (including the air­
borne telemetry) through the second decom.
From the decommuntator, the information

Figure 7. Control Room

ACE-SIC ACCEPTANCE CHECKOUT EQUIPMENT 495

Figure 8. Computer Room

flows to the downlink computer, to event stor­
age and distribution units (ESDU), and to the
control consoles. The decommutator can drive
the ESDU, which, in turn, drives the event
modules (Figure 16) on the control consoles.
The decommutator also drives some 200 meter
modules (Figure 15) and oscillographs located
on the control consoles, thus allowing the engi­
neers to watch some of the measurements on
meters and oscillographs as required. Decom­
mutator output presented to the downlink com­
puter is manipulated by introducing the calibra­
tion information, comparing it to prestored in­
formation, and changing the information into
engineering units. The downlink computer
then transmits this information to the Symbol
Generator and Storage Unit (SGS) via the data
transmission and verification con v e r t e r s
(DTVC), and the digital communicator con­
trol unit (DCCD). (These are transmission
lines and verification units for the digital data.)

Figure 9. Terminal Facility Room

The SGS transmits information, when re­
quested, to the Cathode Ray Tube (CRT) which
displays the alphanumeric information for the
ACE-C/C.

On receipt of the coded words from the
DCCU, the SGS decodes the 12-bit words, strips
the data out, and stores it in memory locations
according to received instructions and ad­
dresses. The entire content of the SGS mem­
ory is updated once per second and is scanned
at a rate sufficient to update all alphanunieric
displays at least 30 times per second.

The character repertoire of the SGS enables
all alphanumeric characters to be displayed to­
gether with a set of special symbols. The SGS
can also cause characters to blink on the CRT
screen when so instructed by the computer.
This blinking indicates an out-of-tolerance con­
dition. Memory allocations in the SGS are
sufficient to display 20 "pages" of data; a
"page" consisting of 24 lines of 40 characters
each, plus two 32-character lines, one at the
top and one at the bottom of the "page." On
demand by the System Engineer, the SGS pro­
vides the proper signals to cause the contents
of any top half-page and any bottom half-page
to appear on the screen of the requesting CRT.
Any given half-page can be selected by as many
as 20 CRT's simultaneously.

The CRT's utilized for the Alphanumeric Dis­
play System are 10-inch electrostatically de­
flected devices. Besides controls for selecting
the desired half-pages, the CRT module has
controls for focusing, brightness, horizontal and

496 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

vertical centering, and an on/off switch. Any
given half-page display contains 12 lines of
identified data in decimal numbers and engi­
neering units. In addition, a single top (or
bottom) line identifies the page. The CRT
module, by a special means, can indicate other
pages that have information in them that is
out of tolerance. Thus, the display portion of
the display console consists of event lights
driven by the ESDU, the meters and oscillo­
graphs driven directly by the decommutator,
and alphanumeric displays driven by the com­
puter.

C. The Uplink

Figure 11 shows the basic flow for the uplink
(or command link). The uplink starts with the
systems engineers who have the option to exer­
cise R-START, C-START, and K-START. As
shown in Figure 12, an R-START module con­
sists of four function switches and an execute
(XEQ) switch; Figure 12A shows the R­
START panel configuration. Each function
switch is a backlighted, split-window, pushbut­
ton switch. The two halves of the window are
independently illuminated. Successively press­
ing a giv~n switch will cause its lower half to
alternately illuminate and extinguish. The
upper half is illuminated or extinguished under
program control by uplink verification as dis­
cussed earlier. The execute switch is an inde­
pendently backlighted, split-legend (XEQ/
SEAL), pushbutton switch. The XEQ portion
is illuminated when the switch is depressed.
The XEQ portion is extinguished, and the
SEAL portion illuminated and extinguished,
under computer control.

Sp.cecro/t
.,.ecroft
vicinity

I I

The Systems Engineer sets the desired status
of each of the four relays (at the spacecraft)
controlled by the R-START module by setting
the condition of the lower half of each function
switch; illuminated for a latch command and
extinguished for an unlatch command.

Execution of the selected commands is initi­
ated by depressing the XEQ switch. This il­
luminated the XEQ portion of the switch. When
an uplink verification is received, indicating de­
livery of the command message, the XEQ por­
tion will extinguish, and the upper halves of
the function switches will illuminate in con­
formity with the lower halves.

Normally, the data transfer will be so rapid
that the XEQ light will appear to remain ex­
tinguished. However, status identity of the
upper and lower half of each function switch
indicates receipt of the uplink verification. It
should be noted that the uplink verification only
confirms proper delivery of the command mes­
sage; it does not confirm actual relay latching
or unlatching. The Systems Engineer will now
observe the proper event display meter module
or oscillograph to obtain downlink verification
of the relay status.

The SEAL portion of the execute switch il­
luminates to indicate that the computer has
SEALed this particular R-ST ART module,
which prevents it from initiating commands.
Extinction of the SEAL light indicates that
the computer has released the SEAL, thus re­
turning the module to normal operation. The
computer will SEAL an R-START module
when command transmission difficulty is ex-

A raw lito

ACE·iC
,tetien

Figure 10. ACE-S C downlink

ACE-SIC ACCEPTANCE CHECKOUT EQUIPMENT 497

·Cue Compute<
complex

Figure 11. ACE-S C uplink (DTSC)

perienced or when under program control, re­
quired by a particular test procedure.

A C-START module panel (see Figure 13)
presents ten 12-position rotary s e Ie c tor
switches, each having an associated relay dis­
play, an execute (XEQ) switch, and an XEQ
verify light.

The 12 positions of each selector switch are
identified by the 10 decimal digits, 0 through 9,
and the two signs (+) and (-). The readout
display above each selector switch indicates the
switch setting by displaying the appropriate
decimal digit or sign. The execute switch is an
independently backlighted, split-legend (XEQ/
SEAL), pushbutton switch. The XEQ portion

Figure 12. R-START MODULE

498 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 12a. R-START PANEL CONFIGURATION

is illuminated when the switch is depressed and
extinguished, under program control, by the
computer following delivery of the command
message. Module SEAL is not presently ap­
plicable to the C-START, but the SEAL por­
tion of the execute switch has been provided
for possible future use.

The execute verify light is illuminated when
a valid execute signal is sensed, and remains il­
luminated for 1 to 1lj2 seconds.

The Systems Engineer sets up the desired
input command to the computer by appropri­
ately positioning each of the ten selector
switches. Execution of the selected command
is initiated by depressing the XEQ switch. This
illuminates the XEQ portion of the switch. The
next action will be illumination of the XEQ
verify light and extinction of the XEQ light
switch. Normally, the process is so rapid that
the XEQ switch light will appear to remain ex­
tinguished; hence, the extended illumination of
the XEQ verify light provides the Systems En­
gineer with an observable indication of valid
execution.

The K-START module panel (shown in Fig­
ure 14) consists of a pushbutton keyboard, six
tape control switches, a tape input display,
three status displays, and a bank of 24 Apollo
Guidance Computer (AGC) event displays.

The keyboard contains 18 pus h but ton
switches, as shown in Figure 14, for manual
insertion of binary-coded command messages
to the AGC. The associated perforated tape
reader, used for automatic insertion of com­
mand messages, is controlled by six backlighted,
pushbutton switches. Four of the switches

, ~

; = ~

"
r. - c: h

Figure 13. C-START MODULE PANEL

have split legends. Successive depressions of
any of these will alternately illuminate one­
half and extinguish the other.

The tape input display consists of a row of
eight lights, which represent the eight digit
positions of a single perforated tape character.
This permits the Systems Engineer to visually
read a tape character. The illumination of a
given light indicates the presence of a binary
one (perforation) at that digit position. No
illumination indicates a zero. The three status
displays operate in both manual and automatic
modes as follows:

XEQ/SEAL: Upon depression of a keyboard
pushbutton or read-in from the tape, the
XEQ will light, thus indicating an execute re­
quest. Receipt of an uplink verification will
extinguish XEQ and illuminate SEAL. No
commands can be inserted while the module
is SEALed. Receipt of a downlink reply will

result in release of the SEAL and extinction
of the SEAL display.

VERIFY: This is a display only. Its illumi­
nation signifies that the downlink reply com­
pared correctly with the character trans­
mitted via the uplink.

NON VERIF Y : This is a combination display
and pushbutton switch. Its illumination sig­
nifies that the downlink reply did not com­
pare correctly with the character transmitted
via the uplink. In the automatic mode, this

ODD
DOD
ODD
D c:J c:J
DOD
DOD
DOD
DOD

00000000

KEY ER"
RLSE R5T

Figure 14. K-START MODULE PANEL

ACE-SIC ACCEPTANCE CHECKOUT EQUIPMENT 499

Figure 15. METER MODULE

condition will prevent character entry from
the tape. Depression of the NONVERIFL
switch will extinguish its light and permit
a new attempt at command insertion.

The AGe displays provide the Systems Engi­
neer a convenient indication of 24 discrete
events within the Apollo Guidance Computer.

When any of the START modules are de­
pressed, the scanning mechanism checks on the
R-STARTS, C-STARTS, and K-STARTS. The
scanning device, called the Communication Unit
Executor (CUE) notifies the uplink computer
as soon as it notices an R-START, C-START,

Figure 16. EVENT MODULE

or K-START. The uplink computer checks the
CUE before accepting the information. The
CUE compares the address, located in the
START module, with what it thinks has been
exorcized and transferred. If the comparison
is affinl1ative, the information is transmitted
to the computers, which interprets the codes
indicated by the" R-START, C-START, or K­
START, and transmits the information to the
spacecraft where the DTCS described earlier
checks it and exercises the spacecraft accord­
ingly. The system can interpret some 1200
measurements in the downlink and some 200
in the uplink .area.

SUMMARY

The main features of the system are as fol­
lows:

1. Rapid checkout
2. Use of the flight telemetry and carry-on

concept. The carry-on equipment for
checkout measurements does not penalize
the fly-away weight.

3. Capability to operate manually as well as
automatically at close-by or lO-mile re­
mote positions.

4. Use of the same equipment for checking
out both the C & SM and the LEM at both
the- factory and the launch site.

500 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

5. Modularity and digital building blocks to
achieve turnaround of about 30 minutes.
This allows hook-up to any spacecraft on
30 minutes' notice, assuming that the
carry-on equipment is in position.

6. Factory connection of carry-on equipment
and removal at T -5 hours (except for
weight and balance). This minimizes
connecting and disconnecting the space­
craft cabling.

7. Restriction of the total number of cables
through the vehicle hatch to two, each
containing three co-axes, thus allowing
undisturbed ingress and egress to the
spacecraft. (Two cables in Apollo com­
pare to about two dozens in Mercury.

The system is quite versatile-so versatile,
in fact, that the vehicle on which it is to be ex­
ercised does not have to be defined until late
in the design.

Selecting the signal-conditioners and the
modules associated with the base plates, and
mounting the name plates associated with the

control consoles are the only time-limiting ac­
tions. Once the system engineers have estab­
lished a general configuration of the control
room the SGS, the decommutator, and the com­
puters are programmable. Thus, after hard­
ware definition, the only problem remaining is
to define the digital programs or the software
associated with the system. But these can be
phased in as soon as the test people and the
system engineers have decided the test detail.
Preliminary specification shows that the hard­
ware design and preliminary software require
something on the order of 8 to 10 months,
whereas the final software (because the pre­
liminary subroutines and executive routines
have been perpared) can be completed within
two or three months.

The first system is operational at North
American's plant in Downey, California. Fol­
low-on stations will be located at the Grum­
man Aircraft Engineering Corporation, Beth­
page, L.I., New York; the Manned Spacecraft
Center, Houston, Texas; and the Kennedy
Space Center, Cape Kennedy, Florida.

SATURN V LAUNCH VEHICLE

DIGITAL COMPUTER AND DATA ADAPTER
M. M. Dickinson

J. B. Jackson
G. C. Randa

International Business Machines Space Guidance Center
Owego, New York

INTRODUCTION

This paper describes the IBM Space Guid~
ance Center's part in the Saturn V Program
and the digital computer and data adapter
being developed for the Saturn V booster. This
work is being performed under contract to
NASA under direction of the Marshall Space
Flight Center, Huntsville, Alabama.

The computer and data adapter are located
in the Saturn V Instrument Unit and integrated
into the total guidance system of the booster
(Figure 1). The computer interfaces only with
the data adapter, which in turn presents the
interface to the rest of the system. Basically,
during boost guidance, the computer evaluates
in-flight changes in booster speed and position
derived from an inertial platform and develops
signals to control the rocket engines so as to
keep the booster on course. The data adapter
takes analog inputs from sensors and converts
them to digital form for the computer; it also
takes the computer digital outputs, converts
some of them to analog form, and sends cor­
rections to the appropriate controls.

MODES OF OPERATION

The system operates in four basic modes
(Figure 2): (1) Pre-launch Check-out; (2)
Boost Guidance; (3) Orbital Check-out; and
(4) Lunar Trajectory Injection.

501

During the Pre-launch Check-out mode, a
test program is loaded into the computer to
ensure that all guidance system interfaces op­
erate properly prior to flight. The program
includes a computer self-test, complete mission
simulation, and a system test, among others.

In the Boost Guidance mode, which starts at
lift-off and lasts until the final booster stage
burns out, the computer navigates and steers
the booster, computing stage cutoff. During
this initial phase of operation it receives data
on booster speed and attitude through the data
adapter. The computer processes these data
and, through the data adapter, controls the

I I TELEt.£TRY INTER AND
GROUND RADIO COMPUTER INTRA
CONTROL COMMAND INTERFACE VEHICLE
COMPUTER CHANNEL UNIT COMMUNICATION

1 I

I I I I

DIGITAL DATA
COMPUTER ADAPTER

I ~
POWER INERTIAL FLIGHT

SOURCE PLATFORM CONTROL
COMPUTER

Figure 1. Saturn V Guidance System.

502 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

PRE-LAUNCH CHECKOUT

• PROGRAM CHECK
• COEFFICI ENT LOAD

BOOST GUIDANCE

• STEERING COMMANDS
• ENGINE CONTROL

ORBITAL CHECKOUT

• INSTRUMENT UNIT CHECKOUT

LUNAR TRAJECTORY INJECTION

• STEERING COMMANDS
• ENGINE CONTROL

Figure 2. Saturn V Mission.

direction of thrust of the gimbaled rocket en­
gines to keep the vehicle on the desired course.

When the vehicle is in orbit about the earth,
the computer checks out the propulsion sys­
tem, the mid-course guidance and control sys­
tem, and other related Instrument Unit systems
and sends the test results to the ground for
analysis. If all tests are satisfactory, the Lunar
Trajectory Injection mode is initiated.

The Lunar Trajectory Injection mode fol­
lows the same sequence as the Boost Guidance
mode in that the computer navigates, controls
vehicle steering, controls booster cut-off, and
directs booster separation.

EQUIPMENT ORGANIZATION AND
CHARACTERISTICS

Microminiature packaging technology and
redundant logical configurations are used in the
computer and data adapter to meet the strin­
gent weight and reliability requirements of the
Saturn V Program. Whereas the Saturn I
launch vehicle guidance system was developed
from a previously proved military system to
playa limited role on early space booster mis­
sions, the Saturn V equipment must have much
greater sophistication to function with greatly
increased reliability over a much longer opera­
tional span in a more demanding environment
(Figure 3). Thus, the Saturn V computer and
data adapter share new electronic and mechani­
cal design features that provide significantly
greater capabilities than are found in the

SATUf{N I SATURN V

NUMBER OF COMPONENTS 12.000 80.000

WEIGHT - LBS. 210 253

VOLUME - CU. FT. 3.9 5.5

POWER - WATTS 540 438

OPERATIONS ~ITY-OPS/SEC 3.2.00 9,600

STORAGE CAPACITY - BITS 100,000 46OPOO

RELIABILITY - MEAN TIME BETWEEN 750 45,000
FAILURE IN HOURS

Figure 3. Equipment Comparisons.

Saturn I spaceborne computer system, includ­
ing:

(1) A speed approximately three times
greater than is found in either the
Saturn I or IBM's commercial 1401
system.

(2) A modular memory that can be expanded
to 920,000 bits for later Saturn V mis­
sions by simply plugging in additional
memory modules.

(3) Seven times the number of components
with only a slight increase in weight and
volume.

(4) A reliability increase of more than 6000
percent.

COMPUTER

The Saturn V computer is serially organized
and operates at a rate of 512 kilobits per second
(Figure 4). Using two's complement arith­
metic, it multiplies four bits at a time and
divides two bits at a time. Glass delay lines

TYPE Gp, STORED PROGRAM, SERIAL, FIXED POINT. BINARY
CLOCK 512 KILOBITS PER SECOND
SPEED ADD-SUBTRACT. MULTIPLY-DIVIDE SIMUL114NEOUSLY:

ADD - 82 "SEC, 26 BIT
MULTIPLY - 328 "SEC, 24 BIT
DIVIDE - 656 "SEC, 24 BIT

STORAGE 16,384 28- BIT WORDS, EXPANDABLE

RELIABILITY 0.99 GOAL FOR 250 HOURS

WEIGHT
VOLUME
POWER

77 LBS.
22 CU. FT.
131 WATTS

Figure 4. Digital Computer Characteristics.

SATURN V LAUNCH VEHICLE DIGITAL COMPUTER AND DATA ADAPTER 508

are used for internal registers to improve reli­
ability. AND-OR-INVERT logic, operated in
saturated and cut-off modes, is employed in
both the computer and data adapter. Four
clock pulses per bit are employed, with 6-volt
clock signals applied to AND resistors; this
arrangement permits inverter loads to be time­
shared and obviates the need for an AND diode
for each clocked AND.

Each instruction is comprised of a four-bit
operation code and a nine-bit operand address;
the nine-bit address allows 512 locations to be
directly addressed. The memory is divided
into sectors of 256 words, and contains a resid­
ual memory for 256 common data words. The
nine-bit address specifies a location in either
the previously selected sector (data sector
latches) or in the residual memory.

Instructions are addressed from an eight-bit
instruction counter augmented by a four-bit
instruction sector register (Figure 5). Instruc­
tion memory sector selection is changed by spe­
cial instructions, but sector size is sufficiently
large that this is not a frequent operation.

Data words consist of 26 bits (25 magnitude
bits plus sign). Instruction words consist of
13 bits and two instructions are stored in each

INTERRUPT

memory data word. Hence, instructions are
described as being stored in syllable 0 or sylla­
ble 1 of a memory word. Two additional bits
are used in the memory for parity checking
each of the two syllables.

The computer is programmed by means of
single-address instructions. Each instruction
specifies an operation and an operand address.
Instructions are addressed sequentially from
the memory under control of the instruction
counter. Each time the instruction counter is
used, it is advanced one increment to develop
the address of the next instruction. After the
instruction is read from the memory and its
parity checked, the operation code is sent from
the transfer register to the operation code
register, a static register that stores the opera­
tion code for the duration of the execution
cycle.

The operand address portion of the instruc­
tionis transferred in parallel (nine bits) from
the transfer register to the memory address
register. The transfer register is then cleared.

If the operation code requires reading the
memory, the contents of the operand address
are read, 14 bits at a time (including parity),
frVin the nlemory into the buffer register where

MEMORY

MOD t MEMORY

MOD 2 MEMORY

1711-----+ MEM NO OP

ADDER­
SUBTR
MULTI­

~--"'DIV

ACCUMULATOR-INSTR CNTR
MULTIPLICAND -DIVISOR

MULTIPLIER - QUOTIENT
PRODUCT -REMAINDER

DELAY LINE NO. t

SYLLABLE t
SYLLABLE 2

ACCUMULATOR-INSTR CNTR
MULTIPLY-DIVIDE TIMING

PRODUCT - QUOTIENT SYNC

DELAY LINE NO.2

Figure 5. Digital Computer Block Diagram.

504 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

a parity check is made. Data bits are then sent
in parallel to the transfer register. This in­
formation is then serially transferred to the
arithmetic section of the computer. If the op­
eration code is a store (STO), the contents of
the accumulator are transferred serially into
the transfer register and stored in two 14-bit
bytes. A parity bit is generated for each byte.

Upon completion of the arithmetic operation,
the contents of the instruction counter are
transferred serially into the transfer register.
This information is then transferred in parallel
(just as the operand address had previously
been transferred) into the memory address
register. The transfer register is then cleared
and the next instruction is read, thus complet­
ing one computer cycle.

The data word is read from the memory
address specified by the memory address regis­
ter and from the sector specified by the sector
register. Data from the memory go directly to
the arithmetic section of the computer where
they are operated on as directed by the opera­
tion code.

The arithmetic section contains an add-sub­
tract element, a multiply-divide element, and
storage registers for the operands. Registers
are required for the accumulator, product,
quotient, multiplicand, multiplier, positive re­
mainder, and negative remainder. The add­
subtract and the mUltiply-divide elements op­
erate independently of each other, so they can
be programmed to operate concurrently (Le.,
the add-subtract element can perform several
short operations while the multiply-divide ele­
ment is in operation).

No dividend register is shown in Figure 5
because it is considered to be the first re­
mainder. The divisor is read from the accumu­
lator during the first cycle time and can be
regenerated from the two remainders on sub­
sequent cycles. Both multiply and divide re­
quire more time for execution than the rest of
the computer operations. A special counter is
used to keep track of the mUltiply-divide prog­
ress and stop the operation when it is com­
pleted. The product-quotient (PQ) register can
be addressed from the operand address of any
instruction. The answer will remain in the
PQ register until another multiply-divide is
initiated.

CLA CLEAR AND ADD CDS CHANGE DATA
LOCATION

ADD ADD EXECUTE MODIFIED
SUBTRACT

EXM
SUB INST.

MPY MULTIPLY (CON- STO STORE
CURRENT)

MPH MULTIPLY (NON- HOP CHANGE REGISTER

CONCURRENT)
CONTENTS

DIV DIVIDE TNZ TRANSFER NON-ZERO

RSU REVERSE SUBTRACT TRA UNCONDITIONAL
TRANSFER

AND LOGICAL AND
TMI TRANSFER ON MINUS

XOR EXCLUSIVE OR
PIO PROCESS INPUT /

SHF SHIFT OUTPUT

Figure 6. Operation Codes.

Two multiply instructions (Figure 6) are
used in the computer. MPY requires that one­
word-time operations be performed in the
adder unit during the multiplication operation
because the instruction counter advances each
word time. Thus, simultaneous MPY and one­
word-time operations are carried out. When
the program is multiply-limited, and a sufficient
number of useful one-word operations cannot
be found in the portion of the flow diagram
being executed, the MPH instruction is used.
This instruction inhibits the advance of the
instruction counter and no new instructions
are read from the memory until the operation
is completed.

Since only partial addresses for instructions
and data are provided in the instruction counter
and the data address of the instruction word,
a HOP instruction permits transfer to various
sections of the memory; static registers pro­
vide the additional address bits required. An
Execute Modified Instruction (EXM) opera­
tion permits the execution of selected instruc­
tions from memory after they have been modi­
fied by the contents of the instruction word.

The computer communicates with the data
adapter through use of the Process Input-Out­
put (PIO) instruction, which transfers data
words from the data adapter to the accumula­
tor or from the accumulator or memory to the
data adapter.

The computer processes accelerometer and
gimbal angle information and computes atti­
tude corrections 25 times each second. The
slower major loop, which contains navigation
and other computations, is performed once or
twice each second.

SATURN V LAUNCH VEHICLE DIGITAL COMPUTER AND DATA ADAPTER 505

A program assembler and a mission simula­
tor are being developed as part of a software
package. Laboratory check-out and accept­
ance test programs are also being prepared.
IBM is using special simulators to perform de­
lay simulation on detailed logical designs, to
compute the reliability of redundant and duplex
logical organizations using Monte Carlo tech­
niques, and to simulate the effects of component
malfunctions. Operational flight programs for
Saturn V missions are being prepared by IBM
under a separate contract.

DATA ADAPTER

The data adapter provides input-output com­
munication with telemetry equipment, ground
launch computer, and discrete inputs and out­
puts (Figure 7). It stores interrupt signals
and buffers real-time, accelerometer data moni­
toring, and other counting signals. Angular
information from two-speed resolvers is read
in through a crossover detector system (Figure
8) . Resolver outputs are passed through RC
networks and the zero crossover of the phase­
shifted sine wave outputs is detected by preci­
sion crossover detectors. A high-speed binary
counter converts this time interval into a
binary number. Analog voltage outputs are
provided through a resistive ladder network
and suitable capacitor sample-and-hold circuits.

A significant feature of the data adapter de­
sign is the use of glass ultrasonic delay lines
to store digital information required by the

CLOCK

DISCRETES

REGISTERS

DIA CONVERTER

AID CONVERTER

DELAY LINES

POWER SUPPLIES

RELIABILITY

WEIGHT

VOLUME

POWER

512 KllOBITS PER SECOND

68 BITS

45 BITS

8 BITS +SIGN

2-SPEED RESOLVER, 17-BIT
EQUIVALENT

16 CHANNELS

6 PAIRS, DUPLEXED

0.99 GOAL FOR 250 HOURS

176 LBS.

3.30 CU. FT.

438 WATTS INPUT

Figure 7. Data Adapter Characteristics.

ACCELEROMETER
OPTISYNS VELOCITY

INTERRUPTS DELAY
INTERRUPT

COMPUTER DATA 1 MS DELAY LINE
4KC REAL TIME

COMPUTER DATA DISCRETE DISCRETE OUTPUTS
INPUTS AND

DISCRETE INPUTS OUTPUTS, COMPUTER DATA

VEHICLE DISCRETE
VEHICLE

VEHICLE DISCRETE DISCRETE
FEEDBACK INTERFACE ADDRESS

RESOLVERS GIMBAL ANGLES
AID
AND
DIA

COMPUTER DATA CONVERTERS ATTITUDE ERRORS

Figure 8. Data Adapter Block Diagram.

computer. Four-megacycle lines are used and
four channels of information are multiplexed
into each line.

A set of redundant delay lines is divided into
three 14-bit phase times, providing 12 syllables
of storage in each line. This set is used to
store: (1) interrupt signals until the interrupts
are acted upon by the computer, with one of the
syllables being reserved to prohibit multiple
computer interrupts from the same external
interrupt pulse; (2) interrupt signals which
are inhibited by the computer. The set also:
(1) times the activation of the switch selector
used to control the vehicle staging; (2) times
the interval between processing of minor loop
platform attitude inputs; and (3) stores real
time as it is accumulated from an oscillator
input.

=28~V~I~N~PU~T~ ______ ~·1 POWER
CLOCKS SUPPLIES

IIO DATA ADDRESS AND
TIMING

COMPUTER DATA CONTROL

COMPUTER DATA

TELEM. DATA

TELEM. TELEMETRY
CHECKOUT DATA MONITOR

ERROR
1/0 DATA ADDRESS MONITOR.

ORBITAL

TELEM. SYNC BIT
CHECKOUT

ERROR INDICATORS

I POWER

TIMING

I/O DATA GATES

COMPUTER DATA

XMITTER

GROUND CHECKOUT
COMPUTER

TELEMETRY
ADDRESS
COMPARATOR

Figure 9. Data Adapter Blork Diagram (Cont.).

506 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

A non-redundant delay line is used to buffer
non-mission-critical telemetry information to
the ground (Figure 9). The PCM telemetry
system will monitor digital data from the
computer/data adapter system at a constant
rate of 240 forty-bit words per second. Ap­
proximately 100 of these words will be direct
outputs from the computer to the telemetry.
The remaining 140 words will be supplied by
the Digital Output Monitor (DOM). This data
adapter system serves two purposes: (1) it
allows the telemetry channel to be used with
maximum efficiency without burdening the
computer program with intricate timing prob­
lems, and (2) provides a means of monitoring
the digital data entering and leaving the data
adapter at a point close to the interface.

The information that is sent to telemetry
via the DOM is derived from computer input­
output operations. Since these operations occur
at widely varying rates, the DOM provides a
buffering capability to optimize data flow.
Input-output operations that occur too fre­
quently and convey too little information are
ignored by the DOM.

RELIABILITY

Very high reliability is required of the
Saturn V digital computer and data adapter­
the design goal for each unit is 0.99 for a 250-
hour mission. Conventional techniques for
achieving ultra-high reliability include (Figure
10) high reliability parts, conservative design
practices (simplicity and wide tolerances), 100-
percent screening of parts and assemblies,
thorough qualification of parts and manufac­
turing processes, and detailed laboratory analy­
sis and corrective action for all "failed" items.
Over and above these conventional require­
ments, the equipment has been designed to
continue accurate operation, even after a tran-

CONSERVATIVE DESIGN
REDUNDANCY
COMPONENT SCREENING
IN-PROCESS INSPECTION
SYSTEM ENVIRONMENTAL ACCEPTANCE

Figure 10. Approaches to Reliability.

Figure 11. Triple Modular Redundancy (TMR).

sient or catastrophic failure, through the use of
redundant elements.

The redundancy approach employed by IBM
in the computer logic is "Triple Modular Re­
dundancy" (TMR) , which realizes a 20-fold
increase in reliability with only 3 % times more
components than a non-redundant system. (1,2,3,4)

Figure 11 shows part of the Saturn V logic
divided into sections called modules, (M). Each
module is identical, receiving the same problem
at the same time. The outputs of the three
modules are transmitted to another circuit
called a "majority rule voter" circuit (V),
which checks the inputs to see whether they
agree. If one input differs from the other two,
it is disregarded, so a component failure will
not cause a system malfunction.

A third circuit, called a disagreement detec­
tor (DD), monitors system performance by sig­
nalling the ground equipment whenever voter
inputs are not all identical. Computer logic
is divided into seven modules, each with an
average of 10 voted outputs. Disagreement
detector outputs are OR'ed together such that
malfunctions can be isolated to one, two, or
three replaceable subassemblies.

The memory in the Saturn V computer uses
conventional toroidal cores in a unique self­
correcting duplex system. The memory consists
of up to eight identical 4096-word memory
modules that may be operated in simplex for
increased storage capability or in duplex pairs
for high reliability. The basic computer pro­
gram can be loaded into the instruction and
constants sectors of the memory at electronic
speeds on the ground or just prior to launch.

SATURN V LAUNCH VEHICLE DIGITAL COMPUTER AND DATA ADAPTER 507

Thereafter, the information content of con­
stants and data can be electrically altered but
only under control of the computer program.

The self-correcting duplex system uses an
odd parity bit for malfunction indication and
correction. In conjunction with the parity bit,
error-detection circuitry also monitors memory
drive current. Unlike conventional toroid
random-access memories, the self-correcting
extension of the basic duplex approach permits
correct information to be regenerated after
transients or intermittent failures.

Figure 12 is a simplified block diagram of
the computer memory system. The basic con­
figuration consists of a pair of memories pro­
viding storage for 8,192 fourteen-bit memory
words for duplex operation, or 16,384 fourteen­
bit memory words for simplex operation. Each
of the simplex memories includes independent
peripheral instrumentation consisting of tim­
ing, control, address drivers, inhibit drivers,
sense amplifiers, error-detection circuitry, and
input/output connections to facilitate failure
isolation.

The computer functions, which are separate
for each simplex memory, consist of synchroniz­
ing gates which provide the serial data rate
of 512 kilobits per second. This data rate is
required by the computer to generate a "start
memory unit" command at 128 kilobits per
second. These gates also provide the selection
of multiple simplex memory units for storage
flexibility and permit partial or total duplex
operation throughout the mission profile to ex­
tend the mean-time-before-failure for long mis-

FROM
COMPUTER

TO
COMPUTER

FROM
COMPUTER

Figure 12. Duplex Memory Flow Diagram.

sion times. Each of the simplex units can op­
erat~ independently of the others or in a duplex
manner. The memory modules are divided into
two groups: one group consisting of even num­
bered modules (0-6) and the other consisting
of odd numbered modules (1-7). The buffer
register associated with each group is set by
the selected modules.

For duplex operation, as shown in Figure 12,
each memory is controlled by independent buf­
fer registers when both memories are operating
without failure. Both memories are simultane­
ously read and updated, 14 bits in parallel. A
single cycle is required for reading instructions
(13 bits plus 1 parity bit per instruction word).
Two memory cycles are required for reading
and updating data (26 bits plus 2 parity bits).
The parallel outputs of the memory buffer
registers are serialized at a 512-kilobit rate by
the memory transfer register under control of
the memory select logic. Initially, only one
buffer register output is used, but both buffer
register outputs are simultaneously parity
checked. When an error is detected in the
memory being used, operation immediately
transfers to the other memory. Both memories
are then regenerated by the buffer register of
the "good" memory, thus correcting transient
errors. After the parity-checking and error­
detection circuits have verified that the errone­
ous memory has been corrected, each memory
is again controlled by its own buffer register.
Operation is· not transferred to the previously
erroneous memory until the "good" memory
develops its first ~rror. Consequently, instan­
taneous switching from one memory output to
another permits uninterrupted computer opera­
tion until simultaneous failures at the same
storage location in both memories cause com­
plete system failure.

The data adapter uses duplex and redundant­
component circuits in conjunction with TMR
logic to meet its reliability goals.

The data adapter logic is divided into four
parts for the purpose of reliability computa­
tion. The analog-to-digital converter section
employs coarse and fine resolver windings in a
two-speed system for duplex operation. The fine
inputs are selected by the computer for use
unless the error indicator circuits that monitor

508 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

signal levels indicate a failure; then the coarse
input will be used, with degraded system
accuracy. The selected input is fed to duplexed
logic sections that can be tested against each
other and for output reasonableness. Here the
computational capability of the computer can
insert test problems into the duplex logic of
the data adapter to determine which half is
operating properly.

Duplex digital-to-analog ladder converters
are used for outputs to the control computer.
One of the duplex channels is selected to derive
the output voltages, and this output is com­
pared with a reference channel. Any significant
difference causes the other duplex channel to be
switched in.

TMR logic is used in conventional buffer
registers that store discrete information and
provide communication with telemetry and the
ground control computer. Where TMR outputs
must be used to develop a single highly reliable
output signal, redundant-component voter /
driver circuits are used in the final stage.

To ensure that failures in the power sup­
plies, which are located in the data adapter and
supply pQwer to that unit and to the computer,
do not cause system failure, duplexing is used
(Figure 13). Pulse-width-modulated dc-to-dc
converters provide high power conversion effi­
ciency. Feedback amplifiers sense any varia­
tions in the average value of the output voltage,

~~------------~~~-~

Figure 13. Duplex Power Supply.

and the error signal is used to control the
power inverter pulse width. Duplexed feedback
amplifiers are employed and the supplies them­
selves are duplexed. Either supply can pro­
vide the full current required for that supply
voltage.

Table I compares the reliability of the re­
dundant and non-redundant portions of the
computer and data adapter and shows the dra­
matic results obtained when TMR techniques
are used in the control and arithmetic logic of
the computer. In applications where the logic
could be divided into modular parts and made
duplex, it would be difficult to determine which
duplex part was operating correctly. TMR,
with majority rule voters re-establishing the
correctness of module outputs at critical points,
overcomes this difficulty and makes malfunction
correction automatic.

The improvement in memory reliability de­
rived from duplexing is not as great as in other
duplex logic applications because all possible
memory failures cannot be detected by the
checking circuits. As shown in Table I, over­
all computer reliability in the redundant con­
figuration is gated by the memory system.

TABLE 1. EQUIPMENT RELIABILITY
FOR 250 HOURS

N on-Redundant Redundant

Digital Computer

0.973 TMR Logic
Duplex Memory
Unit
Equivalent Mean

Time to

0.969
0.943

0.9992
0.9980
0.9972

Failure 4,250 Hrs. 89,500 Hrs.

Duplex I/O
Duplex Logic
TMR Logic
Duplex Power

Supply
Unit

Data Adapter

0.988
0.994
0.979

0.995
0.957

Equivalent Mean
Time to

0.9982
0.99995
0.9997

0.99999
0.9978

Failure 5,680 Hrs. 113,000 Hrs.

SATURN V LAUNCH VEHICLE DIGITAL COMPUTER AND DATA ADAPTER 509

The mean-time-to-system-failure (MTF)
shown in Table I for a non-redundant equiva­
lent computer was computed assuming the con­
ventional exponential (constant failure rate)
case.

MICROMINIATURE PACKAGING

To implement redundancy and still meet
NASA's weight and volume requirements, IBM
chose a microminiature design approach (5)

proven feasible in 1960 with a small-scale com­
puter. Since 1961, the technology has been sub­
jected to environmental, life, and experimental
system tests. These tests have enabled IBM to
accumulate over 20,000,000 test hours on cir­
cuit modules and over 1,000,000 on multilayer
interconnection boards.

The first simplex engineering model of the
Saturn V computer was delivered on 28 April
of this year; it was used to confirm and verify
the basic design of the computer. The first
qualification model is scheduled for delivery on
12 February 1965 and the first production com­
puter on 26 March.

The basic building block of the Saturn V
system is the Unit Logic Device (ULD), a
microminiature circuit package. Each of the
54 different types of ULD's contains up to 14
components including transistors, diodes, and
resistors. Ninety percent of the Saturn V
equipment is based on ULD technology, and
8918 ULD's are used in each Saturn V com­
puter and data adapter.

The manufacture of a ULD starts "\vith a
0.3 X 0.3 inch alumina substrate upon which
conductive land patterns are silk-screened on
the top surface and resistors on the bottom
(Figure 14). Conductive patterns and resistors
are fired at high temperature to drive off the
carrier and ensure adhesion to the substrate.
Semiconductors, in the form of 0.025 X 0.025
inch chips of silicon (each comprising either
one transistor or two diodes) are reflow soldered
to the ULD. Copper balls are used for contacts
between the chips and the conductive patterns
(Figure 15).

Screened edge connections provide conduc­
tive lines between the top and bottom surfaces
of the ULD. Metal "S" -clips are soldered around

Figure 14. Unit Logic Device (ULD).

the edges of the ULD for greater reliability and
to provide a means of connection to the printed
circuit board that interconnects the ULD's.

Each ULD has been designed so the parame­
ters of its components may be measured during
production operations. This procedure ensures
that component tolerances assumed for initial
circuit design are met and that end-of-life toler­
ances will not be exceeded. Thus, when the
values of each parameter are known, circuit
design ground rules can be adjusted to permit
greater fan-in and fan-out than when the cir­
cuit. is tested as a whole and individual com­
ponent values are not known.

The ULD's are interconnected by a MIB, or
multilayer interconnection board (Figure 16).
A 12-layer, 2.5 by 3-inch board can accommo­
date 35 ULD circuits. MIB's are laid out to
provide a 5 X 7 matrix of ULD locations. Sig­
nal, power, and ground layers are contained
within the MIB and interconnected with plated­
through holes. Tabs printed on the top surface

Figure 15. ULD Semiconductor Chips.

510 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 16. Multilayer Interconnection Board (MIB).

of the MIB permit reflow soldering of the
ULD's to the MIB. Two beams of infrared are
focused on the pre-tinned ULD connection clips
to solder the ULD's to the MIB, affording both
an electrical path and a mechanical bond.

Eighteen test points are available on each
MIB; connections between MIB's bonded to
each side of a page are provided with through­
pins. A conductive pattern on the end of each
MIB is soldered to a 98-pin connector. The
page MIB's containing the ULD's are, in turn,
bonded to a metal frame that draws heat away
from the components and protects the circuits
from vibration and mechanical shock (Figure
17).

The resultant page assembly contains up to
35 ULD's on each side. The page can also
house various other types of circuits, including
glass delay lines, circuit modules for precision
analog circuits, or decoupling capacitors
(Figures 18, 19, and 20). There are 150 ULD
pages in the Saturn V- computer and data

Figure 17. ULD Page.

Figure 18. Delay Line Page.

adapter, each with an average of 500 com­
ponents. Each page is tested over a 10°C to
100°C temperature range during production.

Maintenance performed at the Marshall Space
Flight Center or Cape Kennedy includes re­
moval and replacement of individual pages.
ULD's can be replaced at the factory or depot.
A 98-pin miniature connector plugs into a back
panel for page-to-page interconnections. Heat
is conducted out of the page through mag­
nesium-lithium ears fastened to the machine
structure with screws.

In the Saturn V equipment, pages are inter­
connected through multilayer printed circuit
back panels bonded to a metal support plate
(Figure 21). Layers are interconnected by
2000 plated-through holes. Each back panel,
containing 12 layers of circuits, is subjected to
100 percent inspection of each of the 2000 con­
nections. Each of the back panel subassemblies
is called a channel, and there are five channels
in each Saturn V computer (three identical

Figure 19. Circuit Module Page.

SATURN V LAUNCH VEHICLE DIGITAL COMPUTER AND DATA ADAPTER 511

Figure 20. Capacitor Page.

TMR logic channels and two channels contain­
ing voter and memory input-output registers).

The memory plane is the basic element of the
Saturn V memory (Figure 22). Each plane
accommodates some 8,200 toroid cores approxi­
mately 0.030 inch in diameter. Memory planes
are individually tested using automatic plane
test equipment before further assembly~ The
memory array is comprised of 14 horizontally
stacked planes (Figure 23). It has a capacity
of 4,096 twenty-eight-bit words or 115,000 bits
of memory. Memory planes are unencapsulated
and are separated by molded silicone rubber
foam pads that protect the cores from vibration
stresses.

A complete ulemory module combines the
array and the electronics. From one to eight of
these modules can be employed in the Saturn V
system; present memory requirements call for
four of these modules, each weighing 4.7
pounds and using 7.5 watts of power.

Figure 21. Multilayer Back Panel.

Figure 22. Memory Core Plane.

Electronic memory panels contain address,
inhibit, and sense circuits to permit reading
and writing as well as addressing. The five
panels in the system are fabricated separately
from the memory for ease in packaging
memory-related electronics.

STRUCTURAL DESIGN

Magnesium-lithium alloy LA 141 was selected
for use in the computer and data adapter struc­
tures because it is the most efficient material
from a stiffness-to-weight standpoint (short of
beryllium) and because of its good vibration
damping characteristics. (6) Beryllium was not
selected because of anticipated problems in fab­
rication. LA 141 provides minimum weight, and
it minimizes the transmission of mechanical
vibration between the unit structural mounting
pads and the electronic subassemblies within
the structure. Unit stress and physical proper­
ties of LA 141 are compared to those of other
magnesium and aluminum alloys in Table II,

Figure 23. Memory Array.

512 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

TABLE II. COMPARISON OF VARIOUS STRUCTURAL MATERIALS

Properties Material

Aluminum Aluminum Mag.-Lith. Magnesium
Al 1100-0 Al 2024-T3 LA 141 AZ31B-O

Tensile Strength (Ksi)
Yield Strength (Ksi)
Compressive Strength (Ksi)
Elongation % in 2"
Modulus of Elasticity (106 psi)
Density (lbs./in3)
Specific Heat at 212°F

(BTU /lb/oF)
Thermal Exp. Coef.

(68-212°F, 10-6 in/in/oF)
Thermal Conductivity

(BTU/ft2/hr/oF /ft)

11.0
3.5
4.0

30.0
10.0

0.098
0.214

13.1

128

below. Magnesium-lithium is only half the
weight of aluminum and three quarters of the
weight of magnesium. Tensile strength more
than meets the requirements for this applica­
tion.

The c~oice of magnesium-lithium necessi­
tated a thorough investigation of the effects of
humidity and salt atmosphere environments on
the material, as well as the effects of liquid
coolant. A fluoride-anodize surface treatment,
coated with a sprayed coat of Laminar X500
(a polyurethane), was specified to protect all
exterior surfaces.

Evaluation of the effects of the liquid coolant
(methanol and distilled water) on the mag­
nesium-lithium indicated that the corrosion
rate of untreated material did not exceed 0.006
inch/surface/year as long as there are no other
materials in contact with the magnesium­
lithium that would form a galvanic couple (i.e.,
material less positive on the galvanic scale).

To effect an RFI seal between the unit struc­
tures and their covers, EZ33A welding rod is
used on the flanged areas of the structure. The
iridite finish used provides adequate protection
to inhibit LA-141 oxidation in the presence of
nitrogen and moisture. After oxidation, the
LA 141 becomes non-conductive.

Cold plate mounting and integral liquid cool­
ing were compared in terms of their effects

68.0 21.0 36.0
51.0 17.0 19.0
42.0 17.0 13.0
12-15 25-30 18
10.5 6.5 6.5
0.100 0.0487 0.064
0.23 0.35 0.25

12.6 21 15

71 25 44

on installed weight and reliability. It was
found that the installed weight of the system
could be reduced by approximately 20 pounds,
and the unit component temperatures reduced
an average of approximately 18°F (with the
accompanying increase in reliability) by em­
ploying integral liquid cooling. Thus, integral
liquid cooling passages were incorporated in
the structure designs (Figure 24).

The incorporation of integral liquid coolant
passages in the structure and the need for suffi­
cient material on each side of the coolant
passages to assure meeting leak rate require­
ments at a burst pressure of 100 psia dictated
the use of relatively heavy structural sections
in the page attachment an.d outside walls of
the structure. Taking advantage of the page

Figure 24. Gun-Drilled Coolant Passages.

SATURN V LAUNCH VEHICLE DIGITAL COMPUTER AND DATA ADAPTER 513

attachment coolant wall sections, slots are in­
corporated at each page location in the struc­
ture design to guide the pages into their elec­
trical connector receptacles on the interconnec­
tion back panels. This feature eliminates the
need for additional brackets to guide the pages.

The above design considerations lead IBM
to select a machined billet to fabricate the de­
sired structure configuration. A structural
weldment was avoided because of anticipated
problems and fixture complexity inherent in
controlling dimensions throughout the welding,
stress relieving, and machining processes.

The computer structure, as shown in Figure
25, is rough machined from a cast billet, the
cooling passages in the page mounting walls
are drilled using a technique developed for the
drilling of rifle barrels, and final machining is
accomplished on a tape-controlled milling ma­
chine. Mockups of the computer and data
adapter structures are shown in Figures 26
and 27. -

THERMAL DESIGN

The inlet liquid coolant (60%-40% methanol­
water by weight) temperature is between 55°F
and 65,oF with a total flow rate of 5.5 pounds/
minute; 2.2 pounds/minute to the computer and
3.3 pounds/minute to the data adapter. The
electrical heat dissipation of the computer is
131 watts and the maximum dissipation of the
data adapter is 343 watts with discretes "on."

Tests were conducted on several cooling
passage configurations, including finned and
drilled passages. The configuration selected
has five drilled 3/16-inch diameter holes in each

Figure 25. Computer Structure.

Figure 26. Computer Mock-Up.

computer channel and one 5/16-inch diameter
hole in each data adapter channel.

Heat transfer analyses within the units were
analyzed using an IBM 7090 three-dimensional
heat-transfer program. (7) This program uses a
numerical approach with rectangular nodes to
mathematically represent all solid portions of
the unit. The nodal description includes both
physical and thermal properties and a defini­
tion of the boundary condition on each face.
The node faces or boundaries can be defined
to have any combination of common heat­
transfer processes, such as conduction, radia­
tion, and convection.

The thermal design ground rules for the logic
electronics were as follows:

Max. transistor junction
temperature-

Max. j unction to junction
6.T on a page-

Max. page-to-page 6. T (in a
simplex channel)- 50°C

Figure 27. Data Adapter Mock-Up.

514 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

The following additional ground rules were
imposed on the memory array and power supply
electronics:

Max. allowable memory array
temperature- 70°C

Max. allowable memory array
~T- 5°C

Max. allowable power supply
power transistor surface
temperature- 85°C

Max. allowable power supply
diode surface temperature- 120°C

Max. allowable power supply
transformer temperature- 110°C

Initial IBM 7090 computer analysis of the
structure indicated that the following maxi­

, mum temperatures and/or temperature gradi­
ents could be expected:

Max. logic transistor
junction temperature-

Max. junction-to-junction
~Tonapage-

Max. page-to-page ~T
(in a simplex channel)-

Max. memory array tem-
perature-

Computer Data
Adapter

70°C 45°C

7'oC 7°C

11°C 10°C

39°C
Max. memory array ~ T 1°C
Max. power transistor

temperature- 100°C
Max. power diode tem-

perature- 56°C
Max. transformer tem-

perature- 66°C

To verify temperature gradients used in the
thermal analysis across thermal interfaces

within the units, and to establish mounting­
bolt torques and surface finishes to maintain
predictable temperature gradients at these in­
terfaces, thermal-vacuum tests were conducted
on the major unit subassembly mockups.

VIBRATION TESTING

A computer structure was fabricated from
final machining drawings and assembled with
dummy subassemblies to simulate final unit
weight and center of gravity. This mock-up
computer was instrumented with accelero­
meters to monitor vibration response at the
various subassembly mounting points on the
structure. The unit was subjected to a 5g RMS
sinusoidal vibration environment (2g RMS
above acceptance vibration level) and a 0.057
ft / cps random vibration environment (qualifi­
cation level environment) with both inputs ap­
plied along all three orthogonal axes over a
frequency range of 20 to 2000 cps.

The maximum vibration transmissibility
measured at three points on the four-memory
structure with a 5g RMS input is shown in
Table III below.

LABORATORY TEST EQUIPMENT

IBM is developing special-purpose laboratory
test equipment to perform system-level test
functions. This equipment, termed It ASTEC",
(Figure 28) will contain 125,000 component
parts. Equipment will be located at the IBM
Space Guidance Center, Marshall Space Flight
Center, and Cape Kennedy. The ASTEC is
used to test the computer and data adapter and
for computer operational program check-out.
It simulates the portion of the Instrument
Unit that interfaces with the data adapter.

TABLE III MAXIMUM MEASURED VIBRATION TRANSMISSIBILITIES

Direction Input Natural Memory Mounting Middle Middle
(g RMS) Frequency Plate at Center of Center of End of

(cps) Four Memories Structure Structure

Missile Flight 5 235 2.25 5.6 2.35

Perpendicular To
Missile Circumference 5 192 8.06 6.2 2~27

Parallel to
Missile Circumference 5 500 1.0 1.83 1.43

SATURN V LAUNCH VEHICLE DIGITAL COMPUTER AND DATA ADAPTER 515

DATA ADAPTER IITE..,ACE COOLING STAND TEST STAND
TESTER

PAPER TAPE READER

PROGRAMMABLE TEST
CONTROLLER

Figure 28. Computer/Data Adapter Laboratory Test Equipment (ASTEC).

ASTEC contains a programmable test con­
troller (PTC), with an 8000;...word magnetic
core memory. To record test results and mini­
mize human error, a 600-line-per-minute
printer is used. All of the equipment employs
the same Standard Module System (SMS)
electronic packaging techniques used in many
types of IBM commercial equipment.

The ASTEC can test the computer and data
adapter separately or as a system. It displays
significant register results and has a "history
file" in delay line storage for analysis of inter­
mittent malfunctions. Disagreement detector
outputs are also displayed. The front panels
contain controls for power, channel and module
switching, single-step program and data adapter
control, interrupt features, tape reader for
memory loading, and a digital plotter.

The ASTEC may be used for program check­
out, static testing, or dynamic testing of· the
prime equipment under environmental test
conditions.

Test stands, for mounting the computer and
data adapter undergoing test contain a refrig­
erator and a heating unit for maintaining
proper coolant temperature.

The PTC programs will control the testing
of the flight equipment while it is undergoing
vibration and other environmental tests. Ana­
log and digital test signals are applied to equip­
ment interface lines under program control,
and responses are evaluated by the ASTEC by
comparing flight equipment outputs with com­
puted or pre-stored values. . Significant com-

puter and data adapter registers are brought
out as test points to facilitate testing.

When the data adapter is tested alone the
ASTEC will excite inputs and interrogate out­
puts to test all logic within the unit. Address­
ing of registers as well as data paths are
tested. In testing the computer, diagnostic and
test programs are run on the computer in con­
junction with PTC programs. Computer self­
test programs are designed to exercise the
great majority of diodes in the logic to locate
intermittent and catastrophic failures under
actual environmentai conditions.

The ASTEC contains provisions for operat­
ing the computer and data adapter in single­
step mode, permitting the execution of one
program step at a time. Flight operational
program check-out is thus facilitated.

The ASTEC is so designed that it may be
divided into two parts for use in debugging and
testing the computer and data adapter sepa­
rately in factory operations. Program economy
has been achieved by providing common factory
and field test equipment.

The computer and data adapter will be used
in simulation facilities at the Marshall Space
Flight Center to simulate operation of various
parts of the instrument unit. The ASTEC,
with its inherent programmable capability, may
be connected to the data adapter to simulate
equipment not actually a part of the simula­
tion experiment. This will provide a very
flexible facility for verification of system de­
sign prior to installation into the Saturn V
launch vehicle.

516 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

REFERENCES

1. DICKINSON, W. E. and WALKER, R. M., "Re­
liability improvement by the use of multiple­
element switching circuits," IBM Journal
of Research and Development, 2, No.2,
pp 142-147, (April 1958)

2. FLEHINGER, B. J., "Reliability improvement
through redundancy at various system
levels," IBM Journal ·of Research and De­
velopment, 2, No.2, pp 148-158, (April
1958)

3. LYONS, R. E. and VANDERKULK, W., "The
use of triple modular redundancy to improve
computer reliability," IBM Journal of Re­
search and Development," 6, No.2, pp 200-
209, (April 1962)

4. ERGOTT, H. L. and ROZENBERG, D. P., "On
the analysis of reliability improvement

through redundancy," Proc. of the Space­
borne Computer Engineering Conference,
(October 30-31, 1962)

5. BONIS, S. A., "An improved microminiature
circuit packaging technique," Proc. of the
Third Annual Microelectronics Symposium
of the St. Louis Section of the IEEE,
(April 1964)

6. BONIS, S. A., JACKSON, R. N., and PAGNANI,
B. R., "Mechanical and electronic packaging
for a launch vehicle guidance computer,"
Proc. of the Fifth International Electronic
Circuit Packaging Symposium, (August
21-24, 1964)

7. LALLIER, K. W. and PAGNANI, B. R., "A
three-dimensional heat transfer computer
program for aerospace applications," IBM
Space Guidance Center, Owego, New York,
IBM No.: 64-825-862A, (March 1964)

THE 4102-5 SPACE TRACK PROGRAM
E. T. Garner and J. Oseas

Radio Corporation of America
Moorestown, New Jersey

SPACE TRACK MISSION

There are five functions which the SPAce
Track SEnsor Computer (SPASEC) real time
program performs as part of an effective satel­
lite surveillance system. It locates new satel­
lites soon after launching; keeps up to date
records of known satellite orbits; provides posi­
tional data of high accuracy for use by other
systems; provides information on object size,
shape and stability; indicates orbital change.
The radar associated with this system can oper­
ate in both a surveillance mode to provide data
on orbiting objects passing through the volume
scanned or in a tracking mode to provide more
accurate orbital data on observed objects. The
computer program senses, identifies and dis­
criminates among the objects penetrating the
surveillance volume and then. gathers the re­
quired data. This information then undergoes
evaluation and the results are forwarded to
the Spacetrack Center for additional analysis
and correlation.

The mission of the satellite surveillance sys­
tem is to identify and acquire track or scan
data on the satellites. Care is exercised in the
gathering of data so that the minimum amount
of information is collected that will satisfy the
requirements of the particular satellite obser­
vation. This insures that the radar will be
available to gather information on other ob­
jects and that redundant information will not
be transmitted. The information leaves the
computer as smoothed radar observations in
the form of time, range, azimuth, elevation,
range rate and identification of the satellite, if

517

known. This information is tralismitted over
Teletype lines to the Spacetrack Center.

In addition to the real time aspects of the
mission the site must produce its own schedule
of what it is able to see (penetration listings).
The site is furnished with orbital elements by
the Spacetrack Center on all known satellites.
This list of known satellites is constantly being
updated by means of Teletype messages. A list
of desired observations (priority list) is also
furnished by the Center.

Figure 1 shows the Operational System Or­
ganization. The Operations Director has the
responsibility of coordinating the data require­
ments with the detailed problems of site opera­
tion. Missions are planned based on new infor-:­
mation requests, object priority, number of
expected sightings, and probability of detec­
tion. Changes in an object's status are entered
into the computer using simple mnemonic codes
and decimal numbers. Changes or additions to
the satellite file received over the Teletype lines
are automatically entered into the computer
ephemeris file and written on the master tape.
The expected satellite penetrations are com­
puted periodically and a hard copy is produced.
This allows an operational check against the
master plan based on the most current infor­
mation at all times.

The plan is executed by the· Tracking Radar
Control Console (TRCC) operator who exer­
cises gross manual control over the radar sys­
tem directing the radar to scan the select~d
sector. Under these manual constraints thesys-

518 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

4102-S SPASEC
PENETRATION
PREDICTIONS

I. INTEGRATE RAW RADAR DATA
2. AUTOMATIC IDf TlFICATION
3. RADAR SYSTEM GUIDANCE

SPACE
TRACk

REQUIREMENTS

OPERATIONS· DIRECTOR
LMISSION PLANNING
2.ENGAGEMENT

TECHNIQUE

SIGNATURE
ANALYSIS

REOUIREMENTS

Figure 1. Operational System Organization.

tern is automatic and is controlled by the
4102-8 computer.

The raw data collected by the radar system
is processed and filtered by the computer. Data
identification, data quality and data consistency
checks are performed by the computer. The
program directs the radar in the gathering of
additional information and returns it to the
surveillance mode of operation when it is satis­
fied that no more useful data can be collected.
The TRCC operator then executes the next
phase of the plan.

The data flow in the operational program is
as follows (see Figure 2). As the radar scans
its assigned region of space, parameters of ob­
jects detected by the radar are stored in the
computer. These reports are compared on a
scan to scan to scan basis and are said to asso­
ciate if they might reasonably be expected to
have come from a single object. The associated
reports are combined and smoothed into an
approximation of target position and velocity
called a Q-point. When the program deter­
mines that no additional useful scan data is
available an attempt is made to identify the
object. Recognitio!l is made by comparing the
Q-point with predicted radar far penetrations
of known satellites. The orbital elements of
known satellites are stored in the computer
memory. Radar fan penetration or S-points are
computed in advance based on the radar scan

coverage and are stored in time ordered se­
quence. When a Q-point is identified its pa­
rameters are transmitted to the Central Data
and Cataloging Center via the Teletype link.
If no positive identification can be made the
Q-point is then subjected to discrimination
tests to determine if this object is a satellite.
Q-points failing discrimination are discarded.
Those which pass are tentatively identified as
uncorrelated objects and are tracked.

Identified objects are tracked based upon
either priority assignment or upon data valid­
ity tests. All objects to be tracked are com­
pared and the one with the highest track pri­
ority is designated. The program directs the
radar to the expected target position and con­
tinually up-dates this position until the radar
"I k" 1 oc s on or can no onger be expected to
acquire the object. If there are no more track
requests, the system returns to scan. After
"lock-on," an automatic radar hardware func­
tion, the radar sends track reports to the com­
puter which are smoothed to form Q-polnts.
The first of these is subjected to the same iden­
tification tests as the scan Q-point in order to
insure proper identification. This orbital infor­
mation is transmitted back to the Space Track
Center. The number of data points transmitted
and the length of track are dependent upon
the priority of the track mission and the limits
of the system.

4102-S SYSTEM

4102-8 Computer

The 4102-S is the most recent addition to
the 4100 series built by RCA, Van Nuys, Cali­
fornia. The RCA 4102-S is a 16-level, 30-bit
word length, parallel, binary, 2's complement,
fixed point, fractional, interrupt I/O, stored
program computer. The computer has 16 pro:'
gram counters and 96 full length index regis­
ters. An add instruction requires 19.2 micro­
seconds and a multiply 75.5 microseconds.

The prime requirements for the SP ASEC
system demanded that the computer be reliable,
binary, economical, and capable of communicat­
ing ,with the radar system in real-time. The
RcA 4102-S met the real-time requirements
with interrupt I/O as opposed to interleave
I/O.

With the interrupt processing method used,
a section of coincident current memory (CCM)
is set aside and designated as "executive stor­
age." This area is used by hardware to store
the program counters and the index registers.
There is an internal 15-bit register known as
the "flag register" which is examined each time
an instruction is executed. If a higher priority
level flag is set the program counter for the
higher level is accessed and a new instruction
sequence is begun. When a level is through
operating it may erase its own flag (suicide).

TELETYPE
INPUT

4102-S J ~

SATELLITE
LIBRARY

THE 4102-S SPACE TRACK PROGRAM 519

All levels may set any bit in the "flag register"
but the bit may be cleared only by the level
associated with the flag. With these set and
reset commands programs and external devices
can intercommunicate.

Interrupt processing uses the hardware level
control to accomplish input/output while tying
up main frame only a small portion of the time.
Each command and I/O instruction suicides
and the particular I/O device will set the pri­
ority flag when it is ready to accept or transmit
more data. This allows the program to proceed
normally, processing data and being inter­
rupted when I/O devices need servicing.

Economies in computer hardware were
achieved by the interrupt processing method,
by fixing point logic and medium speed cir­
cuitry. Effective computer utilization was real­
ized through the use of a simple assembly lan­
guage and fixed point coding.

4102-8 Configuration

In the 4102-S both program units and hard­
ware devices have been assigned priorities. The
level assignment is shown in Figure 3. The
hardware devices· are fixed priorities and are
arbitrarily assigned according to the maximum
allowable time lag between request and service
of the device. Hence the faster, "more impatient
devices have higher priorities. Input/Output
devices are associated with the first ten priori-

I RADAR SYSTEM I- I I
t

DATA SMOOTHING

PENETRATION COMPARATOR a TELETYPE
OUTPUT

(S-POINTS) DISCRIMINATOR

t
I DISCARD

I
REQUEST I TRACK

Figure 2. SPASEC Data Flow.

520 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

10
PLbiOIIItITIII
I~

• • 7
IE _ CIIIIK -IXTIMAU.Y
I 1IIATPlM. __ OILY 1'1111[__ I

Figure 3. SP ASEC Level Assignment.

ties; arithmetic overflow occupies the eleventh
priority and program units occupy the next five
priorities. The configuration is shown in Fig­
ure 4.

The real time interface is the computer's con­
nection with the real world. Through this in­
terface the computer receives information on
radar returns in the form of digital signals
representjng range, azimuth, elevation, doppler
and time. Radar system information messages
are also given to the computer through this
link. The computer can direct the radar to
release or to acquire a target. The communi­
cations are more complex than this but the end
results are as stated.

There are two magnetic tape drives, 7330's,
which are used in low density only. The data
rate of these units is 7.2 KC character rate. In
order to match the IBM tape format a blank
character is appended to or deleted from each
word transmitted between the 4102-8 and the
tape units. This results in a data transfer rate
of 833 microseconds per word. The tape units
are used for fast program load and historical
recording.

The line printer is an Analex 41000, capable
of printing 1,000 lines per minute. The printer
has a 64-character selection and a 120-charac­
ter line. There is a punched vertical format
control tape to allow program control of the
output. The printer is used to provide a hard
copy of the penetrations of the surveillance
sphere.

A model 28 Teletype is connected to the com­
puter through a special interface which can
recognize sequences of Teletype characters as
a request to start or end a message. The inter­
face may operate in three input modes mean­
ingful to the program: Automatic, in which
case the information is made available to the
computer directly from the tape punch heads;
Program control-the program attempts to
read the accumulated store of paper tape; read­
ing of each Teletype message is initiated by the
computer; Manual, the reading of the accumu­
lated store of paper tape is initiated by ena­
bling manual mode which must be reenabled for
each succeeding Teletype message. The inter­
face has two alternatives for Teletype output:
Automatic--data generated by the computer is
transmitted from the punch heads automati­
cally to the 8pacetrack Center and a back up
paper tape is produced. Manual-the computer
produces a punched paper tape which is trans­
mitted later manually. All Teletype output mes­
sages are printed on the Teletype line printer.

The Flexowriter is a standard 2 case, 5-bit
Baudaut code machine with read, write and
punch capabilities. The 4102-8 hardware gen­
erated load program selects the Flexowriter, so
initially the Flexowriter paper tape reader is
used to load a bootstrap program which will
load the operational program from a mag­
netic tape unit. After initial loading the Flexo­
writer reader is used to enter control messages
to the program. The Flexowriter typewriter is
used to print direction messages to the opera-

tor, equipment status messages and smoothed
radar data.

PHILOSOPHY OF PROGRAM DESIGN

SPASEC was conceived to be a single pur­
pose computer system as opposed to a general
purpose system. Its task was to fulfill the Space
Track mission twenty-four hours a day, seven
days a week.

Throughout the design, coding and develop­
ment phases of the program, particular atten­
tion was given to relieving operating personnel
of responsibility for determining detailed sys­
tem action and response. This design concept
which stresses completely automatic operation
is coupled with additional features to allow
manual direction and/or intervention. The
blending of operational flexibility and auto­
matic control has made this system adept at
gathering data for general and special purpose
missions. This has allowed an operation which
has significantly reduced the number of techni­
cal specialists necessary to conduct the most
complicated assignments.

The SP ASEC program is segmented and
planned in such a way that the operation can
continue ,yith reduced capability. If the Flexo=
writer is inoperable the Teletype will be di­
rected automatically to perfornl the Flexo­
writer output function in addition to its own.
If as much as half of core memory is inoperable

MAGNETIC
TAPE

THE 4102-S SPACE TRACK PROGRAM 521

the program continues relocated into the good
half. In this case the satellite identification
feature is lost. If the program is destroyed by
a transient signal or intermittent error the pro­
gram is quickly reloaded from magnetic tape.

The logic of the program and the system
assumes that any changes in operating mode
due to manual intervention are correct unless
such changes are of such a nature as to physi­
cally damage the radar. If any procedure is
unexpected the program will notify the oper­
ating personnel of such change by specific
English reference to what has occurred (e.g.,
TRACK DENIED, RADAR INOP(erable),
TRACK MODE). System malfunction is deter­
mined quickly and operator intervention is con­
firmed.

It was realized that with time, as additional
operational requirements become known, pro­
gram changes would be required. The actual
requirements for changes which are being im­
plemented attest to the validity of this concept.
Based on this, features were incorporated into
the program to facilitate modification, debug­
ging and historical recall.

Historical recording is closely allied to the
debug features within the SP ASEC program.
These features are used for program mainte­
nance, system and hardware debugging as well
as special studies. Access is allowed to the pro-

MAGNETIC
TAPE

REAL TIME LINK

4102-S

PRINTER
1000

LINES/MIN
TELETYPE

PUNCH
READ
PRINT

32,000
CCM

Figure 4. 4102-S System Configuration.

FLEXOWRITER
PUNCH
READ
PRINT

522 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

gram and its data in real time or off .. ,Iine modes
of operation.

PROGRAM ORGANIZATION

Initialization

The 4102-S is paper tape oriented, which for
small programs is not unwieldy. For the
SP ASEC program a bootstrap procedure is
used. The program is assembled on another
computer with card I/O and brought to the
4102-S on a low density binary tape. This mag­
netic tape is then loaded under control of a
small paper tape program loaded through the
Flexowriter.

An integral part of the SP ASEC program
is the ephemeris file, a file which is constantly
being changed. In order to reflect this change
a new program tape is written during initiali­
zation and is positioned to receive changes to
the ephemeris file. Each day a new tape is
generated which is used for input on the next
day. To enhance the reliability needed for an
operational system, the program can be quickly
reloaded· from the next-days. master without
destroying any of the above capability.

Real Time Data Handling

The interrupt cycle occupies the highest pro­
gram-priority (see Figure 5), that is, program­
priority as opposed to the priorities assigned

II
DOCRIII.NATION

• TltACK .tISI8NIIENT
PROGRAII

. 12
SCAN.~

PReleRAIl

II
INTERRUPT

CYCLE
PWOeRAM

10
MITHIIETIC

OVEltFl.OW

to the hardware devices. The duty of the in­
terrupt cycle program is to act as an executive
routine and clearing house for other sections
of the program that communicate with the real
time interface or are concerned with real time.
The rationale for this is that the communica­
tion with the real time interface must be done
at certain times within the radar pulse interval
and to avoid confusion it was advisable to have
one section of program control the data flow.
This section must be executed periodically,
hence the high priority level. The interrupt
cycle is activated as a program once per radar
pulse interval, therefore, it is well suited to
update timers and in general furnish the pro­
gram with a pulse. Periodic entry to lower
priority levels is effected through this pro­
gram.

Since the radar system can be in track or
scan but not both, data processing is performed
on the same level by two mutually exclusive
programs. The scan portion of the program
looks at returns from two complete scans and
attempts to associate the various returns. The
data that the scan program has access to con­
sists of "end of scans" (EOS) and scan re­
ports. When reports from two consecutive
scans are believed to be from the same object
they "associate." Association of reports is not
attempted until a configuration of the type de­
scribed in Figure 6 is attained. The only items
of interest are the reports between EOS#K

I
... lIme TAN 110

I
..... ETIC TAP!: 110

4 .
AVAILAILE

• LINE I'RII.TD

Figure 5. SP ASEC Program Organization.

and EOS# (K +2). The reports between
EOS#K and EOS# (K + 1) are reports that
represent data on an object for one scan and
reports that represent smoothed data of more
than one scan. The data between EOS# (K + 1)
and EOS# (K +2) represent current reports
which mayor may not associate with data be­
tween EOS#K and EOS#(K+1). When it is
determined that there is no data to update a
previously smoothed data report, the cumula-

Table I.

Program Communication

Flag

(1) Magnetic Tape I/O.

(2) Magnetic Tape I/O.

(3) Real Time. Interrupt.

(4) start Message Output'

(5) Compare Datal

(6) File Error Message!

(7) File Error Message!

(8) File Error Messagel

(9) FUe Error Messagel

(10) File Error Messagel

(ll) start Penetration Calculationsl

(12) Cycle Through I/O Devicesl

(13) Check For Data To CompareJ

(14) Smooth Datal

(15) Printer Control

(16) Teletype Input Control

(17) Teletype Output Control

(18) Flexowri ter Input Control

(19) Flexowrl ter output Control

THE 4102-S SPACE TRACK PROGRAM 523

tive information on this object is given to a
track decision routine for further action (see
Figure 7).

Smoothed scan reports (scan Q-points) are
developed from weighted radar parameters
(range, doppler, azimuth, elevation, time and
credences). Additional parameters are devel­
oped from this base data such that a final scan
Q-point contains range, range rate, range ac­
celeration, azimuth, azimuth rate, elevation,
elevation rate, time and an accuracy index.
Q-points generated from scan data and initial
track Q-points are compared with the ephem­
eris file (S-points) by the comparator program.
The results of the comparison test yield one of
the following results: fine, passed comparison
within close time and position tolerances;
coarse, passed comparison within broad time
and position tolerances; coarse, tentatively
identified with more than one object; uncorre­
lated, object unidentified.

Uncorrelated object Q-points are processed
through discrimination tests which are de­
signed to determine if the object is a satellite.
These tests are based upon energy considera­
tions and are designed to eliminate meteors,
the moon and noise. Q-points which pass these
tests are placed on a tracker waiting line and
are tagged uncorrelated. Those which fail are
discarded as being of no interest.

Each object on the tracker waiting line has
associated with it a track priority. This pri­
ority is a function of the object identification,
data age, and probability of detection. The pro­
gram selects the object with the highest track­
ing priority and attempts to track for a period
of time based ppon the track criteria.

To automatically track an obj ect the program
directs the radar to a point along the object's
path slightly ahead of the object. This desig­
nation message is transmitted to the radar sys­
tem through the real time interface causing
the radar antenna to be directed to a point in
space. For a short period of time the object's
path can be described as a second order curve
in each of the radar's parameters. The six
Q-point parameters are used to find values for
the second derivatives of range, azimuth and
elevation.

C3 C4

- AI. A2 -- I-
EOS# K+I

AZ 180
TIME TO

DIRECTION OF SCAN

90
TO+ TI

180
TO+T2

SCA. IP)[IS DEI'IlIBD TO BE BETnEK EO HI: An EOS#()[+l). TO SUBSCRIns UPUS.K'l
TBB .UlInR 01' COKS.CU'l'IVB SCUI I'OR nICB 'fBIS OBJECT BA, APPBAUD. ALL OBJI:C'l
R.PRBSEKTATIOKS ARB AOORBOAor. SUlIS 01' TO DATA OK 'fBIS OBJI:CT.

A2 ASSOCIA'lBS YI'lB AI. SIKeE TBIS IS TO I'IBST ASSOCIATIO. lI'I'lB Al STORACD II
APPROPRIA'lBD IK nICB TO DBP TO AOOUOA'lB SUlI 01' A'S PARADft.S.

Be IS AN OLD OBJBCT nICB DO.S KO'l APPBAR IK SCAK #)[+1. 'fBIS OBJBCT IS OInK
on. TO TBB TRACI: DBCISIOK ROU'rIKB.

C3 IS AK OBJ.C'l nICH BAS AK UPDA'lB. C" IS ADDED TO Cs An NO OTBBR ACTIOK IS
TADK.

D1 IS A 011' OB.TJ:CT IK TO I'A. An KO ACTIOK IS TADK. TRIS conBS ALL TO DATA
COnI'll OKS COKC.RKIKO REPORT ASSOCIATIOK.

J:t'igure 6. lC.eport Association.

The designation point is current time plus a
half second and is valid for one second. If the
object is not detected, a new designation point
is computed. This procedure may continue for
thirty seconds. If the object is detected, the
radar automatically "locks-on" to the object
and the track is begun.

Track data is smoothed using unweighted
arithmetic means with least squares fits to
develop the rates. The final track Q-point con­
tains range, range rate, azimuth, azimuth rate,
elevation, elevation rate, average angular cre­
dences and orbital elements consisting of incli­
nation, period, semi-major axis, eccentricity
and right ascension. The track Q-point pres­
ently is developed from 10 seconds of radar
data.

A "cast out" routine was developed to limit
the transmitted data to representative portions
of the track. At termination of track this rou­
tine produces 3 Q-points if a short track and
10 if a long track. In the case of a long track
the Q-points will be as equally spaced as pos­
sible throughout the entire time interval. The
track program examines the reports and will
terminate the track if the radar antenna should
attempt to enter unavailable regions in the
sphere of surveillance. For a short track the
program terminates when three track Q-points
have been developed.

Penetration Computations
The S-point file is generated from the set of

current orbital elements contained in computer
memory. Satellite elements, radar site coordi­
nates, radar sector, and time period of interest
are used to compute predictions. Non-penetrat­
ing satellites are quickly rejected from con­
sideration based on tests of the satellite's in­
clination and time of horizon passage.

There are five types of penetration schedules
available to the operations director to preplan
missions. The five penetration requests are:
1, penetrations for all objects ordered by time;
2, penetrations for all objects ordered by satel­
lite number in increasing order; 3, penetrations
for a priority class of objects ordered by time;
4, penetrations for a priority class of objects
ordered by satellite number; 5, look angles, a
series of penetrations of a single object sepa­
rated in time between two elevations.

When operating in real time, penetrations
(S-points) are automatically generated for all
azimuths at a specified elevation and filed for
use by the comparator program. The file al­
ways contains one penetration interval, nor­
mally 40 minutes ahead of the current time.
When S-points become more than six minutes
old, they are automatically deleted. This allows
continuous operation with no loss of S-point

storage. The S-points are printed after the
computations for an entire interval are com­
pleted. When a print request is received in
real time, the real time S-points are deleted and
the print request is honored. Upon completion
of that printing, the real time S-points are au­
tomatically regenerated and printed.

I/O Control
The prime considerations in the design of the

I/O control program were ease of use and
movement of data at the; acceptance rate of
each device. The input/output control routine
communicates with each of the following I/O
devices, magnetic tape units, Flexowriter,
Teletype and line printer. This master control
routine is responsible for scheduling each of
these devices based on availability, speed of
operation and message priority. For output the
user program notifies the I/O routine through
a calling sequence which specifies the I/O de­
vice, the address of the data and the type of
message. . -From the point of view of the user
program the data is considered transmitted to
the output device after the calling sequence has
been executed. In reality the request is stacked

I i SATELLITE RADAR

I I LIBRARY REPORTS
TELETYPE

_f t
PENETRATION

~ COMPUTATIONS
Q-POINT

FLEXOWRITER
S-POINTS

FORMATION

t I
SCAN • -

NO COMPARISON
HARD COpy

~ OF Q-POINlS TO
OESI~EO S-POINTS

"YES

LINE MATCH
PRINTER

II

SETUP FOR YES
IS THERE A

REAL TIME TRACK a DIRECT f-4-
REQUEST TO

LINK RADAR TRACK THIS
TO TRACK OBJECT

t
SET Q-POINT DID Q- POINT YES HAVE A FINE

TELETYPE ~ a ID FOR ~ COMPARISON
TRANSMISSION WITH S- POINT

THE 4102-S SPACE TRACK PROGRAM 525

and will be processed when the device is avail­
able.

For input the entire transfer of information
is automatic and no processing is done on any
message until the transfer is complete. The
message is identified, converted and delivered
to the responsible routine. This is accomplished
by flagging the proper sub-program and giving
the location of the data. Movement of large
blocks of data is eliminated through use of sim­
ple list techniques. Only references to data are
communicated between sub-programs.

Real time I/O is treated similarly but inde­
pendently of the main I/O control program to
assure minimum response time.

Data Manipulation Techniques
Data handling in this program makes use

of simple list structures, e.g., chained lists, and
key buffers referencing lists. Nearly all sec­
tions of the program work with chained lists.

In our application list structures have served
several purposes. Lists are used to give items
an effective consecutive order, regardless of

H i
REAL TIME I LINK

~ 1ST Q- POINT ~N~
COLLECT

Q-POlNTS FOR ~ TELETYPE
ON THIS OBJECT TRANSMISSION

JYES

~~ TRACK
~ - YES

OATA

t NO
SATELLITE

SATELLITE
SET UP FOR LONG

REAL TIME
~ TRACK a DIRECT ~ DISCRIMINATION

RADAR TO TRACK
LINK

t NON - SATELLITE

RECORD a
DISCARD
Q-POINT

SET UP FOR
NO SHORT TRACK

~
REAL TIME - a DIRECT RADAR LINK

TO TRACK

Figure 7. Detailed Data Flow in the SPASEC Program.

526 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

core location. They allow access to a large
amount of data through a single reference.
Lists are a convenient way to have several pro­
grams use common storage. They are time sav­
ing when large blocks of data are to be trans­
ferred among programs. Lists save storage
when several routines of high peak storage re­
quirement, at staggered times, can use a com­
mon storage. Instead of having to assign stor­
age for the worst case for each of the pro­
grams, memory is assigned on the basis of the
overall requirements.

It should be noted that it is not necessary to
achieve sophistication in list structures to make
use of them. List structures can be pro­
grammed in varying degrees of complexity
tailor-made for the particular program. In
programming for the Space Track mission, list
processing was found to be efficient in terms of
space and time and was a convenient way to
visualize data transfers.

SYSTEM GROWTH

As with any experimental system certain
growth can be expected in the hardware con­
figuration and in the sophistication and diversi­
fication of the programming effort. This ex­
pansion may be divided into two categories:
that which is presently being implemented and
future planning. Present implementation in­
cludes transmission of pointing data in real
time to a narrow beam, short range radar in
Baltimore, Maryland. A high-speed (2400-
bits/sec.) data link will provide communica­
tions. This service may be expanded in the
future to provide similar data to other sites.
Push button input for control of program op­
tions is under development. This will allow
operations faster response to requests. Pro­
gram changes are being installed to allow auto­
matic recognition of radar coverage changes
and to recompute S-points based on this new
sector.

Plans for future improvement and growth
include: additional storage for system enhance­
ment; card reader/punch; displays. This addi­
tional storage would allow an expanded ephem­
eris file when the known satellite population
becomes much larger than the present 400 ob­
jects, and would be used to store different pro­
duction programs which would time share with
the operational program. A card reader and
punch would allow a desirable re-orientation
of our present paper tape system. A displays
facility with computer control of a slide pro­
j ector would allow a concise picture and quick
human identification in most cases.

CONCLUSION

The 4102-S SPASEC program has proved
itself to be a flexible and reliable satellite sur­
veillance program. Working as part of the
Moorestown Space Track facility it has demon­
strated its ability to identify satellites and
direct the radar system in the collection, reduc­
tion and forwarding of data. The use of this
program has enhanced the operations of the
Space Track mission and made this site one of
the network's more important members.

ACKNOWLEDGMENT

J. F. Russell assisted with the preparation
of the material presented herein.

BIBLIOGRAPHY

1. E. T. GARNER and J. F. RUSSELL, "Descrip­
tion of the 4102-S Space Track Program,"
SPA-1100-2, July 19, 1963.

2. E. T. GARNER, "List Processing Techniques
U sed in the BMEWS Engineering Model
Building Space Surveillance Program," pre­
sented at Information Processing Sym­
posium, RCA, Princeton, New Jersey, Octo­
ber 1963.

3. J. A. CORNEL, "The RCA 4100 Series
Military Digital Computers," RCA ENGI­
NEER, Vol. 8, No.6, April-May 1963.

A HYBRID COMPUTER FOR ADAPTIVE NONLINEA.R

PROCESS IDENTIFICATION
Rob J. Roy

Rensselaer Polytechnic Institute
Troy, New York

and

Bruce W. Nutting
Burroug hs Corporation

Paoli, Pennsylvania

INTRODUCTION

The physical processes which exist are, for
the most part, controllable. In order for man
to exert control over these processes, however,
it is necessary for him to design a system to
suitably perform this task. Such a design
requires a characterization of the process to be
controlled.

Often the characterization of a process can
be determined from the physical principles
involved in the process behavior. This has been
true for most of the control systems designed
in the past. As man seeks to control more
complicated processes, however, it is found that
either many processes are extremely difficult
to physically characterize, or that the charac­
terization is too complicated to use in the
determination of a suitable control system. For
a complex process of high order with several
nonlinearities, there is no procedure which can
accurately obtain all the process parameters.
Fortunately, however, there is no reason for
obtaining all the process parameters and all
the nonlinear functionalities.

The basic question of process identification
is cause and effect. For a given cause, what is
the effect? For example, in order to control

527

human response, it is not required that the
complex nerve and brain structure be known.
The only practical method would be to observe
a series of causes and effects, and from this
data infer the proper cause to produce a
desired effect. Not only is this procedure prac­
tical, but it is adaptive as well. If the cause­
effect relationship changes, the observer is
made aware of this fact. Parameter tracking
for a structure as complex as a human being
would be· absurd. I t is equally as absurd to
track the parameters of a tenth order nonlinear
process.

For these reasons, a relatively simple and
straightforward method of relating process
inputs and outputs is necessary. This method
shQuld be suitable for nonlinear, as well as
linear, processes. Furthermore, the process
characterization should adaptively follow proc­
ess changes due to such things as changes in
environment. Since special test signals result
in a disturbance of the process outputs, they
should not be required to characterize the
process.

It should be noted that for control purposes
one is interested in determining an input to
produce a desired output. It is important to

528 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

realize this does not mean it is necessary to
determine the process transfer function or
describing function, or differential equations,
etc. In fact, some of the above mentioned types
of characterizations are not applicable to many
processes of interest.

This paper is concerned with those processes
which have a two-level switched input and finite
settling time. The importance of the switched
two-level process has its foundation in the
utilization of predictive control as a practical
solution to least time optimization problems.1

-
9

Chestnut et al. indicate significant applications
for predictive control in space navigation and
rendezvous missions, aircraft landing problems,
and the control of chemical plants.4 The process
identification concepts presented in this paper
are ideally suited for predictive control appli­
cations.

THEORY OF THE MODEL

The hybrid computer model was designed for
predictive-adaptive control systems. The model
has a switched two-level input signal, which
for convenience will be called the zero and one
levels. The only a priori knowledge of the
process which is required is an estimate of the
settling time of the process, and the fact that
this settling time be finite. The requirement of
an estimate of the settling time of the process
is needed to provide rapid identification of the
process. This requirement can be removed, and
the model can be made to adapt to the settling
time of the process. However, even though the
process may be nonlinear and only the input­
output operating record is available, it is rea­
sonable to assume that the range of the settling
time of the process is known.

The theoretical basis for the model is the
work of Wiener and Bose. The classic theorem
of Wiener10 states that any nonlinear system
which has finite settling time can be character­
ized by a multiple output linear system which
characterizes the input past, followed by a zero
memory nonlinear system.

The multiple output linear system used by
this model is an n-1 stage shift register. If the
binary input is fed into this shift register, the
n outputs (including the present input) will
approximate the input history for the past

(n-1)T time units, where T represents the time
interval between shift pulses.

The zero memory nonlinear system performs
a nonlinear transformation of the n outputs of
the shift register into the output of the model.
Thus, the model can be viewed as a sequential
machine with 2n states, where the states are
defined by the n outputs of the shift register.
The output of the model is a function of the
present state of the model. An example of this
is shown in Figure 1. This sequential machine
has four states, the states of the machine being
defined by the past two inputs to the device.
The output of this device is a function of the
present state Si. If the state Si is defined as a
switching function, being one when the device
is in state i and zero otherwise, then the output
of this sequential machine can be written as

,3

Z(t) = ~ Ki Si (t) (1)
i = 0

Z (t) = model output

Extrapolating this simple model to a sequen­
tial machine with 2n states, then

:!n - 1

Z(t) = ~ Ki Sj (t) (2)
i = (I

The model output Z (t) is equal to Ki when
the model is in state Si. Since the machine can
be in only one state at any given instant in
time, only one term of the summation of Eq. 2
is non-zero at any given time.

If the true output of the process is y (t),
then it is desirable that the Ki be adjusted
such that the mean square error between the
true output y (t) and the model output Z (t)

OUTPUT=K1

Figure 1. Sequential Model.

A HYBRID COMPUTER FOR ADAPTIVE NONLINEAR PROCESS IDENTIFICATION 529

be minimized. The following function must
then be minimized, the bar indicating an infi­
nite time average.

E = (y(t) - Z(t»2 = (y(t) ~Ki Si (t»2
i

(3)

Taking the derivative with respect to a dummy
term Kj3

oE

oKj3 - 2(y(t) - ~Ki Si(t» (-Sj3(t» (4)
i

Since the states are disjoint in time, the product
of the switching function~ Si (t) Sj3(t) is zero
except when i = f3. Since the switching func­
tion Sj3 (t) is either zero or one, the product
Sj3(t) Sj3(t) is equal to Sj3(t). Therefore,

~ = (-2) (y(t) Sj3(t) - Kj3 Sj3(t» (5)
aKj3

If Eq. 5 is set equal to zero, then the coefficient
Kj3 is found to be

y (t) Sj3 (t)
Kj3= __

Sj3(t)
(6)

The coefficient Kj3 can be interpreted as
representing the average value of the true out­
put y (t) when the sequential model is in state
Sj3. If the process is slowly time-varying, then
Kj3 should be a function of time, such that the
model follows the time variations of the process
with minimum mean square error.

For control purposes it is desirable that the
model have the capability of predicting future
values of the process output from the knowledge
of the present state of the model. This capabil­
ity can be expressed as follows,

Z(t) = ~K~ +kT Sj3(t) z y(t + kT) (7)

(:3

where kT represents the prediction time. The

superscript t + kT indicates that K~ + kT is the
predicted value of the process output kT units
in the future. Following the same procedure as

used to find Kj3, the coefficient K~ + kT is found
to be

K; + kT = y(t +~ Sf3(t) (8)

Sj3(t)

Since it is impossible to know the future out­
put of the process unless the future input is
known, the best that can be done is to assume
stationarity in both the process parameters and
the input statistics.

Under these assumptions, the coefficient
t + kT

Kj3 can be expressed as

K; + kT = y(t) Sj3(t - kT) (9)

Sj3(t - kT)

This expression for the prediction coefficient
can be implemented with a shift register of
n + k - 1 stages. The prediction coefficient is
obtained by associating the present average
process output with the state corresponding
to the last n outputs of the shift register (taps
k through k + n - 1). When that state next
appears at the first n outputs of the shift
register (taps 0 through n - 1) the model
remembers what the average value of the
subsequent output was when that sequence
appeared previously, and predicts this value
for the future model output. Essentially, this
prediction is the conditional mean of y (t + kT)
given the particular state Sj3 (t). The implemen­
tation is shown in Figure 2. The average value
of the present output can be used as the identi­
fication coefficient Ka associated with state Sa,

or as the prediction coefficient K~ + 5T associated
with state Sj3.

The preceding discussion describes the basic
theory of the identification procedure. Since
the purpose of this paper is to describe the
hybrid computer which was designed from this
basic viewpoint, the theoretical details of model
error, identification time, etc., are omitted.
These points are adequately discussed in Ref­
erence 11.

For the purposes of this paper, it is sufficient
to state that if the minimum mean square error
of identification is given by E min, then the
average value of the additional mean square
error introduced by having only a finite input­
output operating record is given by 11M E mi1u
where M is the number of times each state has
occurred. Thus, the additional MSE due to a
finite operating record is no more than 11M
E min, if each sequence occurs at least M times
in the record. Consequently, the mean square
error caused by having each state appear only

530 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

NONLINEAR
PROCESS

I" Sea. (t)

ANALOG­
DIGITAL

S~(t-5T)----II~~I

MEMORY

PREDICTED
OUTPUT
Z(t+KT)

Figure 2. General System Diagram.

once is at most twice the minimum mean
square error.

Since the minimum mean square error can
be made extremely small by increasing the
~engt~ of the shift register (increasing n), the
IdentIfication using this technique should be
quite good.

Before passing to the discussion of the design
of the process identifier, there are two points
of practical interest. The first point is that
although there are 2n possible states which may
occur in the theoretical model, practical con­
siderations will limit the number of states that
the actual model will experience. For a practical
control system, the input will probably not
switch n times during the process settling time.
Some studiesll

-
12 on a ten tap system have

shown that it is reasonable to expect that no
more than 200 different states will occur
although the specific states which do occur ar~
not known. This important observation reduces
the required memory capacity considerably.
The second point is that knowledge of the proc­
ess input in the immediate past is generally of
more importance in determining the present
process output than inputs which occurred
some time in the past. Therefore, it is advisable
to have the capability of tapering the outputs
of the shift register. That is, spacing the first
few shift register outputs closer timewise than

the last few shift register outputs. This is
accomplished by increasing both the length of
the shift register and the shifting frequency by
a multiple of two. A typical example of taper­
ing is shown in Figure 3.

COMPUTER DESIGN

The basic components of the hybrid computer
are the input shift register, the main memory,
analog-to-digital and digital-to-analog convert­
ers, and an analog weighting and averaging
~ection. See Figure 4. The input shift register
IS used to store the present input sequence to
the process. The main memory is a converted
IBM 650 magnetic drum, and is used to store
the past input sequences Sa, the associated
coefficients K a , and a weighting number which
indicates the number of times that a particular
sequence has occurred. The analog section is
used to find the average process output over
the time that a particular sequence appears.
This average value is combined with the appro­
priate coefficient K(3 and weighting number to
form the new coefficient K(3. The analog-to­
digital and digital-to-analog converters provide
the required interface between the analog and
digital portions of the computer.

The input shift register, used to form a tem­
pora~y storage for the binary process input,
consIsts of 20 flip-flops. The shifting frequency

A HYBRID COMPUTER FOR ADAPTIVE NONLINEAR PROCESS IDENTIFICATION 531

UNIFORM LINE

TAP 0 2 3 4 5 6 7 8 9
TIME DELAY 0 T 2T 3T 4T 5T 6T 7T 8T 9T

TAPERED LINE

TAP 0 1 2 3 4 5 6 7

TIME DELAY 0 t T 3J 2T 3T 4T 5T

Figure 3. Tap Arrangement.

8
7T

I
I
9
9T

(input clock) is determined by the settling
time of the process being observed. The input
and input past are taken from the shift register
at 10 points (via a patch board), and these 10
points are used to form an address ("predict"
address). The drum memory is searched for a
coincident address, and if one is found the in­
formation and weighting number associated
with that address are placed in registers. A
digital-to-analog conversion is performed on
the information, and this analog signal is com-
bined with the process output in a ratio deter-
mined by the weighting number. An analog-to­
digital converter produces the binary equivalent
of the analog signal formed by the weighted
combination mentioned above. If the weight­
ing number has not reached a preset limit, it
is increased by one, and both the new weighting
number and the information from the analog-­
to-digital converter are placed in memory at the
coincident address. Each memory location con­
tains 10 address bits (the sequence Sa), 6
information bits (the coefficient K a), 4 weight­
ing number bits (the number of times Sa has
appeared), and a check bit which indicates
unused memory locations.

If the outputs of the 10 taps form an address
which has not been observed before, the ma­
chine analog output and the process output are
combined in a 0: 1 ratio and the weighting
number is set equal to 1. The information from
the analog-to-digital converter, the weighting
number, and the new address are all placed in
memory at a previously unused position.

A second group of 10 points is taken from
the shift register (via the patch board) to form
the model output address ("identify" address).
A second coincidence circuit searches the drum
for this address, and if coincidence occurs the
information associated with the model output
address is placed in a second register. The
digital-to-analog conversion of the information
in this register is used as the model output.
The weighting number associated with this
information is not used at this time.

If the "predict" and "identify" addresses are
taken from the same 10 taps of the shift regis­
ter, the model output will identify the process
observed. If the "identify" address is taken
from a group of ten taps which are of the same
configuration as the 10 taps of the "predict"
address, but located closer to the start of the
shift register, the model output will predict the
process observed.

The analog section of the model consists of
four operational amplifiers. Two of these opera­
tional amplifiers are used for the output of the
digital-to-analog converters. One amplifier is
used to perform the averaging of the process
output over the time interval T, and one ampli­
fier is used to perform both the weighting of
the present process output with the stored coeffi­
cients and the sample and hold function re­
quired for the analog-to-digital converter.

The process averager is an integrator which
is sampled and reset to zero once each cycle. If
the time between input clock pulses is T, then
the average of the input voltage over one cycle

T

is: eam". = ~ f einput dt. The equation of the

integrator (assuming zero initial conditions)

T

is: eoutput = - _1_ f einput dt. Therefore, RC is
RC

set equal to T. The reset time of the integrator
(1 millisecond) is negligible compared with the
values of T to be used (of the order of 0.4
second) .

The two digital-to-analog -converter blocks
marked DAC in Figure 4 serve to connect an

532 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

AVERAGE

Figure 4. Detailed System Block Diagram.

input reference voltage to the input of an opera­
tional amplifier through a variety of resistances.
These networks are arranged such that when
they are connected to the input of an opera­
tional amplifier with a 10,000 ohm feedback
resistor, the amplifier output will vary from 0 to
10 volts in 64 steps corresponding to the 64
possible binary numbers in the digital-to-analog
converter register. Note that a 5 volt bias sig­
nal is added to each DAC amplifier input to
change the 0 to 10 volt output to a ± 5 volt
output. This will cause the binary number 32
in the DAC register to be equivalent to an
analog output of zero volts.

The two digital-to-analog converters have op­
posite polarities. The DAC No. 2 unit which
produces the model output is connected for a
positive or "correct-polarity" output. The DAC
No.1 unit produces an "inverted-polarity" out­
put. Since the process output has also been
inverted (by the process averager), these two
signals are weighted and added directly. The
sample-and-hold amplifier will invert the
weighted sum, causing a "correct-polarity" sig­
nal to enter the analog-to-digital converter.

The weighting unit is a resistor and reed
relay network controlled by digital logic. This
network is designed such that when it is con­
nected to an amplifier with 10,000 ohms feed­
back resistance, the output of the amplifier will

be e + Xe' where e is the signal from the proc-
1 + X

ess averager, e' is the signal from the DAC
No.1 amplifier, and X has integer values from
o to 15 depending on the binary number in the
weighting register.

The amplifier which is used to perform the
weighted addition also performs a sample-and­
hold function. The 0.1 microfarad feedback
capacitor will cause the circuit to remain at a
given voltage when the "hold" relay is opened.
This is necessary in order to present a constant
voltage to the analog-to-digital converter cir­
cuit during conversion. Note that a 5 volt bias
is added to the input of this amplifier to con­
vert the ±5 volt inputs to the 0 to 10 volt out­
put which is presented to the analog-to-digital
converter. The analog-to-digital converter uses
the 0 to 10 volt analog input to produce a 6 bit
binary output. Again it should be noted that
because of the bias employed, the binary output
number 32 actually represents a zero volt signal.

The memory element of this computer is a
modified IBM 650 magnetic drum memory. The
modification has been such that instead of the
one head per track formerly used, there are
42 tracks available with three heads per track.
The three heads on the modified tracks are used
for read, bias, and write.

The method of recording used is non-return­
to-zero. The bias head continually records a
"zero" on a given track, and the write head
then records a "one" over the "zero" if it is on,
or allows the zero to remain if it is off. The
read head detects changes between the "one"
and "zero" states as positive and negative
pulses, which are used to set a flip-flop to either
the "one" or "zero" state, corresponding to the
information recorded on the drum. The mem­
ory is of the circulating type in that the infor­
mation must be read and rewritten each time
the drum makes one revolution.

Only 22 of the tracks on the drum are used
in the machine (the drum originally contained
over 200 tracks; the modification reduced this

A HYBRID COMPUTER FOR ADAPTIVE NONLINEAR PROCESS IDENTIFICATION 533

number to around 140, with 42 of these being
accessible from three different heads). Twenty­
one of the 42 three-head tracks are used for
information storage, and a timing track is used
to generate clock pulses at a 125 Kilocycle rate
(this pulse rate is divided in the timing logic,
so the machine clock frequency is 62.5 Kilo­
cycles) .

It takes approximately 3.85 milliseconds for
information to pass from a position under the
write head to a position under the read head.
Both the clock frequency and the time necessary
for the drum to complete one cycle (from write
head to read head) depend on the drive motor
speed (nominally 12,500 rpm) and will vary
somewhat, but one cycle will always contain
240 clock pulses-one clock pulse for each stor­
age location.

Each word in the memory is stored in three
parts, which are available at consecutive ma­
chine clock times. First there is a check bit
(bit 21) which indicates the presence of a word
on the drum as opposed to an unused memory
position. Following the check bit by one bit­
time is the address (bits 1 through 10) which
represents a particular shift register pattern
(as observed via the patch board). One bit~time
later the information (bits 11 through 16) and

the weighting (bits 17 through 20) are avail­
able.

The front panel of the completed machine is
shown in Figure 5. Side views of the machine
(just prior to completion) are shown in Figures
6 and 7.

TESTS AND RESULTS

In order to check the capabilities of the model,
several test systems were programmed on a
PACE TR-I0 analog computer. The systems
used are shown in Figure 8. The input to all
systems was a pseudo-random binary function
(limits were set on the rate of input switching).

A four channel Sanborn recorder was used
to observe the input, the systems, and the
model. All binary inputs were between the
levels of -+ 10 and -10 volts throughout the
test. Attenuators were used to reduce the sys­
tem outputs to --+-5 volts.

Figure 9 shows the results of modeling a

simple ~ system (system No.1). An input
s + 1

clock rate of 2.5 pulses per second was used,
with a minimum of ·2r input clock pulses per
bi:r:-ary input change. The weighting limit was
set to 15. It can be seen that smoothing the

• • iI, >l ... - ~ • -.. "" ...-

• ~ .. 0' ~ ~ ~.

, ~ , ~ • j • ~ , §

., .. ~...... ~... .. ~

" .. , .

Figure 5. Front Panel of Computer.

534 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 6. Right Side View of Computer.

10
model output (through a transfer func-

s + 10
tion) helps create a better looking output, but
induces a slight delay in the model output.

Figure 10 shows the result of modeling the
more complex system formed by following the

~ function with a nonlinear element (sys­
s + 1
tern No.2, Figure 8). The same input conditions
and machine limits as above were used.

Figure 11 and Figure 12 show the use of
prediction to compensate for the delay caused
in the model output smoothing circuit. The

-1
system observed is composed of a -- func­

s + 1
tion and a nonlinear element followed by a

-1
second -- function (system No.3). A 2.5

s + 1
pulse per second input clock was used with a

minimum of 8 clock pulses per binary input
change. A weighting limit of 15 was employed.
In Figure 11 the model is identifying the sys­
tem quite well, but a rather large error is pres­
ent due to the delay in the model smoothing
circuits. In Figure 12 a 0.8 second prediction
is used to compensate for this delay, and the
error in this case is much smaller than before,
being caused primarily by fast variations in
the system which are represented by an aver­
age value at the model output.

Figure 13 illustrates the action of the model

in identifying the ~ transfer function (sys-
. s+1

tern No.1) when the input binary function is
allowed to change every 2 input clock pulses.
An untapered delay line, weighting limit of 15,
and 2.5 pulse per second input clock were used
in this test. A 0.4 second prediction is used to

Figure 7. Left Side View of Computer.

A HYBRID COMPUTER FOR ADAPTIVE NONLINEAR PROCESS IDENTIFICATION 535

MODEL
OUTPUT

~6 SYSTEM

-10 +10 No.2

-6

SYSTEM
No.3

...... -------- SYSTEM

~
6

-10 +10

-6

SYSTEM OUTPUT------l

No.1

SYSTEM
No.4

ERROR

1-----+---'----SMOOTHED MODEL OUTPUT

Figure 8. Test Systems.

offset the delay caused by model output
smoothing.

Figure 14 gives the results of modeling a
system with a large amount of hysteresis (sys-
tern No.4, Figure 8).
input clock is used with a minimum of 4 bits
per binary input change. A prediction of 0.4
second is used to compensate for smoothing
delay. The weighting limit was set to 15. All
of the waveforms shown in Figures 9 through
14 were taken after a 60 to 120 second learning
period.

Figure 15 illustrates the use of the machine
as an adaptive model. The system observed in
this case was abruptly changed from system
No.1 to system No.3. These systems differ
not only in general output waveforms. but are

Figure 11. No Prediction-System No.3.

Figure 9. Identification-System No.1
Figure 10. Identification-System No.2.

also of opposite polarity for a given binary
input. An input clock frequency of 2.5 pulses
per second was used, with a minimum of 8
bits per binary input change. A 0.4 second
prediction was used to compensate for smooth~
ing delay. A weighting limit of 2 was used so
that the model could adapt quickly to the
changing system. Although the error does not
reach a minimum in the short record shown,
it is obvious that the model is adapting very
quickly indeed to the abruptly changing system.

SUMMARY AND CONCLUSIONS

The concept of using a synchronous sequen~
tial machine to model a continuous nonlinear
l'H"At>OC!C! <:lnnO<:ll"C! tA ho rillito llC!ofnl rrho lYI()nol
1-'..J...v"",,,,,,,),,,),,,:;, ""'P..t-''-'CAlJ..U V'\J ,...., '1.'-"L..LV'-' "-'S.J>...1'-'..L.&...L.L""L'-'''-'S.

which was constructed for processes which
have a switched two-level input performed
quite well both in the identify and the predict
mode, This model is presently being used in
the study of adaptive predictive nonlinear con­
trol systems,

Clearly, the model which is used for proc~
esses with two-level switched inputs cannot be
used for processes with more than a two-level
input. This is due to the large number of co­
efficients which must be stored. However, the
basic philosophy of matching an input pattern

Figure 12. 2 Bit Prediction-System No.3.

536 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 13. Modeling-System No. 1.

with a particular output is still valid. This
philosophy has been successfully employed in
a study of nonlinear process identification using
feature detection of the input pattern.13

ACKNOWLEDGMENTS

The theory of this model was developed un­
der grant NSG 244-62 from the National Aero­
nautics and Space Administration. Funds for
the construction of the model were provided
by the National Science Foundation under
Rensselaer Polytechnic Institute Research
Grant 635.04. The magnetic drum was donated
by the International Business Machines Corpo­
ration. A' complete description of the model,
including circuit schematics, construction de­
tails, maintenance procedure, and timing dia­
grams, is presented in Reference 14.

REFERENCES

1. CHESTNUT, H., and WETMORE, G., "Predic­
tive Control Applied to a Simple Position
Control," General Electric Engineering
Laboratory, Report No. 59 GL104 (1959).

2. CHESTNUT, H., DERusso, P., and TROUT­
MAN, P., "An Analog Simulation of a Pre­
dictive Control System," General Electric

Figure 14. Modeling-System No.4.

Engineering Laboratory, Report No. 59
GL219 (1959).

3. CHESTNUT, H., SOLLECITO, W., TROUTMAN,
P., and GACEK, A., "Automatic Landing of
Aircraft Using Predictive Control," Gen­
eral Electric Engineering Laboratory, Re­
port No. 60 GL12 (1960).

4. CHESTNUT, H., SOLLECITO, W., and TROUT­
MAN, P., "Predictive Control System Ap­
plications," General Electric Engineering
Laboratory, Report No. 60 GLl19 (1960).

5. ZIEBOLZ, H., and PAYNTER, H., "Possibili­
ties of a Two-Time Scale Computing Sys­
tem for Control and Simulation of Dy­
namic Systems," Proc. Nat. Electronics
Conf., Vol. 9, pp. 215-223 (1953).

6. COALES, J., and NOTON, A., "An On-Off
Servomechanism with Predicted Change­
Over," Proc. lEE, Vol. 103, pt. 10, pp.
449-462 (1955).

7. BAUER, R. F., "A Predictive and Adaptive
Control System," Master's thesis, Rens­
selaer Polytechnic Institute, Department
of Electrical Engineering (1962).

8. DROSDECK, J. S., "Variable Interval Re­
petitive Prediction of Stochastic Signals,"

Figure 15. Adaptive Model.

A HYBRID COMPUTER FOR ADAPTIVE NONLINEAR PROCESS IDENTIFICATION 537

Master's thesis, Rensselaer Polytechnic In­
stitute, Department of Electrical Engi­
neering (1962).

9. KAUFMAN, H., "An Adaptive Predictive
Control System for Random Signals,"
Master's thesis, Rensselaer Polytechnic
Institute, Department of Electrical Engi­
neering (1963).

10. BOSE, A. G., "A Theory of Nonlinear Sys­
tems," Research Laboratory of Electronics,
Mass. Inst. of Tech., Cambridge, Technical
Report 309 (1956). (Wiener's original
work remains in unpublished form.)

11. Roy, R., MILLER, R. W., and DERusso,
P. M., "An Adaptive Predictive Model for
Nonlinear Processes with Two-Level In­
puts," Fourth J oint Automatic Control
Conference, University of Minnesota,
Paper VIII-3, pp. 204-210 (1963). IEEE

Transactions on Applications and Industry,
Vol. 83, No. 72, pp. 173-178 (1964).

12. Roy, R., and DERus so, P. M., "A Digital
Orthogonal Model for Nonlinear Proc­
esses," IRE Transactions on Automatic
Control, Vol. AC-7, No.5, pp. 93-101
(1962).

13. Roy, R., and MILLER, R. W., "Nonlinear
Process Identification Using Statistical
Pattern Matrices," Proceedings of the
Fifth Joint Automatic Control Conference,
Stanford University, California, pp. 349-
354 (1964).

14. DERusso, P. M., Roy, R., MILLER, R. W.,
and NUTTING, B. W., "Adaptive-Predictive
Modeling of Nonlinear Processes," Final
Report-N ational Aeronautics and Space
Administration Grant NSG 244-62
(1963) . (To be published as a NASA
Report.)

THE NEGATIVE GRADIENT METHOD EXTENDED TO THE
COM,PUTER PROGRAMMING OF SIMULTANEOUS

SYSTEMS OF DIFFERENTIAL AND FINITE EQUATIONS
Albert I. Talkin

Harry Diamond Laboratories
Washington, D. C.

1. INTRODUCTION

. In programming a system of simultaneous
nonlinear equations on an analog computer it is
most convenient to use the equations in their
implicit form. In addition since the equations
are nonlinear certain partial derivatives may
change sign resulting in computer instability
unless the equations are programmed by the
negative gradient method.1

,2 This paper con­
siders programming nonlinear, explicitly time
varying trajectory problems by coupling
togeth~:r a set of nonlinear positional equations
and a set of nonlinear first order differential
equations, each set being separately progra~­
med by the negative gradient method.3 The

1 This paper draws no distinction between the terms
"gradient method," "least squares," "steepest descent"
or "transpose matrix method."

2 For an interesting alternative see M. G. Bykhovski
"Ultrastability in Electronic Computers when Realizing
Nonlinear Equations in Implicit Form" IFAC Proceed­
ings. Moscow 1960, Vol. 2, Butterworths 1961, pp.
1032-1038.

3 The method described herein may be compared to
that of Turner who considers both finite equations and
differential equations in implicit form as "constraint"
equations. His computer programming is done in a
somewhat intuitive manner which does not necessarily
guarantee stable programming. See R. M. Turner "On
the Reduction of Error in Certain Analog Computer
Calculations by the Use of Contraint Equations" Pro­
ceedings of the Western JCC, San Francisco, May 1960.

539

equation of· the first approximation to the
perturbed motion is used to examine the con­
vergence of the computer program to the solu­
tion of the given mathematical system.

1.1 Definition of the Problem

The problem will be defined in n-dimensional
space. Vector/matrix notation will be employed
to reduce the labor of writing equations. The
following definitions will be used:

(1) position vector x == [Xl' x2 , ••• , xJ

(2) i-th position function CPi == CPi (x, t) ;
i = 1, ... , m, m < n

(3) position function vector cP == [cp1' CP2'
••• , cpm]

(4) velocity vector u == [u l , U2, ••• , Up.]

(5) j-th velocity function f j == fj (u, x, t) ;
j = m + 1, m + 2, ... , n

(6) velocity function vector f == [fm + 1,

fm + 2, ••• , fn]

(7) position error vector v == [V1, v2, ••• ,

vn]

(8) velocity error vector a == [ax, a 2, ••• ,

an]

(9) gradient vector V x ==

[a~: a~;···' a~J

540 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

(10) gradient vector v u ==
[

0 a a]
au

l
' auz' ••• , oU

n

(11) general matrix notation: A == (aij) and
I == unity matrix

(12) scalar or inner product of two n-dimen­
sional vectors (p, q) :

(p, q) == Plql + Pzqz + ... Pnqn.
(13) k,g, are arbitrary scalar quantities rep­

resenting integrator gains

(14), t is a parameter appearing in the
mathematical problem statement i.e.
"mathematical time"

(15) T is computer time

(16) a is an arbitrary time scale factor
O<a:::;l(t=aT)

Using the above definitions the problem can be
stated as follows: Given the set of independent
equations

cp (x, t) = 0 (1.1)

f (u, x, t) = 0 (1.2) (1)

dx
u = x == - (1.3)

dt

program an analog computer to generate the
unknowns x(t), u(t). Equation (1.1) repre­
sents m equations, (1.2) represents n-m equa­
tions and (1.3) represents n equations for a
total of 2n equations in 2n unknowns Xl, x2,
... , Xn ; Ul, U Z, ••• , Un. A full statement of the
problem also requires that n-m of the position
coordinates be specified as initial conditions.
Before continuing with the analysis of such a
system, it may be helpful to expand upon the
above problem statement by considering some
examples and applications in two and three
dimensional space.

1.2 Examples and Applications

In this section vector notation is momentarily
abandoned in favor of the more conventional
x,y,z notation. Also u is eliminated from the
equations by the substitution x = u.

Consider the three dimensional system (2):

CPl (x,y,z) == X Z + yZ - cZzZ = 0
9z(X,y,z) == aX + {3y + yZ + h = 0 (2)
fa (x,y,z,x,y,z) == XZ + yZ + ZZ - sZ = 0
(c, a, {3, y, h, s are arbitrary constants)

The simultaneous solution of (2) is a conic sec­
tion traced at constant speed s. In (2) the vari­
able t does not appear explicitly in 9 or f.

Consider the two dimensional system (3) :

91 (x,y,t) == X Z + y2 - rZ (t) = 0
fz(x,y,x,y,t) == X Z + yZ - SZ(t) = 0 (3)

If r(t) is constant and s(t) is a linear ramp,
(3) represents linear frequency modulation
without any amplitude modulation. If both r(t)
and s (t) are constant, (3) represents an oscilla­
tor with highly stable amplitude and frequency
characteristics. If r(t) is constant and s(t)
dO
dt' (3) performs trigonometric resolution.4 If

s(t) is a constant, (3) represents a complex
modulation scheme obeying the law (AM) X
(FM) = constant. The modulation intelligence
r(t) can be received by either an AM or FM
receiver and is redundant.

Consider the system (4):

91 (x,y,t) == X Z + yZ - rZ (t) 0
f2 (x,y,x,y,t) == X Z + yZ - rZ (t) SZ (t) = 0 (4)

If in (4) both r(t) and s(t) vary independently,
the system represents a simultaneous AM and
FM waveform with independent messages r(t)
and s (t) . As a final example consider the sys­
tem (5) for the simulation of planetary motion
in two dimensions. Equation 5.2 involving
mixed position and velocity coordinates is a
result of the requirement that equal areas be
swept in equal times.

bZ(x-h)Z + a2y:! - a 2b2 = 0
xy-yx-c=O

II. ANALYSIS

2.1 Partitioning the Problem

(5.1)
(5.2)

(5)

Consider first the situation in which the
analog computer is in the "hold" or "reset"
mode, i.e. switches Sl and S2 of Fig. 1 are open.
In "reset" correct stationary values of x and u
must be generated. Since cP is not a function

4 R. M. Howe and E. G. Gilbert, "Trigonometric
Resolution in Analog Computers by Means of M ulti­
plier Elements," IRE Transactions, Vol. EC 6,
June 1957.

of u, it is possible to generate x by program­
ming the equations

CP1 (x,to) = 0, CP2 (x,to) = 0, ... , cpm (x,~) = 0 (6)

with n-m of the coordinates of x specified as
initial conditions. This, of course, results in a
system of m independent equations with m un­
knowns. Since these equations are in general
nonlinear the gradient method of programming
is used to guarantee convergence.

Turning now to the generation of u, the con­
dition f = 0 provides only n-m equations to be
solved for n unknowns. To obtain the m addi­
tional equations an augmented velocity function
vector (tf!) must be defined. In vector notation,

tf! = dcp + f (7)
dt

For the rigorous interpretation of (7) the orig­
inal definitions of f and cp must be expanded to
n-dimensions, with the first m components of f
being identically zero, and the last n-m com­
ponents of cp being identically zero. Written
out:

[
dcp1 dc/>2 dcpm]

tf!== dt' dt'··· dt ' fm + 1, fm + 2, ... , fn (8)

If in the first m coordinates of tf! the substitu­
tion of u for x is made, then

if; = 0 (Q\
\V~

represents a system of n equations in n un­
knowns Uh u2, ... , Un. The system (9) can be
programmed by the gradient method, and re­
quires that x developed from (6) be inserted as

THE NEGATIVE GRADIENT METHOD 541

a parameter. The conditions obtained in "reset"
are

cp(x,t~) = 0, tf!(u,x,to) = 0 (10)

Equations (10) represent the partitioned sys­
tem. Note that in "reset" (n-m) of the x inte­
grators have initial conditions imposed and
the remaining m coordinates are determined
uniquely. In "hold" the x coordinates are no
longer determined uniquely and there will be
some tendency for the stationary values to be
sensitive to perturbations of the position vector.

2.2 Closing the Switches-(The "compute"
mode)

Fig. 1 is a simplified schematic illustrating
the connections for the i-th component of x and
u. In "reset" or "hold" the switches S1 and S2
are open and the negative gradient program­
ming guarantees that x and u will assume sta­
tionary values as quickly as possible. It is
reasonable to suppose that if the switches were
closed the resulting system would produce a
very close approximation to the desired trajec­
tory provided that the ensuing continuous
iteration converges.

2.3 Perturbation Analysis

The following two assumptions are made:

(1) The conditions cp = 0 and if! = 0 are
approximately satisfied.

(2) Arbitrary small instantaneous perturba­
tions 8x and 8u are imposed on the
system.

r.f

.~

Figure 1. Simplified Computer Diagram Showing Connections for XI, UI.

542 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

In accordance with the gradient method, let

v = - V x(cp,~) (11)

a = - Vu(1/I,1/I) (12)

From fig. 1
dx
- = aU +kv
dT

(13)

du
(14) -=ga

dT

Differentiating (13) and substituting (14) :

(15)

Operating on equations (13) and (15) with the
variational operator 8:

d (8x)
- = a(8u) + k(8v)
dT

(16)

d2 (8x) (k d (8v)
- = ag 8a) + -
dT2 dT

(17)

It is now necessary to express 8v and 8a in
terms of 8x. Taking variations of both sides
of (11):

8v, = ± (-2 t a<pk a<Pk) 8xj
j = 1 k = 1 OXi OXj

+ j~1 (-2 k~1 </>k a:"~x}Xj (18)

As variations are taken starting from an as­
sumed equilibrium state cp ~ 0, the second term
on the right in (18) vanishes. The matrix

is positive definite for it can be factored into
the product of a matrix by its transpose. Equa­
tion (18) then becomes

8v = -A 8x (19)

As cp is not a function of u, only the vari­
ation with respect to x need be considered in
(18) . To find 8a, variations of both sides of
(12) are taken, noting now that 8u and 8x con­
tribute to 8a: thus,

8a, = i; (-2 i; a"'k aofk) 8u·
j = 1 k = 1 OUi OUj J

+ i; (-2 ± aofk a",,) 8xj
j = 1 k = 1 OUi OXj

(20)

In (20) terms involving second partial deriva­
tives are absent because of the assumption that
1/1 ~ o.

Rewri ting (20)

Sa = - B8u - H 8x (21)

where

B ,(bij) == (±. 2 01/lk 01/l
k

)
k = 1 OUi OUj

H == (hij) == (i; 2 aofk a",,)
k = 1 OUi OXj

The matrix B is positive definite, but the matrix
H is not so restricted. Substituting from (19)
and (21) in (17) gives:

d2 (8x)
- + agB8u + agH8x +
d,.2

k~ (A8x) = 0
dT

d2 (8x)
- + agB8u + agH8x +
dT2

aA d (8x)
k- 8x + kA- = 0

OT dT

From (16) and (19),
d (8x)

a8u = kA8x +-
dT

Substituting (24) in (23) gives:

1~(8X) + (kA + gB) ~(8x) +
dT2 dT

(22)

(23)

(24)

oA
(gkBA + agH + k-) 8x = 0 (25)

OT

Equation (25) is the equation of the first ap­
proximation of the perturbed motion. Note that
(I), the unity matrix, is positive definite and
(kA + gB) is positive definite, as it is the sum
of two positive definite matrices kA and gB.

N ow the third term on the left in (25) can
be written as the matrix sum

5 Bellman, R. "Introduction to Matrix Analysis,"
McGraw-Hill Book Company, Inc., New York, N.Y.,
1960, p. 246.

gkBA + a(gH + k aA) (26)
aT

. aA aA
noting that - = a-

aT at

The matrix product gkBA is positive definite,

arid the terma(gH + k ,aA) may be considered
at

a perturbation term which can be made small
by reducinga. Hence eq. (25) represents a
stable system, all coefficient matrices being
essentially positive definite. Bellman4 indi­
cates that this result also holds when the
coefficient matrices are time varying as in
this case.

CONCLUSION

It is now evident that the time scale factor
a can be reduced whenever the perturbation
term grows too large. This may be done

THE NEGATIVE GRADIENT METHOD 543

selectively so that the harder to stabilize
segments of the trajectory are traced at a
slower rate. It may sometimes occur that the
required is prohibitively small, i.e., the
solution time is exhorbitant, or perhaps
it is required not to alter during a trajec­
tory. In this case a trade off between the
scalar gains g and k must be made, i.e., some
gain modulation scheme may be used to mini­
mize the sum

gH + k aa~ while holding the product gk ~ M.

ACKNOWLEDGMENT

The problem generalization and analysis in
this report was inspired by the work of Arthur
Hausner of these laboratories, who intuitively
used this method to program a special problem
proposed by the author.

QUANTIZING AND S.AMPLING ERRORS ..

IN

HYBRID COMPUT ATIO'N
c. R. Walli

Space and Information Systems Division
North American A viation, Inc.

Downey, California

INTRODUCTION

Quantizing and sampling errors have been
examined by a number of authors. For ex­
ample, the errors have been extensively studied
in the communication2, 6, 7 and servomecha­
nisms4, 5,11 fields of electrical engineering. Stud­
ies of these errors have also been made by
numerical analysts,l, 3 primarily from the
standpoint of round-off error and error propa­
gation. None of these efforts, however, has
been specifically directed to the analysis of the
total errors generated in a hybrid computation
loop. In each field, different methods have been
used and different portions of the problem
studied;

In the communications field, sampling and
quantizing have been studied in connection
with PCM signals. The major effort has been
associated with the transmission of intelligible
audio and visual data. Three to seven (binary)
bits have been used for the most part, because
this range is adequate for communications
work. For example, when four bits (16 levels)
are used to code the intensity of a transmitted
television picture, good picture quality is ob­
tained, and even a fair picture is achieved with
three-bit (8-level) transmission.

In these applications, the percentage error as
a function of signal amplitude is improved by

545

companding (compressing) the signal ampli­
tude prior to quantizing and expanding it upon
conversion. The most frequently used tech­
niques are sinusoidal frequency response and
stochastic variable frequency response.

In the servo field, attention has been concen=
trated on the low-bit quantizing problem (nor­
mally one to two bits) in applications which do
not use a digital computer for control.l1 Sam­
pling is not usually used in the case of servos
with only a few bits, and, when a digital com­
puter is used for control, slight emphasis has
been placed upon the quantization errors. The
techniques used in these studies have been
those of the phase plane, state variables, sam­
pled data system theory, etc.

In the case of numerical analysis, the statis­
tical approach has been used in conjunction
with the Taylor series for the estimate of the
round-off errors at each step. Primary con­
sideration has been given to open-loop multipli­
cation and addition errors. However, the pres­
ence of predictor-corrector-modifier formulae
testifies to the existence of closed-loop error
analyses. Frequency response techniques have
not been used.

A statistical approach4,5 has been used to de­
scribe the quantization errors by means of the
errors in probability distributions resulting

546 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

from quantization. This approach is more re­
lated to the numerical analysis approach than
to the others, since the harmonic content of the
signal is not treated.

The sampling and execution time errors in
a hybrid loop have been studied and simulated
on analog computers, but quantization has been
neglected.1.3,14

A typical hybrid computation loop consists
of an analog computer, a digital computer, and
conversion equipment. When this loop is viewed
from the analog computer, the portion of the
loop outside the analog computer can be con­
sidered to be a black box that operates on the
signals sent to it, adds errors, and then sends
the signals back to it, as indicated in Figure 1.

The system state vectors, X, Y, Z, and E, are
described by

Z(t) = Y(t) + E(t)
Y(t) = Y(X(t), t)

The vector function Y (X (t), t) specifies the
operations of the processor, and the error vec­
tor E (t) is a function of numerical computa­
tional errors and of the conversion errors. The
errors of major interest to this paper are those
generated by the combined conversion proc­
esses. The other errors will not be discussed
because their consideration can easily be added.
For example, round-off errors should be negli­
gible if computer word lengths are 20 to 24

1 (bl MODEL

r---------,
I I

BLACK BOX

Figure 1. Hybrid Computation Loop.

I
I
I

bits, and a finite digital computer processing
time, T, represents only a pure time delay of
T seconds.

What kind of signals in the hybrid loop will
most likely be affected by the quantization and
sampling errors? Certainly sinusoidal signals
should have the highest probability in this re­
gard, since physical plants either have inherent
natural frequencies, or gain them when a con­
trol loop is added. Even for nonlinear proc­
esses, the system variables can usually be de­
composed into a Fourier series. Thus, the
choice of characterizing the "Block Box" errors
in terms of the errors generated in response
to a sine wave is a logical one.

The required precision can be easily esti­
mated. Individual analog components have er­
rors on the order of 0.01 percent, and the maxi­
mum voltage is 100 volts. The maximum pre­
cision expected of the converters, therefore,
would be 13 bits plus sign, since the error
maximum is one-half the step size. If the maxi­
mum represents 128 volts, a 100-volt signal
would use 12.6 bits and a I-volt signal 6 bits
(plus sign, in both cases). In practice, the sig­
nals of concern are those whose amplitude may
be 1 bit-or 13 bits. Thus, the full range must
be considered.

In what way can past research, carried on
in the areas previously mentioned, be applied
to the hybrid computation problem? In par­
ticular, for any specified error bound, how
finely should the signal be quantized, how rap­
idly should it be sampled, and what trade-offs
exist between sampling rate and the number
of quantization levels? How does the presence
of noise on the input signal affect the errors?
In short, is there an optimum combination that
can be used, or must the maximum possible
number of levels be used with the maximum
possible sampling rate?

Results from each of the previously men­
tioned areas should of course be utilized. The
work accomplished in the communications field
appears to be most applicable because of the
major use of harmonic analysis. Some differ­
ences should be expected, however, since the
signal band is less important than the phase­
shift errors to the present problem.

QUANTIZING AND SAMPLING ERRORS IN HYBRID COMPUTATION 547

QUANTIZING

It is readily apparent from Figure 2 that
either the sampling or the quantization can be
thought of as occurring first. Because interest
here is in a number output from the converter,
the number will be the same in either case, and
this will be true for non-uniform quantizing
and non-uniform sampling. The digital-analog
conversion process can be represented simply
by some holding circuit.

The quantizer characteristic of Figure 3 can
readily be decomposed into the two functions
shown in Figure 4. From Figure 4, the follow­
ing equations can be written

Q (x) = x + e (x) (1)

() ~ . 2~n
e x = ~ensln--x

n = 1 q
(2)

q/2

- 2 f .. 2~n q (-l)n
en-- (-x)sln--x=----

q q ~ n
~~ (3)

therefore

q 00 (-l)n
Q (x) = x + -;-~ n

n=l

. 2~n
Sln--x

q
(4)

Thus, an infinite range of "amplitude fre­
quencies" exists. The response to any specific
input can be obtained by direct substitution into

Equation 4. The harmonics at 2~n provide an
q

insight into the reason for the repeated spectra

at intervals of 2~ in the a domain, which is
q

given by the statistical approach.

AMPLITUDE

QUANTl.M lEVELS

~~~~I~I--~~----~---SAMprrR 

Figure 2. Sampling and Quantizing. 

Q 00 

r---r-~---'-+~---+--~--~--4-_x 

Figure 3. Quantizer. 

THE STATISTICAL APPROACH TO 
QUANTIZATION ERRORS 

The statistical approach to quantization 
errors is well described in the literature.4 , 5 

Therefore, only a few of the concepts involved 
in this method will be given here. 

The quantizer operates on the signal ampli­
tude of its input rather than on the signal 
frequency. I t is logical to characterize the· 
quantizer performance in terms of the input 
amplitude. In order to provide a general char­
acterization similar to the standard frequency 
domain characterization of time signals, the 

Figure 4. Decomposed Characteristics. 



548 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

probability density distribution of the signal 
amplitude must be considered. The Fourier 
transform (characteristic function) of the 
probability density can then be defined in terms 
of a frequency-like variable, usually denoted 
bya. 

Using these concepts, the following results 
are obtained, where q is the quantization level. 

Let p (f(t» denote the probability density of 
the. input signal f (t) and P (a) denote the 
Fourier transform of p (f): 

1. If P (a) = 0 for lal > .::!.-., then p(f) 
q 

can be completely recovered from the 
quantized signal. 

2. If P (a) =1= 0 for lal > .::!.-., then p (f) 
q 

cannot be recovered, since erroneous sig­
nals will be introduced into the data. 

3. The quantized signal in the a domain has 
the basic Fourier transform P (a) re-

peated at intervals of 27T in similar 
q 

fashion to the frequency spectrum of a 
time-sampled signal. 

4. The quantizing error may be assumed to 
be uniformly distributed between + 1/2 q 
and -1/2 q. In this case, the mean square 
quantizing error is given by 1/12 q2. 

The expression for the quantizing error may 
readily be derived from a simple viewpoint. If 
the quantizing error (Figure 4) is considered, 
it is seen to be linear between - q/2 to + q/2 
and to be repeated along the x axis. Letting 
< > denote the expected value and assuming 
that the input amplitude probability distribu­
tion function is linear, then 

q/2 +q/:.! 

< e2 > = _ (-x) 2 dx = __ (x3 ) = _ q2 21 1 2 I 1 
q q 3 12 

-q/2 -q/2 

It should be noted that the results of this sta­
tistical approach to quantizing do not indicate 
relationships in terms of the input signal. Ref­
erence is made only to probability distribution. 

Typical signal characteristics in the time, 
probability, and a domains are given in Figure 
5. The probability distribution is "area sam-

AMPLITUDE 

" PROBABILITY TIME 

a 

Figure 5. Quantized Signal Characteristics. 

pled" by the quantizer, which is equivalent to 
a square pulse. The Fourier transform of this 

is a sin x term which, when multiplied by P(a), 
x 

gives P(a). 

SINGLE SINE-WAVE INPUT 

There are two simple reasons for concentrat­
ing attention upon a single sine-wave input to 
the quantizer: (1) the response and implica­
tions of the spectral distortion resulting from 
the quantizing action can readily be visualized, 
and (2) in many of the applications for hybrid 
computers there will exist simple natural fre­
quencies in the hybrid loop imposed by the 
problem under consideration, e.g., the short 
period response of an aircraft or missile, or its 
equivalent in a space vehicle. Many of the physi­
cal systems which warrant studying on a 
hybrid computer are of the type which have a 
small number of natural frequencies. Thus, the 
system energy will be concentrated there, rather 
than throughout a broad band· of frequencies, 
as would be the case if stochastic variables 
alone were present. An additional reason for 
concentrating attention upon single sine-wave 
input is that testing and analysis of test data 
are simplified for simple sine waves. 

The input to the quantizer that will be used is 

x (t) = A sin UI t 

SINE WAVE PROBABILITY DENSITY 

The definition of the probability distribution 
function is 

P (X) = probability that x ~ X 

Figure 6 shows the sine wave and the level X. 
AMPLITUDE 



,QUANTIZING AND SAMPLING ERRORS IN HYBRID COMPUTATION 549 

From Figure 6, the following can be written 

1 1. -1 X 
P(X) =-+-SIn - -A:::;X:::;A 

2 7r A 

=0 

=1 

X:::; -A 

A:::; X (5) 

The probability density is the derivative of 
Equation 5 

1 

p(X) = ,,~ J( 1- !)' IXI<A 
(6) 

=0 IXI >A 

These are plotted in Figure 7. 

It is evident that the Fourier transform of 
p (x) will not be band limited in the a domain. 

Figure 7. Sine Wave Probability Distribution and 
Probability Density. 

Thus, the quantization theorem reveals that this 
probability density cannot be recovered after 
quantization, but does not disclose what will 
be recovered. 

THE TIME DOMAIN 

Substituting into Equation 4, we have 

(t) A · t q ~ (-1) n • [27rnA. tJ y == SIn roo ,+ -:; ~ n SIn -q- SIn roo 
n = 1 

(7) 

but 

00 

sin (z sin rot) = 2 ~ J2r + 1 (z) sin (2r + 1) (l)t (8) 
r = 0 ' 

00 

(t) A · t 2q ~ y = SIn roo + - ~ 
~ (-l)n I 27rnA \ 
~ n J2r + 1 (--) sin (2r + 1) root 

7r n = 1 r=O \ q 

or rewriting slightly and interchanging sum­
mations 

y(t) = A sin ""t + ~q ~ 
1'=0 

{~ (-1)n (27rnA)} ~ 1 n J2.r + 1 -q- , sin (2r + 1) root(9) 

It can be seen, therefore, that the quantizer 
has generated all of the odd harmonics for the 
input sine wave. If the input signal did not 
have zero phase, then all the even harmoriics 
would also be genera ted since in this case there 
are terms of the form 

sin (z sin (rot + (1» = 
sin (z cos () sin rot + z sin () cos rot) 

which is equal to 

sin (a sin rot) cos (b cos rot) + 
cos (a sin rot) sin (b cos rot) 

and, for example 

cos (a sin wt) = 2 ~'J2r (a) sin 2'hut 

Because of the product terms, sums and dif­
ferences of all frequencies are generated. Since 
there are only harmonics in this signal, how­
ever, the sums and differences are again har­
monics. If two sine waves with different fre­
quencies constitute the input signal, the above 
relationships will generate all sum and differ­
ence harmonics. 

The amplitude of the harmonic terms can be 
found by expanding Equation 8 into the 
following 

00 

y(t) = ~ B21' + 1 sin (2r + 1) root 
r=O 



550 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Bl = A [1 + ~ ~ (-1) n J 1 (27TnA)] 
7TA n = 1 n q 

(10) 

B3 = A [~ ~ (-l)n J3 (27TnA)], etc. 
7TA n = 1 n q 

Let us assume that the argument of the Bessel 
function, 27TnAj q, is assumed to be large enough 
to permit the asymptotic expansion to be used. 

For large x 

J"., (x) ~ J ,,~Sin( x - (2r + 1) ; - ~) 
(11) 

Consider the error term in the fundamental 

In the asymptotic expansion, each successive harmonic adds - 7T to the angle. This merely 
multiplies the term by -1. The following approximation can then be used: 

00 

y(t) :::::: A (1 + e1 ) sin wot + Ae1 ~ (-1)2r + 1 sin (2r + 1) wot (13) 

This, however, does not apply to all harmonics, 
because infinite power would be required. Now, 
the recursion formula gives 

r 
J r + 1 (x) = - J r (x) - J r - 1 (x) (14) 

x 

Thus, the relationship found above 

J r + 1 (x) ,...., - J r - 1 (x) (odd values) (15) 

applies only for 
x> >r (16) 

In a conventional hybrid computer, the number 
of levels available will be on the order of 1,000 
to 10,000. Thus, the previous approximations 
should be valid for at least the first ten har­
monics for large input signals. For small input 
signals (which can still occur), the approxi­
mation cannot be used. 

It can be concluded that a very large number 
of harmonics have amplitudes of the same order 
of magnitude. Thus, a large number of terms 
in the summation are required to find the har­
monic amplitude-even for the fundamental 
component of the error. Clearly, some other 
method to find the error would be desirable. 

FOURIER SERIES EXPANSION 
An explicit approach can be used to find the 

total harmonic amplitude. The output of the 
quantizer has a Fourier series which is given by 

00 

y(t) = ~ B2r + 1 sin (2r + 1) wot 
r=O 

r=l 

But y (t) can be expanded directly in a Fourier 
series. In Figure 8, horizontal slices are used 
to characterize the quantized sine wave. The 
Fourier series can then be written directly as 

1r/2 

B" + 1 = ! f Y (0) sin (2r + 1) OdO 

B"., = ! { q {d8+ qT d8+ ql d8+ .. } 

. (2 ) 4q ~ cos (2r + 1) 0 i 
SIn r + 1 = -

7T 2r + 1 

~ {4q ~ cos (2r + 1) Oi} 
y(t) = ~ - ~ 

r = 0 7T i = 1 2r + 1 (17) 

sin (2r + 1) wot 

4q 

2q 

Figure 8. Quantized Sine Wave-Horizontal. 



QUANTIZING AND SAMPLING ERRORS IN HYBRID COMPUTATION 551 

Now Therefore 

()i = sin-1 (2i - 1) ~ 
2A (18) B - 4q~ cos (2r + 1) Cin-' (2i - 1) :&-) 

2r + 1 - -:;; ~ 2r + 1 
N = A rounded to nearest integer 

q 
(19) 

and 

y(t) = ; t. [~cos [(2r + 1~:i~-'1 (2i -1) ~JJ sin (2r + 1) root (20) 

Only N terms are required (N = A/q) for the 
determination of the coefficients of the Fourier 
series. For N not too large, this is a convenient 
formula to use in practice. It would be difficult 
to compute the total output power or harmonic 
distortion. Returning to the original picture of 

the process, we this time square the output 
signal. 

It is readily seen from Figure 9 that the 
power for the output of the quantizer is given 
by 

(22) 

<y'> = q' r N' - ~ ± (2i - 1) sin-' ( i - ~) 1l 
L .. i~-i \ I .J 

(23) 

Now, the input power is given by 

(24) 

Thus, the ratio of the output power to input power of the quantizer is 

<y2> ( q)2 [. 2 ~. . (. _!) q] --, - = 2 - N,2 - - ~ (21 - 1) sln-1 1 2-
<x2> A 7r i = 1 A 

(25) 

The harmonic distortion is defined as 

= !Sum of squares of harmonics 100% 
D. F. \j Square of the fundamental X 0 

Now 

<y2> = ! ~ B2 = ~ (squares of all components) 
2~ 2r+l ~ 

r=O 



552 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Therefore 

D. F. = ~, J 2<y"> - B,' (26) 

where Bl is the amplitude of the fundamental 

n 

B, = 4~.~ cos sin-' (i -~) 1 (27) 

1=1 

Numerical results obtained from the preceding 
formulas are shown in Table I. 

The last column in Table I represents the 
estimated distortion factor. This was obtained 

A=q 
110% o -22% 

The amplitudes do not decay rapidly, and 
there is the tendency for alternating signs, de­
scribed by Equation 13. 

THE FREQUENCY DOMAIN 

Equation 9 can be re-written using exponen­
tials and Wo for the input frequency (replacing 

sin 0 by ~ (ej9 
- e-j9». 

2J 

(28) 

from the estimated mean squared error, 
1/12 q2, multiplied by 2 to give the sum of the 
squares. It was also assumed that Bl = l. 
Many of these results are given in Reference 7, 
but the significance of the last column was un­
known. 

It can be noted that the amplitude of the 
fundamental decreases faster than the distor­
tion factor with an increase in the number of 
levels, again indicating that more and more 
relative energy appears at the higher frequen­
cies. This effect can be examined in more 
detail by considering one level: 

-16% o 10% 9% o 

where the fact that J-m = (-1) m J m has been 
used. The Fourier transform of y (t) will then 
be given by 

8 = Dirac delta function 

where for example 

The harmonics are shown in Figure 10. 

TABLE I. QUANTIZATION HARMONICS 

,-ID.F. = 

(AJq) B1 (%) B3 (%) B5 (%) D.F. (%) 
(lOO-q ) 

y6A 

1 110 0 -22 33 40.8 
(4112)+ 96 
5 100.97 -0.82 + 0.47 7.55 8.16 

(5112)- 97 
10 100.34 3.8 4.09 
20 100.12 2 2.04 
50 100.03 0.81 0.816 



QUANTIZING AND SAMPLING ERRORS IN HYBRID COMPUTATION 558 

.I 
~ 0.6 
q 

0.4 

0.2 

Figure 9. Quantized Sine Wave Power. 

It has been observed, however, that approxi­
mately the same amplitude is obtained for the 
first several harmonics. As frequency is in­
creased, the exact behavior of the amplitudes 
is not clear. Of course, they must decrease. 

It should be noted here that in a practical 
system the sharp edges shown by the error 
characteristic are realistic. Since digital proc­
esses are being used, sharp levels and changes 
are descriptive. Some uncertainty or jitter at 
the quatum jump levels will merely contribute 
additional (high-frequency) noise. It is also 
evident that since a number system is involved, 
pure delta function sampling may be assumed, 
with no attenuation as would be the case with 
finite width sampling. 

Referring to Equation 28, it can be seen 
that complete fold-overs will occur because the 
sampling theorem is not obeyed. There are 
harmonics at frequencies higher than the sam­
pling frequency. 

THE EFFECT OF SAMPLING ON THE 
HARMONIC POWER 

In Figure 11, the sampler spectrum is added 
to the quantizer output spectrum. For simplic­
ity, only the positive sampler frequencies are 
shown, and the amplitudes are not to scale. 

IFlj",1I 

CONTRIBUTIONS FRO'A +2",S 
~~~-L~------------r 

2",s

Figure 11. Spectrum of Quantized and Sampled
Sine Wave.

Because energy is contained in both ··side
bands, the reflections from - (r)s will also con­
tribute. energy to the pass band. If only: the
contributions from -t-(r)s, -t-2(r)s are summed with

the original, the pass band 0 < (r) <! (r)s will
2

have only the harmonics shown in Figure 12.
Symmetrical side bands are present for - 1/2
(r)s < (r) < O. By induction, it can be seen that
all of the original harmonics are reflected into
the band - 1/2 (r)s < (r) < 1/2 (r)s. Another ap­
proach would be to use the following argument:

All harmonics with frequencies I (r) I < 1/2 (r)s
are kept. Harmonics in the range 1/2 (r)s <
I (r) I < 3/2 (r)s are reflected by the -f-(r)s sam­
pling frequencies.

Harmonics in the range (n - 1/2) (r)s < I (r) I
< (n + 1/2) (r)s are reflected into the band
by the -+- n(r)s sampling frequencies.

Thus, as long as the ratio of the sampling
frequency to the input sinusoid frequency is
irrational, or essentially so, the error power in
the pass band is identical to the error power
out of the quantizer. The error power will be
increased at some frequencies and decreased
at others if the ratio is rational, since then two

IFI t'/-«-t.L.- I
~ ~I

B7 B5 B9 I

I
o I '"

"Figure 12. Pass Band Harmonics.

554 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

or more harmonics will have the same fre­
quency in the pass band.

«Bi + B j) 2 =1= Bi 2 + Bj 2)

If a filter is chosen which has a cut-off much
lower than 1/2 Ws (e.g., w'), the error power
will be reduced because some of the reflected
frequencies will lie between w' and 1/2 Ws. In
the previous example, if w' = 1/4 Ws, then A3J
A9 , A13 would not be transmitted. In general,
the only contributing harmonics will be those
lying in the range - w' + nws < w < nws + w'.

I t is interesting to note that (error) noise is
introduced into the system only by the non­
linear operation of quantizing, and not by sam­
pling. It can be concluded, therefore, that the
estimate of the quantizing RMS error (q2 /12)
can be used as a measure of the upper bound
to the system error so far. Furthermore, while
all of the harmonics appear in the pass band,
they appear at different frequencies so the
quantizing error signal cannot be recovered
exactly.

If an infinite time sampling rate is used, the
exact qua~tized signal can be recovered. Of
course, since the output is a staircase function,
it does not have the same probability distribu­
tion in this case as does the input signal.

The following statement appears to be true
for all signals: Since the probability density
distribution cannot be negative, a band-limited
Fourier transform for probability density can
never be derived.

THE EFFECT OF NOISE
Suppose that the input signal from the ana­

log world is corrupted by noise. Let Eq be the
quantizing error, En the noise, and f (t) the
signal. The output of the quantizer is given by

y(t) = f(t) + En + Eq
with

E. = ~ ~ .{ - ~) n sin [2~ n (f (t) + En (t))]

(30)

Although Eq is causally related to E1H it is
reasonable to assume that they are statistically

independent. Reference 4 indicates that this is
a good assumption. What is the expected error?

< y2 > = < (f + En + Eq) 2 >
= < f2 > + < En2 > + < Eq2 >

assuming that f, En, Eq are uncorrelated. Then
the total expected error squared is

< E:2 > = < En2 > + < Eq2 > (31)

If either infinite sampling or a perfect filter
(over the range - 1/2 Ws < w < 1/2 ws) is used,
then

< Eq2 > = (1/12) q2

If En is restricted to frequencies less than 1/2
ws, then

12
q

(
1 2)

< E2 > = < En2 > 1 + En2

If the total noise is allowed to increase by as
much as \12, then q can be as large as

q= \112 \1< En2 >
We then have

q

35mv
139mv

« En2 » 1/2

10mv
40mv

If filtering reduces the pass band to less than
1/2 ws , the quantizing can be even more coarse,
since 1/12 q2 is an upper bound. This assumes
that the input noise has been filtered to the
same pass band.

THE EFFECT OF THE D-A CONVERSION

For simplicity it is assumed here that a zero­
order hold is used to provide the digital to ana­
log conversion. The treatment of higher order
holds is similar. The process can be viewed in
several different ways. In the frequency do­
main, the Fourier transform of the ZOH is

given by a ~ sin X expression, where X equals

-rr wo/ WS' Since this expression is not zero out­
side of what is termed the pass band

(I w I < 4 ws), additional power will be con­

verted; i.e., additional to the figures that have
been used. As has been shown, however, an
infinite number of sidebands and reflected har­
monics must be considered. In order to sim­
plify the task, consideration will again be given

QUANTIZING AND SAMPLING ERRORS IN HYBRID COMPUTATION 555

to the specific example, a sine· wave quantized
to five levels, to which the sampling and the
zero-order hold are now added. Figure 13 com­
pares the signals received from the black box,
with and without quantizing.

In keeping with our earlier use, error is de­
fined as

error = output - input

This definition in this application includes the
effect of the phase shift caused by the ZOH.
This large effect, which tends to obscure the
quantizing effect, can be examined by defining
the relative error by

er = relative error =

output - input x delay of ~ sec

The output signal, therefore, can be defined in
terms of the fundamental plus an error. Spe­
cifically, using the nomenclature of Figure 1,
we have

Z (t) = X (t - ~) + e, (t) (32)

where T is the sampling period which is large
enough to cover the conversion and computa­
tion time. Consider the single sine 'wave input.
We have

Z (t) = A sin W{) (t - T/2.) + er (t)

Another useful concept is to include the ampli­
tude error of the fundamental separately:

Z(t) = A (1 + E 1) sin w~(t - T/2) + er(t)
(33)

FIVE-LEVEL QUANTIZATION

t.J = 18 t.J
S 0

ZERO ORDER HOlD

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

NO QUANTIZING

ZOH

..
z,.,o

L...oC~-----+--="-----~~t
---'-_.L....---'-_.L....--'-_I...--'--I...-......L.-SAMPlING

WITH QUANTIZING

Figure 13. Combined Errors.

In this way, the process can be viewed as one
which amplifies and phase shifts the input sig­
nal and then adds noise.

The error can be evaluated by examining
Figure 13 which indicates the output signal
from the zero-order hold with and without
quantizing. When the input signal is shifted
by 1/2 T seconds, symmetric errors are ob­
tained whenever the sampling rate is an in­
tegral mUltiple of the signal frequency. With­
out quantization we have

< er > = 0

f 31T
IW

S]

sin' Wo tdt + (sin ... t - sin 2:~), dt + - - - -
1TIWs

(34)

In general

< er2 > = 2wo [f1T12WOsin2 Wo tdt + ~ "" [cos (2r + 1) 1l"Wo - cos (2r - 1) 1l"WO]

1l" W{) ~ Ws Ws (35)
o

. 2 1l"
Wo + 21l" "" . 2 2r1l"Wo] SIn r- -~sIn--

Ws Ws Ws

556 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

When the quantizing is added to the sample and hold, similar equations are obtained. The com­
bined mean squared error is given by

[j

7r/ooS j(2r + 1) 7r/oos]
< e2 > = ~o 0 sin2 wotdt + ~ sin2 (wot - nq)

(2r - 1) 7r/oos
(36)

with

sin (2r - 1) ~ < nq < sin (2r + 1) 2

For the specific sine wave input quantized to
five levels at a sampling rate 18 times the sine
wave frequency, we find

E2 = 7.1 % A ZOH only

E2 = 8.5 % A ZOH + quantizing.

If the estimate, Eq = q/y'12 = 5.77%A, is
used and if it is assumed that the errors are
statistically independent, the following error is
obtained:

< E2 > = < EH2 > + < Eq2 > = 9.16%

This estimate is within 10 percent of the value
computed. It would then appear that the two
error sources can be viewed as being statisti­
cally independent. An error map for various

values of the quantizing level and the sampling
rate is given in Figure 14. It should be noted
that as the ratio of sampling rate to signal fre­
quency is decreased, more noise power appears.

The quantizing and the sampling and holding
operation on the sinusoid A sin wot can thus be
expressed as

B sin (wot + 0) + E (t) (37)

A more general expression may be derived for
the errors resulting from the zero-order hold.

1
The parameter, A, can be defined so that -

A
represents the number of samples per quarter
cycle

1 (Us 4wo (8) -=-orA=- 3
A 4wo Ws

If A is used and wot is replaced by 0, Equation
34 becomes

j
'/(>"/4 j'/(12 11>" _ 1 j7r>../4 (2r + 1)

< e' > = ;: 0 sin' odO + ; 'I' _ ,A/4 (sin 0 - 1) 'do + 2/" f.! "/
4

'" _.) (sin 0 - sin r;.\") , dO (39)

< e' > = ;: 1'1' sin' 0 d 0 + ;: [~A + .~. (Sin2 r;A) ~A] + ; f/' -sin 0 d 0+ (~.
o r-1 '/(12-7rA/4 1'=1 (40)

j

7r>../4 (2r + 1)

(
. r7TA)' d - slnT SIn 0 0

7r>"/4 (2r - 1)

N ow, one of the expressions resulting from
the integration and trigonometric identities is
zero:

1/>" - 1

~ cosr7TA = 0 (41)
r = 1

This simply depends upon the fact that

cos (7T - 0) = - cos "

When evaluated, Equation 40 reduces to

U sing the first term of the expansion gives
for small A (large enough number of levels/
quarter cycle)

1 (7TA)2 7T
2

< e2 > ~_ _ = _A2

3! 4 96
(43)

QUANTIZING AND SAMPLING ERRORS IN HYBRID COMPUTATION 557

11------------------------------.

0.

0.7

q 0.6

0.5

0.4

0.3

0.

0.1

0

e=8.3 ,
'd.5

"", ' ,

...... 40
~"' ...

"',
",
e"'33.~

CODE

• CALCULATED VALUE
- - - EQUATION (45)

e::::32'J.
\
\
\
.\

316
11 12

11).

Figure 14. The Combined Error.

Thus, we can write

<e2 > :::::: ~(\l27r A)2 (44)
12 4

(
\12

77") and treat -4- as a form factor, to express

the combined error by

< er
2 > = ~ (q2 + (1.11 A)2) (45)

12 \ I

The estimates of the combined error are thus
ellipses in the A, q plane, or circles in a q, 1.11 A
plane. These estimates are plotted in Figure 14,
together with calculated combined errors.

CONCLUSIONS

The results observed lead to the following
conciusions:

1. The quantizer adds noise power energy to
the system, and this energy is spread
through a wide range. At even low
quantization levels, it was observed that
the energy of perhaps the first 50 har­
monics was appreciable. As the input
signal amplitude is increased, the energy
associated with the lower harmonics is
reduced, and this energy appears at the
higher and higher frequencies.

2. Utilizing sine wave input signals is an
effective way of obtaining error estimates
for hybrid computation. When four or
five bits are used in the quantization,

numerical results can be obtained fairly
readily.

3. Much of the dynamic RMS error is the
result of the linear phase lag resulting
from the data reconstruction. If this
phase-shift error is eliminated, the quan­
tization and the sample-hold errors are
statistically independent. A sample and
hold error parameter, A, equivalent to the
quantizing step q, can then be defined so
that the combined error is an elliptical
function of q and A.

4. If the noise resulting from the quantizi~g
and data reconstruction is unacceptable,
several alternatives are available:
a. A band pass filter can be used to

eliminate some of the energy at higher
frequencies within the pass band.

b. The quantizing levels can be increased.
Because the RMS noise is directly pro­
portional to the quantizing level, a
linear effect will be observed.

c. The sampling error parameter, A, can
be decreased by increasing the sam­
pling rate. The error is directly
proportional to A (i.e., inversely pro­
portional to sampling rate).

RECOIvIlVIENDATIONS

It is recommended that this line of approach
be used to develop general criteria for the
performance and specification of hybrid com­
putation systems. In partiCUlar, this approach
should be used to develop error estimates for
first- and second-order hold systems. Test and
analysis using the sine waves are not only fairly
simple, but most important, are readily com­
prehensible to the using engineer.

REFERENCES

1. SHEPPARD, W. F., "On the Calculation of
the Most Probable Values of Frequency
Constants, for Data Arranged According
to Equidistant Divisions of a Scale," Pro­
ceedings of the London Mathematical
Society, Vol. 29 (1898), pp. 353--357.

2. BENNETT, W. R., "Spectra of Quantized
Signals," Bell System Technical Journal,
Vol. 27 (July, 1948), pp. 446-472.

558 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

3. INMAN, S., "The Probability of a Given
Error Being Exceeded in Approximate
Computations," Mathematical Gazette, Vol.
34 (May 1950), pp. 99-10l.

4. WIDROW, B., "A Study of Rough Amplitude
Quantization by Means of Nyquist Sam­
pling Theory," IRE, PGCT, Vol. CT-3, No.
4 (Dec. 1956), pp. 266-276.

5. WIDROW, B., "Statistical Analysis of Am­
plitude-Quantized Sampled-Data Systems,"
ONRTechnical Report No. 2103-1 (May
10, 1960).

6. KATZENELSON, J., '·'On Errors Introduced
by Combined Sampling and Quantization,"
IRE, PGAC, Vol. AC-7 (April 1962), pp.
58-68.

7. CLAVIER, A. G., PANTER, P. F., and GRIEG,
D. D., "PCM Distortion Analysis," Electri­
cal Engineering, Vol. 66 (Nov. 1947), pp.
1110-1122.

8. COURANT, R., and HILBERT, D., Methods of
Mathematical Physics, Vol. 1, Interscience
Pub. Inc., N.Y., English Ed. (1953).

9. DAVENPORT, W. B., and ROOT, W. L., An
Introduction to the Theory of Random
Signals and Noise (McGraw-Hill Book Co.,
Inc., N.Y., 1958).

10. Tou, J. T., Digital and Sampled-Data Con­
trol Systems (McGraw-Hill Book Co., Inc.,
N.Y., 1959).

11. Tou, J. T., Optimum Design of Digital Con­
trol Systems (Academic Press Inc., N.Y.,
1963) .

12. MONORE, A. J., Digital Processes for
Sampled Data Systems (John Wiley and
Sons, Inc., N.Y., 1962).

13. MIURA, T., and IWATA, J., "Effects of Digi­
tal Execution Time in a Hybrid Computer,"
AFIPS F JCC Proceedings, Vol. 24 (1963),
pp. 251-266.

i4. GELMAN, R., "Corrected Inputs-A Method
for Improving Hybrid Simulation," AFIPS
FJCC Proceedings, Vol. 24 (1963), pp.
267-276.

REAL TIME RECOGNITION OF

HAND-DRAWN CHARACTERS
Waren Teitelman *

Massachusetts Institute of Technology
Cambridge, Massachusetts

1.0 SUMMARY

This paper describes a system designed to
recognize handdrawn characters in real time.
The central feature of the system is its use of
the time sequence information of the input
character.

It. its abstract form, the system may be
viewed as a collection of discrimination nets,
or . filters. .t;ach net operates on the input
character, or rather on a sequence of property
vectors representing the encoding of the input
character in the time domain, and produces a
set of so-called candidate characters. The sys­
tem then utilizes reliability estimates for the
individual nets to select the final output char­
acter.

A program representing a particular imple­
mentation of the system has been written for
the DEC PDP-I. The user draws the char­
acter on the face of a cathode ray tube with a
light pen. 'The program follows the pen and
constructs the appropriate sequence of prop­
erty vectors. The properties used are simple
geometrical ones, and the descrimination nets
are tree structures which store sequences of
property values. Recognition time is of the
order of .25 seconds, of which approximately
.15 seconds are occupied by drum read-and­
write operations required by the small mem­
ory size (4K) of the machine.

The user can teach the program to recognize
his set of characters. The learning process for
the program involves modifying individual de­
cision trees, changing the weights on each
tree, and where necessary, introducing new de­
cision trees with their corresponding proper­
ties into the system. Because the program
was written as an input device to a larger man­
machine system, the description of the imple­
mentation stresses the human engineering
features. A qualitative evaluation of the sys­
tem as implemented is offered, together with
possibilities for e~panding and generalizing
the program.

2.0 INTRODUCTION
Research in pattern recognition may be

characterized as a search for invariants. * * The
problem is to find attributes that all instances
of a given pattern have in common that in­
stances of other patterns do not. The particu­
lar class of invariants selected will ultimately
determine the performance of the pattern rec­
ognition system. However, performance is
not the sole factor influencing the choice of
invariants. Associated with any research
project are certain objectives and goals. In

** A number of excellent surveys and bibliographies
of the voluminous literature on pattern recognition are
available.1

, 7, 9 Minsky 8 gives a general survey of the
entire area of artificial intelligence, including pattern
recognition.

* Consultant, System Development Corporation, Santa Monica, California.

559

560 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

pattern recognition, achievement of these goals
is not only a function of what the system rec­
ognizes, but also how it performs the recogni­
tion. Thus the selection of invariants may be
more influenced by the purposes and philos­
ophy of the research than by a desire for a
high rate of recognition. To illustrate this
point, let us examine briefly two character
recognition schemes which are at opposite ends
of a spectrum with respect to the aims of ,their
research. Both perform very well in th~t their
recognition accuracy is high. Their basic dif­
ference in purpose and philosophy is reflected
in two very diverse sets of invariants. These
two schemes will provide a frame of reference
for the research described in this paper.

2.1 CycIops-1

Cyclops-Pis a sophisticated character rec­
ognition program which involves hypothesis
generation and testing in the identification
process. The system generates a hypothesis
concerning the nature of the input; the hypo­
thesis is tested, and if it is correct, it becomes
the output. In the present version, the pro­
gram merely generates hypotheses in a pre­
determined, fixed order, with the major part
of the research going into hypothesis testing.

The hypothesis testing scheme involves a
series of questions about characteristics of
particular segments in the pattern, or of the
relationships between segments, or of the pat­
tern as a whole. There are 42 characteristics,
and they are presumably selected because they
were the type of things noted by humans. For
example, five characteristics used by the sys­
tem are (1) the predominance coefficient of a
segment, (2) the straightness coefficient of a
segment, (3) the orientation of a segment, (4)
the number and location of inflection points of
a segment, and (5) the number and location
of the intersections of a segment with other
segments. The items to be recognized by the
program, i.e., alphabetic characters, are de­
fined in terms of these characteristics.

The system has great generality. New char­
acters may be defined with little difficulty.
However, a great deal of computation is nec­
essary to determine the segmentation of a
character, and to identify intersection points,
inflection points, etc. In operation, the system

receives the input via a pen tracking routine
which accepts data written on a cathode ray
tube. The system then transforms a table of
successive light pen locations into information
concerning line segments that comprise the
character. The program is thus quite large,
and recognition time is slow. *

2.2 The Stylator
A scheme described by Dimond of Bell

Labs.,2 on the other hand, is much simpler. A
practical electronic device called the Stylator
has been designed and constructed which per­
forms the recognition. The user is constrained
to draw the character (a numeral) around two
dots which define a set of bipolar coordinates
(Fig. 1). The seven lines identified in the
figure are actually narrow conductors con­
nected to a source of potential. When the nu­
meral is written with a stylus connected to a
source of potential, the stylus energizes the
conductors, which in turn cause certain flip­
flops to operate and drive the rest of the cir­
cuit to indicate the correct numeral. This can
be done because the numerals are defined
uniquely in terms of their set of line crossings.
For example, the numeral '3' is defined as
crossing lines A, B, C, D, and not crossing line
F. (It mayor may not cross lines E and G.)
Similarly, the numeral '7' must cross line A
and line B, and may not cross line D or F.
Admittedly some variations on the construc­
tion of a numeral might be conceived which
would confuse the machine, and in some cases
the user must be trained briefly to familiarize
himself with the system. But this causes no
great difficulty, and the knack of positioning
the character and drawing it to the correct
scale is learned readily.

2.3 Comparison of Research Approaches
The CycIops-1 approach to character recog­

nition reflects an attempt at constructing a
general system. The search for invariants has
therefore led the researchers to examine the
way in which humans recognize characters.
The resulting properties involve very abstract
concepts and considerable computation is nec­
essary in determining them. However, the
properties used are those that seem to define

* Depending on the number of line segments between
three and twelve seconds per character.

REAL-TIME RECOGNITION OF HAND-DRAWN CHARACTERS 561

I

f

c

D

Figure 1. Bipolar Coordinates for Character
Recognition.

the character in the everyday sense. Cyclops-1
recognizes an 'A' because it is an 'A.' The
power in this approach is reflected in the abil­
ity Cyclops has demonstrated to perform scene
analysis: the system can analyze complex
visual inputs consisting of an arbitrary num­
ber of characters present simultaneously,
where the characters may be of different size
and orientations, may overlap or be inside of
one another, or may be superimposed on arbi­
trary backgrounds consisting of meaningless
lines or· spots or geometric shapes. This is
something that is beyond the range of most
character recognition schemes, although hu­
nlans do it fairly well.

In the Stylator scheme, the emphasis is on
fast and efficient recognition. The set of in­
variants for the numerals '0' through '9' is
specified as a collection of line crossings only
because this is simple and fortunately unique.
Note however that the user could merely touch
his stylus to the correct lines, without even
drawing the character, and have the Stylator
recognize it. On the other hand, one could
easily construct numerals that most humans
would recognize correctly but that would con­
fuse the Stylator. Essentially all the Stylator
does is map a set of 128 (27) possible inputs
onto a set of ten possible outputs. To the ex­
tent that this correlates with correct character
recognition, the device performs well. Its as­
sets are its speed and efficiency.

While the author feels that the type of re­
serach embodied in the Cyclops project will
be more productive in the long run, the aims
of the research reported here are closer to

those of the Stylator project. The research
began with an attempt at developing a fast and
practical character recognition program to use
as input to a larger system. The central theme
was to try to use the information of the time
sequence of events in constructing the char­
acter to establish a simple class of invariants.
Since a more flexible scheme than that of Dia­
mond was desired, a simple and rigid definition
of alphabetic characters such as the sort uti­
lized by the Stylator would not suffice. As in
the work described by Kuhl, * the properties of
the program reflected the "true nature" of the
character more closely than that of the Styla­
tor, but were not as general as those used by
Cyclops.

As the research proceeded, certain generali­
zations suggested themselves, and where these
did not conflict drastically with the rate of rec­
ognition, nor make implementation difficult,
they were included in the program. The sys­
tem presented here arose as the logical ab­
straction and generalization of the program,
rather than the other way around.

3.0 THE SYSTEM

3.1 Definitions and Notations
Since the system will treat characters as

events in time, a distinction is made between a
"form" and a "figure." A figure will be taken
to mean a drawing· on a piece of paper or on
a cathode ray tube, in other words, a picture
of a symbol. A form will be considered the
sequence of events that produce the drawing,
in other words, the figure with its time se­
quence. A character refers to the symbol that
either the figure or the form denotes. Thus,
this scheme operates on forms to produce char­
acters, as opposed to more conventional
schemes that operate on figures to produce
characters.

* Kuhl's interest is in finding a convenient way of
separating classes of letters.4 He makes use of invar­
iants such as the number of free ends of the character,
the presence or absence of sharp angles, etc. Since an
'A' can be drawn without any sharp angles, and one can
construct a ligitimate 'B' with two free ends, the "defi­
nition" of a character according to his scheme may not
coincide with that used by a human, although his in­
variants are more suggestive of the characters than the
invariants used by Dimond for the Stylator.

562 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

The sequence of events that comprise a form
is denoted by F (t) . This notation is meant to
suggest the sequence of events in the time
interval (O,t). * A property vector is associ­
ated with each form F (t). This vector is
denoted by 7r (t), and also changes with time.
It may be thought of as describing what is
happening at the present instant. Presumably
it contains information of use to the recogni­
tion function, although it could also indicate
some other function-e.g., the phase of the
moon or the body temperature of the user. In
the implementation of the system, 7r (t) reflects
the position of the pen at time t.

The system operates on the sequence of
property vectors that represent the sequence
of events in the construction of the form. Each
component of the property vector corresponds
to a separate property, with the jth component
of 7r (t) ----'7Tj (t) -corresponding to the jth prop­
erty, Pj' These properties apply to character­
istics of the form. 7rj (t) is a three-valued
function which informs the system whether
or not the form has property Pj' 7rj (t) ==1 is
interpreted to mean that the form has property
P j at time t. "7Tj (t) ==0 means that the form
does not have property Pj. The third value,
7rj (t) ==w indicates that the property is not ap­
plicable to the form at time t. This last value
serves to break up the sequence of property
values into sub-sequences. In the program,
the individual properties indicate whether or
not the pen is in a given region, and these sub­
sequences of values correspond to strokes of
the pen.

3.2 Input to the System

As indicated, the system operates on a se­
quence of property vectors representing the
encoding of the input character in the time do­
main. The particular encoding will depend on
exactly what properties are being used by the
system, but all encodings are constructed in
the same fashion. They are merely the se ...
quence of all property vectors attained by the
form from time t == 0 until the form is com­
pleted. In other w.ords, the first vector in the
sequence informs the system what properties
are present, not present, or inapplicable at

* For convenience, assume all forms begin at time
t = o.

time t = 0; thereafter, whenever the property
vector of the form changes, the new vector is
added to the encoding sequence. The sequence
is thus normalized in time in that there is no
information on when the form had a certain
property v~tor or how long it maintained the
same vector. The length of the sequence is
thus a function of how often the properties
vary in the course of constructing the form,
and not how quickly or how slowly the form
was constructed. * *

3.3 The Recognition Process
Each property has a discrimination net as­

sociated with it. The discrimination net filters
out all but those characters that have similar
forms. S.imilarity is defined for a particular
discrimination net as having the same sequence
of property values. Thus, for each property
Pj, the corresponding sequence of property
values of 7rj is extracted from the complete
sequence of property vectors. This sequence
is usually considerably shorter th~m the en­
tire sequence of property vectors, because the
encoding contains all changes of all properties,
not only the changes in "7Tj. The discrimination
net then selects as its set of candidate char­
acters all those characters whose sequence of
7rj values are identical to the sequence of 7Tj

values for the input form.

The particular properties used affect the per­
formance of the system tremendously. If many
characters have the same sequence of property
values, then the decision problem will be al­
most as difficult after the discrimination nets
have operated as before. On the other hand,
if the sequence of property values is long and
complicated, then the chance that it will be
duplicated exactly is small, and either the sys­
tem will have to be provided with an extremely
large dictionary of property value sequences
or else the discrimination nets will not pass
any characters into their candidate set. In one
case, the defining criteria are too lax, allowing
many characters to have the same definition,
and in the other they are too stringent, re-

** There could conceivably be properties that reflected
the length of time required to construct the form. For
example, '1Tk = 1 if form is completed in less than time
tu, etc. But there is nothing in the encoding sequence
that explicitly represents the passage of time other than
the changing property vectors.

REAL-TIME RECOGNITION OF HAND-DRAWN CHARACTERS 563

quiring the user to construct his character
with great precision and consistency.

The final decision procedure that operates on
the sets of candidate characters reflects an at­
tempt to recover from either of the above two
possibilities. The concept employed here is
parallel processing. It has been observed in
many pattern recognition projects that a re­
liable decision may be possible even where in­
dividual tests are poor, provided each test
contributes some different fractional bit of
information. In our case, this is done by hav­
ing the presence of a character in a candidate
set suggest that the character might be the
correct one and, correspondingly, having the
absence of a character in the candidate set
prejudice the system against it. This is done
by weighting the characters with a reliability*
estimate for each net, and selecting the char­
acter with the highest score. In the case where
all nets are equally reliable, this amounts to
selecting the character that appears in the
plurality of candidate sets. In the implemented
version of the system, a small, basic set of
properties is used, all of which have reliability
estimates of the same order of magnitude. Ad­
ditional properties, with lower estimates are ,
considered in the decision only when the basic
weights are nearly equal.

To summarize, the system receives a se­
quence of vectors which represent the chang­
ing characteristics of the input form. The
components of each vector are three-valued
functions which indicate whether or not the
form had a particular property at the time the
vector was computed, although information on
when this occurred is not included with the in­
put sequence.

For each property, the sequence of property
values attained by the component of the vector
corresponding to that property is extracted
from the entire sequence of property vectors.
A discrimination net retrieves all characters
that have forms with the same sequence of
property values. This set of characters is
called the candidate set. The system then
selects a character from among all of the va­
rious candidate sets by weighting each char-

* Reliable in the nontechnical sense, meaning valid or
trustworthy.

acter in proportion to the reliability of the dis­
crimination nets that suggested it, i.e.,
proportional to the reliability of the particular
property.

4.0 THE PROGRAM

4.1 The Property Vector
If one is asked to visualize a character as a

sequence of events in real time, the picture that
comes to mind is that of a pen tracing a course
over a piece of paper. Similarly the properties
first experimented with here were simple geo­
metrical properties that merely reflected the
position of the pen at time t. These were
found to be suitable, and more sophisticated
properties involving pen velocity, angle of line
segment, curvature, etc., were not needed.

Although characters may be drawn to dif­
ferent scales and orientation, let us assume
that we have a character normalized and have
superimposed it on a rectangle. We will con­
sider this rectangle to be divided into various,
possibly overlapping regions. Each region
corresponds to a property. A form is said to
have the property P j , and 7Tj = 1, if the posi­
tion of the pen at time t lies in region R j • If
the pen is not in region R j , then the figure does
not have this property, and 7Tj = O. When the
pen is not touching the page, 7Tj = w, in this
case for all j. 'Thus, the property vector
roughly determines the position of the pen at
time t, and the sequence of property vectors
will trace out the page ot the pen as it com­
pletes a form. Fig. 2 depicts a four-property
scheme, and Table I gives the sequences of
property vectors for the two different 'E's
shown in Fig. 3.

These four properties were first considered
because of a desire to divide the character into
a left third, center third, and right third, and
similarly, upper, lower, and middle third. They
are obviously redundant as there are 16 possi­
ble property vectors corresponding to only
nine subregions of the rectangle. However,
they were powerful enough to enable the
author to construct a unique definition of all
English uppercase letters as the author drew
them, with the exception of 'U' and 'V.' While
the system allows the user to define his own
properties-which for the purposes of the pro-

564 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

Table I. Sequence of Property Vectors for Two Different 'E's (See Figure 3).

TTl TT2 TT3 TT4

1 1 1 1

1 1 0 1

1 1 0 0

0 1 0 0

0 0 0 0

W W W W

1 1 0 1

0 1 0 1

0 0 0 1

w w w w

1 1 1 1

0 1 1 1

0 0 1 1

w w w w

Type 1

gram means defining his own regions-it was
decided that the program, and the user, should
start with a useful, basic set of properties.
These four properties were selected as a nu­
cleus for the set of properties used by the pro­
gram, and the sequences of property vectors of
Table I would be the actual input to the recog­
nition portion of the program.

4.2 The Discrimination Net
Since the operation of the individual dis­

crimination net is essentially one of retrieval,
one possible representation for the net would
be a simple table. The program would then
merely look up the sequence of property

TTl TT2 TT3 114

0 1 1 1

o· 1 0 1

1 1 0 1

1 1 0 0

0 1 0 0

0 0 0 0

w w w w

1 1 0 1

0 1 0 1

0 0 0 1

w w (1) w

0 1 1 1

0 0 1 1

w w w w

Type 2

values in the table and retrieve any and all
characters associated with that sequence. How­
ever, from a standpoint of conservation of both
computer time and storage, this would be very
inefficient. In addition, since we would like to
have the system learn by adding new forms to
its repertoire, we would have to cope with the
problem of variable-length tables as well as
variable-length entries. (We do not know, a
priori, how long a given sequence of property
values will be, nor how many characters will
ha ve this sequence in their forms.) Some type
of list structure is called for.

The structure adopted is the binary tree.
This is a special type of list structure consist-

REAL-TIME RECOGNITION OF HAND-DRAWN CHARACTERS 565

[]
~.~ 'r~ ~ ...
~
~.~ ~
~.~ ~ --

Rec10n 3

Figure 2. A Four Property Scheme.

ing of a collection of nodes and branches. Each
node is connected to one and only one node
n'h"n", ~ 'hn n "~n",.lo 'h onroh Q;nroo tho T\1"ll_
GJJVYC; ~.., UJ Q, .;:U·.I..I.6.&~ ..., ~.L.&.'"'I.. ""-'1..1.,,'"' "'.&..&" J:''&'''

gram operates on changes in the property
value, and there are three possible values for
any property, only two branches are needed at
a node to represent a sequence of values; hence
the tree is a binary tree. Fig. 4 illustrates a
binary tree which has stored the sequences of
property values for PI (Fig. 2). The algorithm
used to construct the tree is that the value 1
is always to the left of the value 0, and the
value 0 is always to the left of the value (I). The
set of candidate characters at a node is actu­
ally a list appended to that node. In Fig. 4,
the set of candidate characters has been placed
adjacent to its corresponding node.

If we return to the two types of 'E's (Fig. 3
and Table I), we can follow the operation of
the discrimination net. First, the appropriate
sequence of property values must be extracted
from the sequence of property vectors. This
process is illustrated in Table II. For the first
type of 'E', the program then descends the tree
and arrives at the node whose candidate set
consists of the two characters 'E' and 'A.' This
would therefore be the output of the net.

Figure 3. Two Different 'E's (See Table I) .

For the second 'E,' the program arrives at
the node marked with an asterisk and con­

. cludes that no character has a form with this
sequence of property values for PI; the candi­
date set will therefore be empty.

4.3 Training the Program
The process of training the program in­

volves modifying and augmenting not only the
individual discrimination nets, but also the
reliability estimates associated with these nets,
and occasionally even creating new nets. The
program begins with the four basic discrimina-

Figure 4. A Binary Tree for Property Pl.

566 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Table II. Sequence of Property Values for Two Different 'E's.
The sequence of property values for each individual property was extracted from the sequence
of property vectors in Table 1. Note that the sequences for 71"2, 71"3, and 71"4 are identical.

TTl TT2 TT3 TI4

1 1 1 1

0 0 0 0

W W W W

1 1 0 1

0 0 W w

w w 1 1

1 1 w w

0 0

W W

Type 1

tion nets corresponding to the four properties
discussed earlier. No sequences of property
values are stored in any of the nets, and each
net is given an initial success number of one.
It is this success number which will reflect the
reliability of the net.

4.3.1 Modifying the Tree
The user draws a form and the sequence of

property vectors is delivered to the program.
Since there are no forms stored in the nets,
an candidate sets are empty and the program
is unable to guess a character. The user then
informs the program what the character was,
and the correct sequence of property values
is stored on each tree along with the name of
the character.

As the process continues, the trees grow
more complex, but the procedure of growing
new branches and/or adding new characters
to candidate sets remains the same. Thus, in
Fig. 4, when preseiled with the type-2 'E,' the
program would add on the additional branches
(1, 0, w, 0, w) at the node marked with an as­
terisk and place a candidate set consisting of
the single character 'E' at the last node.

TIl Tr2 TT3 TT4

0 1 1 1

1 0 0 0

0 W W w

w 1 0 1

1 0 w w

0 w 1 1

w 1 w w

0 0

W w

Type 2

After the program has been in operation for
some time, correct decisions may be made even
though some candidate sets do not include the
right character. Similarly, a wrong guess may
be made even though some candidate sets do
include the correct character. In both cases,
one or more trees do not contain the sequence
of property values for the input form. If the
program is still in training, these sequences are
added to the corresponding trees. This means
that the next time the program is presented
with the same form, not only will the correct
decision be made, but the correct character will
be in each candidate set, i.e., the "vote" will be
unanimous.

4.3.2 Success Numbers-A Reliability Esti­
mate

The whole point of the training is not to
provide the program with all possible form it
may encounter, but to give it enough experi­
ence so that, even on unfamiliar forms, some of
the trees may be able to make guesses, though
others may generate empty candidate sets. The
weighting attached to the candidate sets of
each tree reflects the reliability of that tree as

REAL-TIME RECOGNITION OF HAND-DRAWN CHARACTERS 567

demonstrated during the training period. This
is done by incrementing (by one) the success
number of a tree every time its candidate set
contains the correct character. Similarly, the
success number is decreased (by one) each
time the candidate set does not contain the
correct character. Thus trees that suggest
correct characters often are given more weight
than those that do not. For the four basic
properties, the success numbers usually remain
about the same. However if the user tends to
be more consistent with respect to the vertical
dimensions of his character and varies on his
horizontal dimensions, this would be reflected
in the larger success numbers for property P 3

and P 4 (Fig. 2).

4.3.3 Generating New Properties

Although the four basic properties enable
the program to achieve quite a high level of
discrimination, they are not foolproof. Suppose
in the course of its training, the program were
taught the character 'Z' (shown in Fig. 5a and
Table III). Later, when confronted with the
form in Fig. 5b the program correctly identi­
fies it as a 'Z.' Moreover, it is sure that it is
a 'Z.' In other words, every tree suggested a
'Z.' The only difficulty is that a human would
recognize this form as denoting the character
H) , Telling the program that this form de-
notes a '2' does not sove the problem. It would
merely result in the program identifying sub­
sequent 'Z's as '2's. The two characters are
identical within the limits of discrimination
of the program.

At this juncture there are only two possibil­
ities. Either the user must relent and draw
one or the other form differently, e.g., cross

-

\

/
)

/ -

Figure 5. Two Forms Identical Within the Limits of
Discrimination of the Program (See Table III).

the 'Z," or he must extend the discrimination
of the program. The latter course is prefer­
able and, for the case of this program, easily
achieved.

Observing that the difference between the
two forms lies in the fact that a 'Z' enters the
upper right hand corner, and a '2' does not, we
communicate this fact to the program by ac­
tivating a new region R5 , and a corresponding
property V5 • When the program has added this
new discrimination net· to its collection of
existing nets, it has the necessary discrimina­
tion to distinguish between these forms (Fig.
6 and Table IV).

There are implications in this procedure be­
yond the ability to distinguish between two
similar characters. First, the new tree is
started out with a success number of one. The
other trees, by virtue of their training, have
built up larger success numbers. Consequently,
the new tree will have an effect only in those
decision where there is a tie vote from the
other trees. In other words, it will only be
called upon to discriminate when it is needed.
For those sequences that the four original
trees have been trained to handle, the new tree
will not be used.

The second implication is that the new tree
can eventually outweigh the old trees if it
proves to be more reliable. As the new tree
participates in more correct decisions its
success number grows. If the user has gen­
erated a very effective property, then this new
tree can assume a position of dominance in the
decision procedure. The user is protected, how­
ever, if he has generated a poor property. This
will be reflected in its low success number, and
it will only be used when there is no other way

Figure 6. Generating a New Tree (See Table IV).

568 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

Table III. Sequences of Property Vectors and Values for Figure 5.

TTl TT2 TT3 TT4 TT TT2 TT3 TT4 1

1 1 1 1 1 1 1 1

0 1 1 1 0 0 0 0

0 0 1 1 1 1 w w

0 1 1 1 0 0

0 1 0 1 w U)

1 1 0 1

1 1 0 0

0 1 0 0

0 0 0 0

w w w w

TT vectors TT
j

values

to make a decision. Thus, the generation of
new trees proves to be a very powerful heuris­
tic. It enables the clever user to create an
extremely powerful character recognizer, and
does not penalize the novice, since his new
properties can be evaluated in light of the
program's experience with him.

4.4 The Program in Operation
The program operates in the following way.

The user draws a form within a rectangle of
light displayed on the scope; an input routine
converts this form to a sequence of property
vectors. The particular properties used, as
mentioned above, indicate the position of the
pen. Hysteresis regions in those areas where
properties change have the effect of eliminat­
ing the sharp line of demarcation between two
regions.

When the user has completed a form and
signals to the program, a recognition routine
is brought into memory. This routine operates
on the property sequence computed by the in-

TTl TT2 TT3 TT4 TTl TT2 TT3 TT4

1 1 1 1 1 1 1 1

0 1 1 1 0 0 0 0

0 0 1 1 1 1 w U)

0 0 0 1 0 0

0 1 0 1 w w

0 1 0 0

1 1 0 0

0 1 0 0

0 0 0 0

w w w W

TT vectors TT J values

put routine. It retrieves the candidate sets
from the trees, and makes a guess as to the
identity of the character that was drawn, using
the success number technique discussed above.
When in training mode, it uses the feedback
information to grow new branches and add
characters where necessary, and to modify the
success number of existing trees.

4.4.1 The Input Routine
When the program is in operation, a rectan­

gle of light can be seen flickering on the cath­
ode ray tube. This is a 48 x 64 raster of points
within which the user must draw his forms. *
Associated with each point in the 'raster is a
property vector. As the user draws on the
scope, the pen is tracked by the program. The

* The user could be allowed to draw his form any­
where on the scope face. However, this would entail
saving the entire form and normalizing it after it had
been completed, which would be costly in space and
time. By limiting the drawing to the rectangle, the
property vectors can be computed while the form is be­
ing drawn.

REAL-TIME RECOGNITION OF HAND-DRAWN CHARACTERS 569

property vector for the point in the center of
the pen's field is retrieved from the raster table
by the input routine. If the property vector
differs from the last vector in the sequence, it
is appended to the sequence. When the user
lifts the pen from the scope, the property vec­
tor (w, w, w, (f) is added to the sequence. This
process continues until the user signals he has
completed a form. The 7r vector sequence is
then passed to the recognition routine.

Because of the nature of the properties used
by the program, it might be possible to com­
P¥te the property vector directly rather than
store a three-thousand word table. There are
two reasons why this is not done. First, table
lookup is much faster than computing the
property vector. This speed is important while
tracking the pen. A long computation might

allow the pen to travel far enough that the
program would "lose it." This, in turn, would
mean that the program would have to display
the entire raster to find the pen. This can be
annoying to the user. In addition, the pro­
gram would interpret this as meaning that the
pen had left the face of the scope, and add (w,
w, w, (f) to the property vector sequence.

The second reason for looking up the prop­
erty vector rather than computing it lies in the
generality of the lookup procedure. Since each
point has its own property vector, the regions
are not restricted to a portion of the rectangle
lying to one side of a straight line, as in the
basic set of propertIes. The regions need not
even be connected. Although the regions used
for the basic set are simple, there is no reason
why more general regions should not prove

Table IV. Sequences of Property Vectors and Values after Adding New Property (See Figure 6).

TTl TT2 "3 TT4 TT5 TTl TT2 TT3 114 Tr5 TTl TT2 TT3 TT4 TT5 TTl TT2 113 TT4 115

1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

0 1 1 1 0 0 0 0 0 1 0 1 1 1. 0 0 0 0 0 ID

0 0 1 1 0 1 1 Q) Q) 0 0 0 1 1 0 , ,
W W

0 0 1 1 1 0 0 W 0 0 0 1 0 0 0

0 o· 1 1 0 w w 0 1 0 1 0 w w

0 1 1 1 0 0 1 0 0 0

0 1 0 1 0 1 1 0 0 0

1 1 0 1 0 0 1 0 0 0

1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 W W W W W

0 0 0 0 0

CD CD W W W

1T vectors 1Tj values 1T vectors 1Tj values

570 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

useful for certain types of characters. In fact,
it is this table lookup that permits the genera­
tion of new properties (Fig. 6). This is done
by the simple expedient of pointing the light
pen at the corresponding region of the rectan­
gle as it is displayed. The program then stores
the correct values for the new property (one
for points inside the region, zero for points
outside) in the 48 x 64 property vector table.
From then on, the program will act as though
the new property were one of the basic set.

4.4.2 Hysteresis Areas
As mentioned above, when certain generali­

zations suggested themselves, and they were
not difficult to implement and did not detract
from recognition efficiency, these were carried
out by the investigator. One such modifica­
tion consists of a hysteresis area that lies be­
tween R j (the region corresponding to P j) and
its complement. In this hysteresis area, no
changes in the property P j can occur. In other
words, if the pen enters the hysteresis area
from the region where 77"j = 1, even if it crosses
the line between the region and its comple­
ment, 77"j remains equal to one until the pen
leaves the hysteresis area. Similarly if the
pen enters the area from the region where
77"j = 0, '7Tj remains zero as long as the pen is in
the hysteresis area. Thus, the hysteresis area
acts as a buffer between two regions of the
rectangle.

The effect of the hysteresis is to standardize
certain forms. In Fig. 7 and Table V, a form
denoting the character 'e' is shown, with and
without hysteresis areas. Without hysteresis
property vector sequences for this form prob­
ably would not agree with that of another form

Figure 7. Use of Hysteresis Areas (See Table V)

denoting,the same character. This is because
slight variations in the path of the pen would
result in an entirely different sequence. Some­
times the property vector sequence would re­
cord more than one crossing of certain boun­
daries, and other times no crossings. Con­
sequently, the program would find it difficult
to learn this character. With the hysteresis
area, a certain amount of "slop" can be toler­
ated regardless of the position of the form.

In the program, the width of these hysteresis
areas is set at five ponts (the raster is 48
points wide and 64 points high). The hystere­
sis areas are drawn approximately to scale in
Fig. 7.

4.4.3 Binary Trees and the Recognition
Routine

For each j, the recognition routine extracts a
sequence of '7Tj values from the sequence of
property vectors. The program descends T j,
and retrieves the candidate set. It then forms
the union of all of the candidate sets. Each
candidate is credited with the success number
of the trees that suggested it, and the candi­
date with the highest score is chosen by the
decision procedure.

When the program is in training mode, the
recognition routine indicates its guess and
waits for feedback. If the correct character is
in the candidate set of Tj, the jth ·tree, the
success number of that tree is incremented.
Otherwise, the success number is decremented,
and the correct character is stored at the ter­
minal node for the '7Tj sequence, new branches
being grown where necessary.

The implementation of this process involves
extensive use of list structure; the binary tree
and the candidate set are each represented as
a list of nodes. In addition, there is also a free
storage list which contains all available space.

The nodes of the binary tree consist of three
pointers. One pointer points to the node at
the end of the left-hand branch, and another
pointer points to the node at the end of the
right-hand branch. The third pointer points
to the list of characters (the candidate set)
stored at the node. The nodes of the candidate

REAL-TIME RECOGNITION OF HAND-DRAWN CHARACTERS 571

Table V. Property Vectors with and without Hysteresis (See Figure 7).

TTl TT2 TT3 TT4

1 1 0 1

0 1 0 1

0 1 0 0

0 1 0 1

0 0 0 1

0 1 0 1.

1 1 0 1

1 1 0 0

0 1 0 0

0 0 0 0

W W W W

.... 4,+ ", ... re+c. ... c.C!-t C! w. v.u.V\,4U ... " ... uv",vw.w

set consist of the name of a character, repre­
sented as a nine-bit binary code, and a pointer
to the next node of the list. The end of a list
is indicated by a special symbol, called the null
symbol instead of a pointer. Fig. 8 dep"icts
such a structure. 0 represents the null symbol
in the figure.

When the program must add a node to the
binary tree or the candidate set, it obtains the
necessary cells from the free storage list and
constructs the node. The node is then tied into
the list structure at the appropriate place by
changing a null symbol to the address of the
new node.

4.4.4 Human Engineering Considerations
The program under discussion was originally

designed to serve as a subroutine for a larger
system. As such, its only function was to
allow a user to input information to the larger

TIl TT2 TT3 TT4

1 1 0 1

0 1 0 1

1 1 0 1

1 1 0 0

0 1 0 0

w w w w

with hysteresis

system:,.by means of the cathode ray tube, and
to do this in a way that seemed convenient and
natural to him. Since the system must deal
with users who would be complete strangers
not only to this program, but also to the entire
field of computers, a great deal of thought has
gone into the design of the "physical appear­
ance" of the program. This section describes
and illustrates by means of photographs, etc.,
exactly how the user interacts with the pro­
gram.

One of the first problems encountered con­
cerned the many options the program offered.
These would be of no value if the onus of re­
membering what these options were and how
they were to be selected fell on the user. The
solution adopted is the use of a control panel.
This panel may be called at any time by means
of a small light button displayed in the upper
right-hand corner of the screen. When called,

572 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Pree Storage

Figure 8. Internal Representation of Data Structure 0
represents the Null Symbol.

the panel displays all the options (Fig. 9). The
user can select an option simply by pointing
the light pen at the corresponding light button.
The button lights up and the appropriate ac­
tion is taken. When the panel is no longer
needed, it may be dismissed by pointing the
light pen at the appropriate button. This pro­
cedure has been found to be quite acceptable
and intuitive to persons unfamiliar with the
program.

Unless the user has previously prepared a
set of trees, the first step in using the program
is to place it in training mode (the program is
usually operated in hysteresis mode). The
user then proceeds to train the program to his
style of handwriting. He does this by drawing
the character on the raster, and signaling the
program to recognize it (Fig. 10). The pro­
gram displays its guess in the upper left-hand
corner of the screen, while displaying the two­
dimensional projection of the form in the cen­
ter of the screen (Fig. 11), and waits for
feedback.

e
•
•

Ente~ T~alnlnq Mode
Lea·.·e Tralnlng Mode
Enter Hysteresls Mode
L.ae ~rste~eslS Mode
E~ase Trees

S.t Up Raste~
G.n.~at. ~.w Tree

Panch Off

Rpad In
Generate Ne~ Charact~r

EXlt f~o" APr.US

DIsmISS po.n.l

Figure 9. The Control Panel.
The control panel is' called to display the various options
of the program. The user selects an option by pointing
at the corresponding light button, which then lights up.
Note that the program is currently not in training
mode and not in hysteresis mode.

If the program has guessed correctly, the
user signals approval with the light pen. If the
program is wrong, or could not make a guess,
the user signals disapproval, and the pro­
gram's alphabet is displayed so that the user
can indicate the correct character (Fig. 12).
This process continues until the user is satis­
fied with the program's proficiency (Fig. 13).
He may then take the program out of training
mode and write characters on the raster. When
the program is asked to recognize each char­
acter, it inserts its guess ('?' if no guess) in
the input string of characters at the pointer
(Fig. 13). The user may move the pointer so
that he can insert (or delete) characters at any
point of his input string. If the program evi­
dences weakness or certain characters, the user
can return to training mode. These processes
continue until the input string is exactly what
the user wishes to communicate to the larger
program, and the user then exits from the
character recognizer. If the user wishes to
retain what he has taught the program for

Figure 10. Drawing a Character.
The user has just completed drawing the form which
denotes the character 'A.' If this is acceptable, he
signals to the program to recognize it. If not, he may
erase the entire form and start over. Note the light
button situated in the upper right hand corner of the
screen for calling the control panel. Note also the
lighter hysteresis areas in the raster (Figure 7).

REAL-TIME RECOGNITION OF HAND-DRAWN CHARACTERS 573

Figure 11. Indicating a Guess.
The program has been asked to identify the form whose
projection is displayed in the center of the screen.
The'?' indicates that it was unable to make a guess.
Since the program is in training mode, the user will
presumably tell it that the form denotes the char­
acter 'A.'

future use, he may request a tape of the trees
and property table through the control panel.
The trees and property table can then be read
into the program via the control panel the next
time the user wishes to use the program, thus
avoiding the training process.

Although the character set basic to the pro­
gram is a large one, it is quite possible that a
particular user may need some special-purpose
character or set of characters. These char­
acters may be generated and are assigned nine­
bit codes. They are subsequently treated ex­
actly like the original characters. Fig. 14
shows a user generating a '2;.'

One other valuable option is the ability to
generate new trees, which may also be done
via the control panel. Fig. 15 shows the gen­
eration of a new tree needed to distinguish
between 'U' and 'V.' The user has merely
shaded in the corners of the raster. Upon
signalling his approval, the program will
modify the property vectors in the 48 x 64
table to indicate the new region. When the
user calls for the PUNCH option at the end

RBCDEFGHIJ'_'

NOPOPSTUIJ>< 7

obcoefqtllJY."

r 0 p q I" 5 t u. ht I' ::

123 .. 567830

Figure 12. Feedback.

The user has indicated disapproval, and will now com­
municate the correct character to the program by point­
ing at it with the light pen. The character set displayed
is only part of the basic alphabet of the program;
there are more "pages" of symbols. In addition, the
user can generate new characters (Figure 14).

Figure 13. Correct Identification.
The program has guessed that the form denotes the
character 'E.' The character displayed is underlined to
indicate that the program is sure, i.e., all trees voted
for 'E.' Below the character is the input string. The
next character will be inserted at the pointer.

of a training run, all new trees are punched
along with the modified property table.

The other options on the control panel are
the "Enter Hysteresis Mode," "Leave Hystere­
sis Mode," "Erase," and "Set Up Raster.' The
first two of these are exactly what they sug­
gest. In hysteresis mode, the program uses
the hysteresis areas; otherwise not. The erase
feature enables the user to erase all of the four
original trees, destroy any new trees, and cause
the property table to revert to its original
form. The erase feature is used when new
trees are read in with the READ option, or
the qser may call it if he wishes to start over
and train the program differently. The set up
raster option is used to determine the size and
position of the raster. This allows individuals
to write as large or as small as they please,
and also enables them to position the raster
anywhere on the scope.

Figure 14. Generating a New Character.
The user has found a need for a character not offered
by the program. He is generating a new character by
pointing at the points that will make up the character.
The partially formed character is displayed in the
upper center of the screen between "actual" and "size."
When satisfied, he indicates approval and the new
character is added to the program's alphabet. The
Russian and Hebrew alphabets used (Figures 16 and
17) were generated in this fashion.

574 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

Figure 15. Generating a New Tree.

The user is generating a new tree to extend the dis­
crimination of the program. This particular tree might
be useful in distinguishing between 'U' and 'V.' When
the user approves, the property table will be modified
accordingly.

5.0 DISCUSSION

The usual criterion applied to evaluating a
pattern recognition program is its rate of rec­
ognition. With the program presented above,
this is not too meaningful. Mermelstein and
Eden,6 who have also experimented with uSing
the time sequence information in their system,
report that their recognition depends on the
"correspondence between the script of test
samples and that of the ensemble on which the
manchine's representation of handwriting is
based." That is certainly true here. By the
nature of the program's training, if it were
presented with a form encountered before, it
would recognize it correctly 100 percent of the
time. If it were presented with a form similar
to one previously encountered, its recognition
accuracy would depend on how similar this
form was, and the measure of similarity would
have to be circularly defined in terms of the
program's properties. In particular, a form
that looked identical to the human eye with
another form might be very different as far as
the program was concerned. This is especially
true if the number of separate strokes of the
pen used were not the same.

Essentially the only things that can be said
about a program of this type relate to its con­
venience arid usefulness. The program has
been taught to recognize, on separate occa­
sions, Russian characters (Fig. 16), Hebrew
characters (Fig. 17), Greek characters, upper­
and lower-case English characters, and a large
collection of mathematical symbols (Fig. 18).
It has been used by many different people, and
the combination of control panel and punch­
out and read-in features make it at the very
least enjoyable to operate. With a little ex­
perience, after the user becomes accustomed to
the idiosyncracies of the light pen, and trains
the program in the variations of his hand-

Figure 16. Recognizing Russian.
The program has been trained to recognize capital
Russian letters, and an appropriate character set has
been generated. The figure shows the program in op-
aration. The letters in the input string displayed '''lere
recognized correctly by the program.

writing (surprisingly many people are not
aware of the fact that they vary their style
of handwriting from sample to sample), the
resulting man-machine system becomes quite
effective. Again no quantitative results can
be offered here other than observations on use
of the program by a considerable number of
individuals.

The results seem to indicate that the use of
the time sequence is a powerful tool in pat­
tern recognition. I t enables a program using
fairly simple properties to achieve a high rate
of recognition. One way to improve the pro­
gram might be to include more sophisticated
properties other than the position of the pen.
An immediate improvement would be to in­
clude a property that detected sharp corners
by noticing changes in the velocity of the pen.
Other properties might note curvature or
angle. Developing a language that described a
wide class of properties would generalize the
program even further. The user would then
be able to communicate subtle differences in
forms by means of fairly abstract concepts.

The final goal of this type of approach would
be to have the system generate new properties
to help distinguish between similar forms
without user intervention.10 One possible way

Figure 17. Recognizing Hebrew.

REAL-TIME RECOGNITION OF HAND-DRAWN CHARACTERS 575

Figure 18. Recognizing Mathematics.

of doing this would be to give the program a
large pool of potentially useful properties and
have the program select those applicable.

Another extension of the program's applica­
bility lies in relaxing the real time restriction.
If line tracing is used on input characters, the
program could recover a canonical time se­
quence from a figure. This would allow these
techniques to be applied to recognizing printed
characters.

Similarly, if a technique were used similar
to Freeman's 3 to encode the character as it
was being drawn, the normalization problem
might also be avoided. This would allow the
user complete freedom of the scope. In this
case, the system would begin to rival the type­
writer for convenience, and would make com­
puters very accessible to any and all potential
users.

REFERENCES

1. DAVID, E. E. and SELFRIDGE, O. G. Eyes
and Ears for Computers. Proceedings of
the IRE, 1962, 50 (5), 1-9.

2 DIMOND, T L. Devices for Reading
Handwritten Characters. Proceedings of

the Eastern Joint Computer Conference,
1957, 232-237.

3. FREEMAN, H. On the Encoding of Arbi­
trary Geometric Configurations. IRE
Transactions on Electronic Computers,
1961, EC-10 (2), 260-268.

4. KUHL, F. Classification and Recognition
of Hand Printed Characters. IEEE Inter­
national Convention Record, 1963, Part 4,
75-93.

5. MARILL, T. et ale Cyc1ops-1: A Second
Generation Recognition System. Proceed­
ings of the Fall Joint Computer Confer­
ence, 1963, 24, 27-33.

6. MERMELSTEIN, P. and EDEN, M. Experi­
ments on Computer Recognition of Con­
nected Handwritten Words. Information
and Control, 1964, 7 (2), 255-270.

7. MINSKY, M. L. A S.elected Descriptor­
Indexed Bibliography to the Literature on
Artificial Intelligence. IRE Transactions
on Human Factors in Electronics .. 1961,
HFE-2 (1), 39-55.

8. MINSKY, M. L. Steps toward Artificial
Intelligence. Proceedings of the IRE,
1961, 49 (1), 8-30.

9. UHR, L. Pattern Recognition Computers
as Models for Form Perception. Psycho­
logical Bulletin, 1963, 60 (1), 40-73.

10. UHR, L. and VOSSLER, C. A Pattern Rec­
ognition Program that Generates, Evalu­
uates, and Adjusts its own Operators.
Proceedings of the Western Joint Com­
puter Conference, 1961, 19, 555-569.

A COMPUTER PROGRAM WHICH "UNDERSTANDS"*
Bertram Raphael

University of California, Berkeley, California

I. INTRODUCTION

This paper describes a computer program
which demonstrates one approach to building
an "intelligent" machine. The computer system
called SIR-Semantic Information Retriever­
exhibits some humanlike conversational be­
havior and appears to have certain cognitive
abilities. The conversation presented in Figure
1 between a person (identified by "*** .") and
SIR illustrates some of the system's capabili­
ties.

"Understanding" is difficult to define. A
basic assumption here is that understanding
can be demonstrated by dialogue; i.e., a com­
puter should be considered able to "understand"
if it can remember what it is told, answer ques­
tions, and make other responses which a human
observer considers reasonable.

In order to make "reasonable" responses the
computer must not only be able to echo, upon
request, facts it has been given; it must be able
to select (from a large store) facts which are
relevant to a particular question, and must be
able to recognize the logical implications of
those facts. One way to satisfy these require­
ments is to utilize a suitable internal repre­
sentation, a "model", for stored information.

This paper describes SIR, a prototype of a
general-purpose "understanding" machine. SIR
demonstrates how conversational and deductive
abilities can be obtained through use of a model

which can represent semantic content from a
variety of subject areas.

II. QUESTION-ANSWERING SYSTEMS

Several computer programs have previously
been written whose behaviors are somewhat
similar to that of SIR. The following are among
the best-known existing systems:

1. "Baseball: An Automatic Question-An­
swerer".l This system draws answers to
a wide range of English questions from a
predetermined, fixed, hierarchical data
structure.

2. Phillips' "Question-Answering Routine".2
This early example of a question-an­
swerer contains the important feature
that its corpus of data is automatically
extended with each new input sentence.
However, the answering process involves
a statement-by-statement search of the
entire corpus.

3. "SYNTHEX".3 The SYNTHEX approach
is to find answers in an indexed natural
language text by means of grammatical
dependencies. The ability of the system
can be improved only by increasing the
complexity of the associated grammar.

4. Lindsay's "Semantic Analyzing Ma­
chine".4 Lindsay takes advantage of spe­
cial properties of a particular semantic
relationship by using a form of "family
tree" as the internal computer model for

• The work reported herein was supported in part by the MIT Computation Center and, in part, by Project MAC,
an MIT r.esearch program sponsored by the Advanced Research Projects Agency, Department of Defense, under
Office of Naval Research Contract Number Nonr-4102(01). This report is based on a doctoral thesis for the MIT
Mathematics Department, June, 1964.

577

578 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

...... E:VEMY 80Y IS A PERSON)

II UNIlERSUNDI

...... A FINGER IS PART Of " HAND)

II UNDERSTAND I

,.... EACH PERSON HAS TWO HANDS)

ITHE ABUVE SENTtNCE IS AMBIC;UUUS •• PLEASE Rt-PHRASE IT I

,.... THERE ARc TWO HANDS ON fA(;H PERSONI

II_STANOI

..... HOII HAPlY F INC;US DOES JOHN HAVE Q I

ITHt MOVt SE~TEPI(;E IS AMBIC;UOUS •• BUT I ASSUME IHASI MEANS IHAS AS PARTSII
II DON'T 1(11011 llHETHU FIN(;U IS PART OF JOHNI

t.... .J~ IS A BOY)

II UHOERSTANDI

,.... HOW MANY fiNGERS DOES JOttN HAVE QJ

: ~:W A::~ :~:::C;t~\::I~':.'US •• BUI I ASSUME (HASI MEA~S IHAS AS PARTSII

(.... EVERY HAND HAS 5 FLNGERS)

ITH.!: ABOVE SENTENCE IS AIItIIGOOUS •• HuT I ASSUME IHASI MEANS IhAS AS ~'RTSII
II UNDERSTAND I

HOW HANY F I NC;US DOES JOliN HAVE g I

I THE ABU~E SEPlnNCE IS AMBI(;lJOUS •• BUT I ASSUHt IHASI HEANS IHAS A~ ~ARTSII
IJHt APlSIlER IS 101

(.... HOW "ANY AutOlWlJILES DOES JOhN HAVE Q)

IJHE ABOVE SENTENCt IS AM~I(;UOUS •• PUASE RE-PIiRASE ITI

I.... WHO IS PRESIDENT OF IHE UNJlEO STAns gJ

ISTATEMENT fORM NOT RE(;U(;NllEDI

I.... THE 80Y IS JUSI TO THE LEfT Of THE TAbLE I

";028~O IS A TABLEI
II UNDERSTANOI

THt LAMP I S JUST TO IHE LEFT Of THE I ABLE I

'10028U IS A LA
IIHE ASOVE STATEMENT IS IMPOSSISUI

I·... IHE TABLE IS TO ThE RI(;HT uF THE (;HAlkl

I(;02h2 IS A (;HAIRI
II UNUERSTANDI

(.... WHAT IS THE Itt:LATlVE POSITIUN LF A Pt::RSON Q)

(flit: LEFT-TU-IUGHf OROEIl. IS AS FOLLUWS.
ICHAI" I80Y TABUII

Figure 1. Sample Conversation.

kinship information. Of course, this
"tree" model is not a good representation
for other kinds of relationships.

5. Darlington's translation to s y m b 0 1 i C

logic.5 This program shows how certain
English problems can be translated into
logical terms and attacked by formal
methods. As with Lindsay's system, the
approach used here has limited applica­
bility.

6. Bennett's computer program for word re­
lations.6 This'system, in which words are
related by means of the English formats
in which they appear, extracts and stores
semantic information in a limited and
somewhat awkward way.

7. Bobrow's "STUDENT"/ This new sys­
tem deals with linguistic problems which
arise while analyzing those English state­
ments which describe mathematical re­
lationships. The program translates
"word problems" directly into algebraic
expressions.

Each of the above systems has certain in­
teresting features; some of which have in­
fluenced the design of SIR. The goal of the
present work, however, has been to find and
demonstrate a question-answering mechanism
which is highly automatic, widely applicable,
and reasonably efficient; one which overcomes
many of the limitations of the above systems.
An appropriate model is the key to this mecha­
nism.

III. THE SIR MODEL

The SIR model is the collection of data which
SIR subprograms may refer to in the course of
question-answering. It is a "semantic" model
in two senses: 1) The information stored in the
model is intended to approximate the linguistic
"semantic content" or "meaning" of English
text; 2) The structure of the model is derived
from the "semantic" model structures of mathe­
maticallogic.

Many linguists and logicians have considered
problems of "semantics" and offered definitions
of "meaning".8,9,10,11,12,13 Few of these discus-
sions are sufficiently concrete to be suitable for
computer implementation. However, the idea
of representing meaning by word associations,
suggested by several previous authors, has been
adapted as the basis of the SIR model. The
resulting word-association structure of the
model is general enough to be useful in a wide
variety of subject areas; yet, the stored in­
formation is specific enough to provide con­
venient accessibility of relevant facts and,
therefore, efficient question-answering.

STRUCTURE OF THE MODEL

The SIR model is structured by means of
property-lists (sometimes called description­
lists). A property-list is a sequence of pairs of
elements, and the entire list is associated with
a particular object. The first element of each
pair is an attribute applicable to a class of ob-

A COMPUTER PROGRAM WHICH "UNDERSTANDS" 579

jects, and the second element of the .pair is the
value of that attribute for the object described.

If an English statement asserts that rela­
tion R holds between objects or classes named
x and y, or equivalently, that the word "x" is
associated with the word "y" in a manner
specified by the word "R", then this relation­
ship is represented in the SIR model by attrib­
ute-value pairs placed on the property-lists of
both x and y. Each attribute specifies a rela­
tion, and the value paired with the attribute
(the value of the attribute) indicates which
other objects are related to the described object
by means of the specified relation, i.e., which
other words are associated with the described
word in the way specified by the attribute word.

Since, in general, relations are not sym­
metric, relation R must be factored into two
relations Rl and R2 so that, if R holds between
x and y, one can say that y stands in relation
Rl to x and x stands in the inverse relation
R2toy.

For example, consider the sentence, "Every
boy is a person." SIR takes this sentence to
mean that a set-inclusion relation holds between
"BOY" and "PERSON". The factor relations
Ri and R2 are "SUPERSET" and HSUBSET",
respectively. The fact specified by the above
sentence can be represented in the model by the
attribute-value pair "(SUPERSET, PER­
SON)" on the property-list of "BOY", and the
pair "(SUBSET, BOY)" on the property-list
of "PERSON".

An attribute can only appear once on a given
property-list. However, the value of an attrib­
ute may be a list containing several object
names. For added flexibility, elements of these
value lists may themselves be in property-list
format so that they can hold descriptive infor­
mation as well as object-names. The first item
on such sub-property-lists is the flag "PLIST"
which indicates that a property-list follows.

For example, after the system learns that "A
person has two hands" and "A finger is part
of a person", the property-list of "PERSON"
would contain the attribute-value pair:
(SUBPART, «PLIST (NAME, HAND)
(NUMBER, 2» (PLIST (NAME, FIN­
GER»» These general links are the principal
mechanism for structuring the model.

IV. NATURAL LANGUAGE INPUT

The language which is most convenient to the
users of SIR is natural English; therefore, the
input and response languages of the SIR sys­
tem should be reasonably close to natural Eng­
lish. Since its internal information representa­
tion is a relational model, SIR is faced with the
difficult problem of extracting word associa­
tions from natural language.

The work reported in this paper is concerned
with the ability of a computer to utilize rela­
tional information in order to produce intelli­
gent behavior. The linguistic problem of
transforming natural language into a usable
predicate form is only of peripheral interest
here. The following outlines a superficial but
adequate method for solving this linguistic
problem in the present context. Reference 14

contains further details of this method.

SIR recognizes only a small number of sen­
tence forms, each of which corresponds to a
particular relation. The input language is de­
fined by a list of formats. Each format is a
string of constants and variables, and an ap­
plicability test is associated with each variable.
An input sentence is recognized if it is matched
by the constants in some format, and if its sub­
strings corresponding to each variable in that
format satisfy the corresponding tests. Special
functions associated with each format then ex­
tract appropriate word associations from rec­
ognized sentences, and perform the desired
storage or retrieval operations in the model.

For example, the sentence, "Every boy is a
person", is recognized by the format, "x is y".
Applicability tests check that the substrings
corresponding to x and y are each two words
long, the first of which is a member of the set
{ a, an, every, any, each }. The associated
function then creates set-inclusion links be­
tween "BOY" and "PERSON" in the model.

Some formats do not uniquely determine
word relations. As an example of how such
ambiguity may be treated, SIR considers the
verb "to have" as meaning either "to have at­
tached as parts" or "to own", e.g., "John has
ten fingers" vs. "John has three automobiles".
The function associated with the format "x has
n y" must resolve this sernantic ambiguity be­
fore it can operate on the model. The ambiguity

580 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

is resolved, as described in Section V, on the
basis of word-associations in the model which
were created because of previous, unambiguous
input sentences.

SIR always makes reports of its actions. The
conversation of Figure 1 was produced by an
abbreviated-response mode in which only di­
rectly relevant responses were printed. Altern­
atively, the system can provide a running com­
mentary of its activities. Although less read a-

1THi: NEXT SEN fENCE IS. • I
(EVERY BOY IS A PERSIIi'II

UHE fllolCTiON USED IS. .1
serR-~ElEtT
I(GENERlt • 8(JYI IGENER" • PERSONII
UHE otEPLY •• 1
UHi: SUB-FUNCJlON USED IS •• 1
SHR
IBOY PERSOHI
(ns REPLY • .1
II UNDERS UNO rHi: SUPERSEJ RELAlI ON BElWEEN PE"SO>l AND BOY!
II UNDERSTAND THi: SU6SET RELAJlQN BeTWEEN BOY AND PEMSD"I

(HII: NEXT SENTENC!: IS •• 1
(A fiNGER IS PART Of A HANOI

"HE fUNCTION USED IS •• 1
PARTR-SHECT
IIGENERIC • flNGERI (GENERIC. HANOII
ITHE REPLY • • I
1Tttt: SUB-fUNCTION USED IS •• 1
PARTR
IflNGER HANOI

(ITS ~EPLY •• 1
II UNDERSTAND THE SUBPART-OF-EACH RELATION BEr~(EN FINGER AND HANOI
II UNDERSUND THE SUPI:RPART-Of-EACH R~LATlIIi'I aETWE~N HAND ANO FINGERI

ITHE NEXT SENTENtE IS. .1
lEACH PERSON HAS TWU HANDS I

ITHE FUN(; TlON USED 15 • • I
HASN-9.ESOL VE
112 • HANOI (IOtNER" • PERSONII
1THi: ltEPLY •• 1
UHE ABOVE SENTENCE IS AMBIGUOUS •• PLUSE RE-PHRASE I II

((HE .. EXT SENJENtE IS •• 1
ITHERE ARE TWO HANDS UN EACH PERSON I

ITHE FUNCTION USED IS. .1
PARTRN-SELEC T
IIIOtNER" • PERSON I (2 • HANDII
ITHE REPLY • .1
II UNDERSTAND THE SUP~R~AMT-OF-EACH RELATION tlETWEEN PERSON AND HANOI
II REALIZE THi: NUMBER RELATION BETWEEN 2 ANO (PLIST NAME PERSOIIII
II UNDERSIAND rHi: SUBPART-OF-EACH RELATlIIi'I IIUoiEEN HANO 1."0 PERSUNI
II REAUlE lHE _IIER RELATlIIi'I BUIIEE .. 2 AND IPLISI NAME HANDII

UHE NEXT SENTENCE IS. • I
IHOW MANY flllGERS OOES ~OHN HAVE QI

UHE FUNCTION USED IS. .1
HAYE-RESOl YE
IfJNIOtR IUNlQUE • ~OHMII
ITHi: REPLY •• 1
ITHE ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUME IHASI MfANS (HAS AS PARISI I
(I VUN<>T KNOW WHETHi:R FINGER IS PART OF ~HNI •

UHi: !tEXT SENTENCE IS •• 1
I~OHN IS A BOYI

UHE FUNCTION USED IS •• 1
SETR-SELEt T
II UN I QUE • ~OHNI IGENERIC • BOYII
UHE REPLY • • I
UHi: SUB-FUNCTION USED IS •• 1
SETMS
I~OHN BOYI
IITS REPLY • .1
II UNDER STANO THE ELEMENTS RELATION BElIIEEN JOHN AND BOrl
II UNDERSTAND rHE MEMIIER RELATIUN IIElWUN 8(Jy AND ~OHNI

UHE NEXT SENTENtE IS. .1
IHOW MANY fiNGERS OOES ~OHI! HAVE QI

UHE FUNCTION USED IS •• 1
HAVE-RESOlYE
If-INGER IUNlQUE • ~OHMII

UIIt: REPLY •• 1
ITHE ABOVE Sf"TENCt IS AMBIGUOUS •• Bur I ASSUME IHASI MEANS IHAS AS PARTSII
II KNOW THE SUPERPART-Of-EACH ItELAUON BETWEEN HAND AND FINGERI
(11t01i "ANY FINGER PER HAND 011

IIHE NEXT SENrENCE IS. • I
lEVEllY HAND HAS S FINGERSI

UHE FUNCIION USED IS •• I
HASlt-RESOLVE
liS • FINGERI "ENERIC • HANOII
ITHE REPLY • • I
IIHE ABOYE SENUNCE IS AIIBIGUUUS •• BUT I ASSUME IHASI MUllS IHAS AS PARTSII

ble, this full-response mode was a significant
debugging aid. Figure 2 shows the dialogue of
Figure 1 in that mode.

V. THE SIR PROGRAM

SIR is programmed in the LISP language,15
a list-processing computer language 16 well
suited for model building and searching proce­
dures. The operation of the program is de­
scribed in detail in 14. Here we we shall observe

II KNOll THE SUPERPART-Of-EACH IIELATION BETWEEN HAND A.~D FINGER I
II REALIZE THE NUMdER RELAIION IIETWEEN 5 AND IPLIST NAM~ HANDII
II KNOW THE SUBPART-OF-EACH RELATION BEH.EEN FINGER AND HANOI
II REALIZE THE _BER RELATION BErIlEEN 5 AND IPLIST NAME flNGERl1

UHE NEXT SENTENCE IS'. • I
IHOW MANY FINIOERS DOES ~OHN HAVE QI

!THE FUNCTION USED IS. .1
HAYE-RESOlVE
IFINIOtR IUNIQUE • ~OHNII
!THE REPLY • .1
ITHE ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUNt IHASI MEANS IHAS AS PARTSII
II KNOW THE SUPERPART-OF-EACH RELATION BET WEE,. HAND AND FINGERI
II KNOW THE SUPERPAIIT-OF-EACH REUTlIIi'I BETWEEN PERSON AND HANOI
ITHE ANSWER IS 101

UIIE NEXT SENTENCE IS. .1
IHOW MANY AUTONOllllES DOES ~OHN HAVE QI

!THE FUNCTION USED IS •• 1
HAVE-RESOlVE
IAUTOMOBILE IUNIQUE • ~OHNI 1
!THE REPLY • .1
!THE AIIOVE SENTENCE IS AMBIGUOUS •• PLEASE RE-PHRASE IT I

ITHE NEXT SENTENCE IS. .1
IIItIO IS PRESIDENT OF THE UNIlED STATES QI

ISTATEMENT FORM NOT IlEtoGNllEDI

ITHE NEXT SENTENCE IS. .1
If HE 8QY IS ",UST TO THE LEFT Of THE TABLEI

!THE FUNCTlO .. USED IS •• 1
JlUGHT-SELECT
IISPEtlfIC • TABLEI ISPECIFIC • BOYII
ITHE REPl Y • .1
If HE SUIl-FUNCTlON USED IS •• 1
~IGHT
!TABLE 1I0YI
IllS REPLY • .1
16021140 IS a TABLE!

(I IIIIOERSTAND ntE ELEMENTS RELATION BEIIIEE .. G02B40 ANO TAIILEI
II IIIIOERSTAND THE MEMBER IlELAlION BETWEEN TABLE ANO G028401
CI REAL IZE THE ~IGHT RELATION BETWEEN TAlJLE AND' BOY I
II REALIZE rIlE ~LEfI RELATION BETWEEN BOY AND TABLEI

ITHE NEXT SENrENCE IS. .1
ITIIE lAIIP IS JUS T TO THE LEFT OF THE T ABLEI

!THE FUNCTION USED IS •• 1
JRlGHT-SfLECT
IISPECIFIC • "'BLEI ISPECIFIC • LAMPII
!TIlE REPlY •• 1
!THE SOlI-FUNCTION USED IS • .1
~RIGHT
!TABLE LAIIPI
IITS REPLY •• 1
(602141 IS A lAIIPI
II UNIIERSTANO THE ELEMENTS RELATION BETWEEN G021141 aND LAMP I
II UNDERSTAND THE HEIlBER RELATION BETWEEN LAMP &110 GD211411
(THE AlOft STATENEIIT IS IMPOSSIBLEI

!THE NEill SENTENCE IS. .1
ITHE TABLE IS TO THE RIGHT OF THE CHAIRI

ITHE FUNCTION USED IS. • I
RIGHT-S.ECECT
IISPECIFIC • TABLEI ISPECIFIC • CHAIRII
ITHE REPLY •• 1
IlIIE SUB-fUNCTION USED IS •• 1
RIGHT
(TABLE tHAIRI
(ITS REPLY • .1
16021142 IS A CHAIRI
II UNOERSrAND THE ELEMENTS RELATION BETWEEN 602142 ANO CHAIRI
II UNDERSTAND THE MEMBER RELATION IIElWEEN CHAIR AND 60211421
II UNDERSTAND THE UGHT RELATION BUWEEIil TABLE aND CHAIRI
II UNDERSTAND THE LEFT RELaTION BETIIEEN CHAIR AND TA8LEI

trllE NEXT SENTENCE IS •• 1
I_T IS rItE RELATIVE POSITION Of A PERSON 01

trHE FUNCTION USED IS •• 1
lOC-SELKT
IlGENERIC • PERSON II
trHE REPLY •• 1
!THE SUB-FUNCTION USED IS • .1
LOCATEC
I PERSON I
Ins REPLY •• 1
!THE LEFT-TG-RU.HI ORDER IS AS FOlLOWS I
ICHAIR IIOY TABLEII

Figure 2. Sample Conversation in Full-Response Mode.

A COMPUTER PROGRAM WHICH "UNDERSTANDS" 581

the system's behavior by means of annotated
examples.

Each part of Figure 3 is a conversation be­
tween a person and SIR designed to illustrate
SIR's ability to "understand" a different rela­
tion or group of relations. Each part starts
with a "clean" memory, i.e., an empty modei
and no knowledge of vocabulary except for for­
mat constants. The following notes, keyed to
Figure 3, should help clarify some of the re­
sponses:

aL The response, "I UNDERSTAND", in­
dicates that some desired link has been
created or discovered in the model.

a2. "IS" and "IS AN EXAMPLE OF" are
equivalent formats in this context.

a3. In general, question-answering routines
in SIR can perform all necessary logical
deductions. "Q" should be read as a
question mark.

a4. The program responds "SOMETIMES"
to the question, "Is an x a y 1" if it can
deduce, from existing linkages, that y is
a subclass of x.

a5. "~nsufficient Information" is the most
common report of failure. The present
system does not handle deductions from
negative premises, e.g., "Every boy is not
a girl."

bL Absence of an indefinite article indicates
that MAX is an individual aIld, there­
fore, is an element, rather than subclass,
of IBM-7094.

b2. "THE BOY" requires the existence of a
unique element of the class "BOY". SIR
assigns "G" names to anonymous indi­
viduals.

b3. "THE BOY" is assumed to be G02840.
b4. JOHN and G02840 may be different

boys, making "THE BOY" ambiguous.
cL Two words are linked by the attribute

"EQUIV" if they are different names
for the same object. Deduction proce­
dures must allow for possible equiva­
lences.

dL In these cases attributes on the prop­
erty -list of the name of a set may de­
scribe properties of every element of the
set, rather than of the set as a whole.
The hyphens in "P AIR-OF ..,RED-SUS-

PENDERS" are necessary to avoid con­
fusing the format recognition scheme.

d2. Each question-answering program may
check for certain special cases before at­
tempting standard deduction procedures.

eL "Specific" information appears on the
property-lists of individuals rather than
of sets. Deduction procedures must use
both geneFal and specific information.

flo See dl.
f2. See d2.
f3. The system discovers that a NOSTRIL is

part of a PERSON, and then answers
the question, "Is a living-creature a per­
son 1"

hI. In this and future sentences, the system
reports that the sentence form is am­
biguous (because "have" may mean
either "have as parts" or "O\vn"), but it
has been able to make a "reasonable"
assumption about the intended meaning
and is proceeding from there. (See de­
scription of Figure 4b.) In this case,
"How many" cannot be answered unless
a part-whole relationship can be estab­
lished first.

h2. "NUMBER" is an attribute which is
placed on sub-property-lists associated
with part-whole relationships.

h3. Here a "NUMBER" attribute is missing
along the chain of links which estab­
lished the part-whole relationship.

iL "JUST ... " requires adjacency.
i2. In this section new links are created

only if they are consistent with already
"k...Ylo·wn" facts.

i3. A "WHERE" question requests location
information obtainable from direct links
only.

i4. "WHAT IS THE POSITION" requests
the construction of a linear ordering of
objects, as far as available linkage in­
formation permits. Inner parentheses in
the order list indicate adjacent objects.

SPECIAL FEATURES

Figure 4 illustrates three special features of
the SIR system.

a) Exception principle: General information
about "all the elements" of a set is con-

582 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

•. 'SET ·INClUSlON

2

4

c. EQUIVALENCE

11;0280\0 IS A MANt
t I UNDERSTAND'

IS A EY " KE'fPUNCH-OPEilATOA 'II

5 IINSUfflCIeNT UlfORMA1'1UN'

2

3

b. SET·MEMBERSHIP

THE &In" IS lUI N'T-STUDENT'

lG0284Q IS A BOT)
U UND£U, AND I

IS THE BOY " BRIGHT-PUSCIIiII 'II

IS THE NAN " DOPE GJ

II"SUFFICIIENT J NFOfU'AT ION I

IS THE """ A DOPE In

... ltH fiWrII •• 1&02840 "'"11

IS THE lOY A· BAIGtlJ-I'UStJN 'II

4 IWtICH BOY •• 11;021MO .JOHN) I

d. OWNERSHIP. GENERAL

DOES A PAIR-Of-RED-SUSPENOEas UWII A ".U-Of-RED-SUSPENOEI15 loll

2 (NO •• TMET ME TI'I£ 5&.o:a

DOES A OOCTDft 0lIl" .. PA.R-(Jf-UD-SUS'tf'lOERS WI

IIN~~fICIENT .NFOUIIoT.OfiII

DOES .. FUlECHIEF '*t.I A PAlil-Of-.tED-SUSPE;ND£R5 Q)

e. OWNERSHIP. SPECiRC

ALfAEO (MIS .. LOG-LOtr-DEc.nUGI

DOE$ o\LfAED ow. A SLIDE-«ULE IiII

EVEA' EllGlNEEAl1lKi-5TUDEfrlT OIIIfiIS A SlIDE-aULE)

DOES VEA'" laIN A SLIDE-atA.1: QI

DUES ... ENfi,INEOJNW-STWEMI OWN THE LDf,O-LDG-Dt;ClIMI' QJ

IAlMO 15 A LQG.-LI5-DEt"A"1
(INS~FltIE.I IIIIfOUATlO'"

DOES AN EN&INEEUNG-SfUDEN' OWN THE: LDG-LDG-DECITU& 01

f. PART·WHOLE. GENERAL

A NOSTRIL IS A .. ART OF A NOSE)

II UHOERSUrtDJ

.. PART·WHOLE. SPECIFIC

ACitTISPARTOFTHEPOP-ll

1("028400 IS A POP-li
II UNDEtlSUNOI

IS A NOSTRil PAttI Of A PlluFfSSOR !oI)

IS .It. NOSE: PART Of A NDSE loll

2 INO. PART "fAItS PROPt-R SUBPAltrJ

APERSONISALIYJ..,-CRUTUltEJ ItIUNDE.ST~J

:::-. IS" SCREEN 'AU OF SA" QI

3 t •••• IS A NOSTRIL 'AtU OF ... LIVING-GREATUtU: QI

IS" LlvING-CMUTURE PAllT Of A NOSe·'H

INO • NDSi. IS SOMUIMlES PART Of lIV'MO-CIlEATUAti

EVERY tOFfEE-HDUSE-CUSTDNea IS A IUTNIIO

i. LEFT· TO·RIGHT POSITION

'HE THfPttCItE IS JUST TO THE RIGHT OF THE ~kl
I&02M01S.fELtP~J

'''02841 IS A IOOKI
(l UftOEASJANI))

HIE JELEPH(ftC IS .JUST '0 nlE LEFr OF TKE PADI

1~28U IS.to PADI
II UNDERSTAND}

IS THf. ""0 ,JUST TO iHE il.1~T uF THE aoor. Itit~

IS THE aooK TO THE LEFT Of THE PAD 'II

UtE PAD 15 TU THE alGHT Of THE TElE'PMDNE'

IHE '100 IS 10 fHE LEFT Of fHf TEUPMt.INEJ

2 "HI:: AeOn SUJ(:IIIfNT 15 "IPOSSIILEI

3

THE ASH-T Y is TO lHE LEFT OfJHf. BOUlt)

1&o2M3 IS A ASH-TRAYI
el UtmE.SrANOI

THit P(NCll IS TO TH£ LEFT OF THE PADI

:~O=A~~':':'~NCIl.I

rHE PAPfR IS TO THE alGtU OF THE TELEPHONEI

:;O~::.!:~~'PERI

WHEAE IS THE PAD Ql

(.lUST TO THE RIQlT OF THE TELEPHONE I
ISOMEwHEilE TO THE at'"' OF THE FOUONING •• ,'ENeILIt

IIIH4T 15 'HIF POSITION OF THE PAD OJ

4 :!:"~:::-!='";:L~~ J:,!~ ::~~~SJ
ITO fU"THfM SPECifY Tfit POSITIONS ,"au MUST INDltAfE ,utEIII.£ THE PENCIL IS WIIH RESpteT TO THE ASH-TU't)

WUT IS THE POSITlClril OF THE PAU 01

UHE UfT-To-IIGHT Ul:0E1t I S AS fOLLtiiS I
(PENCIL CASH-TRAY BOOK tELEPHONE PAD) PAPEA.

"'UST 10 'HE LEfT Of THE PADI
IJUST TD THE R'GHT OF THE aDOKl
(SOMEIllHERE 10 THE LlEFT OF THE fOLLOWING •• IPU'EKIJ

Figure 3. Selected Conversations.

A COMPUTER PROGRAM WHICH "UNDERSTANDS" 583

a. EXCEPTION PRINCIPLE

I.... THERE ARE 5 FINGERS ON EVERY HAND)

II UNDERST AND)

,.... THERE ARE TWO HANDS ON A PERSON)

II UNDERSTAND)

I.... A BOY IS A PERSON)

II UNDERS TANO)

I.... TOM IS A BDYI

(I UNDERSTAND I

I.... DICI(IS A BOYI

II UNDERSTAND I

,.... HARRY IS A IJDY)

II UNDERSTAND)

I.... TOM HAS NINE FINGERS)

I THE ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUME IHASI MEANS IHAS AS PARTS))
II UNDERSTAND)

DICK HAS ONE HAND I

ITHE ABOVE SENTENC/, IS AMBIGUOUS •• BUT I ASSUME IHAS) MEANS IHAS AS PARTSII
II UNDERSTAND)

' ••• 0 HOW MANY FINGERS' DOES TOM HAVE Q I

UHE ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUME IHAS) MEANS IHAS AS PARTS))
ITHE ANSIiER IS 9)

,.... HOW MANY fiNGERS DOES DICI(HAVE Q)

IIHE ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUME IHASI MEANS (HAS AS PARTS))
!THE ANSIiER IS 5)

1 .. · HOW MANY FINGERS DOES HARRY HAVE Q)

I·~E': ABOVE SENTENCE IS AMBIGUOUS •• BUT I ASSUME IHAS) MEANS IHAS AS PARTS))
;fIHE ANSWER IS 10)

, HOW MAtoIY FINGERS DOES JOE HAVE QI

IIHE ABOVE SENTENCE IS AMB-lGUOUS •• BUT I ASSUME IHASI MEANS IHAS AS PARTS II
((DON·T KNOW WHETHER fiNGER IS PART OF JOEl

b. RESOLVING AMBIGUITIES

I.... JOHN IS A PERSON)

II UNDERS TAND)

I.... DICI(IS A PERSOtol)

I~ UNDERSTAND)

i.... A CHAIN IS PART Of ... BICYCLEI

II UNDERSTAND)

I.... THE POIIER-SAW HAS A CHAIN)

If HE ABOYE SENTENCE IS AMBIGUOUS •• Bur I ASSUME IHAS) MEANS IHAS AS PARTS)!
IG028.0 IS' A POIIER-SAW)
II UNDERSTAND)

c.... JOHN OIiNS A CHAIN)

II UNDERSTAND)

,.... DICK HAS A CHAIN)

ITHE ABOVE SENUNCE IS AM81GUOUS •• BUT I ASSUME IHAS) "EANS 10WIIISli
II UNDERSTANO)

I.... THE CUCKOO-CLOCK HAS A CHAINI

ITHf ABOVE SENTENCE IS AMBIGUOUS •• PLEASE RE-PHRASE IT)

c. STREAMUNING UNKAGES

,.... JOHN IS A PERSON I

II UNDERSTAND)

,.... .10 ... IS A TEt_ANI

(I UNOERSJ ANOI

I.... JOHN IS A BOY)

II UNDERSTAIID)

I··.. JOHN I S A STIIOENTI

II UNDERSTAND)

JOHN I S A BR I GHT -PERSON I

II UNDERSTAHO)

EVERY BOY IS A PERSOII)

II UNDERSTAND)

, EVERY TECH-MAN IS A PERSON'

II UNDERSTAND)

I..... EVERY TEC_AN IS A BRIGHT-PERSON)

II UNDERSTAND!

c EVERY TECH-MAN ·IS· A STIIOENTI

11 UNDERS TAND)

I.... EVERY IIRIGHT-PERSON IS A PERSON)

II .UNDERSTAND)

I.... EVERY STUDENT IS A BRIGHT-PERSQI!!

II UNDERSTAND)

(••• = EYERY STUDENT !S A PERSOM!

II UNDERSTAND)

END OF EVALQUOTE. VALUE IS ••
IND MORE INPUT SENTENCES)

FUNCflON EVALQUOTE HAS BEEN ENTERED. ARGUMENTS ••
STREAMLINE
I JOHN)

II /-ORGET THE MEMBER-ELEMENTS RELATIONS BETWEEN PERSON AND JOHN!
II fORGET THE MEMBER-ELEMENTS RELATIONS BETllffN STUOENT AND JOHN)
II FORGET THE MEMBER-ELEMENTS RELATIONS BETIIEEN BRIGHT-PERSON AND JOHN)
II FORGET THE SET-INCLUSION RELATION BETIlfEN PERSON ANO TECH-MAN)
((fORGET THE SET-'INtLUSION RELATION BETWEEN 8RIGIH-PERSOO -tM!l !!:Cl!-!I£Ml
II FORGET THE SET-INCI.USION RELATION BETIlfEN PERSON AND STUDE"ITI

END OF EVALQUOTE, Value .IS ••
NIL

Figure 4. Special Features.

584 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

sidered to apply to particular elements
only in the absence of more specific in­
formation about those elements. Thus,
it is not necessarily contradictory to learn
that "Mammals are land animals"; and,
yet, "A whale is a mammal which always
lives in water." In the program, this idea
is implemented by always referring for
desired information to the property-list of
the individual concerned before looking at
the descriptions of sets to which the in­
dividual belongs.
True "understanding" is frequently char­
acterized as an ability to reason appro­
priately with facts which appear contra­
dictory or par ado x i c a I-an ability
generally considered to be beyond formal
logical procedures. Here, on the other
hand, we see that a simple algorithm used
in conjunction with the SIR model is suf­
ficient to produce reasonable, human-like
conversational behavior in just such a
paradoxical situation.

b) Resolving ambiguities: The criteria used
by the program to decide whether "has"
in the format "x has y" should be inter­
preted "has as parts" or "owns" are the
following:

Let P be the proposition, "either y is
known to be part of something, or y is an
element of some set whose elements are
known to be parts of something."
Let N be the proposition, Heither y is
known to be owned by something, or 11 is
an element of some set whose elements are
known to be owned by something."

1) If P /\ .-.; N, assume "has" means
Hhas as parts."

2) If .-.; P /\ N, assume "has" means
"owns."

3) If .-.; P /\ .-.; N, give up and ask for
re-phrasing.

Let P' be the proposition,
(u) [[[y is known to be part of u]V[y
[y is an element of some set whose ele­
ments are known to be parts of the ele­
ments of u]] /\ (w) [[UewVU cw] /\
[XewVXCW]]] .

Let N' be the proposition,
(u) [[[y is known to be owned by u] V
[y is an element of some set whose ele­
ment are known to be owned by the ele­
ments of u]] /\ (w) [[UewVUCW] /\
[XewVXCW]]] .

4) If P' /\ .-.; N', assume Hhas" means
"has as parts."

5) If.-.; P' /\ .-.; N', assume "has" means
"owns."

6) Otherwise, glve up and ask for re-
phrasing.

These criteria are simple, yet they are
sufficient to enable the program to make
quite reasonable decisions about the in­
tended purpose in various sentences of the
ambiguous word "has". Of course, the
program can be fooled into making mis­
takes; e.g., in case the sentence, "Dick ha~
a chain", had been presented before the
sentence " John owns a chain", in the
above dialogue. However, a human being
exposed to a new word in a similar situa­
tion would make a similar error. The
point here is that it is feasible to auto­
matically resolved ambiguities in sentence
meaning by referring to the descriptions
of the words in the sentence--descrip­
tions which can automatically be created
through proper prior exposure to unam­
biguous sentences.

c) Streamlining linkages: All question­
answering (model-searching) functions
which involve references to set-inclusion
or set-membership relations must "know"
about the basic properties of those rela­
tions; i.e., those functions must have built
into them the ability to apply theorems
like

xCy /\ ycz = xcz
aeX /\ xCy = aey;

and

otherwise, the functions would not be able
to make full use of the usually limited in­
formation available in the form of ex­
plicit links. On the other hand, since the
functions involved will be "aware" of
these theorems, then the set of questions
which can be answered is independent of
the presence or absence of explicit links

A COMPUTER PROGRAM WHICH "UNDERSTANDS" 585

which provide the information to the
right of the "=", provided the informa­
tion to the left of the H =" is available.
The "STREAMLINE" operation starts
with the object x which is its argument,
and considers all objects linked to x, di­
rectly or indirectly, through set-inclusion
or set-membership. All explicit links
among these objects which can also be de­
duced by use of the above-known theor­
ems are deleted. A response of the form
"(I FORGET THE SET-INCLUSION
RELATION BETWEEN y and z)" in­
dicates that whatever links were created
by some sentence of a form similar to
"(EVERY z IS A y)" are being deleted,
and the space they occupied is being made
available for other use.

VI. EXTENSIONS OF SIR

Four major obstacles prevent the immediate
expansion of a SIR-like system into a large,
practical question-answering system: input
language, memory size, search time, and sub­
program interaction.

SIR's· input language consists of sentences
which match a number of simple formats. For
convenient use, a more general system should
accept a larger subset of natural English. Vari­
ous research groups are studying this difficult
problem of translating from English into a
formal language.5 ,17,18 The research effort de­
scribed here concentrates, instead, on the repre­
sentation and retrieval problems which will re­
main after the input language has been for­
malized.

The immediate reason for terminating the
current project was the lack of computer
. memory for additional programs and data.
However, at that point problems involving
search time and subprogram interaction had
also become significant. Progress in sol ving
these latter problems is necessary so that we
may be ready to use profitably the larger, bet­
ter organized memories which will undoubtedly
become available before long.

In SIR, the time required to search for t.he
~istence of particular relational links in the
model increases rapidly with both the number
of individual elements which can be linked and

the number of different relations which can do
the linking. Of course, this exponential growth
of tree structured search space is a familiar
phenomenon in theorem proving, game playing,
and other problem solving areas. General tree
searching heuristics such as partitioning a tree
into non-intersecting branches, searching for a
path simultaneously from two endpoints toward
an unknown common point, and generating in­
termediate "stepping stones" to use in a long
search, must be further developed for applica­
tion to the SIR model.

The most basic obstacle to enlarging SIR is
the problem of subprogram interaction. The
present system contains a separate subprogram
for performing each different information re­
trieval task. This diffuse program structure
was convenient during the early development
of the system because it facilitated modifying
component programs to experiment with dif­
ferent model structures and different search
and deduction schemes. However, each new re­
lation added to such a system may affect the
question answering procedures associated with
those relations already included. Since these
procedures are buried in various subprograms,
the addition of the subprograms associated
with the new relation frequently necessitates
program changes throughout the system. Be­
cause of these "interactions," the resulting pro­
gram becomes more awkward and more difficult
to generalize as its size increases. Future
versions of semantic question answering sys­
tems must avoid this increasingly complex pro­
gram organization. One solution might be based
on a proposed "formalized" question answerer,
outlined below and described in more detail in
reference 14, which increases the question an­
swering power as well as simplifies the pro­
gram structure of the system.

A FORMALIZED QUESTION ANSWERER

The formalized question answerer consists
of the following components:

1. a formal system whose sentences corre­
spond in a well defined way to "yes or no"
questions; and a theorem-proving pro­
gram which can determine whether well­
formed sentences are "true," i.e., whether
the corresponding questions should be

586 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

answered "yes," on the basis of informa­
tion in the model.

2. a model similar to the SIR model but con­
taining, in addition to links relating ob­
jects, axioms and deduction rules of the
formal system for the use of the theorem
proving program.

3. a programming language for specifying
question-answering procedures which are
more complex than truth-testing.

The formal system has the same structure as
the first order predicate calculus except that
the domain of all quantifiers is the set of objects
described in the model. Since this set is finite,
the system is logically equivalent to the propo­
sitional calculus. The basic predicates of the
formal system can be initially just those which
are needed, along with quantifiers and senten­
tial connectives, to express any question which
the SIR system is capable of answering. It
can be shown 14 that only a few basic predicates
are needed to enable the formal system to ex­
press a great many questions. Also many inter­
actions between predicates, which created pro­
gramming difficulties in SIR, are automatically
represented by the structure of the sentences in
the formal system.

The formal system is decideable;· therefore
a program could be written which would an­
swer any well-defined question on the basis of
axioms and facts in the model. However, since
the model might be large, such a program
might be quite slow. On the other hand, a
heuristic program could be written which would
attempt to answer questions only on the basis
of the most relevant data, where "most rele­
vant" is defined in terms of the structure of the
model. Such a program could conceivably be as
efficient as the special purpose question an­
swering subprograms of SIR.

The model in the formalized question an­
swerer is the same as the SIR model except for­
containing an additional class of data. The de­
scribed objects in this model can be names of
real objects or classes of objects, or names of
basic predicates in the formal system. The
property list of a predicate contains all axioms
or special deductive procedures associated with
that predicate. The theorem proving program
would have to perform in accordance with this

data in the model. Thus lhe user could "tell"
the system how to change its question answer­
ing procedures, whenever such changes were
desired, simply by changing the content of the
model.

A theorem proving program can only an­
swer "yes or no" questions. However, some of
the questions which SIR can answer require the
system to perform more elaborate information
retrieval tasks. The power of a general purpose
symbol manipulation computer language such
as LISP 15 must be available for specifying
these computational procedures since new ques­
tion types may require, in the answering pro­
cess, unanticipated kinds of data manipulation.
However, these procedures should be made as
easy to write and to understand as possible. In
particular, the full power of the theorem prov­
ing program should be available within the pro­
cedure specification language.

For example, suppose the theorem prover is
represented by the LISP function "theorem
[x] ," whose value is TRUE if x is a sentence
in the formal system corresponding to a ques­
tion whose answer is "yes," and FALSE other­
wise. Then suppose that in the course of the
procedure for answering the question, "what is
the relative position of x?" it is determined
that y is to the right of x and also that a z is to
the right of x. The procedure could then con-
tain the statement, if
theorem [(a) [aeZ !\right[a ;x] !\right[y ;a]]]
then go[A] else go[B] where
A and B are appropriate further instructions
in the procedure. The procedure writer need
not consider how to answer the question, "is a
z between x and y?" for the theorem function,
i.e., the theorem proving program, will do that
for him.

Space does not permit a more detailed de­
scription of the proposed formalized question
answerer. However, it should now be clear that
such a system has all the question answering
ability of SIR and accepts a much larger class
of questions. More important, new relations
can be added to the formalized system and the
axioms of its proof procedure can be modified
without any significant reprogramming, thus
overcoming the "subprogram interaction" ob­
stacle to the expansion of SIR.

-."'S.: .

A COMPUTER PROGRAM WHICH "UNDERSTANDS" 587

VII. CONCLUSIONS

THE MODEL

The power of SIR's question answering sub­
programs is due primarily to the flexible prop­
erty-list structure of the model.

SIR is not unique in permitting facts to be
automatically added to or excised from the
system. Several existing computer systems,
e.g., airline reservation systems, permit dy­
namic fact storage and retrieval. However, the
existing systems generally depend upon the use
of a fixed, unique representation for the infor­
mation involved. A response generally is de­
termined by the explicit presence of absence
of a particular item of data.

In SIR, on the other hand, although the
model is general enough to contain a wide class
of data, it is organized so that subprograms
may search it for any facts from which an ap­
propriate answer may be deduced. Because of
the way the deduction subprograms use the
model, a fact may be represented in many dif­
ferent equally effective ways. E.g., the system
"knows" that the statement, "a finger is part of
John" is true if (a) there is an explicit part­
whole link from FINGER to JOHN; or if (b)
there are links by means of which the retrieval
programs can deduce that a finger is part of a
person, and John is a person; or if (c) there are
links by means of which the retrieval programs
can deduce that a finger is part of a hand, and
a hand is part of John; etc. Thus the use of
this model facilitates question answering even
in the absence of complete, explicit data. In
addition, the system can automatically trans­
late from one representation to another having
some advantages. E.g., the "streamline" opera­
tion described in Section V reduces storage
space requirements by removing redundancy in
the representation, without necessitating any
changes in the operation of the system.

VALUE OF PROGRAM MING

Many of the results and conclusions written
after the development of a large computer pro­
gram such as SIR frequently appear as if they
could have been established without the tedious
effort of programming. This is rarely true, and
in fact, new systems which are described as
complete "except for the programming" usually

require fundamental modifications if and when
they are translated into operating programs.
The reasons for the importance of actually
writing the program include the following:

(a) Without a program it is difficult to tell
whether the specifications for a system
are really complete and consistent. The
process of building an operating system
makes one aware of major problems
which might otherwise remain un­
noticed.

(b) Programming not only turns up fallacies
in the specifications for a system, but
also usually suggests ways for avoiding
them and improving the system. A com­
pleted "debugged" programmed system
usually turns out to be a compromise
between the system as it was originally
specified, a simpler system which was
more feasible to actually construct, and
a more elaborate system whose new fea­
tures were thought of during program­
ming. This resulting system is fre­
quently as useful as and certainly more
reliable than the originally specified sys­
tem, and in addition it may suggest the
design of even more advanced systems.
\Vith SIR, for example, methods for im­
plementing the "exception principle"
and the resolution of ambiguities arose
from the design of the basic question
answerer, and the specifications for the
formalized system of Section VI were
based largely on properties of the final,
working SIR system.

(c) The programming process frequently
turns up insights which might not other­
wise be discovered.

(d) Finally, the resulting program provides
at the same time a demonstration of the
feasibility of the ideas upon which it is
based, a measure of the practicality of
the system in terms of time and space
requirements, and an experimental de­
vice for testing variations in the original
specifications.

NEXT STEPS

The present SIR system, and its formalized
version discussed in Section VI, are proposed
as first steps toward a true "understanding"
machine. Further steps will involve developing

588 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

better means by which a computer system can
add to its store of "knowledge" and can "in_
telligently" select relevant data from that store
to use in particular problem solving tasks.
These goals are embodied in the "advice taker"
problem/9 which is that of designing a machine
whose operation is controlled by "advising" it,
in a suitable English-like language, of desired
procedures or results.

One type of "advice taker" is a program
which can do any of a particular class of prob­
lems, such as writing other computer programs,
in accordance with simple instructions. Simon 20

is working on such a program-writing program
which accepts a broad range of descriptive
English sentences as its input.

SIR represents a different approach. Instead
of developing various special purpose advice
takers, we attempt to build a single, general
program which can do any task provided that
program is properly controlled by information
in its model. "Giving advice" then requires only
the process of inserting control information
into the model. In a sense, this program is
simply an interpreter of information provided
in the easily changeable model.

The SIR model provides its programs with
information about the truth of particular rela­
tions between specific objects. The model in the
formalized system of Section VI also provides
the "theorem proving program" with axioms
which describe properties of relations and in­
teractions between relations. A next generaliza­
tion would involve adding to the model infor­
mation which specifies and controls theorem
proving and model searching procedures for
the program.

Ultimately the "intelligent" machine will
have to be able to abstract from the informa­
tion in its model, "realize" the necessity for
additional action, and create the necessary in­
structions for itself. The design of such an
"artificial intelligence" awaits the development
of automatic concept formation and inductive
inference systems as well as the generaliza­
tions of SIR described above.

REFERENCES

1. GREEN, B. F., Jr., et al., "Baseball: an
automatic question answerer," in reference
21.

2. PHILLIPS, A. V., "A question-answering
routine," Master's Thesis, Mathematics De­
partment, MIT, Cambridge, Mass., 1960.

3. SIMMONS, R. F., et al., "Toward the syn­
thesis of human language behavior," SP-
466, Systems Development Corp., Santa
Monica, California.

4. LINDSAY, R. K., "Inferential memory as
the basis of machines which understand
natural language," in reference 21.

5. DARLINGTON, J., "Translating ordinary
language into symbolic logic," Memo
MAC-M-149, Project MAC, MIT, Cam­
bridge, Mass., 1964.

6. BENNETT, J. L., "A Computer program for
word relations," Memo 1961-1, Mechanical
Translation G roup, MIT, Cambridge,
Mass., 1961.

7. BOBROW, D. G., "Natural language input
for a computer problem solving system,"
Ph.D. Thesis, Mathematics Department,
MIT, Cambridge, Mass., 1964.

8. CARNAP, R., Meaning and Necessity (U. of
Chi. Press, Chicago, IlL, 1947).

9. QUILLIAN, R., "A revised design for an
understanding mac h i n e," Mechanical
Translation, Vol. 7, No.1 (1962).

10. QUINE, W., Word and Object (MIT Press,
Cambridge, Mass., 1960).

11. REICHENBACH, H., Elements of Symbolic
Logic (The Macmillan Co., New York,
1947) .

12. SOMMERS, F. T., "Semantic structures and
automatic clarification of linguistic am­
biguity," International Electric Corp.,
Paramus, N. J., 1961.

13. WALPOLE, H. R., Semantics: The Nature of
Words and Their Meanings (W. W. Norton
and Co., New York, 1941).

14. RAPHAEL, B., "SIR: a computer program
for semantic information retrieval," Ph.D.
Thesis, Mathematics Department, MIT,
Cambridge, Mass., 1964.

15. MCCARTHY, J., et al., LISP 1.5 Program­
mers Manual (MIT Press, Cambridge,
Mass., 1963).

A COMPUTER PROGRAM WHICH "UNDERSTANDS" 589

16. BOBROW, D. G., and B. RAPHAEL, "A com­
parison of list-processing computer lan­
guages," Comm. ACM, Vol. 7, No. 4
(1964) .

17. COHEN, D., "Picture processing in a pic­
ture language machine," Report 7885, Na­
tional Bureau of Standards, Washington,
D. C., 1962.

18. ACF Industries, A vion Div., "Translating
from ordinary discourse into formal logic
-a preliminary study," Scientific Report
AF CRC-TN-56--770.

19. MCCARTHY, J., "Programs with common
sense," in Proc. Symposium on M echaniza­
tion of Thought Processes, Nat ion a I
Physics Laboratory, Teddington, England,
Her Majesty's Stationery Office, London,
1959.

20. SIMON, H. A., "Experiments with a heuris­
tic compiler," Paper P-2349, RAND Corp.,
Santa Monica, California, 1961.

21. FEIGENBAUM, E. A., and J. FELDMAN, Com­
puters and Thought (McGraw-Hill, New
York, 1963) .

A QUESTION -ANSWERING SYSTEM FOR HIGH

SCHOOL ALGEBRA WORD PROBLEMS*
Daniel G. Bobrow

Massachusetts Institute of Technology, Cambridge, Massachusetts

I. INTRODUCTION

The aim of the research reported here was
to discover methods for building computer pro­
grams which can understand and communicate
with people in a non-trivial subset of English.
A computer program understands a subset of
English if it accepts input sentences which are
members of this subset, and answers questions
based on information contained in the input.
We describe in this paper a semantic theory of
discourse, and utiiize a first approximation to
the analytical portion of this theory in the
STUDENT question-answering system, a pro­
gram which understands a subset of English in
the sense defined above.

The STUDENT system, programmed in
METEOR 1 and LISP 2, accepts as input high
school algebra word problems expressed within
a restricted but comfortable subset of English.
For example, STUDENT will accept the follow­
ing problem statement:

"The price of a radio is $69.70. If this price
is 15 percent less than the marked price, find
the marked price. :

After some computation STUDENT will re­
spond:

"The marked price is 82 dollars."

If needed, STUDENT has access to a store of
"global" information not specific to anyone
problem, and can retrieve relevant facts and
equations from this store of information. For
example, when solving the problem:

"If 1 span equals 9 inches, and 1 fathom
equals 6 feet, how many spans equals 1
fathom ?"

STUDENT retrieves and uses the fact that 1
foot equals 12 inches, and prints the answer:

"1 fathom is 8 spans."

STUDENT is embedded in the M.LT. Project
MAC time-sharing system·3

• Therefore, as a
last resort, when it can not solve a problem,
STUDENT requests and can obtain immediate
help from the questioner.

A number of other English language ques­
tion-answering systems have been constructed;
the most closely related work was that of
Green 4, Lindsay 5, and Raphael 6. A critical
analysis of this related work and criteria fQr
evaluating a question-answering system may be
found in the author's thesis *. Simmons 7 gives
a descriptive survey of systems which answer
English questions.

* The work reported here was supported in part by the M.LT. Computation Center, in part by the M.LT.
Research Laboratory of Electronics, and in part by Project MAC, an M.LT. research program sponsored by
the Advanced Research Projects Agency, Department of Defense, under ONR Contract Number Nonr-

* We shall not mention it again, but the reader who wants more extensive background material or a more detailed
exposition of ideas given throughout this paper should refer to the thesis.

591

592 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

There are a number of reasons why I chose
the context of algebra story problems in which
to embed an English language question-answer­
ing system. First, we know a good type of data
structure in which to store information needed
to answer questions in this context, namely,
algebraic equations. There exist well known
algorithms for deducing information implicit in
the equations, that is, values for particular
variables which satisfy the set of equations.

In addition, I felt that there was a manage­
able subset of English in which many types of
algebra story problems were expressible. A
large number of these story problems are avail­
able in first year high school text books, and I
have transcribed some of them into STU­
DENT's input English. Since this question­
answering task is one performed by humans,
and since the entire process from input to solu­
tion of the equations was programmed, we can
obtain a measure of comparison between the
performance of STUDENT and of a human on
the same problems. In fact, this program on an
IBM 7094, answers most questions that it can
handle as fast as or faster than humans trying
the same problem. In judging this comparison,
one should remember the base speed of the
IBM 7094, which can perform over one hun­
dred thousand additions per second.

II. SEMANTIC GENERATION AND ANAL­
YSIS OF DISCOURSE

The purpose of this section is to put the tech­
niques of analysis embedded in the STUDENT
program into a wider context, and indicate how
they would fit into a more general language
processing system. . We will describe a theory
of semantic generation and analysis of dis­
course. STUDENT can then be considered a
first approximation to a computer implementa­
tion of the analytic portion of the theory, with
certain restrictions on the interpretation of a
discourse to be analyzed. It will be evident f:rom
the theory why analysis is so greatly simplified
by the imposed restrictions.

A. Language as Communication

Language is an encoding used for communi­
cation between a speaker and a listener (or
writer and reader). To transmit an "idea", the

speaker must first encode it in a message, as a
string in the transmission language. In order
to understand this message, a listener must de­
code it and extract its meaning. The coding of
a particular message, M, is a function of both
its global context and local context. The global
context of a message is the background knowl­
edge of the speaker and the listener, including
some knowledge of possible universes of dis­
course, and codings for some simple ideas.

The local context of a message, M, is the set
of messages temporally adjacent to M. M may
refer back to earlier messages. M may even be
just a modification of a previous message, and
only understandable in this context. For ex­
ample, consider the second sentence of the fol­
lowing discourse: "How many chaplains are in
the U.S. Army? How many are in the Navy?"

In order for communication to take place, the
information map of both the listener and the
speaker must be approximately the same, at
least for the universe of discourse; also the de­
coding process of the listener must be an ap­
proximate inverse of the encoding process of
the speaker. Education in language is, in large
part, an attempt to force the language proces­
sors .of different people into a uniform mold to
facilitate successful communication. Weare not
proposing that identity in detail is achieved,
but as Quine 9 put it :

"Different persons growing up in the same
language are like different bushes trimmed
and trained to take the shape of identical ele­
phants. The anatomical details of twigs and
branches will fulfill the elephantine form
differently from bush to bush, but the over­
all outward results are alike."

As a speaker transmits successive messages
concerning some portion of his information
map, the listener who understands the messages
constructs a model of a "situation". The rela­
tion between the listener's model and the speak­
er's information map is that from each can be
extracted the transmitted information relevant
to the universe of discourse, ~ncluding informa­
tion deducible from the entire set of messages.
The internal structure of the listener's model
need bear no resemblance to that of the speaker,
and may in· general contain far less detail.

B. Definition of Coherent Discourse

The theory of language generation and anal­
ysis which we shall describe below is designed
to handle what we call coherent discourse. A
discourse is a sequence of sentences, and the
meaning of a discourse for a listener is the
model of a situation he derives from this dis­
course. Determination of the meaning of each
sentence of the discourse may sometimes in­
volve knowledge of the meanings of other sen­
tences of the discourse. A discourse is co­
herent if it has a complete and consistent in­
terpretation within the model of the situation
being built by the listener. A listener under­
stands the discourse if his model of the situa­
tion is isomorphic to the speaker's model.

A listener's ability to build a model of a situ­
ation from a discourse is dependent on infor­
mation available to him from his general store
of knowledge. Therefore it is quite possible
for a discourse to seem coherent to one listener
and not another. A writer, reading his own
writing, may feel that he has generated a co­
herent sequence of sentences, which, in fact,
is incoherent to all other readers. This is, un­
fortunately, not a rare occurrence in the scien­
tific literature. Conversely, a listener who is a
psychiatrist, for example, may find coherence
in a sequence of remarks which a patient thinks
are entirely unrelated.

The STUDENT system utilizes an expanda­
ble store of general knowledge to build a model
of a situation described in a member of a lim­
ited class of discourses. The form of the model
of a situation built by STUDENT will be dis­
cussed in detail below.

C. The Use of Kernel Sentences in Our Theory

A basic postulate of our theory of language
analysis is that a listener understands a dis­
course by transforming it into an equivalent (in
meaning) sequence of simpler kernel sentences.
A kernel sentence is one which the listener can
understand directly; that is, one for which he
knows a transformation into his information
store. Conversely, a speaker generates a set of
kernel sentences from his information map, and
utilizes a sequence of transformations on this
set to yield his spoken discourse. This set of
kernel sentences is not invari~nt from person

HIGH SCHOOL ALGEBRA WORD PROGRAMS 593

to person, and even varies for a single indi­
vidual as he learns.

Although we are not proposing our theory as
a basis for a psychological model, it has been
useful, to avoid circumlocutions, to describe the
theory in terms of the properties and actions of
a hypothetical speaker and listener. All state­
ments about speakers and listeners should be
interpreted as referring to computer programs
which respectively, generate and analyze co­
herent discourse.

D. Generation of Coherent Discourse

1) The Speaker's Model of the World. We
assume that a speaker has some model of the
world in his information store. We shall not be
concerned here with how this model was built,
or its exact form. Different forms for the
model will be useful for different language
tasks, but they must all have the properties de­
scribed below.

The basic components of the model are a set
of objects, rOd, a set of functions {Fin}, a set
of relations {Rin}, a set of propositions {Pd,
and a set of semantic deductive rules. A func­
tion Fin is a mapping from ordered sets of n
objects, called the arguments of Fin, into the
{Ode The mapping may be multivalued and
is defined only if the arguments satisfy a set of
conditions associated with Fin. A condition is
essentially membership in a class of objects,
but is defined more precisely below. A relation
Rin is a special type of object in the model, and
consists of a label (a unique identifier), and an
ordered set of n conditions, called the argument
conditions for the relation. Functions of rela­
tions are again relations.

An elementary proposition Pi consists of a
label associated with some relation, Rin, and an
ordered set of n objects satisfying the argu­
ment conditions for this relation. One may
think of these propositions as the beliefs of a
speaker about what relationships between ob­
jects he has noticed are true in the world.
Complex propositions are logical combinations
(in the usual sense) of elementary proposi­
tions.

The semantic deductive rules give procedures
for adding new propositions to the model based
on the propositions now in the model. In addi-

594 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

tion to the ordinary rules of logic, these rules
include axioms about the relationships of the
relations in the model. The semantic deductive
rules also include links to the senses of the
speaker. For example, one such deductive rule
for adding a proposition to the model might be
(loosely speaking) "Look in the real world and
see if it is true." These rules essentially deter­
mine how the model is to be expanded, and are
the most complex part of a complete system.
However, from our present point of view, we
need only consider these rules as a black box
which can extend the set of propositions in the
model.

A closed question is a relational lable for
some Rill and an ordered set of n objects. The
answer to this question is affirmative if the
proposition, consisting of this label and the n
objects, is in the model (or can be added to it
according to the semantic deductive rules). If
the negation of this proposition is in the model
(or can be added), the answer is negative.
Otherwise the answer is undefined.

An open question consists of a relational label
for an n-argument relation, Ri ll, and a set of
objects ~orresponding to n-k of these argu­
ments, where n~k~1. An answer to an open
question is an ordered set of k objects, such
that if these objects are associated with the k
unspecified arguments of Rill, the resulting
proposition is in the model, or can be added to
it. An open question may have no answers, or
may have one or more answers. A condition is
an open question with k=l, and an object
satisfies a condition if it is an answer to the
question.

2) Generation of Kernel Sentences. We have
described the logical properties of the speaker's
model of the world. We shall now consider how
strings in a language, words, phrases, and sen­
tences, are associated with the model. Corre­
sponding to the set of objects {Od there is a
set {Nij } of strings (in English in our case),
called the names of the objects. There is a
many-one mapping from {Nid onto {Od. It
is many-one because one object may have more
than one name, e.g. frankfurter and hot dog
both map back into the same object in the
model.

Recall that functions map n-tuples of objects
into objects. Thus a function name and an n-

tuple can specify an object. We can derive a
name for this object from the function name
and the names of its n arguments. Associated
with each function is at least one linguistic
form, a string of words with blanks in which
names of arguments of the function must be
inserted. Examples of linguistic forms associ­
ated with a model are "number of ",
"father of ", and "the child of __ _
and ". There is a many-one mapping
from the set of linguistic forms {Lijll} cnto the
set or runctions. Two examples oi multiple
linguistic forms for the same function are:
"father of " and " 's father";
and" plus " and "the sum of
___ and ". Thus, if objects x and y
ha ve names "the first number" and "the second
number" and associated with the function "*,,
is the linguistic form "the product of __ _
and ", then the name of the object pro­
duced by applying the function "*,, to x and y is
"the product of the first number and the second
number". A parsing of a name must decom­
pose it into the part which is the linguistic
form, and the parts which are names of argu­
ments of the corresponding function. We shall
call objects defined in terms of a function and
an n-tuple of objects a functionally defined
object, and those which are not functionally
defined we shall call simple objects. Simple ob­
j ects have simple names and functionally de­
fined objects have composite names.

In addition to linguistic forms associated
with functions, there are linguistic forms as­
sociated with relations. For an n argument re­
lation there are n blanks in the linguistic form.
Examples of relational linguistic forms are:
" equals ", " gave ---
to " and " speaks". These lin-
guistic forms, corresponding to the relations
in the model, serve as frames for the kernel
sentences.

In a manner similar to the way composite
names are built, a kernel sentence correspond­
ing to an elementary proposition is constructed
by inserting names corresponding to each argu­
ment in the appropriate blank. Names may be
simple or composite. An example of a kernel
sentence for a proposition built from such a re­
lational linguistic form is "John's father gave
.3 times the salary of Bill to Jack." which con-

tains the simple names "John", ".3", "bill",
and "Jack". It contains the functional linguis­
tic forms " 's father", " times
___ " and "salary of " and the rela-
tional linguistic form " gave to "

A kernel sentence corresponding to a com­
plex proposition is constructed recursively
from the kernel sentences corresponding to its
elementary propositional constituents by plac­
ing them in the corresponding places in the
linguistic forms " and ", " __ _
or ___ ", "not ___ " etc.

The kernel sentence corresponding to a closed
question is constructed from the kernel of the
corresponding proposition by placing it in the
linguistic form "It is true that ?" For
an open question, dummy objects are placed in
the open argument positions to complete a prop­
ositional form. These dummy arguments have
names "who", "what", "where", etc., and which
dummy objects are used depends on the condi­
tion on that argument position. A question
mark is placed at the end of the kernel sentence
constructed in the usual way from the relational
linguistic form and the names of the argu­
ments.

In generating a coherent discourse, a speaker
chooses a number of propositions in his model
and/ or some open or closed questions. He then
uses linguistic information associated with the
model to construct the set of kernel sentences
corresponding to this set of chosen proposi­
tions. In the next section we will discuss how
he generates his discourse from this set of
kernels.

3) Transfor1r~tions on Kernel Sentences.
The set of kernel sentences is the base of the
coherent discourse. The meaning of a kernel
sentence is the proposition into which it maps,
and similarly, the meaning of any name is the
object which is its image under the mapping.
To this set of kernels we apply a sequence of
meaning preserving transformations to get tlie
final discourse. We use the word "transforma­
tion" in its broad general sense, not in the nar­
row technical sense defined by Chomsky.lO

There two distinct types of transformations,
structural and definitional. A structural or syn­
tactic transformation is only dependent on the
structure of the kernel string(s) on which it

HIGH SCHOOL ALGEBRA WORD PROGRAMS 595

operates. For example, one syntactic transfor­
mation takes a kernel in the active voice to one
in the passive voice. Another combines two
sentences into a single complex coordinate sen­
tence.

One large class of syntactic transformations
is used to substitue pronominal phrases for
names. Pronominal phrases may be ordinary
pronouns such as "he", "she", or "it". They
may be referential phrases such as "the latter",
"the former" or "this quantity". They may also
be truncations of a full name such as "the dis­
tance" for "the distance between New York
and Los Angeles". In cases where such pro­
nominal reference is made, the coherence of the
final discourse is dependent on the order in
which the resultant strings appear.

The second type of transformation is defini­
tional. It involves substitutions of linguistic
strings and forms for ones appearing in the
kernel sentences. For example, for any appear­
ance of "2 times" we may substitute "twice",
and for ".5 times" substitute "one half of". In
addition to this string substitution, some trans­
formations perform form substitution and re­
arrangement. For example, for a kernel sen­
tence of the form "x is y more than z", where
x, y, and z are any names, one definitional
transformation can substitute "x exceeds z by
y".

Some transformations are optional, and some
may be mandatory if certain forms are present
in the kernel set. Certain transformations are
used by a speaker for stylistic purposes, for ex­
ample, to emphasize certain objects; other syn­
tactic transformations, such as those vvhich per­
form pronominal substitutions, are used be­
cause they decrease the depth of a construction,
in the sense defined by Y ngve.ll

Let us review the steps in the generation of
a coherent discourse. The speaker chooses a
set of propositions, the "ideas" he wishes to
transmit. He then encodes them as language
strings called kernel sentences in the manner
described above. He then chooses a sequence of
structural and definitional transformations
which are defined on this set of kernels or on
the ordered set of sentences which result from
applications of the first transformations. The
resulting sequence of sentences will be a co-

a96 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

herent discourse to a listener if he knows all
the definitional transformations applied. In
addition, every pair of distinct names which
the speaker maps back into the same object,
the listener must also map into a single object.

E., Analysis of Coherent Discourse

Generation of coherent discourse consists of
two distinguishable steps. From propositions
in the speaker's model of the world, he gen­
erates an ordered set of kernel sentences. He
.... krt.'I"\ n'V'\"I"\.l~An n C"fAr"I'1I'A"I""IInn. A.~ +".n'l"\n~.n.".,....,.."n+': __ ~ +_
lI.l.lVu. app.l.lV';:) a ,;:)v\::\.uvu.\..-v V~ lI~au.';:)~Vl.l.u.alll.Vu.i::I lIV

this kernel set. The resulting discourse is a
coded message which is to be analyzed and de­
coded by a listener. The listener's problem can
be loosely characterized as an attempt to an­
swer the question, "What would I have meant
if I said that?"

To analyze a discourse the listener must find
the set of kernel sentences from which it was
generated; one way to do this is to find a set
of inverse transformations which when applied
to the input discourse yield a sequence of kernel
sentences. The listener must then transform
these kernel sentences to an appropriate repre­
sentation in his information store. The appro­
priateness of a representation is a function of
what later use the listener expects to make of
the information contained in the discourse. The
listener may simultaneously transform a given
kernel sentence into a number of different rep­
resentations in his information store. On a level
of pragmatic analysis, statements require only
storage of information. Questions and impera­
tives require appropriate responses from the
listener. The difficulties in analysis dichoto­
mize into those associated with finding the
kernel sentences which are the base of the dis­
course, and those associated with transforming
the kernel sentences into representations in the
information store.

STUDENT'S analytical program utilizes a
set of inverse analytic transformations. If T i
is a transformation that may be used in gen­
erating a discourse, and Ti (S) == S, where S
and S are sets of sentences, then the analytic
transformation T i -1 is the inverse of T i if and
only if T i -1 (S) == S. The choice of which in­
verse transformations to apply and the order
of their application may be restricted by utiliz-

ing heuristics concerned with features of the
input.

Once the base set of kernel sentences for a
given discourse is determined, there remains
the problem of entering representations of
these sentences in the listener's information
store. The major problem in accomplishing this
step involves the separation of those words
which are part of linguistic forms for relations,
and those which are part of a name. This is
difficult because the same word (lexicographic
symbol) may have multiple uses in a language.
Having separated the relational form from the
names which represent the arguments of this
relation, one can then analyze the name in
terms of components which are functional lin­
guistic forms and others which are simple
names. From this parsing in terms of rela­
tional linguistic forms, functional linguistic
forms and simple names, the discourse can be
transformed into a canonical representation in
the information store of the listener.

F. Limited Deductive Models
A complete understanding of a discourse by

a listener would imply that the representation
of the discourse in his information store is es­
sentially isomorphic to the speaker's model of
the world, at least for the universe of discourse.
The listener's representation must preserve all
information implicit in the discourse.

If the listener is only interested in certain
aspects of the discourse, he need only preserve
information relevant to his interest, and dis­
card the rest. Within his area of interest the
listener's model is isomorphic to the speaker's
model in the sense that all relevant deductions
which can be made by the speaker on the basis
of the discourse can also be made by the lis­
tener. Outside this area of interest, the listener
will be unable to answer any questions. We
call such restricted information stores limited
deductive models.

The question-answering programs of Lindsay
and Raphael, and the STUDENT system, all
utilize limited deductive models. For the area
of interest in each of these programs there is
a "natural" representation for the information
in the allowable input. These representations
are natural in that they facilitate the deduction
of implicit information. For example, Lindsay's

family tree representation makes it easy to
compute the relationship of any two individuals
in the tree, independent of the number of sen­
tences necessary to build the tree.

Because the number of relations and func­
tions expressible in the models in all three sys­
tems is very limited, there is a corresponding
limitation on the number of linguistic forms
that may appear in the input. This greatly
simplifies the parsing problem by restricting
alternatives for forms in the input text.

G. The STUDENT Deductive Model
The STUDENT system is an implementation

of the analytic portion of our theory. STU­
DENT performs certain inverse transforma­
tions to obtain a set of kernel sentences and
then transforms these kernel sentences to ex­
pressions in a limited deductive model. Utiliz­
ing the power of this deductive model, within
its limited domain of understanding, it is able
to answer questions based on information im­
plicit in the input information.

The analytic and transformational techniques
utilized in STUDENT are described in detail
in the next section. We shall describe here the
canonical representation of objects, relations,
and functions within the model. STUDENT is
restricted to answering questions framed in the
context of algebra story problems. Algebraic
equations are a natural representation for in­
formation in the input.

The objects in the model are numbers, or
numbers with an associated dimension. The
only relation in the model is equality, and the
only functions represented directly in the model
are the arithmetic operations of addition, nega­
tion, multiplication, division and exponentia­
tion. Other functions are defined in terms of
these basic functions, by composition, and/or
substitution of constants for arguments of these
functions. For example, the operation of squar­
ing is defined as exponentiation with "2" as
the second argument of the exponential func­
tion; subtraction is a composition of addition
and negation.

Within the computer, a parenthesized prefix
notation is used for a standard representation
of the equations implicit in the English input.
The arithmetic operation to .be expressed is

HIGH SCHOOL ALGEBRA WORD PROGRAMS 597

made the first element of a list, and the argu­
ments of the function are succeeding list ele­
ments. The exact notation is given in Figure 1.
In the figure, A, B, and C are any representa­
tions of objects in the model, either composite
or simple names. The usual infix notation for
these functional expressions is given for com­
parison. Because this is a fully parenthesized
notation, no ambiguity of operational order
arises, as it does, for example, for the un par­
enthesized infix notation expression A *B+C, or
its corresponding natural language expression
"A times B plus C". Note also that in this
prefix notation plus and times are not strictly
binary operators. Indeed, in the model they
may have any finite number of arguments, e.g.
(TIMES ABC D) is a legitimate expression
in the STUDENT model.

Representations of objects in the STUDENT
deductive model are taken from the input. Any
strings of words not containing a linguistic
form associated with an arithmetic function
expressible in the model are considered simple
names for objects. Thus, "the age of the child
of John and Jane" is considered a simple name
because it contains no functional linguistic
forms associated with functions represented in
ClmTTT'l.T.'111.Tm,_ l! __ !L_..l ..l_..l ___ L! _____ ..l_1 T__
.,;:) .L U lJ.c..l'l .L IS 111IllLeU ueUUClil ve lIluuel. ~u (;l.

more general model it would be considered a
composite name, and the functional forms "age
of " and "child of and "
would be mapped into their corresponding
functions in the model.

Figure 1: Notation Within the STUDENT
Deductive Model

Infix
Operation Notation Prefix Notation

Equality A=B (EQUALAB)

Addition A+B (PLUS A B)
A+B+C (PLUS AB C)

Negation -A (MINUS A)

Subtraction A-B (PLUS A
(MINUS B»

Multiplication A*B (TIMES A B)
A*B*C (TIMESAB C)

Division A/B (QUOTIENT A B)

Exponentiation A B (EXPT AB)

Figure 1. Flow Chart of the Student Program

598 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Because such complex strings are considered
simple names in the model, and objects are dis­
tinguished only by their names, it is important
to determine when two distinct names actually
refer to the same object. In fact, answers to
questions in the STUDENT system are state­
ments of the identity of the object referenced
by two names. However, one of the names (the
desired one) must satisfy a certain lexical con­
dition. Most often this condition is just that
the name be a numeral. For a more general
model this restriction could be stated as re~
quiring a simple name corresponding to some
functionally defined name-because, for ex­
ample, "number of " would be a func­
tional linguistic form in the general model, and
the only simple name for such an object would
be the numeral corresponding to this number.
An answer consists of a statement of identity
e.g. "The number of customers Tom gets is
162."

The other lexical restriction on answers
sometimes used in the STUDENT system is in­
sistence that a certain unit (corresponding to
a dimension associated with a number) appear
in the desired answer. For example, spans is
the unit specified by the question "How many
spans equals 1 fathom ?", and the answer given
by STUDENT is "1 fathom is 8 spans."

The deductive model described here is useful
for answering questions because we know how
to extract implicit information from expres­
sions in this model. More explicity, we know
how to solve sets of algebraic equations to find
numerical values which satisfy these equations.

III. Transformation of English to the
STUDENT Deductive Model

Our question-answering system contains two
main programs which process English input.
One is a program called STUDENT which ac­
cepts the statement of an algebra story prob­
lem and attempts to find the solution to the
particular problem. STUDENT does not store
any information, nor "remember" any thing
from problem to problem. The information ob­
tained by STUDENT is the local context of the
question.

The other program is called REMEMBER
and it processes and stores facts not specific
to anyone problem. These facts make up STU-

DENT's store of "global information" as op­
posed to the "local information" contained in
the statement of anyone problem. This in­
formation is accepted in a subset of English
which overlaps but is different from the subset
of English accepted by STUDENT. REMEM­
BER accepts statements in certain fixed for­
mats, and for each format the information is
stored in a way that makes it convenient for
retrieval and use within the STUDENT pro­
gram. The following examples indicate some
"'-/! +"h nnn,-,. +n hL" -/!A"II''I'Vl",t-", -fA"II' ",lAh", 1 ;,.,-fA1"1'YI!l_
V.L ...,.ll.'C Q,.vvCPlia"U.1v ~V..1..L.L.I."\lO .LV~ 6.LV1<JUI.L .L.L.L..L'-'..L.&. ... 'I.N

tion:

"Distance equals speed times time."
"Feet is the plural of foot."
"Bill is a person."
"Times is an operator of level 1."
"One half always means .5."

We will not give any details of the processing
done by REMEMBER, except to note that some
of the global information is stored by actually
adding statements to the STUDENT program,
and other information is stored on dictionary
entries for the individual words.

A. Outline of the Operation of STUDENT

To provide perspective by which to view the
detailed heuristic techniques used in the STU­
DENT program, we shall first give an outline
of the operation of the STUDENT program
when given a problem to solve. This outline is
a verbal description of the flow chart of the
program found in the appendix.

STUDENT is asked to solve a particular
problem. We assume that all necessary global
information has been stored previously. STU­
DENT will now transform the English input
statement of this problem into expressions in
its limited deductive model, and through ap­
propriate deductive procedures attempt to find
a solution. More specifically, STUDENT finds
the kernel sentences of the input discourse, and
transforms this sequence of kernels into a set
of simultaneous equations, keeping a list of the
answers required, a list of the units involved
in the problem (e.g. dollars, pounds) and a
list of all the variables (simple names) in the
equations. Then STUDENT invokes the
SOLVE program to solve this set of equations
for the desired unknowns. If a solution is
found, STUDENT prints the values of the un-

knowns requested in a fixed format, substitut­
ing in "(variable IS value)" the appropriate
phrases for variable and value. If a solution
cannot be found, various heuristics are used to
identify two variables (i.e. find two slightly
different phrases that refer to the same object
in the model). If two two variables, A and B,
are identified, the equation A == B is added to
the set of equations. In addition, the store of
global information is searched to find any equa­
tions that may be useful in finding the solution
to this problem. STUDENT prints out any as­
sumptions it makes about the identity of two
variables, and also any equations that it re­
trieves because it thinks they may be relevant.
If the use of global equations or equations from
identifications leads to a solution, the answers
are printed out in the format described above.

If a solution is not found, and certain idioms
are present in the problem (a result of a defini­
tional transformation used in the generation of
the problem), a substitution is made for each
of these idioms in turn and the transformation
and solution process is repeated. If the substi­
tutions for these idioms do not enable the prob­
lem to be solved by STUDENT, then STU­
DENT requests additional information from
the questioner, showing him the variables being
used in the problem. If any information is
given, STUDENT tries to solve the problem
again. If none is given, it reports its inability
to solve this problem and terminates. If the
problem is ever solved, the solution is printed
and the program terminates.

B. Categories of Words in a Transformation.

The words and phrases (strings of words)
in the English input can be classified into three
distinct categories on the basis of how they are
handled in the transformation to the deductive
model. The first category consists of strings of
words which name objects in the model; I call
such strings, variables. Variables are identified
only by the string of words in them, and if two
strings differ at all, they define distinct vari­
ables. One important problem considered be­
low is how to determine when two distinct vari­
ables refer to the same object.

The second category of words and phrases
are what I call substitutors. Each substitutor
may be replaced by another string. Some sub­
stitutions are mandatory; others are optional

HIGH SCHOOL ALGEBRA WORD PROGRAMS 599

and are only made if the problem cannot be
solved without such substitutions. An example
of a mandatory substitutions is "2 times" for
the word "twice". "Twice" always means "2
times" in the context of the model, and there­
fore this substitution is mandatory. One op­
tional "idiomatic" substitution is "twice the
sum of the length and width of the rectangle"
for "the perimeter of the rectangle". The use of
these substitutions in the transformation pro­
cess is discussed below. These substitutions are
inverses of definitional transformations as de­
fined earlier.

Members of the third category of words in­
dicate the presence of functional linguistic
forms which represent functions in the deduc­
tive model. I call members of this third class
operators. Operators may indicate operations
which are complex combinations of the basic
functions of the deductive model. One simple
operator is the word "plus", which indicates
that the objects named by the two variables
surrounding it are to be added. An example of
a more complex operator is the phrase "percent
less than", as in "10 percent less than the
marked price", which indicates that the number
immediately preceding the "percent" is to be
,.."h4-", ,.,4-,.,.;) ~",,.,. 1 f\f\ 4-l-.~,.. ".,.,.",,,14- ;)~TT~;)"";) hTT 1 f\f\
i:)U/Jltl.a.~ltCU .J.l.Vl.H .J.vv, ltH.li:) l.Ci:)Ullt U.lVl.UCU /J~ .J.vv,

and then this quotient multiplied by the vari­
able following the "than".

Operators may be classified according to
where their arguments are found. A prefix
operator, such as "the square of " precedes
its argument. An operator like " percent"
is a suffix operator, and follows its argument.
Infix operators such as " plus " or
" less than " appear between their
two arguments. In a split prefix operator such
as "difference between and ",
part of the operator precedes, and part appears
between the two arguments. "The sum of
...... and and " is a split prefix
operator with an indefinite number of argu­
ments.

Some words may act as operators condi­
tionally, depending on their context. For ex­
ample, "of" is equivalent to "times" if there is
a fraction immediately preceding it; e.g., ".5 of
the profit" is equivalent to ".5 times the profit" ;
however, "Queen of England" does not imply

600 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

a multiplicative relationship between the Queen
and her country.

C. Transformational Procedures.

Let us now consider in detail the transforma­
tion procedure used by STUDENT, and see how
the three categories of phrases interact. Let us
consider the following example, which has been
solved by STUDENT.

(THE PROBLEM TO BE SOLVED IS)
(IF THE NUMBER OF CUSTOMERS TOM
GETS IS TWICE THE SQUARE OF 20
PER CENT OF THE NUMBER OF AD­
VERTISEMENTS HE RUNS, AND THE
NUMBER OF ADVERTISEMENTS HE
RUNS IS 45, WHAT IS THE NUMBER OF
CUSTOMERS TOM GETS Q.)

Shown below are copies of actual printout
from the STUDENT program, illustrating
stages in the transformation and the solution
of the problem. The parentheses are an arti­
fact of the LISP programming language, and
"Q." is a replacement for the question mark
not available on the key punch.

The first stage in the transformation is to
perform all mandatory substitutions. In this
problem only the three phrases underlined (by
the author, not the program) are substitutors:
"twice" becomes "2 times", "per cent" becomes
the single word "percent", and "square of" is
truncated to "square". Having made these sub­
stitutions, STUDENT prints:

(WITH MANDATORY SUBSTITUTIONS
THE PROBLEM IS)
(IF THE NUMBER OF CUSTOMERS TOM
GETS IS 2 TIMES THE SQUARE 20 PER­
CENT OF THE NUMBER OF ADVER­
TISEMENTS HE RUNS, AND THE NUM­
BER OF ADVERTISEMENTS HE RUNS
IS 45, WHAT IS THE NUMBER OF CUS­
TOMERS TOM GETS Q.)

From dictionary entries for each word, the
words in the problem are tagged by their func­
tion in terms of the transformation process,
and STUDENT prints:

(WITH WORDS TAGGED BY FUNCTION
THE PROBLEM IS)
(IF THE NUMBER (OF / OP) CUSTOM­
ERS (GETS / VERB) IS 2 (TIMES / OP
1) THE (SQUARE / OP 1) 20 (PERCENT

/ OP 2) (OF/OP) THE NUMBER (OF /
OP) ADVERTISEMENTS (HE / PRO)
RUNS, AND THE NUMBER (OF / OP)
ADVERTISEMENTS (HE / PRO) RUNS
IS 45, (WHAT / QWORD) IS THE NUM­
BER (OF / OP) CUSTOMERS TOM
(GETS / VERB) (QMARK / DLM»

If a word has a tag, or tags, the word followed
by "/", followed by the tags, becomes a single
unit, and is enclosed in parentheses. Some
typical taggings are shown above. "(OF /OP)"
indicates that "OF" is an operator and other
taggings show that "GETS" is a verb,
"TIMES" is an operator of level 1 (operator
levels will be explained below), "SQUARE" is
an operator of levell, "PERCENT" is an op­
erator of level 2, "HE" is a pronoun, "WHAT"
is a question word, and "QMARK" (replacing
Q.) is a delimiter of a sentence. These tagged
words will play the principal role in the re­
maining transformation to the set of equations
implicit in this problem statement.

The next stage in the transformation is to
break the input sentences into "kernel sen­
tences". As in the example, a problem may be
stated using sentences of great grammatical
complexity; however, the final stage of the
transformation is only defined on a set of kernel
sentences. The simplification to kernel sen­
tences as done in STUDENT depends on the
recursive use of format matching. If an input
sentence is of the form "IF" followed by a
substring, followed by a comma, a question
word and a second substring then the first sub­
string (between the IF and the comma) is made
an independent sentence, and everything fol­
lowing the comma is made into a second sen­
tence. In the example, this means that the in­
put is resolved into the following two sentences,
(where tags are omitted for the sake of brev­
ity) :

"The number of customers Tom gets is 2
times the square 20 percent of the number
of advertisements he runs, and the number
of advertisements he runs is 45." and "What
is the number of customers Tom gets?"

This last procedure effectively resolves a
problem into declarative assumptions and a
question sentence. A second complexity re­
solved by STUDENT is illustrated in the first

sentence of this pair. A coordinate sentence
consisting of two sentences joined by a comma
immediately followed by an "and" will be re­
solved into these two independent sentences.
The first sentence is therefore resolved into
two simpler sentences.

U sing these two inverse syntactic transfor­
mations, this problem statement is resolved into
"simple" kernel sentences. For the example,
STUDENT prints

(THE SIMPLE SENTENCES ARE)
(THE NUMBER (OF / OP) CUSTOMERS
TOM (GETS / VERB) IS 2 (TIMES / OP
1) THE (SQUARE / OP 1) 20 (PERCENT
/ OP 2) (OF / OP) THE NUMBER (OF
/ OP) ADVERTISEMENTS (HE / PRO)
RUNS (PERIOD / DLM)
(THE NUMBER (OF / OP) ADVERTISE­
CENTS (HE / PRO) RUNS IS 45 (PE­
RIOD /DLM)
«WHAT / QWORD) IS THE NUMBER
(OF / OP) CUSTOMERS TOM (GETS /
VERB) (QMARK / DLM»

Each simple sentence is a separate list, i.e., is
enclosed in parentheses, and each ends with a
delimiter (a period or question mark). Each
of these sentences can now be transformed di~
rectly to its interpretation in the model.

D. From Kernel Sentences to Equations

The transformation from the simple kernel
sentences to equations uses three levels of pre­
cedence for operators. Operators of higher pre­
cedence level are used earlier in the transfor­
mation. Be for e utilizing the operators,
STUDENT looks for linguistic forms associ­
ated with the equality relation. These forms
include the copula "is" and transitive verbs in
certain contexts. In the example we are con­
sidering, only the copula "is" is used to indicate
equality. The use of transitive verbs as indi­
cators of equality, that is, as relationallinguis­
tic forms, will be discussed in connection with
another example. When the relational linguis­
tic form is identified, the names which are the
arguments of the form are broken down into
variables and operators (functional linguistic
forms). In the present problem, the two names
are those on either side of the "is" in each
sentence.

HIGH SCHOOL ALGEBRA WORD PROGRAMS 601

The word "is" may also be used meaning­
fully within algebra story problems as an auxil­
iary verb (not meaning equality) in such verbal
phrases as "is multiplied by" or "is divided by".
A special check is made for the occurrence of
these phrases before proceeding on to the main
transformation procedure. The transformation
of sentences containing these special verbal
phrases will be discussed later. If "is" does not
appear as an auxiliary in such a verbal phrase,
a sentence of the form "PI is P2" is interpreted
as indicating the equality of the objects named
by phrases PI and P2. No equality relation
will be recognized within these phrases, even
if an appropriate transitive verb occurs within
either of them. If PI * and P2* represent the
arithmetic transformations of PI and P2, then
"PI is P2" is transformed into the equation
"(EQUAL PI * P2*) ".

The transformation of PI and P2 to give
them an interpretation in the model is per­
formed recursively using a program equivalent
to the table in Figure 2. This table shows all
the operators and formats currently recognized
by the STUDENT program. New operators
can easily be added to the program equivalent
of this table.

In performing the transformation of a phrase
P, a left to right search is made for an operator
of level 2 (indicated by subscripts of "OP" and
2). If there is none, a left to right search is
made for a level 1 operator (indicated by sub­
scripts "OP" and 1), and finally another left to
right search is made for an operator of level 0
(indicated by a subscript "OP" and no numeri­
cal subscript). The first operator found in this
ordered search determines the first step in the
transformation of the phrase. This operator
and its context are transformed as indicated in
column 4 in the table. If no operator is present,
delimiters and articles (a, an and the) are de­
leted, and the phrase is treated as an indivisible
entity, a variable.

In the example, the first simple sentence is

(THE NUMBER (OF/OP) CUSTOMERS
TOM (GETS/VERB) IS 2 (TIMES/OP
1) THE (SQUARE/OP 1) 20 (PER­
CENT/OP 2) (OF/OP) THE NUMBER
(OF/OP) ADVERTISEMENTS (HE/
PRO) RUNS (PERIOD/DLM»

602 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

Figure 2

Operator Precedence Context
Level

PLUS
PLUSS
MINUS

MINUSS
TIMES
DIVBY
SQUARE
SQUARED

**
LESSTHAN
PER

PERCENT
PERLESS
SUM

DIFFERENCE

OF

2
0
2

0
1
1
1
0
0
2
0

2
2
0

0

PI PLUS P2
PI PLUSS P2
PI MINUSP2
MINUSP2
PI MINUSS P2
PI TIMES P2
PI DIVBY P2
SQUARE PI
PI SQUARED
PI ** P2
PI LESSTHAN P2
PI PERKP2
PI PER P2
PI K PERCENT P2
PI K PERLESS P2
SUM PI AND P2 AND P3
SUM PI AND P2
DIFFERENCE BETWEEN
PI AND P2

o KOFP2
PI OF P2

Interpretation in the Model

(PLUS PI * P2*)
(PLUS PI * P2*)
(PLUS PI * (MINUS P2*»
(MINUS P2*)
(PLUS PI * (MINUS P2*»
(TIMES PI * P2*)
(QUOTIENT PI * P2*)
(EXPT PI * 2)
(EXPT Pl* 2)
(EXPT PI * P2*)
(PLUS P2* (MINUS PI *))
(QUOTIENT PI * (K P2) *)
(QUOTIENT PI * (1 P2) *)
(PI (K/I00) P2) *
(PI «100-K) /100) P2) *
(PLUS PI * (SUM P2 AND P3) *)
(PLUS PI * P2*)
(PLUS PI * (MINUS P2*))

(TIMES K P2*)
(PI OF P2)*

(a)

(b)

(c)

(b)

(d)

(e)

(f)

(f)

(f)

(g)

(g)

(a) If P1 is a phrase, P1 * indicates its interpretation in the model.
(b) PLUSS and MINUSS are identical to PLUS AND MINUS except for precedence level.
(c) When two possible contexts are indicated, they are checked in the order shown.
(d) SQUARE P1 and SUM P1 are idiomatic shortenings of SQUARE OF P1 and SUM OF PI.
(e) * outside a parenthesized expression indicates that the enclosed phrase is to be transformed.
(f) K is a number.
(g) / and - imply that the indicated arithmetic operations are actually performed.

This is of the form "PI is P2", and is trans­
formed to (EQUAL PI * P2*). PI is "(THE
NUMBER (OF/OP) CUSTOMERS TOM
(GETS/VERB»". The occurrence of the
verb "gets" is ignored because of the presence
of the "is" in the sentence, meaning "equals".
The only operator found is "(OF /OP)". From
the table we see that if "OF" is immediately
preceded by a number (not the word "num­
ber") it is treated as if it were the infix
"TIMES". In this case, however, "OF" is not
preceded by a number; the subscript OP, indi­
cating that "OF" is an operator, is stripped
away, and the transformation process is re­
peated on the phrase with "OF" no longer act-

ing as an operator. In this repetition, no
operators are found, and PI * is the variable

(NUMBER OF CUSTOMERS TOM (GETS/
VERB» .
To the right of "IS" in the sentence is P2:
(2 (TIMES/OP 1) THE (SQUARE/OP 1)

20 (PERCENT/OP 2) (OF/OP) THE
N U M B E R (OF lOP) ADVERTISE­
MENTS (HE/PRO) RUNS (PERIOD/
DLM» The first operator found in P2 is
PERCENT, an operator of level 2.

From the table in Figure 2, we see that this
operator has the effect of dividing the number
immediately preceding it by 100. The "PER-

CENT" is removed and the transformation is
repeated on the remaining phrase. In the ex­
ample, the" 20 (PERCENT/OP 2) (OF/
OP) " becomes" 2000 (OF lOP) ".

Continuing the transformation, the operators
found are, in order, TIMES, SQUARE, OF and
OF. Each is handled as indicated in the table.
The "OF" in the context" 2000 (OF lOP)
THE " is treated as an infix TIMES, while
at the other occurrence of "OF", the operator
marking is removed. The resulting trans­
formed expression for P2 is:

(TIMES 2 (EXPT (TIMES .2 (NUMBER
OF ADVERTISEMENTS (HE/PRO)
RUNS» 2»

The transformation of the second sentence
of the example is done in a similar manner,
and yields the equation:

(EQUAL (NUMBER OF ADVERTISE­
MENTS (HE/PRO) RUNS) 45)

The third sentence is of the form "What is
PI ?". It starts with a question word and is
therefore treated specially. A unique variable,
a single word consisting of an X of G followed
by five integers, . is created, and the equation
(EQUAL Xnnnnn PI *) is stored. For this
example, the variable XOOOOI was created, and
this last simple sentence is transformed to the
equation:

(EQUAL XOOOOI (NUMBER OF CUSTOM­
ERS TOM (GETS/VERBS»

In addition, the created variable is placed on
the list of variables for which STUDENT is to
find a value. Also, this variable is stored, paired
with PI, the untransformed right side, for use
in printing out the answer. If a value is found
for this variable, STUDENT prints the sen­
tence (PI is value) with the appropriate sub­
stitution for value. Below we show the full set
of equations, and the printed solution given by
STUDENT for the example being considered.
For ease in solution, the last equations created
are put first in the list of equations.

(THE EQUATIONS TO BE SOLVED ARE)
(EQUAL XOOOOI (NUMBER OF CUSTOM­
ERS TOM (GETS/VERB») (EQUAL
(NUMBER OF ADVERTISEMENTS (HE/
PRO) RUNS) 45) (EQUAL (NUMBER OF
CUSTOMERS TOM (GETS/VERB»

HIGH SCHOOL ALGEBRA WORD PROGRAMS 603

(TIMES 2 (EXPT (TIMES .2000 (NUM­
BER OF ADVERTISEMENTS (HE/PRO)
RUNS» 2») (THE NUMBER OF CUS­
TOMERS TOM GETS IS 162)

In the example just shown, the equality relation
was indicated by the copula "is". In the prob­
lem shown below, solved by STUDENT, equal­
ityjs indicated by the occurrence of a transitive
verb in the proper context.

(THE PROBLEM TO BE SOLVED IS)
(TOM HAS TWICE AS MANY FISH AS
MARY HAS GUPPIES. IF MARY HAS 3
GUPPIES, WHAT IS THE NUMBER OF
FISH TOM HAS Q.)
(THE NUMBER OF FISH TOM HAS IS 6)

The verb in this case is "has". The simple sen­
tence "Mary has 3 guppies" is transformed to
the "equivalent" sentence "The number of
guppies Mary has is 3" and the sentence is
processed as before. This transformation rule
may be stated generally as: anything (a sub­
ject) followed by a verb followed by a number
followed by anything (the unit) is transformed
to a sentence starting with "THE NUMBER
OF" followed by the unit, followed by the sub­
ject and the verb, followed by "IS" and then
the number. In "Mary has 3 guppies" the sub­
ject is "Mary", the verb "has", and the units
"guppies". Similarly, the sentence "The 'witches
of Firth brew 3 magic potions" would be trans­
formed to

"The number of magic potions the witches of
Firth brew is 3."

In addition to a declaration of number, a
single-object transitive verb may be used in a
comparative structure, such as exhibited in the
sentence "Tom has twice as many fish as Mary
has guppies." STUDENT transforms this sen­
tence into the equivalent sentence.

"The number of fish Tom has is twice the
number of guppies Mary has."

Transformations of new sentence formats to
formats previously "understood" by the pro­
gram can be easily added to the program, thus
extending the subset of English "understood"
by STUDENT.

The word "is" indicates equality only if it is
not used as an auxiliary. The example below
shows how verbal phrases containing "is", such

604 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

as "is multiplied by", and "is increased by"
are handled in the transformation.

(THE PROBLEM TO BE SOLVED IS)
(A NUMBER IS MULTIPLIED BY 6.
THIS PRODUCT IS INCREASED BY 44.
THIS RESULT IS 68. FIND THE NUM­
BER.)

(THE EQUATIONS TO BE SOLVED ARE)
(EQUAL X00001 (NUMBER»
(EQUAL (PLUS (TIMES (NUMBER) 6)
44) 68)

(THE NUMBER IS 4)

The sentence "A number is multiplied by 6"
only indicates that two objects in the model are
related multiplicatively, and does not indicate
explicitly any equality relation. The interpre­
tation of this sentence in the model is the prefix
notation product "(TIMES (NUMBER 6» ".
This latter phrase is stored in a temporary loca­
tion for possible later reference. In this prob­
lem, it is referenced in the next sentence, with
the phrase "this produce". The important word
in this last phrase is "this"-STUDENT ig­
nores all other 'words in a variable containing
the key word "this". The last temporarily
stored pp.rase is substituted for the phrase con­
taining "this". Thus, the first three sentences
in the problem shown above yield only one
equation, after two substitutions for "this"
phrases. The last sentence "Find the number."
is transformed as if it were "What is the num­
ber Q.", and yields the first equation shown.

The word "this" may occur in a context
where it is not referring to a previously stored
phrase. Below is an example with such a con­
text.

(THE PROBLEM TO BE SOLVED IS)
(THE PRICE OF A RADIO IS 69.70 DOL­
LARS. IF THIS PRICE IS 15 PERCENT
LESS THAN THE MARKED PRICE, FIND
THE MARKED PRICE.)

(THE MARKED PRICE IS 82 DOLLARS)

In such contexts, the phrase containing "THIS"
is replaced by the left half of the last equation
created. In this example, STUDENT breaks
the last sentence into two simple sentences, de­
leting the "IF". Then the phrase "THIS
PRICE" is replaced by the variable "PRICE
OF RADIO", which is the left half of the pre­
vious equation.

This problem illustrates two other features
of the STUDENT program. The first is the
action of the complex operator "percent less
than". It causes the number immediately pre­
ceding it, i.e., 15, to be subtracted from 100,
this result divided by 100, to give .85. Then this
operator becomes the infix operator "TIMES".
This is indicated in the table in Figure 2.

This problem also illustrates how units such
as "dollars" are handled by the STUDENT pro­
gram. Any word which immediately follows a
number is labeled as a special type of variable
called a unit. A number followed by a unit is
treated in the equation as a product of the
number and the unit, e.g., "69.70 DOLLARS"
becomes" (TIMES 69.70 (DOLLARS» ". Units
are treated as special variables in solving the
set of equations; a unit may appear in the an­
swer though variables cannot. If the value for
a variable found by the solver is the product of
a number and a unit, STUDENT concatenates
the number and the unit. For example, the
solution for" (MARKED PRICE)" in the prob­
lem above was (TIMES 82 (DOLLARS» and
STUDENT printed out:

(THE MARKED PRICE IS 82 DOLLARS)

There is an exception to the fact that any
unit may appear in the answer, as illustrated
in the problem below.

(THE PROBLEM TO BE SOLVED IS)
(IF 1 SPAN EQUALS 9 INCHES, AND 1
FATHOM EQUALS 6 FEET, HOW MANY
SPANS EQUALS 1 FATHOM Q.)

(THE EQUATIONS TO BE SOLVED ARE)
(EQUALS X00001 (TIMES 1 (FATH­
OMS») (EQUAL (TIMES 1 (FATH­
OMS» (TIMES 6 (FEET») (EQUAL
(TIMES 1 (SPANS» (TIMES 9 (INCH­
ES»)

THE EQUATIONS WERE INSUFFICIENT
TO FIND A SOLUTION (USING THE
FOLLOWING KNOWN RELATIONSHIPS)
«EQUAL (TIMES 1 (YARDS» (TIMES
3 (FEET») (EQUAL (TIMES 1 (FEET»
(TIMES 12 (INCHES»»

(1 FATHOM IS 8 SPANS)

If the unit of the answer is specified, in this
problem by the phrase "how many spans"­
then only that unit, in this problem "spans",

may appear in the answer. Without this re­
striction, STUDENT would blithely answer
this problem with" (1 FATHOM IS 1 FATH­
OM) ".

In the transformation from the English
statement of the problem to the equations, "9
INCHES" became (TIMES 9 (INCHES».
However, "1 FATHOM" became" (TIMES 1
(FATHOMS»". The plural form for fathom
has been used instead of the singular form.
STUDENT always uses the plural form if
known, to ensure that all units appear in only
one form. Since "fathom" and "fathoms" are
different, if both were used STUDENT would
treat them as distinct, unrelated units. The
plural form is part of the global information
that can be made available to STUDENT, and
the plural form of a word is substituted for
any singular form appearing after "I" in any
phrase. The inverse operation is carried out
for correct printout of the solution.

Notice that the information given in the
problem above was insufficient to allow solution
of the set of equations to be solved. Therefore,
STUDENT looked in its glossary for informa­
tion concerning each of the units in this set of
equations. It found the relationships "1 foot
equals 12 inches." and "1 yard equals 3 feet."
U sing only the first fact, and the equation it
implies, STUDENT is then able to solve the
problem. Thus, in certain cases where a prob­
lem is not analytic, in the sense that it does not
contain, explicitly stated, all the information
needed for its solution, STUDENT is able to
draw on a body of facts, picking out relevant
ones, and use them to obtain a solution.

In certain problems, the transformation
process does not yield a set of solvable equa­
tions. However, within this set of equations
there exists a pair of variables (or more than
one pair) such that the two variables are only
"slightly different", and really name the same
object in the model. When a set of equations fs
unsolvable, STUDENT searches for relevant
global equations. In addition, it uses several
heuristic techniques for identifying two "slight­
ly different" varia-hIes in the equations. The
problem below illustrates the identification of
two variables where in one variable a pronoun
has been substituted for a noun phrase in the
other variable. This identification is made by

HIGH SCHOOL ALGEBRA WORD PROGRAMS 605

checking all variables appearing before one
containing the pronoun, and finding one which
is identical to this pronoun phrase, with a sub­
stitution of a string of any length for the pro­
noun.

(THE PROBLEM TO BE SOLVED IS)

(THE NUMBER OF SOLDIERS THE RUS­
SIANS HAVE IS ONE HALF OF THE
NUMBER OF GUNS THEY HAVE. THE
NUMBER OF GUNS THEY HAVE IS 7000.
WHAT IS THE NUMBER OF SOLDIERS
THEY HAVE Q.)

THE EQUATIONS WERE INSUFFICIENT
TO FIND A SOLUTION (ASSUMING
THAT)
((NUMBER OF SOLDIERS (THEY/PRO)
(HAVE/VERB» IS EQUAL TO (NUM­
BER OF SOLDIERS RUSSIANS (HA VEl
VERB»)

(THE NUMBER OF SOLDIERS THEY
HA VE IS 3500)

If two variables match in this fashion, STU­
DENT assumes the two variables are equal,
prints out a statement of this assumption, as
shown, and adds an equation expressing this
equality to the set to be solved. The solution
procedure is tried again, with this additional
equation. In this example, the additional equa­
tion was sufficient to allow determination of
the solution.

The example below is again a non-analytic
problem. The first set of equations developed
by STUDENT is unsolvable. Therefore, STU­
DENT tries to find some relevant equations in
its store of global informa,tion.

(THE PROBLEM TO BE SOLVED IS)
(THE GAS CONSUMPTION OF MY CAR
IS 15 MILES PER GALLON. THE DIS­
TANCE BETWEEN BOSTON AND NEW
YORK IS 250 MILES. WHAT IS THE
NUMBER OF GALLONS OF GAS USED
ON A TRIP BETWEEN NEW YORK AND
BOSTONQ.)

THE EQUATIONS WERE INSUFFICIENT
TO FIND A SOLUTION (USING THE
FOLLOWING KNOWN RELATIONSHIPS)
((EQUAL (D 1ST A N C E) (T I M E S
(SPEED) (TIME) » (EQUAL (DIS­
TANCE) (TIMES (GAS CONSUMPTION)

606 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

(NUMBER OF GALLONS OF GAS
USED»))

(ASSUMING THAT)
«DISTANCE) IS EQUAL TO (DISTANCE
BETWEEN BOSTON AND NEW YORK)
(ASSUMING THAT)
«GAS CONSUMPTION) IS EQUAL TO
(GAS CONSUMPTION OF MY CAR»
(ASSUMING THAT)
((NUMBER OF GALLONS OF GAS
USED) IS EQUAL TO (NUMBER OF

TWEEN NEW YORK AND BOSTON»

(THE NUMBER OF GALLONS OF GAS
USED ON A TRIP BETWEEN NEW YORK
AND BOSTON IS 16.66 GALLONS)

It uses the first word of each variable string
as a key to its glossary. The one exception to
this rule is that the words "number of" are
ignored if they are the first two words of a
variable string. Thus, in this problem, STU­
DENT retrieved equations which were stored
under the key words distance, gallons, gas, and
miles. Two facts about distance had been stored
earlier; "distance equals speed times time" and
"distance equals gas consumption times number
of gallons of gas used". The equations implicit
in these sentences. were stored and retrieved
now-as possibly useful for the solution of this
problem. In fact, only the second is relevant.

Before any attempt is made to solve this
augmented set of equations, the variables in
the augmented set are matched, to identify
"slightly different" variables which refer to the
same object in the model. In this example
"(DISTANCE) ," "(GAS CONSUMPTION) ",
and "(NUMBER OF GALLONS OF GAS
USED)" are all identified with "similar" vari­
ables. The following conditions must be satis­
fied for this type of identification of variables
P1 and P2:

1) P1 must appear later in the problem than
P2.

2) P1 is completely contained in P2 in the
sense that P1 is a contiguous substring
within P2.

This identification reflects a syntactic phe­
nomenon where a truncated phrase, with one
or more modifying phrases dropped, is often

used in place of the original phrase. For ex­
ample, if the phrase "the length of a rectangle"
has occurred, the phrase "the length" may be
used to mean the same thing. This type of iden­
tification is distinct from that made using pro­
noun substitution.

In the example above, a stored schema was
used by identifying the variables in the schema
with the variables that occur in the problem.
This problem is solvable because the key
phrases "distance", "gas consumption" and
"number of gallons of gas used" occur as sub­
strings of the variables in the problem. Since
STUDENT identifies each generic key phrase
of the schema with a particular variable of the
problem, any schema can be used only once in
a problem. Because STUDENT handles schema
in this ad hoc fashion it cannot solve problems
in which a relationship such as "distance equals
speed times time" is needed for two different
values of distance, speed, and time.

E. Possible Idiomatic Substitutions
There are some phrases which have a dual

character, depending on the context. In the
example below, the phrase "perimeter of a rec­
tangle" becomes a variable with no reference
to its meaning, or definition, in terms of the
length and width of the rectangle. This defini­
tion is unneeded for solution.

(THE PROBLEM TO BE SOLVED IS)
(THE SUM OF THE PERIMETER OF A
RECTANGLE AND THE PERIMETER OF
A TRIANGLE IS 24 INCHES. IF THE
PERIMETER OF THE RECTANGLE IS
TWICE THE PERIMETER OF THE TRI­
ANGLE, WHAT IS THE PERIMETER OF
THE TRIANGLE Q.)

(THE PERIMETER OF THE TRIANGLE
IS 8 INCHES)

However, the following problem is stated in
terms of the perimeter, length and width of the
rectangle. Transforming the English into equa­
tions is not sufficient for solution. N either re­
trieving and using an equation about "inches",
the unit in the problem, nor identifying
"length" with a longer phrase serve to make
the problem solvable. Therefore, STUDENT
looks in its dictionary of possible idioms, and

finds one which it can try in the problem. STU­
DENT

(THE PROBLEM TO BE SOLVED IS)
(THE LENGTH OF A RECTANGLE IS 8
INCHES MORE THAN THE WIDTH OF
THE RECTANGLE. ONE HALF OF THE
PERIMETER OF THE RECTANGLE IS 18
INCHES. FIND THE LENGTH AND THE
WIDTH OF THE RECTANGLE.)

THE EQUATIONS WERE INSUFFICIENT
TO FIND A SOLUTION TRYING POSSI­
BLE IDIOMS
(THE PROBLEM WITH AN IDIOMATIC
SUBSTITUTION IS)

(THE LENGTH OF A RECTANGLE IS 8
INCHES MORE THAN THE WIDTH OF
THE RECTANGLE. ONE HALF OF
TWICE THE SUM OF THE LENGTH AND
WIDTH OF THE RECTANGLE IS 18
INCHES. FIND THE LENGTH AND THE
WIDTH OF THE RECTANGLE.)

(ASSUMING THAT)
«LENGTH) IS EQUAL TO (LENGTH OF
RECTANGLE))

(THE LENGTH IS 13 INCHES)
(THE WIDTH OF THE RECTANGLE IS 5
INCHES)

actually had two possible idiomatic substitu­
tions which it could have made for "perimeter
of a rectangle"; one was in terms of the length
and width of the rectangle and the other was in
terms of the shortest and longest sides of the
rectangle. When there are two possible sub­
stitutions for a given phrase, one is tried first,
namely the one STUDENT has been told about
most recently. In this problem, the correct one
was fortuitously first. If the other had been
first, the revised problem would not have been
solvable, and eventually the second (correct)
substitution would have been made. Only one
non-mandatory idiomatic substitution is ever
made at one time, although the substitution is
made for all occurrences of the phrase chosen.

In this problem, the idiomatic substitution
made allows the problem to be solved, after
identification of the variables "length" and
"length of rectangle". The retrieved equation
about inches was not needed. However, its
presence in the set of equations to be solved
did not sidetrack the solver in anyway.

HIGH SCHOOL ALGEBRA WORD PROGRAMS 607

This use of possible, but non-mandatory idio­
matic substitutions can also be used to give
STUDENT a way to solve problems in which
two phrases denoting one particular variable
are quite different. For example, the phrase,
"students who passed the admissions test" and
"successful candidates" might be describing the
same set of people. However, since STUDENT
knows nothing of the "real world" and its value
system for success, it would never identify
these two phrases. However, if told that "suc­
cessful candidates" sometimes means "students
who passed the admissions test", it would be
able to solve a problem using these two phrases
to identify the same variable. Thus, possible
idiomatic substitutions serve the dual purpose
of providing tentative substitutions of defini­
tions, and identification of synonomous phrases.

F. Special Heuristics.

The methods thus far discussed have been
applicable to the entire range of algebra prob­
lems. However, for special classes of problems,
additional heuristics may be used which are
needed for members of the class, but not ap­
plicable to other problems. An example is the
class of age problems, as typified by the prob­
lem below.

(THE PROBLEM TO BE SOLVED IS)
(BILL S FATHER S UNCLE IS TWICE
AS OLD AS BILL S FATHER. 2 YEARS
FROM NOW BILL S FATHER WILL BE 3
TIMES AS OLD AS BILL. THE SUM OF
THEIR AGES IS 92. FIND BILL SAGE.)

(BILL S AGE IS 8)

Before the age problem heuristics are used, a
problem must be identified as belonging to that
class of problems. STUDENT identifies age
problems by any occurrence of one of the fol­
lowing phrases, "as old as", "years old" and
"age". This identification is made immediately
after all words are looked up in the dictionary
and tagged by function. After the special
heuristics are used the modified problem is
transformed to equations as described previ­
ously.

The need for special methods for age prob­
lems arises because of the conventions used for
denoting the variables, all of which are ages.
The word age is usually not used explicitly,

608 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

but is implicit in such phrases as "as old as".
People's names are used where their ages are
really the implicit variables. In the example,
for instance, the phrase "Bill's father's uncle"
is used instead of the phrase "Bill's father's
uncle's age".

STUDENT uses a special heuristic to make
all these ages explicit. To do this, it must know
which words are "person words" and there­
fore, may be associated with an age. For this
problem STUDENT has been told that Bill,
father, and uncle are person words. The
"spaces -s" following a word is the STUDENT
representation for possessive, used instead of
"apostrophe -s" for programming convenience.
STUDENT inserts a "S AGE" after every per­
son word not followed by a "S" (because this
"S" indicates that the person word is being
used in a possessive sense, not as an independ­
ent age variable). Thus, as indicated, the
phrase "BILL S FATHER S UNCLE" becomes

"BILL S FATHER S UNCLE SAGE".

In addition to changing phrases naming peo­
ple to ones naming ages, STUDENT makes
certain ~pecial idiomatic substitutions. For the
phrase "their ages", STUDENT substitutes a
conjunction of all the age variables encountered
in the problem. In the example, for "THEIR
AGES" STUDENT substitutes "BILL S FA­
THER S UNCLE S AGE AND BILL S FA­
THER S AGE AND BILL S AGE". The
phrases "as old as" and "years old" are then
deleted as dummy phrases not having any
meaning, and "will be" and "was" are changed
to "is". There is no need to preserve the tense
of the copula, since the sense of the future or
past tense is preserved in such prefix phrases
as "2 years from now", or "3 years ago".

The remaining special age problem heuristics
are used to process the phrases "in 2 years", "5
years ago" and "now". The phrase "2 years
from now" is transformed to "in 2 years" be­
fore processing. These three time phrases may
occur immediately after the word "age", (e.g.,
Bill's age 3 years ago") or at the beginning
of the sentence. If a time phrase occurs at the
beginning of the sentence, it implicitly modifies
all ages mentioned in the sentence, except those
followed by their own time phrase. For ex­
ample, "In 2 years Bill's father's age will be 3

times Bill's age" is equivalent to "Bill's father's
age in 2 years will be 3 times Bill's age in 2
years". However, "3 years ago Mary's age was
2 times Ann's age now" is equivalent to
"Mary's age 3 years ago was 2 times Ann's
age now". Thus prefix time phrases are han­
dled by distributing them over all ages not
modified by another time phrase.

After these prefix phrases have been dis­
tributed, each time phrase is translated ap­
propriately. The phrase "in 5 years" causes
5 to be added to the age it follows, and "7 years
ago" causes 7 to be subtracted from the age
preceding this phrase. The word "now" is de­
leted.

Only the special heuristics described thus
far are necessary to solve the first age problem.
The second age problem, given below, requires
one additional heuristic not previously men­
tioned. This is a substitution for the phrase
"was when" which effectively decouples the two
facts combined in the first sentence. For "was
when", STUDENT substitutes "was K years
ago. K years ago" where K is a new variable
created for this purpose.

(THE PROBLEM TO BE SOLVED IS)
(MARY IS TWICE AS OLD AS ANN WAS
WHEN MARY WAS AS OLD AS ANN IS
NOW. IF MARY IS 24 YEARS OLD, HOW
OLD IS ANN Q.)

(THE EQUATIONS TO BE SOLVED ARE)
(EQUAL X00008 «ANN / PERSON) S
AGE»
(EQUAL «MARY / PERSON) SAGE)
24)
(EQUAL (PLUS «MARY / PERSON) S
AGE) (MINUS X00007») «ANN / PER­
SON) SAGE»
(EQUAL «MARY / PERSON) SAGE)
(TIMES 2 (PLUS «ANN / PERSON) S
AGE) (MINUS X00007»)))

(ANN S AGE IS 18)

In the example, the first sentence becomes the
two sentences: "Mary is twice as old as Ann
X00007 years ago. X00007 years ago Mary was
as old as Ann is now." These two occurrences
of time phrases are handled as discussed pre­
viously. Similarly the phrase "will be when"
would be transformed to "in K years. In K
years".

These decoupling heuristics are useful not
only for the STUDENT program but for peo­
ple trying to solve age problems. The classic
age problem about Mary and Ann, given above,
took an MIT graduate student over 5 minutes
to solve because he did not know this heuristic.
With the heuristic he was able to set up the ap­
propriate equations much more rapidly. As a
crude measure of STUDENT's speed, note that
STUDENT took less than one minute to solve
this problem.

G. When All Else Fails.
For all the problems discussed thus far, STU­

DENT was able to find, a solution eventually.
In some cases, however, necessary global in­
formation is missing from its store of informa­
tion, or variables which name the same object
cannot be identified by the heuristics of the
program. Whenever STUDENT cannot find a
solution for any reason, it turns to the ques­
tioner for help. As in the problem below, it
prints out "(DO YOU KNOW ANY MORE
RELATIONSHIPS BETWEEN THESE VAR­
IABLES)" followed by a list of the variables
in the problem. The questioner can answer
"yes" or "no". If he says "yes", STUDENT
says "TELL ME", and the questioner can ap­
pend another sentence to the statement of the
problem.

(THE PROBLEM TO BE SOLVED IS)
(THE GROSS WEIGHT OF A SHIP IS
20000 TONS. IF ITS NET WEIGHT IS
15000 TONS, WHAT IS THE WEIGHT OF
THE SHIPS CARGO Q.)
THE EQUATIONS WERE INSUFFICIENT
TO FIND A SOLUTION
(DO YOU KNOW ANY MORE RELATION­
SHIPS AMONG THESE VARIABLES)
(GROSS WEIGHT OF SHIP)
(TONS)
(ITS NET WEIGHT)
(WEIGHT OF SHIPS CARGO)
yes
TELL ME
(the weight of a ships cargo is the difference
between the gross weight and the net weight)
THE EQUATIO.NS WERE INSUFFICIENT
TO FIND A SOLUTION

(ASSUMING THAT)
«NET WEIGHT) IS EQUAL TO (ITS
NET WEIGHT)

HIGH SCHOOL ALGEBRA WORD PROGRAMS 609

(ASSUMING THAT)
«GROSS WEIGHT) IS E QUA L TO
(GROSS WEIGHT OF SHIP»

(THE WEIGHT OF THE SHIPS CARGO
IS 5000 TONS)

In this problem, the additional information
typed in (in lower case letters) was sufficient
to solve the problem. If it was not, the question
would be repeated until the questioner said
"no", or provides sufficient information for
solution of the problem.

In the problem below, the solution to the set
of equations involves solving a quadratic equa­
tion, which is beyond the mathematical ability
of the present STUDENT system. Note that
in this case STUDENT reports that the equa­
tions were unsolvable, not simply insufficient
for solution. STUDENT still requests addi­
tional information from the questioner. In the
example, the questioner says "no", and STU­
DENT states that "I CANT SOLVE THIS
PROBLEM" and terminates.

(THE PROBLEM TO BE SOLVED IS)
(THE SQUARE OF THE DIFFERENCE
BETWEEN THE NUMBER OF APPLES
AND THE NUMBER OF ORANGES ON
THE TABLE IS EQUAL TO 9. IF THE
NUMBER OF APPLES IS 7, FIND THE
NUMBER OF ORANGES ON THE TA­
BLE.)
UNABLE TO SOLVE THIS SET OF EQUA­
TIONS

TRYING POSSIBLE IDIOMS
(DO YOU KNOW ANY MORE RELATION­
SHIPS Al\1:0NG THESE VARIABLES)
(NUMBER OF APPLES)
(NUMBER OF ORANGES ON TABLE)
no

I CANT SOLVE THIS PROBLEM

H. Summary of the STUDENT
Subset of English

The subset of English understandable by
STUDENT is built around a core of sentence
and phrase formats which can be transformed
into expressions in the STUDENT deductive
model. On this basic core is built a larger set
of formats. Each of these are first transformed
into a string built on formats in this basic set
and then this string is transformed into an ex-

610 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

pression in the deductive model. For example,
the format ($ IS EQUAL TO $) is changed to
the basic format ($ IS $), and the phrase "IS
CONSECUTIVE TO" is changed to "IS 1
PLUS". The constructions discussed earlier in­
volving single object transitive verbs could
have been handled this way, though for pro­
gramming convenience they were not.

The basic linguistic form which is trans­
formed into an equation is one containing "is"
as a copula. The phrases "is equal to" and
"equals' are both changed to the coupla "is".
The auxiliary verbal constructions "is multi­
plied by", "is divided by" and "is increased by"
are also acceptable as principal verbs in a sen­
tence. As discussed in detail earlier, a sentence
with no occurrence of "is" can have as a main
verb a transitive verb immediately followed by
a number. This number must be an element of
the phrase which is the direct object of the
verb, as in "Mary has three guppies". This
type of transitive verb can also have a compara­
tive structure as direct object, e.g., "Mary has
twice as many guppies as Tom has fish".

This completes the repertoire of declarative
sentence formats. Any number of declarative
sentences may be conjoined, with ", and" be­
tween each pair, to form a new (complex)
declarative sentenCe. A declarative sentence
(even a complex declarative) can be made a
presupposition for a question by preceding it
with "IF" and following it with a comma and
the question.

Questions, that is, requests for information
from STUDENT, will be understood it they
match any of the following patterns (where
$ will match any string, and $1 anyone word):

(WHAT ARE $ AND (WHAT IS $)
$)

(FIND $ AND $)

(HOW MANY $ DO
$ HAVE)

(HOW MANY $1
IS $)

(FIND $)

(HOW MANY $
DOES $ HAVE)

This completes the summary of the set of
input formats presently understood by STU­
DENT. This set can be enlarged in two distinct
ways. One is to enlarge the set of basic for­
mats, using standard subroutines to aid in de-

fining, for each new basic format, its interpre­
tation in the deductive model. The other method
of extending the range of STUDENT input is
to define transformations from new input for­
mats to previously understood basic or exten­
sion formats.

Even if a story problem is stated within the
subset of English acceptable to STUDENT,
this is not a guarantee that this problem can be
solved by STUDENT (assuming it to be solva­
ble). Two phrases describing the object must
be at worst only "slightly different" by the
criteria prescribed earlier. Appropriate global
information must be available to STUDENT,
and the algebra involved must not exceed the
abilities of the solver. However, though most
algebra story problems found in the standard
texts cannot be solved by STUDENT exactly
as written, the author has usually been able to
find some paraphrase of almost all such prob­
lems which is solvable by STUDENT.

1. Limitations of the STUDENT
Subset of English

The techniques presented here are general
and can be used to enable a computer program
to accept and understand a fairly extensive
subset of English for a fixed semantic base.
However, the current STUDENT system is ex­
perimental and has a number of limitations.

STUDENT's interpretation of the input is
based on format matching. If each format is
used to express the meaning understood by
STUDENT, no misinterpretation will occur.
However, these formats occur in English dis­
course even in algebra story problems, in se­
mantic contexts not consistent with STU­
DENT's interpretation of these formats. For
example, a sentence containing", and" is always
interpreted by STUDENT as the conjunction
of two declarative statements. Therefore, the
sentence "Tom has 2 apples, 3 bananas, and 4
pears." would be incorrectly divided into the
two "sentences", "Tom has 2 apples, 3 ba­
nanas." and "4 pears."

Each of the operator words shown in Figure
2 must be used as an operator in the context
as shown or a misinterpretation will result. For
example, the phrase "the number of times I
went to the movies" which should be inter-

preted as a variable string will be interpreted
incorrectly as the product of the two variables
"number of" and "I went to the movies", be­
cause "times" is always considered to be an
operator. Similarly, in the current implementa­
tion of STUDENT, "of" is considered to be an
operator if it is preceded by any number. How­
ever, the phrase "2 of the boys who passed"
will be misinterpreted as the product of "2"
and "the boys who passed".

These examples obviously do not constitute
a complete list of misinterpretations and errors
STUDENT will make, but it should give the
reader an idea of limitations on the STUDENT
subset of English. In principle, all of these
restrictions could be removed. However, re­
moving some of them would require only minor
changes to the program, while others would
require techniques not used in the current sys­
tem.

For example, to correct the error in inter­
preting "2 of the boys who passed", one can
simply check to see if the number before the
"of" is less than 1, and if so, only then interpret
"of" as an operator "times". However, a much
more sophisticated grammer and parsing pro­
gram would be necessary to distinguish differ­
ent occurrences of", and" and correctly extract
simpler sentences from complex coordinate and
subordinate sentences.

Because of limitations of the sort described
above, and the fact that the STUDENT system
currently occupies almost all of the computer
memory, STUDENT serves principally as a
demonstration of the power of the techniques
utilized in its construction. However, I believe
that on a larger computer one could use these
techniques to construct a system of practical
value which would communicate well with peo­
ple in English over the limited range of mate­
rial understood by the program.

IV. CONCLUSION

A. Results
The purpose of the research reported here

was to develop techniques which facilitate nat­
ural language communication with a computer.
A semantic theory of coherent discourse was
proposed as a basis for the design and under­
standing of such man-machine systems. This

HIGH SCHOOL ALGEBRA WORD PROGRAMS 611

theory was only outlined, and much additional
work remains to be done. However, in its pres­
ent rough form, the theory served as a guide
for construction of the STUDENT system,
which can communicate in a limited subset of
English.

The language analysis in STUDENT is an
implementation of the analytic portion of this
theory. The STUDENT system has a very nar­
row semantic base. From the theory it is clear
that by utilizing this knowledge of the limited
range of meaning of the input discourse, the
parsing problem becomes greatly simplified,
since the number of linguistic forms that must
be recognized is very small. If a parsing sys­
tem were based on any small semantic base,
this same simplification would occur. This sug­
gests that in a general language processor, some
time might be spent putting the input into a
semantic context before going ahead with the
syntactic analysis.

The semantic base of the STUDENT lan­
guage analysis is delimited by the character­
istics of the problem solving system embedded
in it. STUDENT is a question-answering sys­
tem which answers questions posed in the con­
text of "algebra story problems." We shall use
four general criteria for evaluating this ques­
tion-answering system.

1) Extent of Understanding. Other question­
answering systems analyze input sentence by
sentence. Although a representation of the
meaning of all input sentences may be placed
in some common store, no syntactic connection
is ever made between sentences.

In the STUDENT system, an acceptable in­
put is a sequence of sentences, such that these
sentences cannot be understood by just finding
the meanings of the individual sentences, ignor­
ing their local context. Inter-sentence depend­
encies must be determined, and inter-sentence
syntactic relationships must be used in this
case for solution of the problem given. This
extension of the syntactic dimension of under­
standing is important because such inter-sen­
tence dependencies (e.g., the use of pronouns)
are very commonly used in natural language
communication.

The semantic model in the STUDENT sys­
tem is based on one relationship (equality) and

612 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

five basic arithmetic functions. Composition of
these functions yield other functions which are
also expressed as individual linguistic forms in
the input language. The input language is
richer in expressing functions than Lindsay's
or Raphael's system. Some logic-based ques­
tion -answering systems may have more rela­
tionships (predicates) allowable in the input,
but do not allow any composition of these predi­
cates. The logical combinations of predicates
used are only those expressed in the input as
logical combinations (using and, or, etc.)

The deductive system in STUDENT, as in
Lindsay's and Raphael's programs, is designed
for the type of questions to be asked. It can
only deduce answers of a certain type from the
input information, that is arithmetic values
satisfying a set of equations. In performing its
deductions it is reasonably sophisticated in
avoiding irrelevant information, as are the
other two mentioned. It lacks the general power
of a logical system, but is much more efficient
in obtaining its particular class of deductions
than would be a general deductive system util­
izing the axioms of arithmetic.

2) Facility for Extending Abilities. Extend­
ing the syntactic abilities of most other ques­
tion-answering systems would require repro­
gramming. In the STUDENT system new defi­
nitional transformations can be introduced at
run time without any reprogramming. The in­
formation concerning these transformations
can be input in English, or in a combination of
English and METEOR, if that is more appro­
priate. New syntactic transformations must be
added by extending the program.

The semantic base of the STUDENT system
can be extended only by adding new program,
as is true of other question-answering systems.
However STUDENT is organized to facilitate
such extensions, by minimizing the interactions
of different parts of the program. The neces­
sary information need only be added to the
program equivalent of the table of operators
in Figure 2.

Similarly, the deductive portion of STU­
DENT, which solves the derived set of equa­
tions, is an independent package. Therefore, a
new extended solver can be added to the system
by just replacing the package, and maintaining

the input-output characteristics of this subrou­
tine.

3) Knowledge of Internal Structure Needed
by User. Very little if any internal knowledge
of the workings of the STUDENT system need
be known by the user. He must have a firm
grasp of the type of problem that STUDENT
can solve, and a knowledge of the input gram­
mar. For example, he must be aware that the
same phrase must always be used to represent
the same variable in a problem, within the
l~~~.j..~ ~.J! ~~~~l~_~.j..~? ,J~.g~~,J ~~.~l~~~ U ~ ~ •• ~.j..
UllUlIl:) V~ 1:)1111UCtl1l1.Y U1;:;11111;:;U I;:;Ctl. uta. ~~I;:; l.l1Ui::IlI

realize that even within these limits STUDENT
will not recognize more than one variation on a
phrase. But if the user does forget any of these
facts, he can still use the system, for the inter­
action discussed in the next section allows him
to make amends for almost any mistake.

4) Interaction with the User. The STU­
DENT system is embedded in a time-sharing
environment and this greatly facilitates inter­
action with the user. STUDENT differentiates
between its failure to solve a problem because
of its mathematical limitations and failure
from lack of sufficient information. In case of
failure it asks the user for additional informa­
tion, and suggests the nature of the needed in­
formation (relationships among variables of
the problem). It can go back to the user re­
peatedly for information until it. has enough
to solve the problem, or until the user gives up.

STUDENT also reports when it does not
recognize the format of an input sentence.
U sing this information as a guide, the user is
in a teaching-machine type situation, and can
quickly learn to speak STUDENT's brand of
input English. By monitoring the assumptions
that STUDENT makes about the input, and the
global information it uses, the user can stop
the system and reword a problem to avoid an
unwanted ambiguity, or add new general in­
formation to the global information store.

B. Extensions
The present STUDENT system has reached

the maximum size allowable in the LISP system
on a thirty-two thousand word IBM 7094.
Therefore, very little can be added directly to
the present system. All the programming ex­
tensions mentioned here are predicated on the

existence of a computer with a much larger
memory.

Without inventing any new techniques, I
think that the STUDENT system could be
made to understand most of the algebra story
problems that appear in first year high school
text books. If new operators, new combinations
of arithmetic operations occur, they can easily
be added to the subroutine which maps the
kernel English sentences into equations. The
number of formats recognizable in the system
can be increased without reprogramming
through the machinery available for storing
global information. Th~ problems it would not
handle are those having excessive verbiage or
implied information about the world not ex­
pressible in a single sentence.

As mentioned earlier, the system can now
make use of any given schema only once in
solving a problem. This is because the schema
equation is added to the set of equations to be
solved, and the variables in the schema only
identified with one another set of variables ap­
p'earing in the problem. For example, if "dis­
tance equals speed times time" were the schema,
the "distance", as a variable in the schema
might be set equal to "distance traveled by
train" or "distance traveled by plane", but not
both in the same problem. This problem could
be resolved by not adding the schema equation
directly to the set of equations to be solved, but
by looking for consistent sets of variables to
identify with the schema variables. Then STU­
DENT could add an instance of the schema
equations, with the appropriate substitutions,
for each consistent set of variables found which
are "similar" to the schema variables.

At the moment the solving subroutine of
STUDENT can only perform linear operations
on literal equations, and substitutions of num­
bers in polynomials and exponentials. It would
be relatively easy to add the facility for solving
quadratic or even higher order solvable equa­
tions. One could even add, quite easily, suffici­
ent mechanisms to allow the solver to perform
the differentiatio~ needed to do related rate
problems in the differential calculus.

The semantic base of the STUDENT system
could be expanded. In order to add the relations
recognized by the SIR system of Raphael, for

HIGH'SCHOOL ALGEBRA WORD PROGRAMS 613

example, one would have to add on the lowest
level of the STUDENT program the set of ker­
nel sentences understood in SIR, their map­
ping to the SIR model, and the question-:answer­
ing routine to retrieve facts. Then the ap­
paratus of the STUDENT system would process
much more complicated input statements for
the SIR model. One serious problem which
arises when the semantic base is extended is
based on the fact that one kernel may have an
interpretation in terms of two different seman­
tic bases. For example, "Tom has 3 fish." can
be interpreted in both SIR and the present
STUDENT system. To resolve this semantic
ambiguity,' the program can check the context
of the ambiguous statement to see if there has
been one consistent model into which all the
other statements have been processed. If the
latter condition does not determine a slngle
preferred interpretation for the statement, then
both interpretations can be stored.

One use for our model for generation and
analysis of discourse would be as a hypothesis
about the linguistic behavior of people. STU­
DENT may be a good predictive model for the
behaviour of people when confronted with an
algebra problem to solve. This can be tested,
and such a study may lead to a better under­
standing of human behaviour, and/or a better
reformulation of this theory of language pro­
cessing.

I think we are far from writing a program
which can understand all, or even a very large
segment of English. However, within its nar­
row field of competence, STUDENT has dem­
onstrated that "understanding" machines 12 can
be built. Indeed, I believe that using the tech­
niques developed in this research, one could
construct a system of practical value which
would communicate well with people in English
over the range of material understood by the
program.

REFERENCES

1. BOBROW, D. G., "METEOR: A LISP In­
terpreter for String Transformations"; in
(13)

2. MCCARTHY, J., et. aI., LISP 1.5 Program­
mers Reference Manual; MIT Press, Cam­
bridge, Mass. ; 1963

614 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

3. CORBATO, F. J., et. aI., The Compatible
Time-Sharing System; MIT Press, Cam­
bridge, Mass. ; 1963

4. GREEN, B. F., et. aI., "Baseball: An Auto­
matic Question Answerer"; Proc. W JCC;
May 1961

5. LINDSAY, R. K., "Inferential Memory as
the Basis of Machines Which Understand
Natural Language," in (14)

6. RAPHAEL, B., "A Computer Program
UTl,,;.· .. h 'TTnAQ't'C!h~nAC!' ". Ptrn ... "Ii' Try''''· QT\~'t'_
'f'f .LJ..L"""".L.I, "'-J.I..L\,A"",U""",,.L.L"""U , I vv • .& u '-''''''',.t'~.L

tan Press, Baltimore, Maryland; 1964

7. SIMMONS, R. F., "Answering English Ques­
tions by Computer-A Survey"; SDC Re­
port SP-1556, Santa Monica, California;
April 1964

8. BOBROW, D. G., "Natural Language Input
for a Computer Problem Solving System",
Ph.D. Thesis, Mathematics Department,
M.I.T., Cambridge, Mass.; 1964

9. QUINE, W. V., Word and Object; MIT
Press, Cambridge, Mass.; 1960

10. CHOMSKY, A. N., Syntactic Structures;
Mouton and Co.; S-Grauenhage; 1957

11. YNGVE, V., "A Model and an Hypothesis
for Language Structure," Proceedings of
the American Philosophical Society, vol.
104, No.5; 1960

12. MINSKY, M., "Steps toward Artificial In-

13. BERKLEY, E. C. and BOBROW, D. G. (edi­
tors) The Programming Language LISP:
Its Operation and Applications, Informa­
tion International Inc., Cambridge, Mass.;
1964

14. FEIGENBAUM, E. and FELDMAN, J. (edi­
tors) Computers and Thought, McGraw
Hill, New York; 1963

THE UNIT PREFERENCE STRATEGY IN

THEOREM PROVING*
Lawrence Wos, Daniel Carson, and George Robinson

A rgonne National Laboratory
Argonne, Illinois

Unit Preference and Set of Support Strategies

The theorems, axioms, etc., to which the
algorithm and strategies described in this
paper are applied are stated in a normal form
de~ned ~. follows: A literal is formed by pre­
fixIng a predicat€' letter to an appropriate
number of . argUments (constants,' variables, or
expressions formed with the aid of function
symbols) and then perhaps writing a negation
sign (~) before the predicate letter. For €X~
ample:

P(b,x) -P(b,x) Q(y) R(a,b,x,z,c) S

are all literals if P, Q, R, and S are two-, one-,
five-, and zero-place predicate letters, respec­
tively. The predicate letter is usually thought
of as standing for some n-place relation. Then
the literal P (a,b), for example, is thought of
as saying that the ordered pair (a,b) has the
property P. The literal - P (a,b) is thought of
as saying that (a,b) does not have the prop­
erty P.

One may build a clause by writing a sequence
of literals separated by disjunction (logical
"or") signs. Logical "or" will be symbolized
by a small letter "v" (distinguishable from pos­
sible uses of "v" as a variable from context).
Where it is desired to indicate dependence of a
particular argument of a predicate letter upon
one or more other variables, function symbols
are employed. The clause

P(x,y,z) v Q(x,f(x,y»

thus says that either the ordered triple (x,y,z)
has the property P or the ordered pair
(x,f (x,y» has the property Q (or both). Each
of the variables in a clause is then thought of
as being universally quantified (that is, if the
variable x occurs in a clause, the clause is as­
sumed to be preceded by an implicit quantifier,
"for each x." Functional expressions such as
f (x,y) are then treated as existentially quanti­
fied variables. Roughly speaking, f (x,y) in the
example above stands for an element (depend­
ing on x and y) which forms, when used as the
second element with x as the first element an , ,
ordered pair which has the property Q. A unit
clause is a clause composed of a single literal.

Finally, one may consider a sequence of
clauses implicitly joined by logical "and" (con­
junction). Such a sequence of clauses will be
said to be in (conjunctive) rwrrnal form.

Instantiation, as applied to this normal form,
can be thought of as the forming' of a possibly
less general (more specific) i1lJ8tance of a clause
by performing a systematic replacement of
variables by constants, new variables, or by
expressions formed with the aid of function
symbols. Substituting b for x and f(d,u) for
y in the clause

P(x,y) v Q(b,y)

would yield a less general instance of that
clause:

P(b,f(d,u» v Q(b,f(d,u».

* Work performed under the auspices of the U. S.Atomic Energy Commission.

615

616 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

The latter is less general in that, while it can
be deduced from the former, the former cannot
be deduced from the latter.

Early computer-oriented theorem-proving ef­
forts employed search techniques involving in­
stantiation of a given set of logical formulae.
In these methods, successively larger sets of
constants were generated. As each set was gen­
erated, all permissible substitutions of such
constants for variables were made in the origi­
nal formulae, producing successively larger
sets of instances. These instances· differed from
the original formulae in that they included no
logical quantifiers: "For each x," "For some x,"
etc. For sets of such quantifier-free formulae,
straightforward techniques were known for
determining validity or inconsistency. P. C.
Gilmore2 described an IBM 704 program using
the technique of conversion of sets of quanti­
fier-free formulae from conjunctive normal
form to disjunctive normal form. Davis and
Putnam intropuced a substantial improvement
in the method of testing such sets of quantifier­
free formulae. A 704 program4 incorporating
this improvement proved to be several orders
of magnitude faster than Gilmore's program
for the same machine.

These instantiation techniques employed the
argument forms existential instantiation and
universal instantiation (see for example
Quine5

) to infer the quantifier-free instances
from the original . formulae. All permissible
substitutions were made in a systematic, ex­
haustive manner,guaranteeing that if a proof
existed of the desired theorem, it would be cap­
tured in the steadily expanding sets of in­
stan.ces. The disastrous rate of growth of these
sets,!iue to the inclusion of numerous unprofit­
able, inferences, spelled .,the d,oom of exhaus­
tive ·.lnstantiation. Study of the nature of the
i~stances which could . be expected to result
from(such a program led, however, to the sus­
picion that the logical completeness of the
method could be retained but the combinatoric
explosion substantially reduced by considering
the generalizations represented by classes of
similar instances. This led to the formulation
of computer-oriented rules of inference. which
suppressed universal ,instantiation and retained
universally quantified variables in their more
general form. These rules were codified and

put on a sound logical basis by J. A. Robinson3

in his paper on the resolution principle. As a
computer algorithm, he proposed that the origi­
nal set of formulae be completely "resolved" in
the sense that all possible applications of the
inference rule resolution be made in a system­
atic, exhaustive manner.

Where exhaustive instantiation methods met
their downfall was in blindly forming all pos­
sible maximally specific instances from a given
set of clauses; once formed, such instances were
never to be discarded. Only then was consider­
ation given to what interactions might occur
between the instances (specifically, to whether
the set thus generated was inconsistent). Fur­
thermore, in most interesting cases, many new
objects to be substituted were manufactured,
resulting in a combinatoric explosion of further
instances.

Resolution, as proposed by J. A. Robinson,
curtails the number of instances produced, in
that it produces a new clause only when it can
be determined in advance that two existing
clauses will, when each is instantiated, yield a
pair of instances that will interact, forming a
clause which could not have been inferred from
either parent clause taken by itself. Specifi­
cally, in resolution a pair of clauses (each of
which is called a resolvend) is examined to see
if there is a· substitution which will transform
the clauses into a pair of the form

L v Ll V L2 V ••• v Lm, - L V Kl V K2 V ••• v Kn

From such a pair, the clause

Ll v L2 V ••• v L~ V Kl V K2 V ••• Kn

can be inferred. This clause (called the resol­
vent) is then added to the set of clauses which
ha ve been accumulated from previous infer­
ences. Furthermore, a substitution is considered
only if it is the most general that could be
made, thus maintaining the maximum degree
of generality in the result. Another closely re­
latedmethod of inference is factoring: A sub­
stitution is sought such that (a) two or more
of the literals of a clause will collapse into a
single literal, and (b) no more general substi­
tution would have the same effect.. The result­
ing clause is called a factor.

Substitution of these rules of inference. for
the earlier instantiation inference rules was

THE UNIT PREFERENCE STRATEGY IN THEOREM PROVING 617

shown to produce a reduction of the combina­
toric explosion by a factor in excess of 1050,
leading to some rather spectacular achieve­
ments when compared to the instantiation
techniques. Nevertheless, the search algorithm
employed a more or less random generation of
resolvents inferred by means of the resolution
principle. Using only these techniques, previ­
ously established bench-mark problems required
prohibitive amounts of machine time. It seemed
that a change of emphasis would be profitable.

One approach would be to concentrate upon
the strategies of search. The current paper
considers one such strategy, the unit preference
strategy. This strategy has been implemented
in a theorem-proving program now successfully
running on the Control Data 3600. We will de­
scribe the search algorithm employed in the
program, prove its soundness and completeness,
consider some examples, and describe addi­
tional search strategies which can be employed
to effect further improvement.

The principal search strategy arises from the
fact that the object of the resolution principle
is the generation through inference of two unit
clauses which are manifestly contradictory.
Here and elsewhere in this paper, contradict
is used as in mathematics in the somewhat
broader sense of conflict, rather than in the
narrower sense frequently used in logic. Two
clauses will be called contradictory if they are
mutually exclusive (contrary) clauses. We do
not require them to bear the relation of a clause
to its negation. With this in mind, it seemed
worthwhile to orient the program to produce
shorter and still shorter clauses in preference
to other possible inferences.

"The Unit Preference Strategy
The data for consideration consists of a set

of clauses in the normal form. The clauses cor­
respond to a given set of axioms and the denial
of a theorem to be proved from these axioms,
for it is to be remembered that the program
finds proofs and not theorems. Remember that
all variables that occur are treated as univer­
sally quantified; an existentially quantified
variables have been replaced by constants or
functions.

The algorithm is divided into two sections, a
unit section and a non-unit section. Where a

j-clause is a clause of length j (Le., has j lit­
erals), and the j-list is the list of j-clauses, the
logic of the unit section is as follows, starting
with j = 1:

1. Search the unit list and the j-list for a
pair of elements C and D such that C is
a unit, D is of length j, and for some
literal m of D resolution has not been
attempted for C and D on m; if no such
pair exists, execute step 2; if such a pair
exists, execute step 3.

(The search in the program proceeds by taking
the first unit and the first j-clause and exam­
injng each of its literals; the procedure is re­
peated with the same j-clause and the next unit,
and continues until the unit list is exhausted.
Then the process is applied to the next
j-clause.)

2. If j is the length of the longest clause
present, enter the non-unit section; if not,
increase j by 1 and return to 1.

3. Resolve C and D on m; if no resolvent is
generated, return to 1 and resume the
search; if a resolvent of length i > 0 is
generated, add the resolvent to the i-list,
set j = i, and return to 1; if the empty
resolvent is generated, execute the proof
recovery. (The generation of the empty
resolvent is equivalent to finding that the
clauses C and D are manifestly contradic­
tory.)

In order to avoid the possibility of being
caught in an infinite loop, there is a constraint
placed on step 3. The constraint is formulated
in terms of the concept of the level of a clause.
Let So be the original set of clauses; define Si
for i > 0 to be the set of resolvents of Si - 1

together with Si _ 1. The level k of a clause C
is 0 if C is input, is that of B if C is obtained
by factoring B, and is 1 greater than the maxi­
mum of the levels of A and B· if C is obtained
by resolving A and B. The constraint imposed
on 3 is: if the resolvent of C and D is a non­
unit whose level is a specified bound ko, or a
unit whose level exceeds ko, then it is not added
to the corresponding list, and the pair is treated
as if no resolvent were generated. To illustrate
the difficulty thus avoided consider the set con­
sisting of the clauses P (a), - P (x) v P (f (x»,
which correspond to a subset of the Peano

618 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

axioms, and some clause of length 3. Without
the level bound, the program would generate
P(f(a», P(f(f(a»), P(f(f(f(a»», ... , ad
infinitum. We would be caught in an infinite
loop which would continually present and exe­
cute the task of resolving a new unit with the
same 2-clause instead of either passing to the
proof recovery or to the non-unit section.

The non-unit section beings by setting j = 2,
then:

1. Search the j-list for a clause D with lit­
erals 1 and m on which factoring has not
been attempted; if one exists, execute 2;
if not, execute 3.

2. Factor D on 1 and m; if no factor is
generated, return to 1; if a factor C of
length i is generated, add C to the i-list,
set j = i, and return to step 1 of the unit
section.

3. If j = 2, increase j by 1 and return to
step 1 of the non-unit section; if j =1= 2,
execute 4.

4. Set h = 2, replace j by j-l, and execute 5.

5. Search the h-list and the j-list for a pair
C and D such that C is an h-clause with
a literal 1, D is a j-clause with a literal m,
and resolution has not been attempted for
C and D on 1 and m; if no such pair ex­
ists, execute 6; if such a pair exists, exe­
cute 7.

6. If h > the maximum length of all clauses
present, the program stops with the con­
clusion that no proof exists within level
ko; if h < this maximum and h + 1 ~ j,
replace j by h + j and return to 1 of the
non-unit section; if h + 1 < j, replace h
by h + 1 and j by j - 1 and return to 5.

7. Resolve C and D on 1 and m; if no resol­
vent is generated, return to 5; if a resol­
vent B of length i is generated, then add
B to the i-list, set j = i, and return to 1
of the unit section. Again the level con­
straint imposed on Step 3 of the unit sec­
tion applies.

Soundness and Completeness
The soundness of the procedure follows from

the fact that if C is in Si or a factor of some
D in Si for any i, C is implied by So, i.e., C is a
consequence of So. So, if C and D are elements

of the unit list which conflict (are manifestly
contradictory), 8.0 is inconsistent.

The argument for completeness is as follows:
J. A. Robinson3 proved in effect that if So is an
inconsistent set, there exists a k such that Sk
contains the empty resolvent; this implies that
Sk - 1 contains two clauses which are units or
have unit factors which conflict. The claim is
that when the level bound ko of the program
is equal to this k, whether ko is immediately
set equal to k or set equal to 1,2, ... k, the
desired unit conft.ict will be obtained. At any
given time the set of clauses which occur on
any list is contained in Sk, and is therefore
finite. The search through any list for poten­
tial factors or through any pair of lists for
potential resolvents is a finite process since all
lists are finite. The number of searches
through any list is limited by the size of the
input and the number of clauses which are ad­
joined and is, therefore, finite also. So any
clause which occurs on any list will do so after
a finite number of steps. In a similar fashion
we can see that all clauses on all lists will be
factored and, within the level bound, pairwise
resolved in a finite number of steps. Consider
the case where ko is sufficiently large to have
SkO contain the empty resolvent. If ko = 1, So
contains the clauses which yield the conflict,
and the previous argument shows that the pro­
gram will examine the pair in question. If
ko = 2, the same argument shows that S1 will
be contained in the lists of clauses, and again
the conflict will be obtained. Applying the argu­
ment ko times shows SkO - 1 will be contained in
the lists of clauses. So we have proven the fol­
lowing lemma.

Lemma: Using the search algorithm with
level bound ko such that Sk{) contains the empty
resolvent, the program finds a proof if and
only if So is unsatisfiable.

Subsidiary Strategies
The most important subsidiary strategy is

based on the concept of a chain. With the
appropriate grouping, any clause which occurs
on any list is expressible in terms of the ele­
ments of S{) together with the operators of
resolution and factoring. Such an expression is
called a chain, and the number of resolutions
which occur therein is its length. The elements

THE UNIT PREFERENCE STRATEGY IN THEOREM PROVING 619

of So and the factors of those elements are
chains of length 0; those of Sl have chains of
length 0 and 1; those of S2 have chains of
length of 0, 1, 2 and 3.

If T is a nonempty subset of 8.0 and C is a
chain of length 0 whose single element is in T
or is a factor of an element in T, we say C is
supported by T or C has T -support. Chains C
of length greater than 0 have T-support if, for
every resolution, that occurs in C, at least one
of the resolvends has T -support. The clause B
is said to be derived from T, if its chain (its
expression or derivation in So) has T-support.

The strategy employed here is to choose T
and generate only those elements of Si for i > 0
which are derived from T. The choice of T
obviously has a profound effect on the number
of clauses generated during the search for a
proof. The question remains as to which avail­
able choices of T preserve completeness of the
procedure. By the lemma of the previous sec­
tion, T = So is admissible under the appropri­
ate conditions. For a given So the clauses might
be divided into 3 categories; those which cor­
respond to the basic axioms of the theory under
study; those which correspond to the special
hypotheses of the theorem under consideration,
and those which correspond to the denial of the
conclusion of the theorem. For example, con­
sider the theorem: in a group, if the square of
every element is the identity, the group is com­
mutative. The first category would consist of a
set of axioms which characterize groups; the
second would consist of the axiom, for every x
in the group X2 = e; the third would be the
denial of commutativity, there exist a and b
such that ab =1= ba. (This example will be con­
sidered later under various conditions.) It ap­
pears that, where T is the join of the last two
categories, this choice of T for set of support
preserves completeness and is most valuable in
obtaining proofs in a reasonable amount of
time.

Among the other strategies which can be
employed are: deletion of the unit clause B
upon generation if the unit list contains a
clause A such that every instance of B is also
one of A; deletion upon generation of a clause
if it contains two literals which have opposite
sign but are otherwise identical; deletion of B

if the unit A is a resolvent of B with some C
such that all instances of some literal k of B
are contained in the set of instances of A.

EXAMPLE 1: In an associative system with
left and right solutions, there is a right identity
element.

Basic Axioms:
AI. - P (x,y,u) v - P (y,z,v)

) v -P(x,v,w) v P(u,z,w)
A2. - P (x,y,u) v - P (y,z,v)

v - P (u,z,w) v P (x,v,w)
(associativity)

A3. P (g (x,y) ,x,y) (left solution)
A4. P (x,h (x,y) ,y) (right solution)
A5. P (x,y,f (x,y» (closure)

Negation of Conclusion:
A6. - P (j (x) ,x,j (x» (no right identity)

When A6 was taken as the only member of
the set of support, the computer generated the
following proof in 35 milliseconds with 11
clauses in memory at the time the proof was
detected:

1. - P (x,y,u) v - P (y,z,v) v
-P(x,v,w) v P(u,z,w)

2. P (g(x,y) ,x,y)
3. P (x,h (x,y),y)

4.
5.

- P (j (x) ,x,j (x))
- P (x,y,j (z» v - P (y,z,v)

(AI)

(A3)
(A4)

(A6)

v - P (x,v,j (z)) (from 4 and 1)
6. - P (y,z,v) v - P (g (y,j (z)) ,v,j (z))

(from 2 and 5)
7. - P (v,z,v) (from 2 and 6)

Since 3 and 7 are manifestly contradictory,
the proof is complete.

EXAMPLE 2: In an associative system with
an identity element, if the square of every ele­
ment is the identity, the system is commutative.

Basic Axioms:
AI. P (x,e,x) (right identity)
A2. P (e,x,x) (left identity)
A3. - P (x,y,u) v - P (y,z,v))

v -P(u,z,w) v P(x,v,w) .
A4. - P (x,y,u) v - P (y,z,v)

v -P(x,v,w) v P(u,z,w)
(associa ti vi ty)

620 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Special Hypothesis:

A5. P (x,x,e)
(The square of every element is the
identity.)

Negation of Conclusion:

A6. P(a,b,c)
A7. -P(b,a,c)

(There are elements a and b which
do not commute.)

When A1 through A 7 were used as the set
of support, the machine generated the following
proof in 1.124 seconds with 119 clauses in
memory at the time the proof was detected.

1. P (x,e,x) (A1)
2. P (e,x,x) (A2)
3. - P (x,y,u) v - P (y,z,v)

v -P(u,z,w) v P(x,v,w)
4. - P (x,y,u) v - P (y,z,v)

v - P (x,v,w) v P (u,z,w)
5. P(x,x,e)
6. P(a,b,c)
7. - P (b,a,c)
8. -.p (x,y,e) v - P (y,w,v)

(A3)

(A4)
(A5)
(A6)
(A7)

v P(x,v,w) (from 2 and 3)
9. - P (y,w,v) v P (y,v,w) (from 5 and 8)

10. -P(w,y,u) v -P(y,z,e)
v P(u,z,w)

11. -P(w,z,u) v P(u,z,w)
12. P(c,b,a)
13. P (c,a,b)
14. -P(c,a,b)

(from 1 and 4)
(from 5 and 10)
(from 6 and 11)
(from 12 and 9)
(from 7 and 11)

Since 13 and 14 are manifestly contradictory,
the proof is complete.

When, instead, only A5, A6, and A 7 were
used as the set of support, the machine gen­
erated the following proof in the faster time of
538 milliseconds with 72 clauses in memory at
the time the proof was detected:

1. P(x,e,x)
2. P(e,x,x)
3. - P (x,y,u) v - P (y,z,v)

v - P (u,z,w) v P (x,v,w)
4. - P (x,y,u) v - P (y,z,v)

v - p (x,v,w) v P (u,z,w)
5. P(x,x,e)
6. P(a,b,c)
7. -P(b,a,c)

(A1)
(A2)

(A3)

(A4)
(A5)
(A6)
(A7)

S. -P(y,z,v) v -P(e,z,w)
v P(y,v,w) (from 5 and 3)

(from 2 and S) 9. - P (y,w,v) v p (y,v,w)
10. -P(x,z,u) v -P(x,e,w)

v P(u,z,w) (from 5 and 4)
(from 1 and 10)
(from 6 and 11)
(from 12 and 9)
(from 7 and 11)

11. -P(w,z,u) v P(u,z,w)
12. P(c,b,a)
13. P (c,a,b)
14. -P(c,a,b)

Since 13 and 14 are manifestly contradictory,
the proof is complete.

EXAMPLE 3: In a group, if the square of
every element is the identity, the group is com­
mutative.

Basic Axioms:
AI.
A2.
A3.
A4.
A5.
A6.
A7.

AS.

A9.

A10.

All.

A12.
A13.
A14.
A15.
A16.
A17.

P (x,y,f (x,y)) (closure)

P (e,x,x) l (existence of identity)
P(x,e,x) ~
P(x,g(x),e) l
P (g(x) ,x,e) ~ (existence of inverse)

R (x,x) (reflexivity of =)
-R(x,y) v
R (y,x) (symmetry of =)
- R (x,y) v - R (y,z)
v R (x,z) (transitivity of =)
- P (x,y,u) v - P (x,y,v)
v R(u,v)

(multiplication is well-defined)
- P (x,y,u) v - P (y,z,v) 1
v - P (U,Z,w) v P (X,V,w)
- P (X,y,u) v - P (y,z,v) J
v -P(x,V,W) v P(u,Z,W)

(associa ti vi ty)
- R (u,v) v - P (x,y,u) v P (X,y,v) 1
-R(u,v) v -P(x,U,y) v P(x,v,y)
- R (U,v) v - P (U,x,y) v P (V,x,y)
-R(u,v) vR(f(x,u),f(x,v»
-R(u,v) v R(f(u,y),f(v,y»
-R(u,v) vR(g(u),g(v» J

(substitution for =)

Special Hypothesis:
A1S. P(x,x,e)

(The square of every element is the
identity.)

Negation of Conclusion:
A19. P (a,b,c)
A20. -P(b,a,c)

(There are elements a and b which
do not commute.)

THE UNIT PREFERENCE STRATEGY IN THEOREM PROVING 621

With A18 through A20 used as the set of
support, the computer generated the following
proof in 54 seconds with 563 clauses in memory
at the time the proof was detected:

1. P(x,y,f(x,y)) (A1)
2. P(e,x,x) (A2)
3. P(x,e,x) (A3)
4. - P (x,y,u) v - P (y,z,v) v

-P(u,z,w) v P(x,v,w) (A10)
5. - P (x,y,u) v - P (y,z,v) v

- P (x,v,w) v P (u,z,w) (All)
6. P(x,x,e) (A18)
7. P (a,b,c) (A19)
8. -P(b,a,c) (A20)
9. -P(y,z,v) v -P(e,z,w) v

P(y,v,w) (from 6 and 4)
10. -P(e,z,w) v

P (y,f (y,z) ,w) (from 1 and 9)
11. P(y,f(y,w) ,w) (from 2 and 10)
12. - P (x,y,z) v - P (y,z,v) v

P(x,v,e) (from 6 and 4)
13. -P(x,y,z) v

P (x,f (y,z) ,e) (from 1 and 12)
14. P (a,f (b,c),e) (from 7 and 13)
15. - P (b,y,u) v - P (y,z,a) v

-P(u,z,c) (from 8 and 4)
16. -P(e,z,a) v -P(b,z,c) (from 3 and 15)
17. - P (e,f (b,c).,a) {IrOm 11 ana 10)

18. - P (y,z,v) v - P (y,v,w) v
P(e,z,w) (from 6 and 5)

19. -P(w,z,e) v P(e,z,w) (from 3 and 18)
20. P (e,f (b,c) ,a) (from 14 and 19)

Since 17 and 20 are manifestly contradictory,
the proof is complete.

Discussion

In order to study the importance of the vari­
ous strategies discussed above, Example 2 was

run without the aid of the unit preference
strategy or the set of support strategy. At the
end of 30 minutes the program had just fin­
ished generating S2' having also generated Sl'
without obtaining a proof. By comparison,
with the aid of these strategies, the proof was
obtained in about .5 seconds.

Example 3 serves to illustrate the compara­
tive difficulty encountered when attacking a
mathematical theorem without a priori knowl­
edge, such as that employed in Example 2, as
to which subset of the basic axioms of the
theory is relevant. The proof of Example 2 was
completed in about .5 seconds, while Example 3
required 54 seconds although the same strategy
was applied to both. It should be noted that,
without the set of support strategy, Example 3
was beyond the range of a 65,000 word ma­
chine.

BIBLIOGRAPHY

1. DAVIS, M., and PUTNAM, H., H A comput­
ing procedure for quantification theory," J.
ACM 7, 201-215 (1960).

2. GILMORE, P. C., "A proof method for quan­
tification theory," IBM J. Res. Develop. 4,
2g....,35 (1960).

3. ROBINSON, J. A., "A machine oriented logic
based on the resolution principle." To be
published.

4. ROBINSON, J. A., "GAMMA I, a general
theorem-proving program for the IBM 704,"
Argonne National Laboratory Report ANL-
6447. November, 1961.

5. QUINE, Vi. V. 0., lVl ethods of Logic, (Holt,
Rinehart, and Winston, New York, 1959),
Revised Ed.

COMMENTS ON LEARNIN.G AND AD.APTIVE MACHINES

FOR PATTERN RECOGNITION*
C.HugkMays

I INTRODUCTION

By learning and adaptive machines I mean
special purpose machines with internal compo­
nents having adjustable values. The use of
such machines for the solution of several kinds
of problems has been proposed. These include
the design of switching functions, the design
of classification machines (classification ma­
chines is meant to imply recognition, predic­
tion, decision and classification machines) ,
automatic manufacturing of certain devices,
self optimization or decision machines with
time variable input statistics, improving the re­
liability of digital processes, and automatic wir­
ing and testing of microcomponents. Most of
the work to date has been on using learning
machines to design switching functions and
classification machines.

Learning machines will be useful only if they
can solve significant problems faster, cheaper or
with greater programming ease than conven­
tional machines. The recommendations and
comments in this paper are predominantly con­
cerned with the question of the potential advan­
tages of learning and adaptive machine ap­
proaches.

In a learning machine, samples of data are
used as inputs to the machine. Other inputs
indicate the desired machine response to the
samples. Values of internal components are
changed in accordance with some algorithm
until the actual response is equal to the desired
response.

II PROBLEM STATEMENT

A. Data Classification
Data classification and processing problems

are becoming so complex that new techniques
are required if these problems are to be solved
economically. I will be mainly concerned with
data classification problems in the following
material, (i.e., problems requiring that a deci­
sion or prediction be made on the basis of given
data and performance criteria).

For Example:

(1) A decision to buy or sell a paritcular
stock must be made.

(2) The state of the weather in one week
must be predicted.

(3) A blood sample must be classified to de­
termine if a patient has a given disease.

(4) Directions must be given to the pilots of
several airplanes when their locations,
velocities and directions of flight are
known.

B. Availability of Data
In designing a classification system we may

have a complete mathematical and statistical
description of the physical process generating
the data (e.g., certain control systems) or we
may have samples of the data and a relatively
incomplete mathematical and statistical descrip­
tion (e.g., a weather system) . The kinds of in­
formation that may be available when a data

* This work was done at Stanford University, Stanford, California.

623

624 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

classification system is to be designed include
the following:

(1) A complete or partial mathematical and
statistical description.

(2) Many samples of data with a clear indi­
cation of the class represented by each
sample.

(3) Few samples of data with a clear indica­
tion of the class of each sample.

(4) Many samples of data without a clear in­
dication of the class of each sample.

(5) Few samples without a clear indication
of class of each sample.

(6) A problem with time variable character­
istics.

(7) Any reasonable combination of the above
itenas. '

In the following material most of the discus­
sion will be concerned with items 1, 2, 3 and any
reasonable combination of these items. The dis­
cussion will assume that the decison and pre­
diction problems are to be solved by a com­
pletely mechanized system.

C. Mechanization of Classification Processes
There are two aspects to data classification.

These are 1) the design of' the classification
mechanism and 2) the problem of what to
measure and how to preprocess the measure­
ments for presentation to a classification sys­
tem.

The main techniques used for the design of
classification mechanisms are logical design 1,

the use of decision theory '2, the use of ,learning
or adaptive machines 3, 4 and the use of heuristic
programs.'24 Logical design can be used when
a process is not subject to noise. Decision theory
is used when a process is noisy and knowledge
about the statistics of the data generated by the
process is available. Decision theory is pres­
ently limited to cases where the statistics are
relatively simple. The most significant results
have been obtained for Gaussian statistics.

This paper contains very little material on
the use of heuristic programming approaches;
Minsky's paper 24 contains a number of refer­
ences to this subject.

The problem of what to measure, and how to
preprocess the results of the measurements for
use in a classification machine is not very well

understood. Some work has been done on find­
ing measurements that give invariant results
for certain transformations (e.g., rotations and
translations) of planar figures. I know of no
work that has been completed for arbitrary
transformations.

Learning machines are special purpose ma­
chines used to determine the values of compo­
nents of a classification system. The learning
machine may also be used as an element of a
classification system rather than as a computer
to determine numeric solutions. Presently most
learning machines use networks of adaptive
threshold elements.

III THRESHOLD ELEMENTS AND ADAP­
TIVE THRESHOLD ELEMENTS

A. Fixed Elements
In a threshold element a weighted sum of

input variables is formed 5,6. If this sum is
greater than or equal to a threshold value, the
output of the element is a logical one; otherwise
the output is a logical zero. In an adaptive
threshold element the weight values are adjus­
able by adaptation circuitry.

Geometrically, the threshold element imple­
ments a hyperplane through the space of input
variables 7,8. In the case where the input vari­
ables represent data from two classes, the
classes are called linearly separable if there
exists a set of weights and a threshold such that
the response of the threshold element is a logical
one for inputs representing one class and a logi­
cal zero for inputs representing the other class.

The hyperplane represents an optimum sepa­
rating surface for certain kinds of statistical
problems (e.g., two classes with Gaussian dis­
tributions and equal covariance matrices 9). In
these problems it is impossible to do a perfect
job of separating the classes. Therefore the
hyperplane must be placed so as to minimize
the expected cost of misclassifying samples.
For statistical problems having k classes with
equal covariance matrices, we may require k
(k-1) /2 threshold 'elements followed by a de­
coding network. If the analog value of the
weighted sum minus the threshold is available
for manipulation, we need only k-1 summing
elements plus circuits to compare the analog

LEARNING AND ADAPTIVE MACHINES FOR PATTERN CLASSIFICATION 625

values. I have no idea which scheme is cheaper.
For a few classes, a classification mechanism
with only threshold elements is probably
cheaper. As more classes are added the use of
comparison circuits in conjunction with sum­
ming elements is probably cheaper.

Networks of threshold elements can be used
to approximate other separating surfaces (e.g.,
quadratic and higher order surfaces). If we al­
low the use of analog multipliers (AND gates
in the case of binary inputs), threshold ele­
ments can be used to exactly realize quadratic
and higher order surfaces.

Since threshold elements can realize AND,
OR, and NOT functions, networks of these ele­
ments can be used to realize any switching
function or logical decision rule. There has been
a considerable amount of work on the synthesis
of switching functions with threshold ele­
ments 5, ~,10.

B. Adaptive Elements
Algorithms for changing the weight values

of a single adaptive threshold element are very
well understood 3, 11-13. I know of only one
case '25 where these algorithms tend to produce
an optimum separating hyperplane; and this is
for a relatively simple statistical case (two
classes, equal covariance matrices, equal a pri­
ori probabilities and the probability of mis­
classification errors is to be minimized). Al­
gorithms for nontrivial networks of adaptive
threshold elements are not very well under­
stood. (Nontrivial means that the desired re­
sponse does not uniquely determine the response
of every threshold element.) I know of pro­
posed algorithms 1'2 for such networks but of no
satisfactory proof that the algorithms will
cause convergence to a solution in a finite
amount of time. However, experimental re­
sults indiate that these algorithms cause con­
vergence most of the time.

The most successful adaptive machines have
used very simple networks of adaptive thres­
hold elements. In these machines the algorithms
for changing weight values can be interpreted
in terms of surface searching methods '26. With
these methods the weight values are always
changed in a direction that moves the weights
closer to a solution. It appears that nontrivial
networks of adaptive threshold elements have

local minimum (at least for the networks so
far considered) . If surface searching methods
are to be used, work needs to be done on finding
ways to adapt nontrivial networks so as to
avoid local minimum.

As the number of inputs to threshold ele­
ments is raised, the tolerance requirements on
weight values get continually tighter 14, 15, if the
full power of the, elements is to be realized. This
means that very precise components with small
drift values must be used. One way around this
problem is to use more threshold elements. This
introduces redundancy into any classification
mechanism and increases the cost. The cost in­
crease caused by redundancy may be more than
offset by the use of less precise components.

Threshold elements appear to be very useful
and, at least conceptually, they are simple units.
Realization of threshold elements with hard­
ware has included the use of Kirchoff adders,
(at Stanford), magnetic cores 16, 17, summing
amplifiers (at Stanford) and resistor bridge
networks 18. Fixed threshold logic can be im­
plemented easily but adaptive threshold ele­
ments place restrictions on the phenomena that
can be used. For example, it would be difficult
to make an adaptive threshold element that
used the number of turns on a magnetic core to
control weight values. The two most successful
adaptive components have been a variable re­
sistance device 18 and a magnetic device that
uses remanent flux states to control weight
values 17.

IV USE OF LEARNING MACHINES FOR
DESIGN PURPOSES

A. The Experimental Approach
In a classification machine, a sample of data

is used as an input to the machine and some re­
sponse to this input is obtained. For example
the input might be a photograph of a cancer
smear and the response a diagnosis of the
smear. In a learning machine a sample of data
is used as an input together with an input indi­
cating the desired machine response. The in­
ternal structure of the machine is then modified
according to some algorithm so that the actual
response is equal to the desired response. One
sample or several samples may be used as in­
puts at anyone time. Several machines have

626 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

been built (Adaline and Madaline at Stanford,
Perceptron at Cornell) that use only one sample
at a time as an input. As far as I know, no one
has built a learning machine to take more than
one sample as an input at one time. There is
no reason why such a machine could not be
built and there may be advantages to do so,
particularly if the samples are correlated.

Most experiments with learning machines
have been performed as follows. Samples of
data together with the classifications of the
sarnples are stored in a conventional rnernory.
The samples and their classifications are then
picked one at a time to be used as inputs to a
learning machine. This process continues until
the response of the machine to each sample
agrees with the desired response; the machine is
said to have converged at this point. It may be
necessary to use each sample as an input more
than one time before convergence is obtained.
After convergence is obtained the machine is
tested on new samples. If the mahine makes
very few misclassifications of new samples, the
experiment is considered to be successful and
the machine is said to have generalized.

The experimental approach outlined above
has been used for determining machines for
weather prediction 19, speech recognition !20,

classification of radar returns (no published re­
ports) and classification of electrocardio­
grams '21. These experiments were performed
using digital computer simulations of the learn­
ing machine. These experiments appear to be
very successful but a fair amount of work went
into determining what measurements to take
and how to preprocess them. In evaluating re­
sults it is difficult to separate the effects of pre­
processing from the learning machine approach.

The experimental approach described above
is used as a mechanism for understanding
learning machines. Each experiment adds a­
little to our understanding. These experiments
may show that our approach has been too naive
and that we must understand a great deal
more about the physical process we are experi­
menting with. On the other hand, the learning
machine approach may provide a technique for
exploring physical processes. For example the
weather experiment described above showed
that large weight values in the learning ma-

chine corresponded to geographic locations that
the weather man found to be useful in predict­
ing the weather.

B. Generality, Generalizing and Optimum Ma­
chines

In order to handle many different classifica­
tion problems, learning machines must be flexi­
ble; in other words, the machine must be able
to realize many different mappings. between in­
puts and outputs. I call this property general­
ity. If the machine has great generality~ train­
ing on a set of samples may imply very little
about the response of the machine to new sam­
pIes; in other words, the machine may not gen­
eralize very well. It appears that if generaliz­
ing is to be obtained, either the generality of
the machine must be limited or the algorithms
for changing the internal structure must be
tailored to the problem being solved. The re­
lationship between machine generality and al­
gorithms on the one hand and generalizing on
the other is not very well understood.

The question of optimum classifying mechan­
isms has been mentioned above in connection
with certain problems handled by decision
theory. With the one exception mentioned
above; I know of no case where a learning ma­
chine gives an optimum classifying system. If
optimization criteria can be defined for particu­
lar classification problems and a way can be
found to implement these criteria in the learn­
ing machine, the problem of generalizing may
be fairly well solved. There has been work on
using analog computers '22 for solving certain
linear programming problems. This work is
similar to recent work on learning machines.
Results using analog computers were never
very successful because of accuracy limitations;
however, the approach may indicate ways to
enter optimization criteria into learning ma­
chines.

If a learning machine is trained on a limited
number of samples the machine may converge
to a very non-optimum solution because the
amount of data is not sufficient to define an op­
timum solution. Sometimes a limited amount
of data may be accompanied by a partial mathe­
matical and statistical description of the process
generating the data. I know of no general

LEARNING AND ADAPTIVE MACHINES FOR PATTERN CLASSIFICATION 627

method for using the mathematical and statis­
tical information as an input to the learning
machine. If a method can be found to use all
available information as inputs to learning ma­
chines, a limited number of samples may not
be such a great handicap.

The above discussion indicates that a learn­
ing machine may require a rather large instruc­
tion set. This instruction set may have pe­
culiar characteristics when compared to the in­
structions for a conventional digital computer.
For example, an instruction used to enter sta­
tistical characteristics of data may require that
the machine rewire its components. Of course
this could be done by use of logical gates.

C. Preprocessing

If a learning machine has limited generality,
its performance is very dependent on what
measurements are taken and how these meas­
urements are preprocessed for presentation to
the machine. In the weather prediction experi­
ments mentioned above, the input information
was barometric pressure and change of pres­
sure over a 24 hour period at several geographic
locations. When the information presented was
changed to the actual pressures 24. hours apart,
the performance of the solution found by the
learning machine was much worse than that
found using the same information presented in
the form of pressure and change of pressure.
The preprocessing of the data had a consider­
able effect on performance even though the in­
formation content was not changed.

In other cases, the preprocessing of data may
deterruine if a learning machine of limited gen­
erality will converge to a solution at all. The
designer of a classification system may not be
able to use a learning machine without a con­
siderable knowledge of the process generating
the data and of the limitations of the machine.
The designer's work may be to determine how
to preprocess the data so that the learning ma­
chine will converge to a satisfactory solution
as determined by cost criteria.

D. Ease of Use and Speed

One of the possible advantages of using a
learning machine for design of classification
systems is ease of programming. The idea of
using samples of data and desired responses as

inputs and then letting the machine grind away
until convergence is obtained is relatively sim­
ple. It should be possible to design learning
machines that can be easily programmed.

If a long time is required to converge with a
learning machine, it might be cheaper to use a
general purpose digital computer. On the other
hand if the learning machine can be made
cheaply, a longer time to solve a problem may
not be too much of a disadvantage. The ques­
tion of speed is essentially a hardware question
and it is too early to make any comments on the
relative speed of digital computers and learning
machines (which may be special purpose digital
computers) .

V OTHER USES FOR LEARNING AND
ADAPTIVE MACHINES

The above discussion was mainly concerned
with using learning machines for the solution
of conventional problems. Problems exist for
which machines similar to learning machines
might be used as permanent parts of operating
systems.
Possible other uses for adaptive machines in­
clude the following:

(1) Manufacturing classification machines
(2) Compensation for drift and failure of

machine components
(3) Optimization of machines having inputs

with unknown time variations.

The idea of using the concepts of learning ma­
chines in manufacturing processes is appealing.
A single kind of adaptive unit produced in large
quantities could be trained to perform many
different functions by presenting different in­
puts and desired responses to different units.
A practical question is, Does the decreased cost
of producing identical units more than offset
the increased cost of adaptive units?

It may turn out that some sort of adaptive
capability will be helpful in manufacturing de­
vices using microcomponents. Two of the maj or
problems with microcomponents appear to be
the problem of interconnections and the prob­
lem of not obtaining 100 % yields. Perhaps
some sort of adaptive scheme can be formulated
to provide automatic interconnection of good
components and rejection of bad components.

628 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

The use of redundancy and adaptation to in­
crease the reliability and lifetime of digital sys­
tems has been proposed 23. I know of no prac­
tical system that uses adaptation for compen­
sation of changes in component values, but the
idea appears to be workable. Redundancy im­
plies that all working component are not being
used to their full capabilities. In some instances
it may be desirable to use adaptive techniques
to assure that all components are being used to
their full capabilities.

One of the more exciting possibilities for
adaptive techniques is their use for self-opti­
mization of a classification machine as the sta­
tistics of the inputs change. For example, in a
speech recognition system, a machine that per­
forms well on one speaker can be found rela­
tively easily; however, a machine that will per­
form well on many different speakers is more
difficult to find. With an adaptive speech rec­
ognizer, the system could be optimized for in­
dividual speakers. Other examples include a
communication channel with time variable noise
characteristics and a piece of equipment that
generates data with an average that changes as
the equipment ages.

In Section IV A above a procedure for use of
a learing machine was decribed that required a
conventional memory for the storage of data.
In some applications it may be necessary to
start classifying inputs before all data is avail­
able; as more data becomes available it should
be possible to design a better classification ma­
chine.

It may be possible to design adaptive ma­
chines that can have their performance updated
as more data becomes available without having
to store all past data in a conventional memory.

A concpet evolving in the field of learning
machines with time variable input statistics has
been called learning without a teacher. In the
learning machines described above, a desired
response was supplied with each training sam­
ple. In learning without a teacher, no desired
response is supplied; the values of internal com­
ponents are changed by rules that depend on the
response of the machine rather than on desired
responses. There has been relatively little work
on this idea and I know of no published work.

VI RECOMMENDATIONS

The basic problem in the learning machine
field is to determine if learning and adaptive
machine approaches offer cost, speed or ease
of programming advantages over more conven­
tional approaches. Before the solution to this
problem is obtained, several theoretical and
technological problems need to be explored.
Specific recommendations are given in the fol­
lowing paragraphs:

problems that can be solved by learning
machine approaches should be made.

(2) The properties and limitations of
threshold elements should be thoroughly
understood. A side benefit from this
item may be efficient methods of syn­
thesis of switching functions with
threshold elements.

(3) Algorithms for adjusting the weights
and thresholds of networks of threshold
elements should be found. This item
will require research into the structure
of such networks as well as into al­
gorithms for adjusting weights.

(4) The use of something other than
threshold elements in learning machines
should be investigated. I have no spe­
cific technique to suggest.

(5) Some way of entering optimization cri­
teria into a learning machine should be
found. Work done on using analog com­
puters to solve linear programming
problems may give a clue on how to do
this.

(6) Some way of entering partial mathe­
matical descriptions into a learning ma­
chine should be found. The problem
with this and the previous item is find­
ing a way to enter many different kinds
of information into a single machine.

(7) The instruction set for the learning ma­
chine and the set's relationship to ma­
chine structure and algorithms should
be investigated. Some instructions may
require manual or automatic rewiring
of the machine structure.

(8) The relationship of generality to ma­
chine structure should be investigated.

LEARNING AND ADAPTIVE MACHINES FOR PATTERN CLASSIFICATION 629

(9) The relationships of generality, ma­
chine struture, and algorithms to gen­
eralizing should be investigated.

(10) Problems of measurements and pre­
processing as related to learning ma­
chines should be investigated. It may
not be possible to come up with broad
conclusions on this item. Measurements
and preprocessing may depend so in­
timately on the process generating data
that only conclusions for specific proc­
esses can be formulated. Probably this
item can be best approached by study­
ing specific processes and trying to gen­
eralize the results.

(11) The question of what to do with a
learning machine when only a small
sample size is available should be in­
vestigated.

(12) The question of tolerance requirements
for the components of a learning ma­
chine should be investigated.

(13) Questions concerning speed and cost
are predominantly technological ques­
tions. To answer these questions the
cost and speed of components to imple­
ment the findings of the investigation
outlined above should be determined.
The need for special purpose devices
should be investigated.

(14) The concept of learning without a
teacher should be investigated.

(15) The use of adaptive techniques in
manufacturing processes should be in­
vestiga ted.

(16) Techniques for updating the perform­
ance of learning and adaptive machines
as, more data and information become
available should be investigated. The
problem here is to find updating proce­
dures that do not require that all past
input data be stored in a conventional
memory.

C. Hugh Mays
IBM, Poughkeepsie, New York

REFERENCES

1. S. H. CALDWELL, "Switching Circuits and
Logical Design," John Wiley & Sons, Inc.,
New York, N. Y.; 1959.

2. D. BLACKWELL and M. A. GIRSHICK,
"Theory of Games and Statistical Deci­
sions," John Wiley & Son, Inc., New York,
N. Y.; 1954.

3. F. ROSENBLATT, "Principles of Neurody­
namics: Perceptrons and the Theory of
Brain Mechanisms," Spartan Books, Wash­
ington, D. C.; 1962.

4. B. WIDROW and J. B. ANGELL, "Reliable,
Trainable Networks for Computing and
Control," Aerospace Engineering, Vol. 21,
No.9, September 1962, pp. 78-123.

5. R. O. WINDER, "Single Stage Threshold
Logic," Proc.First Annual Symposium on
Switching Circuit Theory and Logical De­
sign; October 1960.

6. S. MUROGA, 1. IODA, and S. TAKASU, "Theory
of Majority Decision Elements," Journal
of the Franklin Institute, Vol. 271, pp. 376-
418; May 1961.

7. R. L. MATTSON, Master's Thesis, "The De­
sign and Analysis of an Adaptive System
for Statistical Classification," M. 1. T.,
Cambridge, Mass. ; May 22, 1959.

8. R. L. MATTSON, "A Self-organizing Binary
System," Proc, EJCC, pp= 212-217; 1959.

9. G. S.SEBESTYEN, "Decision-Making Proc­
esses in Pattern Recognition,;' MacMillan
Co., New York, N. Y.; 1962.

10. P. M. LEWIS, II and C. L. COATES, "Realiza­
tion of Logical Functions by a Network of
Threshold Components with Specified Sen­
sitivity," IEEE Transactions on Electronic
Computers, Vol. EC-12, No.5, pp. 443--454;
October 1963.

11. B. WIDROW, "Adaptive Sampled-Data Sys­
tems," Stanford Electronics Laboratories,
TR No. 2104-1, Stanford University, Stan­
ford, California; July 15, 1960.

12. W. C. RIDGEWAY, III, "An Adaptive Logic
System with Generalizing Properties,"
Stanford Electronics Laboratories, TR No.
1556-1, Stanford University, Stanford,
California; April, 1962.

13. C. H. MAYS, "Adaptive Threshold Logic,"
Stanford Electronics Laboratories, TR No.
1557-1, Stanford University, Stanford,
California; April, 1963.

630 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

14. E. GOTO, "Threshold, Majority, and Bilat­
eral Switching Devices," in Switching
Theory in Space Technology, edited by H.
A. Ken and J. W. F. Main, Stanford Uni­
versity Press, Stanford, California; pp. 47-
67; 1963.

15. C. H. MAYS, "Adaptive Threshold Logic"
in Papers on Adaptive Systems, compiled
by B. Widrow and C. F. Franklin, Stanford
Electronics Laboratories, TR No. 2104-2,
Stanford University, Stanford, California,
pp. 33-47; May, 1962.

16. M. KARNAUGH, "Puise-Switching Circuits
Using Magnetic Cores," Proc. IRE; May,
1955.

17. H. S. CRAFTS, "Components That Learn
and How to Use Them," Electronics, Vol.
36, pp. 49-53; March, 1963.

18. M. E. HOFF, JR., "Learning Phenomena in
Networks of Adaptive Switching Circuits,"
Stanford Electronic Laboratories, TR No.
1554-1, Stanford University, Stanford,
California; July, 1962.

19. M. J. Hu, "A Trainable Weather:-Forecast­
ing System," Stanford Electronics Labora­
tories, TR No. 6759-1, Stanford University,
Stanford, California; June, 1963.

20. L. R. TALBERT, et aI, "A Real-Time Adap­
tive Speech-Recognition System," Stanford
Electronics Laboratories, TR No. 6760-1,
Stanford University, Stanford, California;
May, 1963.

21. D. F. SPECHT, "Vectocardiographic Diag­
nosis Utilizing Adaptive Pattern Recogni­
tion Techniques," Engineer's Thesis, Stan­
ford U, to be published.

22. G. A. and T. M. KORN, "Electronic Analog
Computers," 2nd edition, McGraw-Hill
Book Company, Inc., New York, pp. 147-
151; 1956.

23. W. H. PIERCE, "Adaptive Vote Takers Im­
prove the Use of Redundancy," in Redun­
dancy Techniques for Computer Systems,
edited by R. H. Wilcox and W. C. Mann,
Spartan Books, 1962.

24. MARVIN MINSKY, "Steps Toward Artificial
Intelligence," Proceedings of the IRE, Vol.
49, No.1, pp 8-30, January 1964.

25. G. F. GRONER, "Statistical Analysis of
Adaptive Linear Classifier," Doctoral Dis­
sertation, Stanford University, Stanford,
California; April, 1964.

26. J., S. KOFORD, "Adaptive Pattern Dichtomi­
zation," Stanford Electronics Laboratories,
TR No. 6759-1, Stanford University, Stan­
ford, California; April, 1964.

FLODAC-A PURE FLUID DIGITAL COMPUTER
R. s. Gluskin, M. Jacoby, and T. D. Reader

UNIVAC
A Division of the Sperry Rand Corporation

Blue Bell, Pennsylvania

INTRODUCTION

The use of fluids (both liquids and gases) for
the transmission and amplification of power has
been common for over a century. This power
has been controlled by valves, pistons, and other
mechanical parts. Within the past decade con­
siderable attention has been given, both in this
country and in Russia, l to the use of fluids for
control and logic functions, and until recently
these systems also employed mechanical moving
parts. In 1960 the Diamond Ordnance Fuze
Laboratory (now the Harry Diamond Labora­
tories) of the U. S. Army announced a fluid am­
plifier with no moving parts2-a discovery
which seems likely to revolutionize the whole
field of fluid logic and control.

There are two fundamental mechanisms in­
volved in pure fluid amplification: One is mo­
mentum transfer, and the other is wall effect.

A jet of fluid having a density p, a velocity V,
and a cross sectional area A has a momentum
Ml = p V'2 A. Consider now a smaller jet, of
momentum M2, which we shall call the control
jet, impinging at right angles on the larger jet,
of momentum M1 , which we shall call the power
jet, as is shown in Figure 1. From conservation
of momentum principles it can be seen that the
power jet will be deflected through an angle

() = tan-1 M2. If a receiver or catcher is placed
Ml .

as shown in Figure 1 all the energy of the
power jet can, in principle at least, be recap­
tured if there is zero control jet flow. But as

631

the control jet flow is increased the power jet
will be deflected, and less and less energy will
enter the receiver.

The wall effect is shown in Figure 2. If a
wall is placed close to a jet it is found that the
jet appears to be attracted to the wall and will
often attach itself to the wall quite strongly.
The reason for this is that as the jet moves it
entrains fluid from the surrounding medium.
This entrained fluid must be made up by fluid
from afar. If a ,vall is placed close to one side
of a jet, the flow of replacement fluid is im­
peded, resulting in a slightly lower pressure on
the side of the jet close to the wall than on the
other side where there is no impediment. Con­
sequently, the jet will bend toward the wall,

POWER JET
MOMENTUM=~

• ~
~ CONTROL JET

MOMENTUM = M2

Figure 1. Momentum Exchange.

632 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

J
)

.1
Figure 2. Wall Effect.

making it even harder for replacement fluid to
flow into the low-pressure region, and even­
tually lock onto the wall altogether, forming
what is called a low-pressure bubble upstream
from the point of attachment. This wall effect
is sometimes called the Coanda effect. 3 Both
wall effect and momentum transfer are usually
involved in most fluid amplifiers.

The Harry Diamond Laboratories' amplifier,
shown in Figure 3, consists of a power jet, A,
an interaction region, B, two control jets, C and
D, and two output passages, E and F.

,The amplifier may be made to operate either
proportionally or in a digital fashion, depend­
ing on slight differences in geometry. In the
proportional device, fluid issuing from jet A
will divide almost equally between output pas­
sages E and F in the absence of any control
signals at C or D; but if a small amount of fluid
is blown into the device through control port C,
the main jet well be deflected to the right, and
more of it will exit from passage F than from

E F

c B D

H J

A
Figure 3. Representation of Amplifier Developed at

Harry Diamond Laboratories.

passage E. For small signals, the output varia­
tion can be made fairly linear with respect to
the input, and furthermore, the output varia­
tion will be larger than the input variation, thus
producing gain or amplification.

If certain changes are made in the geometry
of the proportional amplifier, namely, if the
divider tip G is moved further downstream and
if the walls HH and J J are moved closer to the
centerline of symmetry, the amplifier becomes
bistable or digital. That is, the power jet bends
by itself and attaches to one or the other of the
sidewalls so that even in the absence of any con­
trol signal, substantially all the flow is from a
single output passage, for example, passage E.

Assuming an output from passage E, if the
pressure at control port C is now slowly in­
creased, no change occurs until a certain
threshold value is reached, at which point the
power jet suddenly switches to the other side
and exits from output passage F. If the control
signal is returned to zero, the power jet re­
mains locked to wall J J and continues to issue
from output passage F. Thus, the device has
memory capability and is the logical equivalent
of the electronic flip-flop.

All the other fundamental switching and logic
functions which are now performed electroni­
cally can also be implemented by pure fluid de­
vices. Figure 4 shows a pure fluid inverter. This
device is purposely made very asymmetrical
so that in the absence of a control signal the
fluid flows essentially in a straight line and exits
from the left-hand leg. Only when a control
signal of sufficient strength is present will the
jet be blown over to the right-hand leg. The
wall lock-on effect on the right-hand leg is mini­
mized, and when the control signal disappears
the output will immediately return to the left­
hand leg. Thus, the output from the left-hand
leg is the inverse of the control signal; the out­
put from the right-hand leg is the control signal
amplified.

An OR gate may be readily constructed by
converting the pressure energy in two or more
signals to velocity energy and directing this into
a common receiver, as is shown in Figure 5.
Because of the vector quality of the two jets,
there will be very little leakage of signal from

FLODAC-A PURE FLUID DIGITAL COMPUTER 633

A

A

Figure 4. Inverter.

one input backward through the other unless
the output is substantially blocked, in which
case the fluid would have no place else to go.
The purpose of the hvo side passages shown in
Figure 5 is to provide for fluid escape in just
this eventuality. If a high impedance is pre-
sented to the output the fluid will escape
through the side bleeds rather than reversing
and flowing into the other signal input.

The vector properties of high-velocity jets
are also made use of in the AND gate (Figure
6). If the signal A is present alone it will pass
straight through the AND gate and vent to at­
mosphere, and similarly for B alone. If sig­
nals A and B are present simultaneously, how­
ever, and have approximately equal amplitudes,
then the resulting jet will make an angle of 45°
to the original jets and will be caught in the re­
ceiver placed at this position. With proper de­
sign of the receiver exact balance of the two
signals is not necessary. Ratios of 2 : 1 are
easily accommodated.

The combination of the OR gate and the in­
verter as shown in Figure 7 gives an extremely
powerful element. The right-hand output is
the amplified OR function of the inputs while
simultaneously the left-hand output gives the

amplified NOR function, that is, A . B. This
principle has been extended to achieve a NOR
gate with a fan-in and fan-out of four; that is,
the device has been provided with four input
terminals. The presence of a signal on anyone
of these terminals will switch the device off, and
the output has been divided and channeled to
four output terminals so that four identical ele­
ments can be driven from one element. In this
NOR gate the OR output is not provided.

As is well known, all logic and switching
functions can be implemented with NOR gates
alone. A flip-flop, for example, can be made by
interconnecting two NOR elements, as is shown
in Figure 8.

In this configuration, one element is in the
1 state, and its output is used to switch the
other element into the 0 state. The elements re­
main stable in their respective states until an
outside signal changes the state of the flip-flop.
With reference to Figure 8, assume that element
A is in the 1 state, that is, its output signal is
in leg d. This signal is sent to element B
through input j which switches the element
into the 0 state, that is, the jet is diverted to

.. ~
A-t-tj

Figure 5. OR Gate.

634 PROCEEDINGS~F ALL JOINT COMPUTER CONFERENCE, 1964

A·B

B
Figure 6. AND Gate.

output f. There is no signal in leg e of element
B; therefore, element A is not affected by ele­
ment B. The flip-flop will remain stable in this
state until an outside signal is applied to ele­
ment A by way of input h. When the signal
appears, A will be switched to the 0 state, and
the jet will be diverted from leg d to leg c. The
signal to input j of B will go off, and the ele­
ment will switch from the 0 state to the 1 state,
that is, the jet will switch from leg f to leg e.
The signal from B will then be applied to A
through input g. When the outside signal
through h is removed, the signal through g will
keep A in the 0 state. The flip-flop has been
switched, and it will remain stable in this state
until another outside signal is applied to input
k of element B.

FLODAC is built entirely of NOR gates and
requires about 250 of these elements to do its
job. FLODAC, incidentally, stands for Fluid
Operated Digital Automatic Computer.

Why Fluid Amplifiers?

Granting the feasibility of constructing com­
plex digital systems from fluid amplifiers, what
is the motivation for doing so? What advan­
tages, if any, do fluid amplifiers have over their
well-established electronic counterparts? The
use of fluid amplifiers rather than their elec­
tronic counterparts may be justified on the

A-a A+B

Figure 7. NOR Gate.

basis of four significant advantages: reliability,
environmental immunity, low cost, and absence
of r-f radiation. Each of these advantages is
briefly discussed below:

1. Reliability: Pure fluid amplifiers have no
moving parts except the fluid itself. There
is nothing to wear out, nothing to age,
nothing to burn out. With the proper se­
lection of structural material and fluid,
there are no potential chemical or solid-

d e

t t
A B

Figure 8. FLODAC Flip-Flop.

FLODAC-A PURE FLUID DIGITAL COMPUTER 635

state reactions. There need be no deli­
cate structures. In short, the life of a
fluid amplifier should be practically in­
finite, whether in use or quiescent. About
the only conceivable cause of deterioration
would be dirt in the fluid, and this can be
controlled easily by filtration and the use
of closed-cycle systems.

The fluid amplifier art is still too young
for masses of statistical data on reliabil­
ity to have been compiled. However, the
nature and operation of these devices are
such that extremely favorable compari­
sons with electronic and other types of de­
vices can be expected.4

2. Environmental Immunity: Fluid ampli­
fiers can be made of almost any solid ma­
terial, for example, plastics, metals, glass,
or ceramics. If the right materials are se­
lected, operation is possible under environ­
mental conditions which preclude the use
of electronic devices. For example, ce­
ramic fluid amplifiers could operate at
white heat. Metal fluid amplifiers should
be operable in intense radiation fields.
With the proper materials and assembly
procedures, shocks, or accelerations, of
thousands
problem.

3. Low Cost: Fluid amplifiers consist basi­
cally of rectangular channels in a suitable
material. They can be fabricated by any
one of a number of extremely low-cost
methods, such as casting, injection mold­
ing, stamping, or etching. Entire circuits
of fluid amplifiers, including the intercon­
necting passageways, can be formed by
such methods in one low-cost operation.
Planes could be stacked one on top of an­
other with holes in the planes at the
proper locations for the necessary inter­
connections. With techniques such as
these, which are already being developed;
it is estimated that the cost of fluid am­
plifier circuits may be as much as 100
times less than the cost of comparable
electronic circuits.

4. R~f Radiation: 'No electromagnetic energy
is radiated by fluid circuits; consequently,
a very common and often serious problem
associated with electronic logic, namely,

r-f radiation, is eliminated. Often exten­
sive and costly measures must be taken to
shield electronic equipment to prevent in­
terference with other equipment or com­
munications or to prevent detection of
radiated intelligence by hostile agencies.
However, such measures are never 100
percent effective. Also, external radiation
can seriously affect electronic equipment
by causing errors or malfunctions. Both
of these problems are completely elimi­
nated by fluid devices, which neither emit
nor are affected by radiation.

Operational Speed
Fluid amplifiers have one significant disad­

vantage: their operational speed is relatively
slow. Switching times are of the order of a
millisecond, and signal propagation time is of
the order of a millisecond per foot. Fluid am­
plifiers, at present, are only approaching kilo­
cycle rates of operation as opposed to the mega­
cycle and higher rates common in electronic
systems. Speeds can be expected to improve, of
course, but nanosecond switching times are not
foreseeable today. Because of this speed limita­
tion, there may be applications where fluid am­
plifiers are not suitable.

It should be noted that the inherent speed
limitation can be offset appreciably by taking
advantage of the low cost and high reliability of
fluid amplifiers, which make it economical to
compensate for much of the speed deficIt .. by
making extensive use of parallel and polymor­
phic operation.

In any event, there are numerous applications
where the speed of fluid circuitry is adequate.
Today's system designer must realize both the
merits and shortcomings of these new elements;
by appraising his problem requirements objec­
tively, he can use fluid amplifiers with excellent
results wherever their advantages enable them
to do the job better and/or more economically.

SPECIFICATIONS AND LOGICAL DESIGN

Every general-purpose digital computer must
have means for accomplishing four basic func­
tions: Memory, Arithmetic, Control, and Input!
Output. Consequently, it was necessary to pro­
vide these functions if we were to fully meet the
goal of demonstrating a generalized fluid com-

636 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

puter, even though on a very small scale. All
four functions are fully and formally developed
inFLODAC.

The problems of memory size, word size, and
instruction set are all interrelated. The objec­
tive was to build a very small air-powered gen­
eral-purpose digital computer which could be
programmed to do a few elementary problems.
At least three instructions seemed necessary to
prove generality: an Arithmetic instruction, a
Data Transfer instruction, and a Conditional
Jump instruction. Since two bits are needed to
specify three instructions, a fourth instruction
becomes possible without any increase in word
size. It was decided to make this a Halt instruc­
tion. The four instructions used then are:

Instruction Code Explanation

Transfer T m

Add A m

Jump J n

10 (A)~m

11 (m) + (A) ~A

01 Go to instruction in
memory location n if
(A) # 0; otherwise
continue with the next
instruction in the
memory.

Halt H 00 Stop the computer.

After a few trials it was found that a reason­
able program could be written using all four in­
structions with a memory of only four words.
This program, which is the basic test program
for FLODAC, will be discussed later.

A four-word memory implies two bits for ad­
dressing, and this, with the two bit operation
code, fixes the word length at four bits. The
first two bits of a word are the operation code
and the last two the address. Alternately, a
word may consist of numerical data only.

To recapitulate, FLODAC has four instruc­
tions and four words of memory; each word is
four bits long. To compensate as much as pos­
sible for the speed disadvantage of fluid ele­
ments, operation is bit parallel.

Figure 9 shows the overall block diagram of
FLODAC. Each instruction is processed in
four steps by the step counter which is driven
from the master clock. The control counter
contains the address of the next instruction to

MEMORY

00 M4 M3 M2 MI

01 ~T r-r ~r -r-II
r- - ---t-- - -=- --

10
r- - ---t--- --- ,--

! J
ARITHMETIC REGISTER

A4 A3 A2 AI - .1. .L .L .1.

J
STATIC REGISTER ----, INSTRUCTION ADDRESS

~ FUNCTION }= - S4 S3 ~ MEMORY
SELECT - S2 SI

I- SELECT

J. J. J. J. f f I STEP I CONTROL

COUNTER I COUNTER

"- C2\ CI 1
4 CLOCK ~ MANUAL CONTROL

ONE II + INSTRUCTION CONTINUOUS START

.L J.. J..

Figure 9. FLODAC, Block Diagram.

be executed and, except during the fulfillment of
the Conditional Jump instruction, is augmented
by one at the end of each instruction cycle. Dur­
ing step 1 the control counter operates the mem­
ory select circuits, and by the end of step 1 the
specified memory word, which contains the next
instruction, is read into the static register. The
two left-hand bits are decoded as to operation,
and this information is sent to the function
select circuits, where, in conjunction with step
counter and clock signals, the necessary gating
pulses for all instructions are generated. The
two right-hand bits, specifying the operand ad­
dress, are sent to the memory select circuits,
permitting the required data word to be read
out. All this takes place during step 1. The ac­
tual instruction execution is carried out during
some or all of the last three steps.

The Add instruction is carried out in two
stages. The first stage is completed during step
3 and consists of adding the word in the mem­
ory to the word in the arithmetic register with­
out regard to carry. This portion of the Add
instruction changes a bit in the arithmetic regis­
ter from a 1 to 0 or vice versa, whenever there

FLODAC-A PURE FLUID DIGITAL COMPUTER 637

is a 1 in the corresponding position of the word
to be added. The second stage of the addition
process starts at the beginning of step 4 and
causes a carry pulse to be sent to the next more
significant bit position wherever the sum bit is
presently a zero and the addend bit was a one.
Means are provided to rapidly transmit the
carries to subsequent stages if the original
carry pulse would in turn produce another carry
at the next higher bit position. This carry gen­
eration and propagation ·proceeds asynchro­
nously and could continue during steps 4 and 1,
if necessary. It is actually completed by the
end of step 4.

A brief description of the operation of the
memory may be in order here. The memory is

WRITE WORD
SELECT

A REGISTER BIT

81T1

81T3

81T4

WORD 4 WORD 3 WORD 2

a two-dimensional matrix array using flip-flops
as the storage means.

Figure 10 is a schematic of the FLODAC
memory. Each block represents a NOR element
with four inputs and four outputs. Lines into
the left side and bottom of the blocks indicate
inputs to the elements, and lines from the right
side and top represent outputs from the ele­
ments. The memory contains four words, each
consisting of four bits of information. The
words are located in vertical columns, the right
column being the first or 00 word address. The
horizontal rows contain the same information
bit for all four words, the. top row being the
least significant bit.

WORD 1

READOUT
81T1

READOUT
81T2

READOUT
81T3

READOUT
81T4

Figure 10. FLODAC Memory, Schematic Diagram.

638 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Writing into memory is a three-step opera­
tion. First, the memory storage location is se­
lected by the static register and the memory se­
lect circuits. Second, a clear memory signal
from the function select erases any information
already in that word location by resetting all
flip-flops to zero. Third, the word in the ac­
cumulator is gated into the memory location by
another function select signal. The write op­
eration utilizes three counts of the step counter
cycle.

A simple nondestructive readout is employed.
Each of the 16 memory flip-flops feeds into an
intermediate NOR element which in turn sends
a signal to one of the four memory readout ele­
ments (far right in schematic). These inter­
mediate elements are controlled by the memory
select circuits. When a particular address· is
chosen for readout, the memory select turns off
the intermediate elements of the other three
words, thus prohibiting any output signals from
these words. Parallel operation is used. There­
fore, all bits of a word are written into and
read out simultaneously.

Referring back to the overall block diagram,
Figure 9, it is seen that a manual control unit
is provided which makes possible two modes of
operation: continuous and one instruction. To
enter information into the memory of FLODAC
the computer is placed in the one instruction
mode. A word is then set up manually in the
A register, and a Transfer instruction specify­
ing the desired memory location of the word is
set up in the static register. When the START
switch, also located in the manual control unit,
is activated, the word in the A register will be
transferred into the memory. This process is
repeated for each word to be loaded. It should
be mentioned perhaps that the act of setting a
switch consists merely in putting one's finger
lightly over a bleed hole on the control console
(Figure 11). The resulting back pressure will
then set a flip-flop or generate a fluid pulse, as

the case may be. I t is difficult to imagine a sim­
pler form of keyboard. The contents of the A
register and static register are displayed by
using bipositional visual indicators. The in­
dicators consist of a colored ball in a glass tube.
The balls are lifted into view by a pressure sig­
nal when the flip-flops are in the 1 state.

CONSTRUCTION, AND TEST

Production of Logical Elements
The NOR elements used in FLODAC were

made by injection-molding a thermoplastic ma­
terial into a metal negative master.

The physical size of the fluid devices is a
function of the width of the power input noz­
zles. The widths of the nozzles used on the
FLODAC elements were either 0.016 inch or
0.020 inch. These widths were chosen because
they allowed the use of standard laboratory
fabrication techniques and equipment and af­
forded accessible tolerances. Increased dimen­
sional accuracy was obtained by machining the
master from a large template five times nonnal
size and reducing by means of a pantomill.

Reducing the size of the elements with the
above fabrication method is limited by the size
of the cutting tool used in making the master.
A nozzle width of 0.005 inch might be attain­
able, but present photoetching processes are
able to produce still smaller and more accurate
models.

Testing the Individual Elements
Because of dimensional variations occurring

during fabrication, the characteristics of the
elements sometimes differed. It was necessary,
therefore, to set up a testing procedure to check
out all elements before using them in the
FLODAC circuits. Two testing criteria were
chosen. The first was that the pressure recov­
ery be at least a set minimum value. Pressure
recovery is the ratio, expressed in percentage,

Figure 11. Control Console.

FLODAC-A PURE FLUID DIGITAL COMPUTER 639

of the output pressure to the input supply pres­
sure. At the present state-of-the-art, the NOR
elements have a rather low pressure recovery
factor. The FLODAC elements averaged about
30 percent, although other experimental models
have reached almost 50 percent. Acceptability
for FLODAC required a pressure recovery of at
least 28 percent.

The second test for the elements was gain.
This is the ratio of the element output to the
input signal required to switch the. element. A
figure of 1.6 was chosen as the criterion here.
The supply pressure for the elements in
FLODAC was 20 inches of water (0.8 of a
pound per square inch). This means that the
output pressure would have to be at least five
inches of water and that the elements would
have to switch with less than three inches of
water input signal pressure. Elements not meet­
ing these specifications were rej ected. All tests
were made with the device loaded with the
equivalent load of four other elements.

Method of Assembly and Testing of Circuits
To simplify construction and testing of

FLODAC, the computer was divided into two
parts. Each half consists of a power supply
manifold and three rows of NOR elements.
There is a total of 280 elements in FLODAC.
The existing circuitry requires only 250 NOR
elements, but the extra elements were added in
case replacements had to be made or for possi­
ble changes or extensions to the logic. The NOR
element power inputs are plugged directly into
the manifold. Interconnection of the elements
is done by simply connecting one of the four
outputs of an element to one of the four inputs
of the next logical element in the circuit. These
connections were made with plastic tubing.

One side of the computer contains the clock,
step counter, instruction portion of the static
register, function table, and A register circuits;
the other side contains the control counter, ad­
dress portion of static register, memory select,
and memory circuits.

The two halves were wired and tested inde­
pendently. Simulated pressure signals were
used where necessary when testing the circuits
on each side. When both were working sepa­
rately, the entire computer was assembled, all
the cross connections between the two sections

were made, and appropriate outputs were con­
nected to the control panel indicators. To fa­
cilitate maintenance, FLODAC was constructed
so that one side hinges out, exposing all of the
internal circuitry (Figure 12).

The entire system was then tested, and after
straightening out a few minor problems in the
circuitry, FLODAC was working reliably as an
independent, coordinated system. Figure 13
is an overall view of the finished FLODAC as­
sembly.

Testing the Complete Computer
After all the elements had been intercon­

nected, the system was ready for a complete
checkout. This was done by carrying out sim­
ple programs which required use of the four
computer instructions: Add, Transfer, Jump,
and Halt. Instructions were stored in the four­
word, four-bit memory unit.

The FLODAC clock was capable of being
pulsed manually so that a program could be
carried out one step at a time and checked for
correctness at every intermediate step. Pres­
sure taps connected to indicator manometers
were placed at critical points throughout the
computer circuitry. This showed the state of
the elements and greatly simplified trouble­
shooting.

When a program was working satisfactorily
with manual clock control, the program was
tried with automatic computer controls. In~

Figure 12. FLODAC Circuitry, Internal View.

640 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 13. FLODAC.

formation was stored in the memory, the
process was started by manually pressing the
program START button, and the program was
carried out automatically.

The most comprehensive test program makes
use of all four instructions and is shown below
as a matter of interest.

Memory
Location Instruction Address Explanation

1

2

3

4

A

T

J

xx

4 (4) + (A)~A
4 (A)~4

1 Go to location 1
if (A) =1= 0000;
otherwise go to
location 4.

xx Arbitrary num­
ber; or Halt in­
struction if 0000.

This program takes an arbitrary number
(stored in memory location 4), adds it to the
accumulator, transfers the sum back to memory
location 4, tests to see if the number in the ac­
cumulator is now zero, and repeats this process
automatically until the sum in the accumulator
is zero. When this condition is reached, as it
must be after at most five cycles, the Condi­
tional Jump back to 1, stored in memory loca­
tion 3, is not carried out, and the program
moves on to memory location 4. The content of
memory location 4 is now 0000, which is inter­
preted as a Halt instruction, and the computer
stops. The above program, of course, doubles

the number in the accumulator on each cycle
after the first.

Alternately, memory locations 2 and 3 can be
interchanged, and in this case the accumulator
will be augmented each cycle by the number
initially stored in location 4 until it again
reaches zero. In this form 16 cycles are possi~
ble.

SUMMARY AND CONCLUSIONS

The individuai reiiabiiity test given to each
component NOR element greatly reduced the
probability of encountering any serious prob~
lems during the final checkout of the system. A
few minor logic and performance problems did
show up, but these were easily traced and cor~
rected. FLODAC was operating reliably only a
few weeks after construction was begun.

The nominal clock rate of FLODAC is ten
cycles per second. This was chosen to avoid
wave propagation and reflection problems
which are potential dangers at not very much
higher frequencies because of the long lead
lengths involved and the lack of attention given
to exact impedance matching. It should be
pointed out that the speed of fluid signal pro­
pagation in air is almost one million times
slower than the speed of signal propagation in
electric wires. Thus, from the point of view of
signal wave length, a frequency of ten cycles
per second using air as the working medium is
analogous to a frequency of ten megacycles in
electronics. Simpler circuits built with elements
identical with those in FLODAC, but compactly
packaged, have operated with clock frequencies
as high as 250 cycles per second.

FLODAC has amply demonstrated that a
pure fluid general-purpose digital computer is
indeed feasible. The question remains: Is such
a computer desirable? There are many areas
in which fluid logic cannot hope to compete with
electronic logic simply because of the speed Um­
itations inherent in fluid systems even if the ut~
most advantage is taken of parallel and poly~
morphic operation.

Conversely, however, there are areas involv~
ing extreme environments, such as very high
radiation levels or very high temperatures,
where present-day electronics cannot hope to
compete with fluids, and here fluid logic may

FLODAC-A PURE FLUID DIGITAL COMPUTER 641

supply the only means of solving many pressing
military and space science problems. Between
these two extremes there is a vast area where
fluid logic does appear to be competitive with
electronics and where the advantages and dis­
advantages of both approaches will have to be
carefully studied. This area includes such de­
vices as adding machines, desk calculators, tab­
ulating machines, process control computers,
and such peripherals as keyboards and punched
card and paper tape readers. Here, timing
rates are frequently below a kilocycle, and the
speed disadvantage of fluid amplifiers disap­
pears. Here too, the tremendous cost advan­
tage plus the postulated reliability advantage
makes fluid logic look very attractive indeed.
It may further develop that, given sufficient
cost and reliability advantages, the marketplace
may well learn to live with slower computing
speeds for small general-purpose computers.

The authors believe that there is a vast role
to be played by fluid technology in the computer
field, and this view is shared by their company.

UNIV AC's FLODAC is the precursor of what
we hope will be long series of useful pure fluid
systems of increasing complexity and decreas­
ing cost.

REFERENCES

1. AUGER, RAYMOND N., "Pneumatic Computer
Research in the USSR," AUTOMATIC
CONTROL, Vol. 13, No.6 (December 1960),
pp.43-48.

2. Refer to parts A through F of the Diamond
Ordnance Fuze Laboratories, "News Re­
lease" for March 2, 1960.

3. COANDA, H., "Precede et dispositif pour
faire devier, une veine fluide penetrant autre
fluids," Patent No. 788,140 (France), 217,
1934.

4. Fox, H. L., "A Comparison of the Reliabil­
ity of Electronic Components and Pure
Fluid Amplifiers," Proceedings of the Fluid
Amplification Symposium, October 1962,
Diamond Ordnance Fuze Laboratories,
Washington 25, D. C.

DESIGN AUTOMATION UTILIZING A

MODIFIED POLISH NOTATION
William K. Orr and James M. Spitze

Friden, Incorporated
San Leandro, California

INTRODUCTION

Our first objective in developing the Design
Automation (DA) System described herein was
to produce and maintain, using a digital com­
puter, the manufacturing and field service docu­
ments for a small electronic calculator. How­
ever, as a long range objective we wanted a
system capable of handling the documentation
for virtually any digital computing device, and
aiding in certain design functions. On the sur­
face this appears to be the very task performed
by existing DA systems but as it turns out the
construction techniques used on the calculator
give rise to problems not normally handled by
th~se systems.

Because of the wide variance between exist­
ing and anticipated construction techniques, it
was decided to use Boolean equations as the
basic input. The equations are written in a
modified form of Polish notation which enables
one to very effectively relate the logic to the
hardware for trouble shooting purposes. Along
with the equations a description of each gate,
flip-flop, etc. is input to the system. The form
of these descriptions readily accommodates
most types of hardware implementation.

This paper is based upon our experience in
documenting the design of a small electronic
calculator. We shall indicate, as we go, how the
system is generalized to handle other digital
computing devices.

643

THE EC/130

To give the reader some idea as to the size
of the device we set out to document, we men­
tion here a few of the features of the Friden
electronic calculator model EC/130. In addition
to those features normally associated with desk
calculators the EC/130 (cf. Figure 1) has a
four high push down stack as well as auxiliary
storage. All stack information is stored on a
magnetostrictive sonic delay line and constantly
displayed on the cathode ray tube shown in
Figure 2.

The EC/130 is a low cost high production
item on which great engineering effort has been
expended to reduce size and cost to a minimum.
As a result of this intense engineering effort
the degree of standardization is minimal. No

Figure 1. Friden Electronic Calculator Model EC/130.

644 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

Figure 2. Vic"\v of Calculator Packaging.

standard building blocks, such as flip-flop
modules, are used. For a basic circuit type (i.e.
amplifier, flip-flop, etc.) used n times, there are
typically n/2 different circuit designs.

The basic constructional unit in the EC /130
is a printed circuit card such as the one pictured
in Figure 3. Each card contains from 400 to
500 components. For purposes of automatic
insertion each lead of a component is located
on a point of a .050 grid. Thus, each hole on a
circuit card has an ordered pair of numbers
(x,y) associated with it giving its position rela-
tive to this fixed coordinate system.

To document the logic of the EC /130 and yet
be able to handle other more complex systems,
we needed a descriptive language which is hard­
ware independent and yet can be related to any
type of hardware implementation. For this rea­
son we chose Boolean equations as our basic
input. The particular format in which the equa­
tions are written was devised to facilitate the
process of relating the logic to the hardware ..

MODIFIED POLISH NOTATION

Any digital computing device is logically a
set of interconnected "elements," where for our

Figure 3. Typical Printed Circuit Card.

purpose we define an element as any combina­
tion of components which has a clearly definable
function with the exception of AND gates, OR
gates, and INVERTERS. For example, flip­
flops and drivers are considered elements. When
the elements of a computing device are com­
bined, they are combined using AND and OR
gates. Thus, all such combinations can be de­
scribed using Boolean equations. 1 Boolean
equations have been used by other manufac­
turers to describe equipment designs;2,3 how­
ever, we chose not to use the standard Boolean
notation for an equation written in this nota­
tion cannot be conveniently related to the cor­
responding hardware. There has also been some
work done, on an experimental basis, using a
combination of block diagram and Polish nota­
tion features as the descriptive language. 4 We
avoided the use of block diagram features for
their use tends to destroy the continuity of an
equation line.

A characteristic of most logic block diagrams,
such as the one in Figure 4, is that the inputs
(operands) are always shown to the left of the
associated gates (operators). A notation using
this form of operand-operator ordering is the
notation of Lukasiewicz,5 the so-called Polish
notation. In this notation the input to the three
legged OR gate of Figure 4 would be written
AB + C +.

In the usual Polish notation each operator is
a binary or unary operator in the sense that it
operates on not more than two operands. Let
us consider the operators + (or) and • (and)
as not binary but n-ary. Then the expression
AB + C + could be written ABC +. If we
allow the scope of an operator to extend over n
operands we must in some way delimit this
scope. To delimit operator scope and also to
enhance readability we use parentheses. With
the scope of the operators extended and paren­
theses added to the notation we now write the
equation equivalent to Figure 4.

II = (A B C +) (D E +) • (i)

Figure 5 illustrates how equation (i) is related
to the hardware. The location of a given gate
input (Le. the point at which this input may be
tested) is printed directly under the name or
gate where the input signal originates. For ex-

DESIGN AUTOMATION UTILIZING A MODIFIED POLISH NOTATION 645

A--.....
8----1
C----1

0--....
E---I

I

+

+

JK0203C

ELEMENT

0003

• '-"----11 I I'

JKOIOI QB

Figure 4. Logic Block Diagram.

ample, the quantity printed under the name A
(A being the naine of a particular element out­
put), indicates where the signal, A, is connected
to the OR gate (the reader should refer to
Figure 4 where some of the location informa­
tion has been indicated). The AND gate out­
put is the input to an element hence the location
of the element input is given in line 0003.002.00
rather than under the AND gate itself. The
indication here is that the particular element
input can be found on circuit card JK at
(01,01), the component at JK0101 is a transis­
tor (Q) and the lead of interest is the base (B)
lead.

It is important to note that the continuity of
equation (i) is completely retained in Figure 5,
and the clear separation between the logic and
hardware information enhances readability.
Further, the format in which the location in­
formation is printed reflects the structure of
the schematic of Figure 4.

the named input signals. For example, the
AND gate in Figure 4 is at logical level 2. The
full importance of the logical level indication
(cf. Figure 5) is clearly evident when an equa­
tion is longer than one line. Figure 6 serves to
illustrate how equations of arbitrary length are
handled and also supplies those details missing
from Figure 5.

Figure 6 is typical of the form that an ele­
ment description takes. Line 0132.00.00 is the
heading line and contains the element name, the
element function code and the latest element
revision letter. Line 0132.01.00, contains the
name and location of the element output. The
gate reference line, 0132.02.12 contains the con­
struction file reference (discussed in a later
section) for each gate in the input equation. In
the modified Polish notation there is a one-to­
one correspondence between operator symbols
and hardware gates. The correspondence be­
tween the symbols and the associated references

A gate, G, is said to be at "logical level" j if is thus determined by the order in which the
there are j-1 gates interposed between G and gates appear in the equation. The remarks

ELEMENT REFERENCE NO.
EQUATION NO.
REFERENCE LINE NO.

~ ELEMENT INPUT ! II
0003.02.00 JKOfOIQB II=(A B C +) (0 E +) •

02.01

02.02

01

02

N PI3260A NPI3280A NPI3250A NP21110A NP21120A::7LOCATION OF

JK0203C JK0202R GATE INPUTS

L- LOGICAL LEVEL
Figure 5. Logic Schematic Corresponding to Figure 4.

646 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964
0132.00.00 EPCSTEP6 INV AA

01.00 JK0627QC 01- EPCSTEP6

02.00 JK0528R 11= ((DPCTRO / DPSTORFN +)1 COMDIGfN +J I DIVFF EPCTR4FN +
02.01 01 NP0611DA
02.02 02 NP0812DA NPI761DA
02.03 03 NP0809R
02.04 04 NP0412DA NP0411 DA
02.05 05 NP0409R
02.06 06 NP0212DA NP0211DA NP0329DA
02.07 07 JKI710DA

(EPCTR2FN HOME 0 (NBI5T NSHIL') DPSFN +)/+

02.08 01 JKI425 R JKI009C JK2106R JK2207C
02.09 02 J K0336DA JK0529DA JK0632DA
02.10 03 J K0932R
02.11 07 JKI711 DA

02.12 0050 0061 00700098 0099 0100 0101 0131 0120 0125 0126
02.13 OUTPUT FAILURE RESULTS I N STACK I SHifT LEFT ERRORS

Figure 6. Computer Generated Logic Schematic.

line, 0132.02.13, is used to convey trouble shoot­
ing information to the service man.

In Figure 6 there are two lines with a logical
level indication of 07. Thjs implies that the in­
puts to the gate at level 07 are from elements
or gates implied by two lines of the equation. In
general, the logical level indicates the relation­
ship between the location information associ­
ated with one line of an equation and that of
another.

The information which the DA system uses
to produce the logic schematic (cf. Figure 6)
consists of the construction file and the input
schematic pictured in Figure 7.

It may seem that we have gone out of our
way to eliminate one of the most important fea­
tures of the Polish notation, namely, that it is
parenthesis free. However, keep in mind that
at the outset we were after a notation that is
convenient to use in design documentation. We
have traded those features of the Polish nota­
tion which facilitate mechanical translation for
features which add to the power of the notation
for our use in documentation.

RELATING THE LOGIC TO THE
HARDWARE

It is an inherent requirement of the DA sys­
tem that its output fulfill the documentation
needs of both the production and field service

013200 EPCSTEP6 INV

013201 01= EPCSTEP6

departments. At the outset of the system de­
sign it was assumed that these needs would be
relatively compatible, i.e., that information
generated in a format acceptable to one depart­
ment could be effectively utilized by the alter­
nate department with only a minor amount of
reformatting. That this is not the case' becomes
evident when one considers the differing needs
of the two departments. Whereas a repairman
is interested in finding a circuit point as quickly
as possible, the production line requires the
precise location and size of each lead associated
with a part for automatic drilling and part
insertion.

Referring to the circuit card picture (Figure
3) , a repairman can more easily locate a circuit
point if he is given the location in terms of
visual ~olumns and rows (note the repairman's
removable plastic scale on the left margin of
the card) than if he is given the location in
terms of the .050" co-ordinates used in the card
production. To provide visual co-ordinates to
the field service department and absolute .050"
co-ordinates to the production department, an
updatable visual-to-absolute transformation file
is maintained as a portion of the part file. The
part file also contains an updatable dimensional
description of each part used in the ECj130.

Using the transformation file, the system per­
forms automatic visual-to-absolute co-ordinate
transformation as the need arises. Given the
transformation file and dimensional informa-

013202 II=(CDPCTRO / DPSTORFN+J' COMDIGFN+J/ DIVFF EPCTR4FN +
013202 (EPCTR2fN HOME' (NSI5T NSHIL'J DPSFN +l"+

0050 0061 00700098 00990100 0101 0131 0120 0125 0126

OUTPUT FAILURE RESULTS IN STACK I SHIFT LEFT ERRORS

Figure 7. Input Schematic From Which Figure 6 Is Generated.

DESIGN AUTOMATION UTILIZING A MODIFIED POLISH NOTATION 647

tion for a particular part, only the visual loca­
tion of one lead of the part and a one digit
orientation code need be mentioned for the sys­
tem to automatically determine the absolute
location of all of the leads of the part, thus
minimizing the input description of the ECj130
circuits as they appear in the construction file.

As an example, consider a transistor (Part
No. 223297) on card NP with its base lead lo­
cated with a relationship to visual column 17
and visual row 14 defined by an orientation code
of 1. To completely locate this part, the system
input is NP 17 14 1 223297 and the output is as
sketched below:

NUMBER

223297

NAME

2N1499

LOCATION

NP 159-052
161-054
161-050

LEAD

B
C
E

HOLE SIZE

.026

.026

.026

The base lead (i.e. "key lead") is precisely lo­
cated with reference to its nearest co-ordinate
intersection by the orientation number which,
through the transformation process, specifies
the exact location of the transistor. For all
parts other than transistors the orientation
code indicates the relationship (up, down, right,
left) of a part's second lead to its key lead.

Experience has shown the value of the two
co-ordinate system described above. At an early .
stage in DA system development, only the .050"
grid co-ordinates were used with all leads of a
part being specified. Although the production
deparhl1ents could get their docunlents with
ease, the field service repairmen and the
writers of the input documents were tied to the
same production oriented requirements with
a negative effect on DA system acceptance.
Recognizing the visual division of pri~ted cir­
cuit card parts into rows and columns and the
red(undant nature of specifying more than a
part's first lead when the part was not a varia-

FRIDEN INC

ble size, the system was modified to handle tne
visual co-ordinate and key lead ideas. The im­
mediate effect was a great improvement in DA
system acceptance.

It should be stressed that the key lead concept
can be easily extended by a simple change to
the transformation programs to handle multi­
lead modules of the type commonly found in
large digital devices. The fact that the ECj130
'is a very small electronic device should not
obscure the more significant fact that the basic
DA concept described herein is designed to be
applicable to much larger systems.

THE CONSTRUCTION FILE

Recognizing the prior entry of a part file and
co-ordinate transformation file, the first major
system input is the construction file, an example
of which is shown in Figure 8. NOTE: (1) Fig­
ure 8 is an example of the printed output of the
construction file, (2) the revision code ("AF"

PAGE 020.00AF

E C / 130 CONSTRUC TION FI LE

REV REF-LINE LOCATION T L 0 A P PART NUMBER IN PART REMARKS
LTR INSERT OUT DESCRI PTI ON

010.0 JK004 032 D A 2 0223292 1.5 IN662
012.0 JK005 030 R 0223392 01 12K 5PC 1/2W

AF 0132.000.0 JK005 028 R 0223403 II 6.8K 5PC 1/2W HIGH SPEED INVERTER
002.0 JK005 029 C 0804083 680 PF lOPe 200V (WATCH OUT FOR
004.0 JK006 027 R 2 0804044 22K5PC 1/2W VALUE CHANGE S IN
006.0 JK006 027 Q B 0223297 2NI305 680PF CAP.)
007.0 JK006 027 Q C 01
009.0 JK005 026 R 0223257 10K 5PC 1/2W

AF 0133.000.0 JK006 023 D A 2 0223292 II I N662 fOUR INPUT OR GATE
001.0 C INPUT 2 IS HEAVILY
002.0 JK006 024 D A 2 0223292 12 IN662 LOADED

Figure 8. Construction File.

648 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

in the example for both page and circuit) is
determined by the DA system, and (3) the
"Part Description" information is obtained
from the part file at print time and is not part
of the construction file input.

The construction file is a sequential undat­
able listing of the various circuits used in a
digital device, and requires as input: (1) the
number and location of each part, (2) a code
for each circuit input/output, (3) a file refer­
ence number (of the form: Circuit, Line, In­
sert digit) used for file searching, (4) any
remarks pertinent to the construction of the
circuit, and (5) several coded entries explained
below. The combination of circuit reference
number and I/O code is the search key used by
the DA system to obtain the hardware location
of the inputs and outputs of Logic Schematic
elements, gates, and inverters. It should be
noted that the input codes for a particular gate
are determined by the order in which these
inputs appear in the equation. Typically, only
one construction file entry line is needed for
complete specification of a part.

Anyone of several non-zero entries in column
A (absolute) permits entry of mixed (visual
and/or .050") grid co-ordinate information for
those parts whose shape does not permit them
to be located in the normal relationship to the
visual grid. Entries to columns T (part type)
and L (lead code) give additional information
about the circuit component and are used:
(1) as sorting flags for the production oriented
documents and (2) to assist the servicemen in
accurately finding a given part. The Column 0
(orientation) entry describes the orientation
of the part with reference to its key lead. Col­
umn P is used in EC /130 construction to indi­
cate a plated hole in a circuit card. A normal
part entry requires no entries to Columns 0, A
or P.

FRIDEN INC
EC/130 GLOSSARY OF TERMS

TERM DEFINED AT USED IN EQUATIONS

ENTERKEY EXT. INPUT 0182.02 0183.02

EPCSTEP60132.01 0087.050091.060161.04

0185.02 0254.02 0306.06
0307.05 0308.05 0309.05
0310.05

EPCSTPIN 0142.01 0183.02 0185.02 0232.02
0236.02 0249.02 0254.02

0264.04 0264.06

The construction file occupies a central posi­
tion in this DA system. It is the source file for
the input/output location information appear­
ing in the Logic Schematic printout, and for
generation of the various production oriented
documents: from the Construction File, control
information is produced for automatic insertion
machines and automatic drilling machines; and
by-product documents, such as bills-of-material,
are produced as requested by various company
departments.

ADDITIONAL FIELD SERVICE
DOCUMENTS

Besides the Logic Schematic there are two
other field service documents: a glossary of
terms and a logic block diagram. The Logic
Block Diagram is manually drawn and shows
how all the elements of the Logic Schematic are
interconnected to form the EC /130 system.
Groups of gates (represented as Boolean equa­
tions in the Logic Schematic) are shown as
single blocks referenced to the appropriate
Logic Schematic equation. The Logic Block
Diagram is used as a field service reference and
training aid.

The Logic Schematic File is the major data
source for the Glossary of Terms. A list of (1)
the names used in the Logic Schematic Boolean
equations and (2) the names of each Logic
Schematic element output is generated. This
list (containing the names and associated ele­
ment numbers) and a card deck giving prose
definitions of the various names are used to
construct the Glossary of Terms.

The four columns of the Glossary of Terms
(Figure 9) are defined as follows: Column #1,
Boolean variable name; Column #2, element­
equation having this output name (if the name
is used in an equation but does not appear as
an element output name, the words "EXT.
INPUT," i.e., "External Input," appear in this

PAGE 07.00AF

DEFINITION

ENTER KEY

ENTRY PHASE COUNTER STEP 6 OUTPUT INYERTER
FAILURE WILL RESULT IN STACK I SHIFT LEFT
ERRORS ENTRY NG. ADD OK. SUS OK .MULT NG. DIY
NG

ENTRY PHASE COUNTER FLIP-FLOP I RESET
FAI LURE WILL RESULT IN STAct\ SHIFT UP ERRORS

ENTRY NG (MAYSO,SUS NG. MULT NG, DIY NG

Figure 9. Glossary of Terms.

DESIGN AUTOMATION UTILIZING A MODIFIED POLISH NOTATION 649

column); Column #3, element-equation num­
bers where this variable is used; Column #4,
prose variable definition.

The Glossary of Terms is the repairman's
entry point to the field service documents. In
many cases, a brief examination of a digital
computing device will indicate its major mal­
function. For the EC/130, once this is done,
the Glossary of Terms indicates those elements
affected by the particular problem and, from
this point, reference is made to the Logic
Schematic and, if necessary, to the Construc­
tion File. Note that the variable names are
carefully chosen to be as closely related to their
function and as easily understood as possible.

ENGINEERING CHANGES

An important reason for the existence of a
DA system is to decrease the time lag between
the decision to make a product change and the
carrying out of this decision. The DA system
described herein permits rapid additions,
changes or deletions to all the files: part file,
card co-ordinate transformation file, construc­
tion file, logic schematic file, glossary, etc. Any
change to one file is automatically carried
through the system and reflected as necessary
in all subsequently maintained files. As an
example of the checking involved in the carry-
ing through of changes, before the Logic
Schematic is printed, an automatic check is
made to determine if the hardware implied by
the Logic Schematic has been properly specified
in the other system files.

In the case of the many paged major output
documents (i.e. Construction File, Logic Sche­
matic, Glossary of Terms) only the changed
pages are printed. These files have associated
with them an internally updatable page con­
trol file giving page limits and revision codes
(for each page). These files are built during
the first generation of their related printout,
with the page limits being set to waste as little
paper as possible while trying to prevent their
parent file's basic unit of information (i.e. con­
struction file, circuit; logic schematic, equation;
glossary, name) from spreading from one page
to the next.

A problem of intrinsic interest is that of
adding to (deleting from) a page other than

the last one of a file. At first glance this would
push down (up) all subsequent pages causing
a potentially excessive printout of mostly un­
changed information. To avoid this problem,
each page is looked upon as an extendable unit.
Additions to a page cause its being printed on
more than one sheet of paper with page indi­
cations of the form: Page 011.00AB, Page
011.01AB, etc. The page revision letter is up­
dated whenever a page is changed thus pre­
cluding the existence of dissimilar pages with
the same page designation.

SYSTEM SUMMARY

The DA system described herein is comprised
of seventeen computer programs. Figure 10
gi ves an overall view of the system. The card
inputs, on the left of the figure, are the changes
(additions, deletions, corrections) to the var­
ious files. The outputs, on the right of the
figure, will occur only when required by a
change. Immediately preceding the printing of
the Part List, Construction File, or Logic Sche­
matic there can occur an error listing indicat­
ing all detectable improper file changes.

CONCLUDING REMARKS

The system we have discussed is most prop­
erly a system for lVIechanized Design Docu­
mentation. However, in view of the fact that
logical equations are our basic input we can
provide various forms of design assistance,
such as, logic simulation, load analysis and
some of the more exotic things such as module
placement and cost approximation.

One of the unmentioned merits of the system
discussed is that it was very simple to imple­
ment. The system was designed and the neces­
sary computer programs written for a Honey­
well 400 computer in six months. This made
it feasible to do the documentation for a ma­
chine as small as the EG/130.

The initial reaction of new personnel to the
DA system and especially to the logical equa­
tion notation was one of mild horror. However,
as they began to use the system, this attitude
disappeared. In fact, it is now felt that the
Logic Schematic is a more useful aid to the
trouble shooter than the conventional circuit
schematic normally supplied.

"

650 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

PART FILE

CARD CO-ORDINATE

FILE

CONSTRUCTION

FILE

INPUT SCHEMATIC

VARIABLE

DEFINITIONS

(I) PART LIST
1----_

(2) CARD CO-ORDINATE LIST

1---__ (I) LOGIC SCHEMATIC

(2)GLOSSARY OF TERMS

Figure 10. DA System Diagram.

ACKNOWLEDGMENTS

We are indebted to Messrs. L. P. Robinson
and G. H. Hare for their help and encoura.ge­
ment throughout the development and imple­
mentation of this system. We would like also
to express our appreciation to Messrs. A. M.
Gould and R. A. Ragen who were responsible
for the design and documentation of the
EC/130.

REFERENCES

1. PHISTER, MONTGOMERY, JR.: Logical Design
of Digital Computers (1959). (This is a val­
uable reference for the reader who is not

familiar with the use of Boolean equations
in logical design).

2. GORDON, W. L.: Data Processing Techniques
in Design Automation. Proc. Eastern Joint
Computer Conference (1960), 205.

3. HANNIG, W. A., and T. L. MAYES: Impact of
Automation on Digital Computer Design.
Proc. Eastern J oint Computer Conference
(1960), 211.

4. PREISS, R. J.: An Experimental System for
Logic Design Data Accumulation and Re­
trieval. Proc. IFIP Congress (1962).

5. LUKASIEWICZ, J.: "Aristotle's Syllogistic
from the Standpoint of Modern Formal
Logic." Oxford, 1951.

SYSTEMATIC DESIGN OF CRYOGENIC LOGIC CIRCUITS*
C. C. Yang and J. T. Lou

Computer Sciences Laboratory
The Technological Institute
Northwestern University

Evanston, Illinois

INTRODUCTION

In recent years considerable interest has been
manifested in the fields of information storage
and retrieval and pattern recognition. An im­
portant element in the design of information­
retrieval systems and pattern recognition de­
vices is associative memory 5, 10-13, 15. An as­
sociative memory is particularly suitable for
search of a record from a large file, the sorting
of data into an ordered list 9, 10, 12 and the
identification of patterns. Cryotron circuits are
important components in the construction of
an associative memory system. Despite this im­
portance and though cryotron technology has
been actively developed for some year~, it is
still in its infancy.

(

An associative memory is designed to per-
form simultaneous comparisons of all stored
information with the interrogating bits. Thus,
in an associative memory system the memory
cells should be able to read and write and the
switching circuits should be able to perform
comparisons.

Cryotrons have been recognized as the ele­
ments most suited to the construction of such
a system. They are ranked among the most
challenging components in the digital com­
puters to be designed.

In an associative memory system switching
circuits playas important a role as the memory

cells. This paper is concerned with the system­
atic design of cryotron logic circuits for such
storage systems. No constraints are imposed
upon the logic functions to be synthesized. How­
ever, emphasis is placed upon three-terminal
cryotron gate networks to realize complemen­
tary logic functions.

USE OF COMPLEMENTARY LOGIC
FUNCTIONS

The design of cryotron logic circuits dis­
cussed here involves the realization of comple­
mentary logic functions. In a cryotron circuit
each single gate has a resistance of the order of
0.01 ohm in the resistive state, and zero re­
sistance in the superconducting state. If the
resistive state is identified as "0" of a binary
variable and the superconducting state is des­
ignated as "1," the two states are rather dif­
ficult to distinguish from each other because
of the small difference in resistance which cor­
responds to a small difference in current or
voltage of the circuit. To improve the relia­
bility of cryotron-circuit operation, use of the
complementary logic functions are proposed.

An elementary cryotron circuit consists of
two separate branches representing a state and
its complement. If one branch is superconduct­
ing, the other is resistive. The superconducting
path allows the entire current to pass through;

* The work reported here was supported in part by the National Science Foundation and the Office of Naval
Research.

651

652 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

the resistive branch blocks the flow of the cur­
rent. Thus the superconducting branch, or non­
zero current condition, designates the "1" bit;
and the resistive branch, or zero current con­
dition, designates the "0" bit. This logic circuit
can be designed systematically by using a se­
rial-parallel branch which realizes a given logic
function and another branch which realizes the
complement of that function.

An alternate method of designing a cryotron
logic circuit is to synthesize the given logic
function by using a controlled by-pass branch.
Whenever the main branch becomes supercon­
ducting, the by-pass branch is changed to re­
sistive or is disconnected from the circuit by a
selection and control circuit. Conversely, when
the main branch becomes resistive, no matter
how small the resistance may be, the by-pass
branch is made superconducting to allow the
entire current to flow. This method may re­
quire a smaller number of cryotrons but the de­
sign is complicated by the selection and control
circuits.

This paper is primarily concerned with the
systematic synthesis of cryotron circuits to re­
alize the complementary logic functions. Each
cryotron circuit is split into two parts: the con­
trol circuit and the gate network. Each gate
in association with a relevant control is an
integral circuit element which forms a cryotron.

CRYOTRON SWITCHING CIRCUITS VS.
MULTITERMINAL RELAY NETWORKS

In view of the analogies between cryotrons
and relays as well as their respective switching
circuits, the techniques originally developed for
the synthesis of transfer-contact relay networks
may be applied to synthesize a three-terminal
cryotron gate network with complementary out­
puts, or to synthesize a two-terminal cryotron
gate network with a by-pass branch and the
necessary selection and control circuit. Re­
sembling the multiterminal relay network illus­
trated in Fig. 1, a cryotron switching circuit
may be characterized by a block diagram as
shown in Fig. 2. Their similarities and differ­
ences are discussed below.

Each relay contact has two stable states:
"open" or "closed." The "closed" state may be
identified as a "1" and the "open" state may

1 :s.
Relay

1 fl (Xm)
X
2

Control
2 l-lindings Contact 2

f
2

(X
m

)

X:!. II Network

m ttxoueh fn(Xm)
X m m -

Figure 1. Block Diagram of a Multi terminal Relay
Switching Circuit.

be designated as a "0". Each cryotron gate is
in one of its two stable states: the supercon­
ducting state or the resistive state, which may
be designated as "1" and "0," respectively. The
state of the relay contact is changed by applica­
tion of a sufficient current to its relevant con­
trol winding. Similarly, the superconductive­
to-resistive (or vice versa) state-transition of
the gate is accomplished by passing an ap­
propriate current through its associated cryo­
tron control. In both cases the state transition
is entirely independent of the direction of the
control current, but dependent on its magni­
tude.

A single relay winding may control several
pairs of relay contacts, each pair of which is
known as a transfer-contact. One contact is
normally open and the other normally closed.
Each cryogenic switching device, as developed
in this paper, may control a number of gate­
pairs, each pair having the same variable as­
signment. The maximum allowable number of
cryotron controls in a single switching device is
limited by the resultant inductance of the serial
cryotron controls in each load circuit of this
device. On a single relay a number of transfer­
contacts may be used, so long as the maximum
allowable number of springs is not exceeded.

For convenience of analysis a multiterminal
relay switching circuit may be split into two
parts: the control winding arrangement and
the contact network as shown in Fig. 1. A cryo-

1 Cryotron °1 F(\t)
COnstant Gate

2 Current I Network
Sources

ptXm) m
°2

~ -

Figure 2. Block Diagram of a Cryotron Switching
Circuit with Complementary Output Functions.

SYSTEMATIC DESIGN OF CRYOTRON LOGIC CIRCUITS 653

tron switching circuit may likewise be split into
two separate networks as shown in Fig. 2.

There are, however, several differences be­
tween them. While each transfer-contact with
its complementary variable assignment Xi and
Xi is controlled by a single relay winding, each
pair of gates assigned by Xi and Xi is generally
controlled by its respective cryotron controls;
but the current which passes through one of the
two controls at a time is determined by a single
cryogenic switching device. Thus the comple­
mentary gate-pairs may be considered equiva­
lent to the transfer-contacts and the switching
devices equivalent to the relay windings.

While the variables Xi and Xi are assigned,
respectively, to the normally open and nor­
mally closed contacts of a transfer-contact re­
lay, their truth values are: Xi = 0 and Xi = 1
when the relay is not operated. These values
are changed to

and

when the relay winding is excited by sufficient
current, at which time the relay is operated.
The variables Xi and Xi are assigned to two
separate ct;yotrons. One cryotron gate which
is represented by Xi is considered to be nor­
mally superconducting without critical or over­
excitation, i.e., the current passing through its
control is below the critical value for gate state­
transition, or even zero. The other, normally
resistive gate, is assigned by the variable Xi.
The resistive state is maintained by the appli­
cation of a sufficiently large current in the con­
trol. The change of the variable truth value is
accomplished by switching a current from one
control circuit to the other, or vice versa. For
example, the normally resistive gate which
represents the variable Xi = 0 is changed to
Xi = 1 when its control current is transferred
to the other cryotron control to make the latter
cryotron gate resistive, i.e., Xi = O. In other
words, two cryotrons each of which includes
a "control" and a "gate" are needed for the
selection of the variables Xi and Xi ; but in the
relay circuit a single transfer contact relay
winding can obtain this result.

Although the cryotron gate network, like the
relay contact network, may have n outputs each
of which fulfills a different logic function
among f1 (Xm), f2 (Xm), • • •• fn (Xm), where

m indicates the total number of distinct com­
plementary variable-pairs, the series-parallel
connection of only two outputs which represent
the complementary functions F (Xm) and
F (Xm) is generally adopted, as previously de­
scribed. By taking advantage of these existing
similarities several well-developed synthesizing
methods-particularly the techniques of cas­
cading three-terminal subnetworks with com­
plementary outputs, the tree configuration, and
the symmetric network4-may be employed for
the realization of logic functions by means of
cryotron circuits.

CRYOTRON CONTROL NETWORK

A cryotron control network for use in con­
trolling the gate states follows. This network
consists of m elements if the gate network is
composed of m distinct complementary gate­
pairs. Each element here is called a control
current switching device, shown in Fig. 3. Its
structural skeleton was originally proposed by
Buckingham3 and later studied by Vail and his
co-workers.16 However, its mode of operation
as herein proposed is entirely different.

As here conceived, each of these devices is
used for controlling a pair of complementary
cryotrons which are labeled Xi and Xi and
shown in Fig. 3. Each device, however, may
control several gate-pairs if all of them are as­
signed by the same Boolean variables. The
terminals P 1 and P!2 of the primary loop are
connected to a· current source of pulses or even
sine waves. The terminals S1 and ~ of the
secondary loop are connected to a constant di­
rect current source Id. Suppose that the pri­
mary current Ip is a positive pulse applied in
the direction indicated by the arrowhead in
Fig. 3. The secondary current Is is induced
counterclockwise during the leading edge of Ip.
If the current Id takes the direction indicated
in the diagram, the current Is and a part of Id

xi :----1

d

~ I '-____ 1

Figure 3a. Cryogenic Control Current Switching Device
for the ph Cryotron-Pair.

654 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Figure 3b.
Ied

Equilibrium eCurrent Distribution in the
Equivalent Graph.

become additive while passing through the arc
ac. The resultant current is sufficient to make
the arc ac temporarily resistive and thus~ the
current taking the shorter superconducting
path abd which includes the control circuit of
the cryotron Xi is large enough to make the
gate Xi resistive; but the gate Xi remains
superconducting because the current taking the
longer path abcd which includes the control cir­
cuit of the cryotron Xi is less in value. This
means that a bit "I" is transmitted through the
Xi gate circuit.

It should be noted that no current flows from
ld through the arc ac once it becomes resistive
until a second induced current I' is made to s

flow clockwise around the secondary loop dur-
ing the trailing edge of Ip. At that time the arc
ab is made temporarily resistive. The cryotron
gate Xi is changed into resistive because of the
larger current which passes through the path
acd.

The switching action takes place only when
the primary current Ip is changing either at the
leading edge or at the trailing edge of the ap­
plied pulse Ip. This implies that a sine wave
current source may be used to take advantage
of easy frequency control as well as phase ad­
justment.

When there are m distinct gate-pairs in the
gate network, a total number of m control cur­
rent switching devices are needed. The sec­
ondary circuits of these m devices may be con­
nected in parallel and supplied by a common
direct current source with a magnitude mId, or
each device may be supplied by a separate
source Id. In the secondary circuit of each de­
vice, the distribution of Id between the two
parallel superconducting paths bd and bcd (if
once the arc ac bec9mes resistive) or cd and
cbd (if once the arc ab becomes resistive) is
inversely proportional to the inductances of
those paths which differ only in the small
amount of inductance of the arc bc. The in-

ductance differences of the connecting paths bd
and cd with respect to the arc bc inductance,
must be kept as small as possible and the m de­
vices therefore should not be connected in series
and use a common source ld unless the arc bc
inductance is made large enough to keep these
differences small.

Referring to Fig. 3 and assuming that the
switching device is symmetric in construction,
the arcs ab and ac have the same inductance
values (Lab = Lac) ; this is equally true of the
load paths bd and cd whose values are (~d =
Led), The distribution of current components
are shown in Fig. 3 (b). Their magnitudes are
found to be:

Illb = Id (la)

Ibd = (Lbe + Lbd) Id / (Lbe + 2 ~d) (lb)

Ibe = led = Lbd Id / (~e + 2 ~d) (lc)

Each of these currents flows from the node in­
dicated by its first subscript to the node repre­
sented by the second subscript

The current component Ibd must be large
enough to maintain the gate Xi in its resistive
state; but the current led passing through the
control Xi must be insufficient to transit the
state of the gate Xi'

If the current source Id is removed, persistent
currents hI and Ip2 will circulate in the loops
abca and abdca, respectively, and are given by

hI = ~d Id / (Lbe + 2 ~d) (2a)

h2 = ~d Id / 2(Lbc + 2 ~d) (2b)

The removal of Id from the device is equivalent
to the superposition of another Id with reversed
polarity on the original Id. Since this device is
assumed to be a superconducting circuit of a
balance bridge type, the reversed Id alone is
distributed in each of the paths ba, db, dc, and
ca with a magnitude Id / 2 and a reversed po­
larity with respect to Eq. (1) . When these
currents and those shown in Eq. (1) are super­
imposed in each path, the resultant branch cur­
rents in the equivalent graph are:

I~b = ld / 2 (3a)

I~d = Lbc Id / 2 (Lbe + 2 Lbd) (3b)

I~e = Lbd Id / (4c + 2 Lbd) (3c)

SYSTEMATIC DESIGN OF CRYOTRON LOGIC CIRCUITS 655

I~c = ~c Id / 2 (~c + 2 Lbd) (3d)

I:a = Id / 2 (3e)

We can convert these branch currents into two
loop currents which circulate in the loops abca
and abdca and thus form the persistent cur­
rents, as described in Eq. (2) and shown in
Fig. 4. However, when the Id source is reap­
plied, the original current distribution shown
in Fig. 3 (b) and given by Eq. (1) is recovered.
Therefore these persistent currents will not
cause an unsatisfactory result.

CRYOTRON GATE NETWORK

A cryotron gate network which is considered
equivalent to a transfer-contact relay circuit
may be synthesized by one of the following
methods:

(a) Cascading three-terminal sub-networks
with complementary outputs;

(b) Tree networks; and

(c) Symmetric networks if the logic func­
tions to be realized are identified as sym­
metric functions.

If any of these techniques is to be used, the
following aspects should be taken into consid­
eration:

1. The synthesized circuit should contain a
minimum number of cryotrons for eco­
nomical realization.

2. All gates which constitute the circuit
should appear in complementary pairs to
meet the requirement of the cryotron con­
trol network. Each gate-pair is repre­
sented by the complementary Boolean
variables Xi and Xi.

b

Figure 4. Persistent Currents in the Equivalent Graph
After Id Source is Removed.

3. Different variable-pairs should be dis­
tributed as uniformly as possible through­
out the synthesized network to equalize
the inductive loads among the control cur­
rent switching devices.

Three methods of synthesis procedure follow:

A. Synthesis by Cascading Three-Terminal
Sub-N etworks

Use of this method entails the following:

1. Check whether the function F (Xm) is
given in the form of the minimum product
as

(4)
k=l

If it is given in this form, its complement
F(Xm) is then derived as a minimum sum
of the following form:

n

(5)

by the application of De Morgan's theo­
rem.4 If F(Xm) is not given as Eq. (4),
one of the minimization methods4 should
be used to reduce these functions to their
optimum forms as given in Eqs. (4) and
(5) in order to secure an economical
realization.

The function F(Xm) is expressed as an
"And" function made up of the subfunc­
tions PI through P n. Its complement
F (Xm) is represented by an "Or" func­
tion composed of the complementary sub­
functions P 1 through P n'

2. By use of the following relationship of
the logic function

P k + Pk Pk+1 = Pk + Pk +1, k = 1,2, ... , n - 1 (6)

the sub-networks realized by those sub­
functions can be connected, as shown in
the resulting block diagram of Fig. 5.

The sub-network P1 starts from input termi­
nal I, i.e., node 1, and stops at node 2, P 2 from
2 to 3, and so forth, until P n from n to output
terminal 0 1• The function F (Xm) is thus real­
ized between terminals I and 0 1 and expressed
by Eq. (4). All sub-networks realized by the
complementary subfunctions PI through P n

656 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

Figure 5. Block Diagram of Cryotron Gate-Network
Synthesized by Cascading n Three-Terminal

Sub-Networks.

stop at the same output terminal O2 , but each
starts from the node k which is identical with
the subscript k of its relevant subfunction Pk •

The function F (Xm) given in Eq. (5) then ap­
pears between the terminals I and O2 •

Whenever any subfunction Pk is still a com­
posite function instead of a single variable, the
above steps should be repeated for synthesizing
the small three-terminal sub-network with node
k as its input terminal and node k+l and termi­
nal O2 as its output terminals.

Illustrative Example 1

Design a three-terminal cryotron gate net­
work which realizes the logic function

F (X4) = Xl X2 Xg X4 + Xl X2 Xg X4 +
(7)

and its complement, using complementary cryo­
tron ga te-pairs only.

In this particular problem the function
F (X4) of Eq. (7) is not given in the same
form as Eq. (4). Since it contains only three
terms in its first canonical form, its comple­
ment F (X4) should have thirteen terms in the
canonical form. By the use of a Karnaugh map,
F (X4) in the form of Eq. (5) can easily be
found:

F(X4) = Xl (X2 + Xg) + (X2 + Xg) X4 +
Xl (X2 + Xg X4) (8)

When F (X4) is complemented by De Morgan's
theorem F (X4) is found to be

F (X4) = (Xl + X2 Xg) (X2 Xg + X4)

(Xl + X2 [Xg + X4]) (9)

By comparison of Eqs. (8) and (9) with
Eqs. (5) and (4), respectively, the subfunc­
tions are:

PI == Xl + X2 Xg,
P2 = X 2 X g + X 4 ,

PI = XI(X2 + Xg)
P 2 = (X2 + Xg) X4

n _ V I V IV I V \
.1. g - .A.I T .A.2 \.A.g T .A. 4 I ,

Pg = XI(X2 + Xg X4)

(10)

Each of these three pairs of subfunctions in
Eq. (10) represents a smaller three-terminal
sub-network which can be further decomposed
by repeating the synthesizing procedure be­
cause each pair Pi and Pi (i = 1, 2, or 3) is
also complementary.

The final network is shown in Fig. 6 in which
the total number of complementary gate-pairs
is ten and the distribution of variable-pairs is
2, 3, 3, 2 for the order Xl' X2 , Xg, X4 • In this
case the required control network should have
four cryogenic switching devices. The device
for cryotrons assigned by the variable-pair Xl
and Xl or X4 and X4 has two serially connected
cryotron controls in each load circuit. Each of
the other two devices, however, has three series
controls in a load circuit.

B. Synthesis by the Tree Method
A complete tree of m distinct variable-pairs

Xi and Xi possesses 2m disjunctive outputs,
each of which represents a single term of the
2m possible distinct terms. The outputs are said
to be "disjunctive" with respect to each other
if there is no superconducting path between
any pair of the output terminals 0 through
2m - 1 which also indicate the decimal equiva­
lents of the 2m distinct terms. Suppose that
the variable Xi is designated by 2i-1 as its deci­
mal equivalent.

A complete tree gate network with three
variables Xg , X2 and Xl distributed in the ratio
of 1: 2: 4, illustrated in Fig. 7, can be converted
into a three-terminal network with comple­
mentary output functions by connecting those
outputs of the tree to form the output terminal

I

SYSTEMATIC DESIGN OF CRYOTRON LOGIC CIRCUITS 657

-I"1n.----T--_ 01

F(x.,>

Figure 6. Cryotron Gate-Network Synthesized by
Cascading Three-Terminal Sub-Networks.

0 1 which represents all terms in the given func­
tion F (Xm). All the remaining outputs when
connected as a common terminal O2 contribute
the complementary function F (Xm). The syn­
thesis can be carried out in two major steps:

1. Since each output terminal of a complete
tree represents a term of logic function,
the given function F (Xm) and its com­
plement F (Xm) should be expressed in
first canonical forms.

2. Assign variable-pairs to cryotrons such
that the output terminals of a complete
tree which constitute the terms of the
function F (Xm) can be located as close as
possible to the outputs. When these termi­
nals are connected to form F(Xm) and all

~-fTl--6

5

~-fTI-_4

~-rn---2

'---LLr-_l

"---[I}--_O

Figure 7. Cryotron Gate-Network in Complete Tree
Form.

the remaining output terminals are tied
together to form F (Xm), some comple­
mentary cryotron-pairs are connected in
parallel at output terminals. Each pair
of these parallel paths is always super­
conducting. They are therefore redun­
dant and can be removed. An incomplete
tree which forms the synthesized gate
network thus results.

One possible way of obtaining this result is
to find the minimum sum form of the given
function by using the minimization method.
The relative frequencies of the appearances of
various variables in this minimum form are
examined. The most frequently appearing vari­
able should be assigned nearest to the input side
but not the least common one.

An economical realization and almost uni­
form distribution of the inductive loads among
various cryogenic control current switching de­
vices can also be attained by use of the general
principles of contact redistribution.

These two considerations should be combined
whenever there are more than one distinct vari­
ables which appear with equal and lowest fre­
quency. These variables should be assigned
nearest to the output side and also distributed
in accordance with the Shannon rule.4 Since
the distribution of variables in a tree is not
unique, there are various ways in which they
may be assigned.

Illustrative Example 2,
Suppose that the given function to be real­

ized by the cryotron gate network is expressed
in the minimum sum form

F (Xa) = X2 Xa + Xl X2 Xa (11)

which may be expanded into first canonical
form as

F(Xa) = Xl X2 Xa + Xl X2 Xa +
(12)

Its complementary function in first canonical
form is found to be

F (Xa) = Xl X2 Xa + Xl X2 Xa + Xl X2 Xa +
Xl X2 Xa + Xl X2 Xa (13)

Since F(Xa) is given in minimum sum form,
shown in Eq. (11), examination of its variables
shows that the variable Xl appears only once,

658 PROCEEDINGS-FALL JOINT COMPUTER CON:FERENCE, 1964

but X2 and X3 appear twice. The variable X2

or X3 but not Xl should be distributed nearest
to the input side, otherwise economical realiza­
tion cannot be obtained.

If the initial variable distribution in a com­
plete tree is 1, 2, 4, the variables can be as­
signed to cryotrons in the order X3, X2 , Xl, or
X2 , X3, Xl' The variable Xl is assigned nearest
to the output side. The final synthesized net­
work in both cases contains eight cryotrons
with three distinct variable-pairs assigned in a
distribution of 1, 2, 1. If the decimal equiva­
lent of Xl is designated by 2 i - l one of the three
gate-pairs assigned by Xl and Xl is tied to­
gether at the output terminals 0 and 1; the
other two pairs are connected at terminals 2
through 5. Since each pair of these gates is
connected in parallel, it is always supercon­
ducting and thus must be removed. The gate
network synthesized by this method is shown in
Fig. 8 in which the complementary variable­
pairs X2 and X3 can be interchanged. The out ..
put terminals 01 and O2 are derived from the
complete tree by connecting the output termi­
nals 0, 1, 6 and all remainders, respectively.

If the initial distribution of 1, 3, 3 is used
in the complete tree in accordance with Shan­
non's rule, the variable X2 or X3 must be lo­
cated nearest the input terminal. The remain­
ing two variables are assigned to cryotrons in
diagonal positions. When Xl and Xa are di­
agonally positioned, the three gate-pairs near
terminals 0 and 1, 3 and 7, and 4 and 5 are
redundant. If Xl and X2 are diagonally as­
signed, the redundancy occurs at terminals 0
and 1, 2 and 3, and 5 and 7.

For any other cases of assignment, the syn­
thesized network must use twelve cryotrons.
This is not economical.

Illustrative Example 3

Referring to Example 1, the given function
F (X4) of Eq. (9) contains the terms whose
decimal equivalents according to previous des­
ignation are 2, 9 and 14. If the variables are
assigned in the order of Xl, X2, X3, X4 from the
input terminal I to the output side in a com­
plete tree of 1, 2, 4, 8 distribution, the output
terminals 2, 9 and 14 which correspond to the
terms 2, 9 and 14 in F (X4) are located within
two sub-trees of the variables X3 and X4 • When
the remaining 13 output terminals i (i = 0, 1,
... , 15 but exclusive of 2, 9 and 14) are con­
nected to form F (X4), two pairs of comple­
mentary gates X3 and X3 and five pairs of gates
X4 and X4 are connected in parallel at the com­
mon output terminal. They can be discarded.
Therefore sixteen cryotrons are used in the
synthesized network. The distribution of com­
plementary cryotron-pairs in the order of Xl'
X2 , X3 and X4 is 1, 2, 2, 3. In this case, Xl and
X,2 (and also X3 and X4) can be interchanged
because of the same frequency of appearance.

If this property is not used to assign varia­
bles, two more cryotrons must be added. As
compared with the first method explained in
Example 1, four cryotrons are saved by this
technique.

C. Synthesis via Symmetric Network
In a cryotron switching circuit, a logic func­

tion realized by a gate network with two termi­
nals built on cryotrons assigned by m distinct
variable-pairs is said to be symmetric when a
superconducting path is provided between these
two terminals by any n truth value changes of
these m variable-pairs. The symmetric func­
tion according to the definition given here is
usually expressed symbolically by

Sn (XI, ... , Xi, ... , X j , ••• , Xm)

I

The variables in the parenthesis represent the
01 F(~) variables of symmetry, i.e., the parameters of

symmetric function. The subscript n of S indi-
02 FeJS} cates how many distinctly assigned gate-pairs

must have their states transmitted in order to
make the path superconducting. This quantity
is called the characteristic number.

Figure 8. Cryotron Gate-Network Synthesized by the
Tree Method.

Some of the variables of symmetry may be
represented by the symbols without a bar over
each as, for instance, Xi, Xm, etc., while others

SYSTEMATIC DESIGN OF CRYOTRON LOGIC CIRCUITS 659

are written XI, Xh etc. These parameters are
all considered normally resistive gates, but
their complements XI, Xi, Xh Xm, etc., are
treated as normally superconducting gates. The
designations of the parameters XI, X j , etc., and
their complements, XI, Xh etc., are exactly op­
posite here to those which occur when XI, Xh

etc., are not parameters of symmetric function.
When a symmetric function is involved, atten­
tion must be paid to its parameters.

It should be noted that the sum, as well as
its complement, of several symmetric functions,
are both symmetric. However, the symmetric
property of these composite functions cannot be
derived from the previous definition, especially
when the parameters are mixed with Xi and X j •

A more inclusive definition of the symmetric
function is introduced by Shannon4

: "A func­
tion of the m variables Xl, ... , Xi! ... , Xh

... , Xm is said to be symmetric in these vari­
ables if any interchange of the variables leaves
the function identically the same."

The given function F (Xm) which is identified
as symmetric in accordance with either of the
described definitions, may be realized in a cryo­
tron circuit by the following procedure:

1. Ascertain whether or not the given func­
tion is symmetric. If it is symmetric ac­
cording to either definition, then deter­
mine its parameters and its characteristic
numbers. Suppose the parameters are
mixed with XI, ... , Xh ••• , Xh · ••• , Xm
and the characteristic numbers are equal
to p, q.

2. Express F(Xm) in symbolic form by
means of the known parameters and char­
acteristic numbers.

F (Xm) = Sp,q (Xl, ... , Xh ••• , Xh ••• , Xm)

= 8p (XI, ... , Xi, ... , X j , ••• , Xm)

+ Sq (XI, ... , Xi, ... , Xh ••• , Xm)
(15)

3. Find the complement of Eq. (15) and
express it in symbolic form.

F (Xm) = Sp,q (XI, ... , Xb ... , Xh ••• , Xm)
m

= ~ Sk (XI, ... , Xb ... , X j , ••• , Xm)
k=p=q
k=O

The complement is found by replacing the
characteristic numbers p and q with a
set of numerical values k, where k = 0, 1,
2, ... , m but exclusive of p and q. It
should be noted that all parameters in the
parentheses do not take complements.

4. Assign the parameters to all horizontally
positioned gates and their complements
to all vertically positioned gates.

As an illustration, suppose the param­
eters for some function are determined
as Xl, X2 and Xs. The complete sym­
metric gate network with its proper vari­
able assignment is shown in Fig. 9.

5. Connect the output terminals marked by
the component symmetric functions

Sp (XI, ... , Xi, ... , Xh ••• ,Xm) and

Sq (Xl, ... , Xi, ... , Xh ••• ,Xm)

to form the composite symmetric function
F (Xm). All the remaining output termi­
nals marked by

Sk (Xl, ... , Xi! ... , X j , ••• , Xm)

where k = 0, 1, ... , m but exclusive of p
and q, when connected represent the func­
tion F(Xm).

6. Discard any redundant gates, one of
which usually appears as a complemen­
tary gate-pair connected in parallel and
equivalent to a short-circuited path. Some
of them may be removed by the method
of folding.4

Figure 9. Cryotron Gate-Network in Complete
Symmetric Form.

660 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Illustrative Example 4-
Realize the logic function

F (Xa) = Xl X2 Xa + Xl X2 Xa +
Xl X'2 Xa (17)

by cryotron circuit.

The given function F (Xg) is not symmetric
by the first definition if we consider the param­
eters of symmetry to be Xl, X2, Xg or Xl, X2 ,

Xa. When Xl and X2 or Xl and Xa are inter­
changed, Eg. (17) is left identically the same.
Thus it is symmetric in the variables Xh X2 ,

Xg by the second definition. Eq. (17) is equal
to "0" (which designates a resistive path), be­
cause each term contains two resistive gates.
Whenever any two of the resistive gates Xh X2

and Xa become superconducting, Eq. (17) is
changed to "1" (which represents a super­
conducting path). The characteristic number is
therefore equal to 2 in accordance with the first
definition. In addition, the characteristic num­
ber should satisfy the following relation:

mCn = m!/n! (m - n)! (18)

which shows all possible ways of producing the
characteristic number n. The given function
F (Xg) expressed in symmetric symbolic nota­
tion is

F (Xa) = S2 (Xh X2, Xg) (19)

Its complement is found to be:

F (Xa) = So, 1, a (Xl' X2 , Xa) (20)

The output terminal 2 of Fig. 9 represents .Eq.
(19). All other terminals 0, 1, and 3 which
are connected represent Eq. (20). The gate­
pair Xa and Xa located at the left bottom part
of Fig. 9 is redundant and therefore must be
removed.

If Eqs. (19) and (20) are synthesized by the
tree method 2 more cryotrons are needed.

DISCUSSION

Complementary logic functions realized by
cryotron circuits are easily accomplished
through the design of a control network and
the synthesis of a gate network. If the total
number of distinct cryotron-pairs used in the
circuit is m then the minimum number of cryo­
genic switching devices is equal to m. When

the Boolean variables assigned to the cryotron­
pairs cannot be distributed uniformly, some
switching devices may have heavy inductive
loads. In such a case, additional switching de­
vices should be added to equalize the inductive
loads in their secondary circuits. However,
those devices which control cryotron-pairs with
the same variable assignment should be oper­
ated synchronously, so that their primary cir­
cuits are connected in series and supplied by a
common current source. The synthesized gate
network should use minimal elements to reduce
the cost; and it should have uniformly distrib­
uted Boolean variables to equalize inductive
loads in the switching devices.

If the switching device is considered equiva­
lent to the relay control winding and the com­
plementary gate-pair equivalent to the transfer
relay contacts, the same synthesis technique
which has been used in the design of the relay
switching circuit to synthesize a gate network
can be applied. The various synthesis proce­
dures are systematic and easy to follow espe­
cially for anyone familiar with relay switching
circuits.

In the transfer-contact relay circuit, a mini­
mal contact network without any redundancy
may contain a static hazard in the tie or cut
sets4 and cause momentary malfunction or even
a complete failure of the circuit. Although the
cryotron gate may have an intermediate-state
during the state-transition, its superconductive­
to-resistive state change (or vice versa) is so
rapid that such trouble seems non-existent in a
cryotron circuit. This simplifies the synthesis
procedure.

When the realized circuitry is made more
complex, the overall circuit inductance is pro­
portionately increased. This in turn increases
the time constant of the circuit. The switching
speed is accordingly lowered. Low gain film
cryotrons which have less inductances can be
used as the circuit elements to overcome this
limitation.

In the method of cascading three-terminal
sub-networks, the distribution of the various
gate-pairs can be examined by counting the
frequency of the appearances of the variables
in the given logic function while it is expressed

SYSTEMATIC DESIGN OF CRYOTRON LOGIC CIRCUITS 661

in its mInImum product or sum form. Al­
though the method is simple and straightfor­
ward, it seems difficult to synthesize the cryo­
tron network with a minimum number of gates.

In a tree-network of m distinct gate-pairs,
aside from the single pair nearest to the input
terminal I, the distribution among the remain­
ing m - 1 pairs can be made almost uniform
by Shannon's rule, though an absolute uniform
distribution is impossible. But this almost uni­
form distribution cannot assure that the syn­
thesized network is the most economical reali­
zation which has been illustrated, as Example
3. We should assign variables to cryotrons -in
such a way that those output terminals which
represent the terms of logic function to be
synthesized are located as close as possible. We
should try to group these terminals within the
same sub-tree or two adjacent sub-trees by
consideration of the relative frequencies of
variable appearance and/or the Shannon rule.
This will increase the number of redundant
gate-pairs which can be removed.

The gate-pairs in a complete symmetric net­
work witl;1 i parameters cannot be uniformly
distributed because a single pair is always
nearest to the input and the i-pair is located
nearest to the output terminals. When i is
made larger, the degree of non-uniformity in­
creases, proportionately. When a function is
symmetric special ~~tention must be paid to its
parameters because the designation of the vari­
able X j is resistive. It is exactly opposite if
X j is not a parameter of the symmetric func­
tion. The designation of resistive X j is, there­
fore, restricted in the symmetric network. In
this case, the cryotron control assigned by X j

must be kept by a sufficient current flowing
through it to maintain the gate X j in its resis­
tive state.

BIBLIOGRAPHY

1. BREMER, J. W., "Superconductive De­
vices," McGraw-Hill Book Company, Inc.,
N ew York. 1962.

2. BUCK, D. A., "The Cryotron-A Super­
conductive Computer Component," Proc.
IRE, p. 482. April 1956.

3. BUCKINGHAM, M. J., "The Persistatron:
A Superconducting Memory and Switching
Element for Computers," Fifth Interna­
tional Conference on Low Temperature
Physics and Chemistry, edited by Joseph
R. Dillinger, p. 229. August 26-31, 1957.

(
4. CALDWELL, S. H., "Switching Circuits and

Logical Design," John Wiley and Sons,
Inc., New York. 1958.

5. DAVIES, P. M., "A Superconductive Asso­
ciative Memory," Proc. SJCC, p. 79. May
1962.

6. HAYNES, M. K., "Cryotron Storage, Arith­
metic and -Logical Circuits," Solid-State
Electronics, Vol. 1, p. 399. September
1960.

7. ITTNER, W. B., III, and KRAUS, C. J.,
"Superconducting Computers," Scientific
American, Vol. 205, No.1, p. 125. July
1961.

8. LEARN, A. J., "Superconducting Com­
puters," Electronics, Vol. 34, p. 45. N 0-

vember 24, 1961.

9. LEWIN, M. M., "Retrieval of Ordered Lists
from a Content-Addressed lVIemory," RCA
Review, Vol. 23, p. 215. June 1962.

10. NEWHOUSE, V. L., and FRUIN, R. E., "A
Cryogenic Data Addressed Memory," Proc.
SJCC, p. 89. May 1962.

11. SEEBER, R. R., Jr., "Cryogenic Associative
Memory," National Conference, ACM, Mil­
waukee, Wisconsin. August 1960.

12. SEEBER, R. R., Jr., and LINDQUIST, A. B.,
"Associative Memory with Ordered Re­
trieval," IBM J., Vol. 6, No.1, p. 126~ Jan­
uary 1962.

14. SLADE, A. E., and McMAHON, H. 0., "A
Cryotron Catalog Memory System," Proc.
EJCC, p. 115. December 10-12, 1956.

14. SLADE, A. E., and McMAHON, H. 0.: "A
Review of Superconductive Switching Cir­
cuits," Proc. National Electronics Confer­
ence, Vol. 13, p. 574, Chicago, Illinois. Oc­
tober 7-8, 1957.

15. SLADE, A. E., and SMALLMAN, C. R., "Thin
Film Cryotron Catalog Memory," Auto-

662 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

matic Control, Vol. 13, No.2, p. 48. August
1960. Also: Solid-State Electronics, Vol. 1,
p. 357. September 1960.

16. VAIL, C. R., LUCAS, S. P., OWEN, H. A.,
and STEWART, W. C., "An Approach to
the Experimental Study of Persistent-Cur-

rent Devices," Solid-State Electronics, Vol.
1, p. 279. September 1960.

17. YOUNG, D. R., "Superconducting Circuits,"
Progress in Cryogenics, Vol. 1, edited by
K. Mendelssohn. London, England. Hey­
wood and Co., Ltd. 1959.

BINARY-COMPATIBLE SIGNED-DIGIT ARITHMETIC
Algirdas Avizienis

University of California, Los Angeles, California
and

Jet Propulsion Laboratory, Pasadena, California

1. Signed-Digit Number Representations
Signed-digit representations are positional

number representations with a constant integer
radix r ~ 3, in which the allowed values of the
individual digits Zi are a sequence of
q(r +2 :::; q :::; 2r-1) integers: (-a, ... , -1,
... , a), where a is the maximum digit magnitude.
The value of a is chosen from the following
range:

1f2 (ro +1) :::; a :::; ro-1,
for odd radices ro ~ 3;

lhre + 1 :::; a :::; re~l,
for even radices re ~ 4.

Both positive and negative digit values are al­
lowed. The individual digits contain all sign
information, therefore a separate sign digit is
not required for the entire number.' For ex­
ample, only one set of digit values exists for
radix r == 3 (values -2, -1, 0, 1, 2) and for
r==4 (values -3, -2, -1, 0, 1, 2, 3) ; for radix
r==10 there are four sets, from 13 values (-6
to 6) to 19 values (-9 to 9).

Signed-digit representations are redundant,
that is, each radix r digit Zi assumes more than
r different values. In a conventional (nonre­
dundant) representation only r values of a
digit (0, 1, ... , r-1) are allowed. Signed-digit
numbers have minimal redudancy (ro + 2 or
r e .+ 3 digit values) when the value of a is
chosen as follows:

a == 1f2 (ro + 1) == amin
a == 1f2re + 1 == amin

663

They have maximal redundancy (2r-1 digit
values) for both odd and even radices when a
has the value:

a==r-1==amax
The characteristic properties of signed-digit

representations are listed below .

1. The algebraic value Z of the number Z
composed of n + m·+ 1 digits (Z-n ... Z-1ZoZl ... Zm)
is given by the conventional expression:

m
Z == ~ ZiFi

i == - n

2. Algebraic value Z == 0 if, and only if all
Zi == O.

3. The sign of the algebraic value Z is given
by the sign of the most significant (left most)
nonzero digit.

4. To form the representation of the additive
inverse -Z, the sign of ever~ nonzero digit

'Zi is changed individually. .

5. The addition and subtraction of two
signed-digit operands Z and y satisfies Si ==
f (Zh Yi, Zi+h Yi+l) for all positions i, where Si
are digits in the representation of the sum or
difference s == z ± y.

There are no carry-propagation chains in
signed-digit addition (or subtraction), that is,
any digit of the sum is a function of only two
adjacent digits of the operands. Subtraction is
performed as a change of sign followed by an
addition. The logical time of one addition is

664 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

independent of the length of the operands and
is equal to the time required by one digital
position. The rules of operation and block
diagram of a signed-digit adder for one pair
of digits are shown in Figure 1. Here ti is
called the transfer digit and may assume the
values 1, 0, and -1; Wi is called the interim
sum digit and may assume one from the se­
quence of values: (-Wmax, ... , -1, 0, 1, ,
w max) . In the case of minimal redundancy,
Wmax = amin - 1 is chosen; in all other cases
(a > amin), Wmax is chosen from the range

ami n - 1 ~ Wmax ~ a-I

Previous publications present a detailed des­
cription of signed-digit number systems!, and
the general rules for variable-precision and

Si

5'+1

ADDITION (TWO STEPS)

I CAl Z 1+ Yi = tt i-I + Wd
t
'
_1 = 0 If IZ,+Yils. Wmax

t i-, = I if Zi +Y,) Wmax

ti -I = -I if Z i + Y I < - W max

I(8) Si = Wi + til
SUBTRACTION: chang_ lign of
Yi if Yi "0 and add

Figure 1. Rules of Signed-Digit Addition

significant digit operations2 , on which this pa­
per is based.

2. Application of Signed-Digit Arithmetic

The elimination of carry propagation re­
moves a fundamental constraint of digital arith­
metic units and necessitates a reconsideration
of all arithmetic algorithms. The most import­
tant new aspects of signed-digit (to be ab­
breviated "s-d" from now on) arithmetic are:

1. the addition time of a parallel adder con­
sisting of any number of cascaded identical
digit-adder packages is (logically) constant;

2. the most significant digits of the product
(as well as of the quotient) are generated first
and may be processed further before the less
significant digits become available;

3. the addition (and subtraction) algorithms
apply to operands of an arbitrary multiple pre­
cision (arbitrary length with respect to the
length of the adder) : the most significant sec­
tions are added first and may be immediately
processed further;

4. the multiplication and division algorithms
are identical both for single- and multiple-pre­
cision operands;

5. in floating-point arithmetic the application
of a special digit value ~ (the space-zero) to
designate non-significant positions allows the
implementation of normalized significant digit
arithmetic3

;

6. the non-significant digit value (space­
zero) 0 may be employed to determine the com­
pletion of a multiple-precision significant digit
algorithm; in this case the lengths of the oper­
ands may be unknown at the beginning of the
algorithm.

A rather novel arithmetic processor may be
constructed if these properties of s-d arith­
metic are utilized. The properties (2) and (3)
permit the elimination of temporary storage of
intermediate results in a complex algorithm;
right shifts are not employed, and the flow of
operand and result digits is only in one direc­
tion (to the left) , resembling signal flow
through gate networks. The properties (3),
(4) and (6) cancel the distinction between the
implementation of single and multiple-precision
algorithms in an arithmetic processor and al­
low the completion of an algorithm to be de-

SYSTEMATIC DESIGN OF CRYOTRON LOGIC CIRCUITS 665

tected by an inspection of the operands. Prop­
erty (5) permits the inclusion of significant
digit arithmetic while retaining all advantages
of the number system and without changing
the algorithms. Finally, property (1) permits
the assembly of fixed-time adders of any length
from identical building blocks (without any
carry-Iookahead or similar logic structures);
this feature promises convenient assembly and
restructuring of arithmetic processors for
hardware implementation of complex algo­
rithms in a variable structure computer4

• The
cost of the various innovations, when compared
to a parallel binary arithmetic unit, is found
in the greater complexity of the individual digit
adders and in the increased storage require­
ments (for the same precision of operands)
due to the redundancy of the number represen­
tation.

A further important consideration in the
definition of a practical signed-digit arithmetic
processor is its compatibility with the widely
employed conventional binary number system.
The potential application of s-d arithmetic in
the VCLA Variable Structure Computer 5 estab­
lished the need for a binary-compatible signed­
digit arithmetic. In such an arithmetic the
s-d arithmetic processor accepts binary as well
as s-d operands and produces s-d results.
Furthermore, a reconversion algorithm is pro­
vided which allows the reconversion of s-d
numbers to conventional binary forms either
in the signed-digit or in a conventional binary
arithmetic processor. The following sections
describe a set of algorithms for a binary-com­
patible s-d arithmetic and outline the imple­
mentation of an aritlh"TIetic processor which em­
ploys these algorithms. The algorithms are
applicable to any radix r=2k, with k ~ 2; the
specific description will be given in terms of the
radix r=8. An adaptation for a decimal-com­
patible signed-digit arithmetic is also quite
evident.

3. Structure of One Digit-Adder

It is evident that any maximal-redundancy
radix r s-d number system, with the allowed
digit values ranging from - (r-1) to r-l, in­
cludes all allowed digit values (0 to r-l) of
the conventional number system with the same
radix. The prefixing of an individual sign to
each digit then will convert a conventional

number to an s-d number of the same alge­
braic value, in which all digits carry the same
sign as the conventional number. The con­
version in this case requires no arithmetic and
is executed simultaneously for all digits.

A binary number may be interpreted as a
number of radix r=2k (k ~ 2) by grouping the
binary digits into groups of k bits each. The
values of individual digits are then in binary­
coded form. Consequently, a sign-and-magni­
tude form of a binary number becomes a radix
2k maximal-redundancy s-d number (with
all digits sharing a common sign) by means of
an interpretation of digit grouping. Any
register which provides storage for a radix 2k
s-d number will be able to store the binary
number as an s-d number. Since both posi­
tive and negative digit values occur in one s-d
number, it is necessary to choose the represen­
tation for negative digit values. Sign-and­
magnitude and complement forms both may be
employed within each digit; the complement
with respect to 2k+l is a generally convenient
choice. Table I shows the "16's complement"
coding of digit values for radix 8.

The otherwise unused bit pattern 1000 is em­
ployed to designate the non-significant space­
zero 0. The choice of representation for nega­
tive digit values determined the rule for digit­
wise subtraction, which is implemented as the
addition of "16's complements" of the sub­
trahend digits to the digits of the minuend.
The addition table for first step of a radix 8
digit-adder is presented in Table II.

The second step of addition generates the
sum digit of value Sj = '-Vi + tie The space­
zero 0 (pattern 1000) is detected by a special

TABLE I: CODING OF DIGIT VALVES FOR
RADIX 8

Value Code Value Code

0 0000 0 1000
+1 0001 -1 1111
+2 0010 -2 1110
+3 0011 -3 1101
+4 0100 -4 1100
+5 0101 -5 1011
+6 0110 -6 1010
+7 0111 ". ~T'- 1001

666 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

TABLE II: FIRST-STEP ADDITION TABLE
FOR RADIX 8 (MAX. REDUNDANCY)

Zl +Yi Wi t i-l Zi +Yi Wi t i- l

+14 +6 +1 -14 -6 -1
+13 +5 +1 -13 -5 -1
+12 +4 +1 -12 -4 -1
+11 +3 +1 -11 -3 -1
+10 +2 +1 -10 -2 -1
+9 +1 +1 -9 -1 -1
IQ n I 1 Q 0 ~1 TU v T.L -...,

+7 -1 +1 -7 +1 -1
+6 +6 0 -6 -6 0
+5 +5 0 -5 -5 0
+4 +4 0 -4 -4 0
+3 +3 0 -3 -3 0
+2 +2 0 -2 -2 0
+1 +1 0 -1 -1 0
0 0 0

logic circuit at the input of the digit-adder. It
is always entered as the value zero (0000) into
the adder. This conversion allows the use of
the same digit-adder for both "conventional ad­
dition" and "significance addition" modes; in
the latter mode the output of the digit-adder is
forced to space-zero 0 (pattern 1000) if either
one or both input digits were space-zeros. In
"conventional addition" mode the 0 digits may
be employed to mark the end· of a variable­
length number; in this case, the output is set
to 0 only when both input digits are space­
zeros. Conventional addition without use of
the space-zero values is also possible.

An inspection of Table II shows that an
ordinary four-bit (modulo 16) binary adder
will generate three correct bits of the interim
sum Wi. The correct value of the leftmost
(sign) bit and of the outgoing transfer digit
t i- I is computed by a separate logic circuit. To
add the incoming transfer digit ti to the interim
sum Wi one of two methods may be chosen:
either a second pass to add ti is made through
the same 4-bit adder which was used to compute
Wi, or a separate ± 1 circuit (carry-propagate
and borrow-propagate arrangement over 4
bits) is employed. A detailed study and com­
parison of these two methods is currently in
progress.ll

4. Addition and Subtraction
A convenient range for the signed-digit proc­

essor is the fractional range 1 > X > - 1 in
which the value X of an n-digit number x com­
posed of the digits X1X:2 ••• Xn is:

n

X == ~ Xir-i

i == I

Overflow occurs when I to I == 1 is generated by
the adder position i==l; therefore the range in
,x:hich overfiO\"'1 ,XliII never be indicated is

n n
~ (r-2)r-i~ X ~ - ~ (r-2)r-i

i==l i==l

In the "significance addition" mode the space­
zero digit 0 enters the digit adder as the value
zero, but the output of the digit adder is forced
to the space-zero by the special circuit which
senses 0, and is enabled by the "significance ad­
dition" command. In this case, the addition Xi
+0 will generate Iti- l l==l when IXil==r-l, and
ti-I=O otherwise, while si==0 will always hold.
The result will be rounded to the precision of
the shorter operand. The roundoff by means
of 0 digits will be without bias if every digit
value is assumed to occur with equal probabil­
ity. The maximum magnitude of the discarded
part is Emax==r-i (r-1) _r-n when it consists of
the digits xi, Xi+h' .. Xn' This value is reduced
(at the cost of additional logic) to Emax==r-i (r/
2) _r-n by executing Xi + 0 as Xi+ (-I- r/2)
whenever Xi =1= 0. The sign of ±r /2 is chosen
to be the same as the sign of Xi; either sign is
acceptable for Xi == O. In either case, roundoff
has been implemented as a part of addition and
executed concurrently at the level of individual
digits. In the "conventional addition" mode, 0
is always entered as value zero, and the digit
adder output is forced to 0 only where both in­
put digits have the value 0. The result retains
the length of the longer operand.

In a floating-point system the exponent is
represented by a signed-digit integer of desired
range which is held at the left end of the frac­
tion. All fractions are kept in normal form and
non-significant positions are filled with 0
(space-zero) digits. There is at least one 0 at
the right end of every fraction. When leading
zeros develop in a fraction, it is normalized by

SYSTEMATIC DESIGN OF CRYOTRON LOGIC CIRCUITS 667

s-d augend
s-d addend

Z
Y

digit sums Zi+ Yi
interim sum digits Wi
transfer digits ti
digit-adder output Wi + ti
conventional sum S
significance sum S' ==

.6 0 7 4 7 5 ~

. 2 7 1 5 ~ ~ ~
4 7 6 11 7 5 0
416 1 150

o 101100
.5 1 7 0 1 5 0
.5 1 7 0 1 5 t'J
.5 1 7 0 ~ ~ ~

Note: the value ~ enters the adder as the value
o in forming the digit sums Zi+ Yi'

Figure 2. Addition Example (Radix 8)

left shifts and a corresponding decrease of the
exponent; significant digits are lost. Overflow
is corrected by the transposition of the radix
point of the result one position to the left and
an increase of one in the exponent; the fraction
gains one significant digit. Only one exponent
is needed with multiple-precision fractions,
since the exponent serves as the index of the
relative position of the leftmost digit Xl of the
fraction. Further details of floating-point ad­
dition have been presented in a previous paper.2

5. The Pack-Add Algorithm and Normalization

The "pack-add" algorithm is a variation of
the usual "clear-add" algorithm. It is appli-
cable in several aspects of maximal-redundancy
s-d arithmetic. The packed form x* of the
s-d number x retains the algebraic value of x,
but has only r+ 1 possible digit~values:~·.-~{cT'"i"'-l,
... , 1, 0, -1). "Pack-add x" is implemented
as the addition followed by an immediate sub­
traction of ± 1 to the n-digit fraction x. The
addend ±1 is represented by the n-digit frac­
tion c, in which all digits have the value Ci ==
± (r-1), plus an incoming transfer digit tn
== ± 1. Simultaneously the overflow transfer
digit to == ± 1 is discarded, thus subtracting
± 1 from x + c+ t n ; as a result the algebraic
values of x and x* remain equal. The signs of
Ci and tn must be the same as the sign of the
leftmost digit Xl in order to guarantee Itol == 1;
if Xl == 0, both signs of Ci and tn are allowable.
The sign of Ci which has been employed in the
algorithm is designated as the dominant sign.
When x contains one or more ~ digits at its
right end, the leftmost ~ digit (xn+! == ~) will
generate til == ± 1 as the result of the addition

of en+!, which is executed as + (r-1.) + ~ in
the "significance addition" mode .

After the execution of one pack-add algo­
rithm, digits of the opposite (non-dominant)
sign may have only the magniture 1. Further­
more, any pair of these opposite sign digits of
unit magnitude will be separated by at least
one digit; at least one of the separating digits
will be a non-zero digit with the dominant sign.
The minimum separation increases by one digit
for every successive application of the pack-add
algorithm. These properties facilitate the· for­
mation of multiples of s-d multiplicands and
divisors in the multiplication and division algo­
rithms.

The application of the pack-add algorithm
also permits the elimination of pseudo-normal
s-d operands. There exists a class of maxi­
mal-redundancy s-d numbers of the same alge­
braic value which assume the forms)(== .16
... ~, and x==.02 ... t'J, with the worst case
being x' == .177 ... 77 t'J, and x == .000 ... 0 1 t'J,
in which the form x' is pseudo-normal. The
pseudo-normal form satisfies xl#O, but fails to
satisfy a minimum magnitude requirement for
its algebraic value; it also presents an incorrect
count of significant digits.

An exact rule for the recognition of normal
forms is required in maximal-redundancy s-d
arithmetic. An application of the pack-add
algorithm to a pseudo-normal form will cause
the appearance of leading zeros and permit
further normalization of the operand. A con­
venient definition of a normal form is that one

s-d operand
packing addend

Z
C

digit sums Zi + Y i
interim sum digits Wi
transfer digits ti
digit-adder output Wi + ti ==
packed form Z* ==

.6074 7 5 t'J

.7777 7 77
15703 16 147
5103641

1 1001 1 1
.6 104 7 5 1
.6 1 04 7 5 t'J

Notes: significance addition is employed and
the overflow transfer digit to is dis­
carded to obtain Z*.
The second application of the pack-add
algorithm will yield the form Z** ==
.570475t'J without negative digit values.

Figure 3. Pack-Add Algorithm Example (Radix 8).

668 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

of the following conditions should be satisfied
byx:

IXII ~ 2;
Xl . +1, and X2 ~ 0;
Xl = -1, and X2 S 0;
X2 = ~ with any value of Xl'

The magnitude range of non-zero normal forms
x is given by

1 - r-n ~ IXI ~ r2 (r-1) + r-n

where Xn is the least significant digit of x. The
nIYl"1"YI<:Il fA",n'\ Af f-h'" .f",nnf-;".".. nn 1.,,,,, V - 1\ .:&"'L.&. ... ~.1. .LV..L ~.I.~ V..L \,I.l..I.c.; .L~ ",vll.l.VJ...1 V a.1Uv ..£~ - V ~o

uniquely represented by Xl = 0 and ~ == ~.
Evidently, other definitions of normal forms
may be convenient under different circum­
stances.

Still another property of the pack-add algo­
rithm is the elimination of all opposite-sign
digit values, which is a method of reconversion
into the conventional binary form. A digit
with the opposite signs survives a pack-add op­
eration only if there was a zerO' digit at its left;
the new form will contain an opposite-sign
unit value digit in the former position of this
zero digit. Consequently, the longest string of
zero digits ending with an opposite-sign digit
at its right determines the number of pack-add
operations needed for a reconversion; k+1 op­
erations are needed when this longest string
contains k zero digits. The worst case will re­
quire n-1 pack-add operations for an n-digit
form which has n-2 zeros separating non-zero
digits Xl and Xn with unlike signs; however,
the average number of operations required for
complete elimination of opposite-sign digits will
be considerably lower.

6. Multiplication

An important property of signed-digit multi­
plication is the availability of the most signifi­
cant product digit in its final form after the
first two steps of the iterative mUltiplication
algorithm. Given the radix r s-d multiplicand
X and multiplier Y (with digits Yh Y2, ... Yn),
the algorithm is :

pW = r [p(j-l) + X Yj], with j = 1, 2, ... , n;

where P<o) is an initial augend, and p(n) ==
p<o) + XY is the product2. Only left shifts are
employed in this algO'rithm. For maximal re­
dundancy radix 8 multiplication, the multiplier

digits Yj are recorded sequentially into digits
y'j such that 4 ~ y'j ~ -4 holds. The recod­
ing generates a digit y'o (value 0, +1, or -1) ;
therefore P<O) == rXy'o is specified. The value
of y'j is a function of the values of Yb Yj+1' and
of the sign of yj+:2 during the j-th step of multi­
plication.

In binary arithmetic, high speeds of multi­
plication can be attained by cascading carry­
save adders 6 to form a multiple-operand adder
which sums several mUltiples (+ 2i) X of the
binary multiplicand X at once and produces a
partial product in stored-carry form. The final
product is obtained by entering the stored-carry
form of the product into a carry-propagate
adder. The multiple 2iX are obtained by left­
shifting the multiplicand X. Signed-digit ad­
ders may be similarily cascaded to add several
operands at once. In this case, m-1 adders
wil be required to form the s-d sum of m s-d
operands; evidently, a carry-propagate adder
is no longer necessary. The last remaining
problem is the formation of the multiples
(± 2i) X of the s-d multiplicand X. Two
cases must be distinguished here.

In the first case, X is delivered to the s-d
processor in conventional binary sign-and­
magnitude form; the multiples 2iX of the mag­
nitude are obtained by left shifts of X before
entering it into the s-d adder. For the radix
8, the multiples 2X and 4X will be obtained by
one-bit and two-bit left shifts of X; the multiple
3X is computed by adding X to 2X in the s-d
adder and storing the result (now in s-d
form) in a separate register. With a binary
multiplicand X and the stored multiple 3X, a
single addition in a 2-input s-d adder will ac­
count for one radix 8 multiplier digit y'j. For
multiplication using m radix 8 multiplier digits
at once, m signed-digit adders must be cas­
caded; the partial product is generated in s-d
form.

In the second case, the multiplicand X is in
s-d form a one-bit left shift will not yield the
s-d form of 2X because adjacent radix 8 digits
may have different signs. Multiple-forming
circuits2 may be applied to generate 2X and 4X ;
however, a more general solution is provided
by the use of one more adder to add in the
negative digits separately from the positive
digits. Since the weight of the leftmost bit in

SYSTEMATIC DESIGN OF CRYOTRON LOGIC CIRCUITS 669

the radix 8 digit Xi is -8, this bit may be con­
sidered as having the weight +1 in the digit
x" i-I of a negative sign-and-magnitude octal
number X", while X without the -8 weighted
digits remains a positive sign-and-magnitude
octal number X', where X==X' .+ X" holds.
Now X' and X" may be shifted bitwise and
4X' + 4X" or 2X' + 2X" added to pO-I) by the
use of two cascaded s-d adders, or by using
the same s-d adder twice.

We observe that with the above discussed
approach, an arrangement of two cascaded s-d
adders will handle two multiplier digits at once
for a binary multiplicand X, and one digit at
once for an s-d multiplicand X. When more
than two s-d adders are cascaded, it is pos­
sible to use a cascade of m> 2 adders for m
multiplier digits at once in case of a binary X,
and for m-1 multiplier digits at once for a
signed-digit X, if the s-d multiplicand X is
converted to its packed form X * prior to the
multiplication. The application of the pack­
add algorithm to -I- X leaves ± 1 as the only
digit value of the opposite sign in X *; the
number of successive applications is equal to
the minimum separation (in digits) between
any two opposite sign (± 1) digits. A single
s-d adder is sufficient to add all m-l mUltiples
of the opposite sign unit digits of X*, when the
s-d multiplicand X is packed m-2 times be­
fore placed into the multiplicand register as X * .

In conclusion, it is observed that the cascad­
ing of s-d adders differs from the cascading
of carry-save adders for binary multiplication
in several significant aspects. First, the carry­
save structure serves as a special=purpose adder
for multiplication only and requires a carry­
propagate adder to generate the . final result.
The s-d cascade is composed of fully complete
s-d adders which may be used separately for
independent operations when fast multiplica­
tion is not required. Furthermore, the radix .8
division algorithm uses the same s-d adder ar­
rangement as the one-multiplier-digit algorithm
for multiplication.

The roundoff of a product is implemented by
concluding the algorithm when the required
number of product digits has been generated.
Significant digit multiplication ~,8 employs the
"conventional addition" mode for each step of
the algorithm; the number of significant digits

in the product is determined by a sequential
scanning of both operands 2. Exponents in a
floating-point multiplication are handled in the
usual manner.

7. Division
The most convenient method of division in

signed-digit arithmetic is the algorithm des­
cribed by Robertson 7, in which the representa­
tion of the quotient is redundant and the value
of the next quotient digit is selected by com­
paring approximate magnitudes of the divisor
and the partial remainder. One quotient digit
qj is generated during each step of the division
algorithm, which consists of an iterative se­
quence of left shifts and additions or subtrac­
tions:

R(j) == r [R(j-I) - X qj] , with j==1, 2, ... , n

where X is the divisor, R (0) is the dividend
(satisfying IR(O) 1 < k 1 X I, with k to be speci­
fied) , R(n) is the remainder, the RW for n>j>O
are partial remainders, and n specifies the re­
quired precision of the quotient 2.

For radix 8 signed-digit division, the allowed
values of the quotient digits qj may be chosen
to be in the range 4 ~ pj ~ -4. In this case
the Ip.ultiplication algorithm and the division
algorithm are interchangeable when R(j) is sub­
stituted for pm, and -qj replaces the recoded
mUltiplier digit y'j. The entire preceding dis­
cussion of implementing multiplication applies
to division as well and will not be repeated
here. The important difference is that the
multiplier digits y'j were available, while the
quotient digits qj must be determined before
the next partial remainder RW can be com­
puted.

The quotient digits qj is determined by com­
paring the magnitude of the number R', con­
sisting of the first three digits and the tem­
porary overflow position i==O of the partial
remainder R (-Ij, to the magnitudes of the num­
bers X' 0, X'17 X' 2 X' 3 consisting of the same
digits (i==O, 1,2,3) of the multiples Xj2, 3Xj2,
5Xj2 and 7Xj2 of the normalized divisor X
respectively. The magnitude of the quotient
digit will be Iqj 1 == g, where g is the subscript
of the least test number X' g which satisfies the
test condition:

670 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

if all four test numbers fail to satisfy the above
condition, Iqj I == 4 is to be chosen. The sign
of each nonzero qj is chosen to be such that the
sign of the term X qj is the same as the sign
of the partial remainder R (j-1) .

The divisor X is required to be packed and
normalized; in this case the analysis of the re­
quired precision of comparison1 shows that the
positions i == 4, 5, ... , n may be disregarded
in the choice of quotient digits. The initial
condition which is to be satisfied by R(O) in
order to apply the division algorithm without
quotient overflow is that before the first left
shift

IR'I<IX'ol

must hold, where R" consists of the digits i==O,
1, 2, 3 of the number R(O) -Xq1' When Iq1i
~ 3 is chosen, the above condition is known to
be satisfied; the selection of IqII ==4 indicates
a possible quotient overflow. A convenient
solution to the overflow problem in floating­
point division (employing no right shifts) is to
repeat the selection of IqII once more (before
the first left shift) when IqII -4 is indicated.
If Iqll ~3 is indicated, the correct magnitude of
ql is the-,sum of both indicated values, and the
left shift is executed. If the second selection
is again I q11 ==4, then I qo I == 1 is recorded (qo
is the quotient overflow digit) and the proce­
dure is continued until an indication of Iq11 ~3
allows the first left shift. After this initial
range adjustment, one quotient digit will be
generated during each step of the division algo­
rithm.

In the implementation of division, the multi­
plication hardware can be used for the required
test subtractions which determine the quotient
digits. Three digits of X/2 (designated as
X'o) are obtained by displacing all bits of the
first three digits of the packed and normalized
divisor X one binary position to the right.
Since 2X and 3X are available, the other tests
(if necessary) are performed by first obtaining
X'o ± R' (add if signs of X and R(j-l) differ,
subtract otherwise) and then separately add­
ing to this result the required digits (positions
i==O, 1, 2, 3) of X, 2X, and 3X. This method
will yield one radix 8 quotient digit for every
addition, employing the one-digit multiplication
arrangement supplemented by the comparison
circuitry.

Significant digit division 3,8 follows the same
rules as multiplication, which was discussed in
the preceding section.

8. Reconversion to Binary Forms

Several feasible methods exist for the recon­
version of s-d numbers into the conventional
form; the specific choice depends on the system
relationships of the s-d arithmetic processor.

One method is the previously discussed re­
peated application of the pack-add algorithm.
This method requires a variable number of
steps, and is essentially a serial radix 8 borrow­
propagation method with sensing of the com­
pletion of all borrow chains.

Another method of reconversion employs a
borrow-propagation circuit which accepts the
three positively weighted (+4, +2 and +1)
bits of each radix 8 digit as bits of a binary
operand and the negatively weighted (-8) bit
as a binary borrow into the (+1) position of
the octal s-d digit which is immediately to the
left. Negative numbers will appear in "two's
complement" form. An end-around borrow
connection will give the result in binary "one's
complement" form, which is readily converted
to the sign-and-magnitude form. The "-1"
circuits which add the negative transfer digit
to the interim sum in every digit adder may be
interconnected for this purpose, or a separate
borrow circuit may be employed. Any desired
amount of borrow-lookahead may be incQ,rpo­
rated in this arrangement; borrow-completion
sensing may also be used.

Finally, the s-d number may be entered as
a pair of binary operands with opposite signs
into a conventional binary adder when it is
available in the computing system. The posi­
tive operand is composed of the positively
weighted bits of all s-d digits, while the nega­
tive operand consists of the negatively weighted
bits.

9. Conclusion
Signed-digit arithmetic is characterized by

an affinity for variable-length operations with
floating-point and significance-arithmetic op­
tions. Special carry-acceleration circuits are
completely eliminated, and the space-zero value

SYSTEMATIC DESIGN OF CRYOTRON LOGIC CIRCUITS 671

implements some control functions at the level
of individual digit adders instead of at a central
control location. For instance, explicit infor­
mation on the length of operands and results
is not required. The logical complexity of in­
dividual digit adders is consequently increased.
For example, a preliminary design of a radix 8
digit-adder with the separate transfer addition
circuit indicates that it requires between 2 and
21;2 times as many logic circuits as a ripple­
carry radix 8 (three-bit) conventional adder.
A special control circuit is also required to de­
tect the presence of the space-zero digit values
(~) at adder inputs. The modular nature of
digit-adders is expected to be especially suitable
for microelectronic systems. One radix 2k , or
radix 10 digit-adder offers a standard building
block of considerable complexity which is suit­
able for micro-electronic implementation. An
arithmetic processor with specified perform­
ance characteristics then will be constructed as
an array of the standard building blocks. Each
digit adder is an arithmetic unit of limited ca­
pabality in the specified processor. The ex­
tent of central control functions is reduced and
"one-of-a-kind" logic circuits are eliminated.

A second novel and potentially useful prop­
erty of s-d arithmetic is the order in which
the digits of results are produced for the ele­
mentary set of algorithms: addition, subtrac­
tion, multiplication and division. The most
significant digits of the results always appear
first and may be processed further without
waiting for the less significant digits to be
computed. Furthermore, only left shifts are
employed in these algorithms, and the digits of
the operands and results "flow" in one direc­
tion-to the left, while the rate at which they
are produced depends on the number of digit
adders which are available. Complex algo­
rithms may now be implemented by an array
of digit adders without the need for inter­
mediate storage of results and in an asynchron­
ous manner, with the space-zero values serving
to indicate completion of the various elemen­
tary algorithms. Both aspects of s-d arith­
metic which were mentioned above and methods
of failure detection are now being investigated
for potential application in the restructurable
computer system.5

10. Acknowloogements

The Variable Structure Computer at UCLA 5

has provided the stimulus for the development
of this paper. The author wishes to acknowl­
edge many informative discussions with Pro­
fessors G. Estrin and B. Bussell. Concurrent
investigations of other types of signed-digit
arithmetic by J. L. Drayer 9 and by R. W.
Baker 10 have contributed supporting informa­
tion on the feasibility of signed-digit arithmetic
processors. A detailed study of the logic design
of the binary-compatible s-d adder has been
conducted by D. M. Kimble.ll

1. AVIZIENIS, A., "Signed-Digit Number Rep­
resentations for Fast Parallel Arithmetic,"
IRE Transactions on Electronic Computers
EC-10 (1961), 389-400.

2. A VIZIENIS, A., "On a Flexible Implementa­
tion of Digital Computer Arithmetic," In­
formation Processing 1962, C. M. Popple­
well, editor, (North-Holland Publishing
Co., Amsterdam, 1963), 664-670.

3. METROPOLIS, N., and ASHEN HURST, R. L.,
"Significant Digit Computer Arithraetie,"
IRE Transactions on Electronic Computers
EC-7 (1958), 265-267.

4. ESTRIN, G., "Organization of Computer
Systems-The Fixed Plus Variable Struc­
ture Computer," Proceedings of the West­
ern Joint Computer Conference 17 (1960),
33-40.

5. ESTRIN, G., BUSSELL, B., TURN, R., and
BIBB, J., "Parallel Processing in a Restruc­
turable Computer System," IRE Trans­
actions on Electronic Computers EC-12
(1963), 747-755.

6. MACSORLEY, O. L., "High-Speed Arithmetic
in Binary Computers," Proceedings of the
IRE, 49, No. 1., (January 1961), 67-91.

7. ROBERTSON, J. E., "A New Class of Digital
Division Methods," IRE Transactions on
Electronic Computers EC-7 (1958), 218-
222.

8. ASHENHURST, R. L., and METROPOLIS, N.,
"Unnormalized Floating Point Arith-

672 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

metic," Journal of the Association for
Computing Machinery 6 (1959), 415-428.

9. DRAYER, J. L., "Implementation of Signed­
Digit Arithmetic," M. S. Thesis, University
of California, Los Angeles, 1964.

10. BAKER, R. W., "A Study of the Organiza­
tion of a Signed-Digit Arithmetic Unit,"

M. S. Thesis, University of California, Los
Angeles, 1964.

11. KIMBLE, D. M., "Implementation of Binary­
Compatible Signed-Digit Arithmetic in a
Restructurable Computer System, HM. S.
Thesis, University of Calif()rnia, Los
Angeles, 1964.

A TRANSFLUXOR ANALOG MEMORY USING

FREQUENCY MODULATION*
Walter J. Karplus and James A. Howard

Department of Engineering
University of California

Los Angeles

I. INTRODUCTION

The accurate storage of a continuous voltage
has always proven to be a difficult and challeng­
ing problem to the designers of electronic ana­
log systems. Most modern analog computer in­
stallations include a number of "sample-hold"
devices, utilizing high-quality operational am­
plifiers in combination with special electronic
switching circuitry. In such units the voltage
is stored as charge on a capacitor, so that leak­
age and grid currents must be extremely care­
fully controlled to permit long-time storage
with high accuracy. Recently introduced hybrid
computer systems have placed an additional
requirement upon the analog memory unit:
economy. For example, in the discrete-space­
discrete-time hybrid computer system now un~
der development at UCLA, 1,000 sample-hold
circuits will be required in order to accommo­
date 1,000 parallel digital-analog channels.
Furthermore, hold times of several minutes are
desired. Under these conditions conventional
capacitor-type analog memories become eco­
nomically unfeasible. These considerations have
stimulated a search for a rapid, accurate and
economic analog memory and have resulted in
the development of the FM-transfluxor unit de­
scribed in this paper. Since their introduction
by Rajchman1

,2 in 1955, multiaperture mag­
netic devices (MAD) have assumed an imp or-

tant place as magnetic logic and memory de­
vices in digital computer applications. The
extension of this technique to analog systems
has been proposed from time to time, but no
fully satisfactory transfluxor analog memory
has been described to date.

In essence, a transfluxor is a ferrite core
with at least two holes-the major and the
minor aperture. In memory applications, ad­
vantage is taken of the fact that an electrical
signal applied to the major aperture effects a
change in the magnetic field in the entire core.
Provided certain geometrical criteria are satis­
fied, it is then possible to sense the magnetic
condition of the core by means of an electrical
signal applied to the minor aperture, without
affecting the magnetic field about the major
aperture. If it is desired to store analog vari­
ables, it is necessary to provide for the uninter­
rupted read-out of a continuous electrical volt­
age. This in turn necessitates that the sensing
signal be applied continuously and that it be
suitably modulated by the setting signal about
the major aperture whenever a change in
the stored information is desired. Suggested
approaches to analog memories can be con­
veniently classified as amplitude-modulated,
phase-modulated, or frequency-modulated, as
determined by the manner in which the setting
signal is made to affect the sensing signal.

* This work was supported in part by the National Science Foundation under Grant G-24888.

673

67 4 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

In an amplitude-modulation system,2, 3, 4, 5, 6 as
illustrated in Figure la, a constant amplitude
sinusoidal oscillator applies the sensing signal
to the minor aperture. The sensing signal is
picked up by a second winding about the minor
aperture and is converted to DC by an ampli­
tude-to-DC converter, consisting of an ampli­
fier, a rectifier and a low-pass filter. The set­
ting signal controls the coupling between the
two windings about the minor aperture. The
DC output voltage can therefore be varied con­
tinuously from a minimum (decoupled) to a
maximum (fully coupled) value by means of
suitable setting signals.

In the phase-modulated memory7 shown in
Figure lb, the winding about the _minor aper­
ture constitutes an inductor and forms part of
an RLC circuit. An oscillator is placed in series
with this parallel circuit, so that the phase of
the resulting sinusoidal signal is determined by
the magnitude of the inductor. By means of a
suitable phase-to-DC converter, the phase shift
effected by a variation in the magnitude of the
inductor is translated into a DC output voltage.
The inductor magnitude is in turn determined
by the magnetic field in the transfluxor core
and is controlled by the setting signal.

MAJOR
APERTURE

Figure Ia - AM Memory

Figure Ib - PM Memory

OUTPUT

Figure Ie - FM Memory

FREQUENCY-
D.C. -CONVERTER OUTPUT

Figure 1. Transfluxor Analog Memory Systems.
Figure 1a. AM Memory.
Figure lb. PM Memory.
Figure 1e. FM Memory.

In the frequency-modulation approach 3, 8, 9

described in this paper, a winding about the
minor aperture forms part of an oscillator and
controls the oscillator frequency. A frequency­
to-DC converter is then employed to translate
this frequency into a DC output. Since the
magnetic field in the transfluxor controls the
oscillator frequency, the setting signal can be
employed to vary the DC output voltage over
a wide range.

All of the memory circuits described above
feature an essentially unlimited memory time.
Provided environmental extremes are avoided,
the drift of the magnetic field within the trans­
fluxor from the value imposed by a setting sig­
nal is essentially negligible over a period of
weeks and months. Hence, the DC output volt­
age of the transfluxor memory is likewise con­
stant over a long period of time. An analog
memory can then be fashioned simply by caus­
ing the analog input voltage to be translated
into a suitable setting signal, which in turn
produces a proportional DC output voltage.
This mode of operation may be termed "open­
loop" and has the advantage of simplicity. If
a large number of transfluxor memory channels
are to. bse used, however, open-loop operation
makes it necessary to calibrate each channel
separately to take into account minor varia­
tions in transfluxor characteristics. It is then
also necessary to assure that the transfluxor
temperature at the time of operation is identi­
cal to the temperature at the time when the
transfluxor was calibrated. These inconvenient
features can be overcome by employing a
"closed-loop" mode as illustrated in Figure 2.
Here the DC output voltage is compared to the
DC input voltage and the resulting error signal
is made to activate a drive circuit. Setting
pulses are then applied to the major aperture
until the error voltage falls within prescribed
limits. The drive circuit can then be discon­
nected from the memory unit without affecting
the DC output. This facilitates time-shared
operation.

In the course of the past two years, all three
modes of transfluxor memory operation have
been analyzed experimentally and theoretically.
On the basis of these studies it was determined
that the frequency-modulation approach offers
the greatest accuracy, economy and freedom

A TRANSFLUXOR ANALOG MEMORY USING FREQUENCY MODULATION 675

I

MULTIPLEX

DC
J"SENSi~+-~O~UTPUT

Figure 2. Transfiuxor Closed-Loop Memory.

from noise effects. Accordingly, an FM-trans­
fluxor memory, operating in a closed-loop
fashion, has been developed and tested. The
overall features sought in this unit can be sum­
marized as follows:

Nominal accuracy: 0.1 % of half-scale
Memory speed: 1 millisecond
Dynamic range: -10 volts to + 10 volts
Facility for multiplexing
All solid state
Parts cost per module: less than $5.00

II. SYSTEM OPERATION

A simplified diagram of the closed-loop FM
analog memory system is shown in Figure 3
and is seen to include two major units: a) the
transfluxor and sensing circuitry, which is pro­
vided for each analog channel, and b) the com­
parator and drive circuitry, which is tinie­
shared among all the transfluxor modules. It
can be seen that the memory modules are very
simple in design, containing only three tran­
sistors and one diode in addition to passive
components including the transfluxor itself.
The nature of each of the major elements in
the memory system will now be described.

Trans/luxor: The prototype transfluxor con­
figuration currently employed in the memory
is shown in Figure 4a. The core is fashioned
from a disc of Indiana General type S-6 ferrite
material, 25.55 mm in diameter and 1.57 mm
thick. The S-6 type material was selected pri­
marily because of the commercial availability

Figure 3. Simplified Schematic of Transfiuxor F-M
Memory System.

Ql, Q2, Qa - 2N1309; Rl = 390K; Cl = 500 p.p.f;

Re = 1000; Rbb = 33K; C2 = 30 p.p.f; C3 = .05 p.f;
R3 = 38K.

of the 25.55 mm diameter disc employing this
material. In addition, as evidenced by the B-H
characteristics of Figure 4b, the low threshold
coercive force of 0.2 oersteds of the S-6 mate­
rial minimizes the power requirements of the
transfluxor driving circuitry. An ultra-sonic
drill is used to fashion the maj or and minor

MAJOR
APERTURE'\

-----+------ r~J~~ .. A~RTURE
. I.'KJ MM UIA.

R-,O.oo MM I i
LEG

r-3
LEG , ~1CCENTER LEG 2,

------ ~~O.7~~---P+~~+-
I I

I!

2.075 MM

1------- 25.55 MM-----------~

Figure 4a. Prototype Transfiuxor Geometry.

676 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

r
I

I
j I

---~ .J

.".

(,
- 3000

2000

1000

B(GAUSS)

1000

2000

-- ... '2

~~~~~ __ ~, ~ __ ~, __ ~~ __ ~~Ivvvv 
1.0 0.5 H (OERSTED) 0.5 1.0 

Figure 4b. Prototype Transfluxor Magnetic 
Characteristics. 

Initial Permeability (IMC) = 110 
Maximum Permeability (Dc) = 6000 
Saturation Flux Density (Dc gauss) 

3450 at Hm = 25 oersteds 
Coercive Force (Dc 60 cycle) = 0.20 
Maximum EriEs Ratio = 0.95 at 1 

oersted 

apertures which are 20 mm and 1.4 mm in 
diameter .respectively. The disc is therefore 
quite large when compared to memory cores 
used in digital computer applications. This 
large size provides greater temperature stabil­
ity and facilitates the application of the setting 
and the sensing windings. The major aperture 
winding consists of 75 turns of #34 wire. The 
number of turns on the minor aperture are 
given below. The theory underlying specifica­
tion of the transfluxor geometry is summarized 
in Appendix A. 

Sensing Circuit: The sensing winding in the 
transfluxor forms a portion of an oscillator 
circuit. Both sinusoidal and switching-mode 
oscillators were investigated and the latter 
selected for their greater stability. The con­
trol of multivibrator frequencies using fer­
rite cores has been described by Royer10 and 
others.l1, 12, 13, H These units employ two trans­
fluxor windings, the coupling coefficient be­
tween them determining the frequency of oper­
ation. The circuit shown in Figure 3 is a 
modified form of this type of multivibrator. In 
an alternative realization of the memory mod­
ule, a multi vibrator circuit similar to that 

shown in Figure 5 has been used with consider­
able success. Here a single minor aperture 
winding is connected between the collectors of 
two transistors. The operation of transfluxor 
controlled multi vibrators is discussed briefly 
in Appendix B. The output of the multivibra­
tor is converted to a DC voltage, directly pro­
portional to the frequency by means of a so­
called "pump"15 circuit. 

Comparator: A high-quality chopper-stabi­
lized, DC amplifier is employed to compare the 
analog input voltage to the analog output volt­
age. The difference between these two values 
is amplified 100 times and is identified as the 
error signal E. Not shown in Figure 3 are 
auxiliary circuits employed for closed-loop sta­
bilization, to accelerate the response of the 
pump circuit to error signals, and to shift the 
DC output into the desired range. A consider­
able reduction in output impedance can be at­
tained by the inclusion of an additional tran­
sistor. 

Driving Circuit: I t is the function of the 
driving circuit to translate the error signal into 
suitable setting pulses. Numerous experiments 
indicated that short voltage pulses constitute 
the most effective manner of controlling the 
magnetic field in the transfluxor. The optimum 
pulse-width for effecting increases in multi­
vibrator frequency were found to be consider­
ably larger than the optimum pulse-width for 
decreasing multi vibrator frequencies. In order 

-Vee -Ve -Vee 

CLAMP 
VOLTAGE 

Re Re 

MINOR APERTURE 
WINDING 

Figure 5. Transfluxor Multivibrator with Single Minor 
Aperture Winding. 

Vet· = -20 Volts; Ve = -6 Volts; Vbb = 20 Volts; 
Re = 1K; Ch = 120 p,p,f; Rh = 1.5K; Rbb = 200K. 



A TRANSFLUXOR ANALOG MEMORY USING FREQUENCY MODULATION 677 

to facilitate the efficient traversing of a fre­
quency range from 250 to 900 KC, separate 
"forward" and "backward" channels are em­
ployed. 

A clock multivibrator generates a square­
wave of constant frequency. This unit drives 
two separate monostable multivibrators A and 
B which produce trains of pulses with widths 
of 1.30 and 0.65 microsecond respectively. The 
former of these two pulse trains is applied to 
gate A which produces an output only if the 
error voltage is more negative than -1.0 volts. 
Similarly, gate B permits the output of the 
single shot B to be transmitted only if the error 
voltage E is more positive than + 1.0 volt. De­
pending upon the polarity of the error signal, 
therefore, positive pulses 1.30 microsecond. in 
width or negative pulses 0.65 microsecond in 
width are applied to the setting winding of the 
transfluxor. The optimum frequency range and 
pulse-width depend of course upon a number 
of considerations and can be expected to vary 
from application to application. 

The overall operation of the memory unit 
can be summarized as follows: Prior to the 
application of an input signal, the frequency 
of oscillation in the sensing circuit is deter­
mined by the magnetic condition of the trans­
fluxor unit. This frequency, in the range 250 
KC to 900 KC results ina corresponding DC 
voltage in the range -10 volts to + 10 volts. 
The driving circuit is now connected using two 
multiplexer switching poles, and a DC input 
signal in the range -10 to + 10 volts is ap­
plied. Any difference between the DC output 
of the memory module and the applied input 
results in error voltage E. This error signal 
causes a train of positive or negative voltage 
pulses to be applied to the setting winding of 
the transfluxor. The effect of these pulses is to 
change the frequency in the sensing circuit 
until the difference between the output voltage 
and the input voltage becomes less than 5 milli­
volts. The drive circuit then becomes inopera­
tive and can be switched to another memory 
module. Of particular interest in characteriz­
ing the performance of such a memory unit is 
the long-term stability of the memory module 
and the resolution or accuracy attainable. These 
aspects are considered in the following sections. 

III. STABILITY CHARACTERISTICS 

The magnetic characteristics of square-loop 
ferrite materials are strongly affected by tem­
perature. The coercive force, the saturation 
flux density and the remanant flux density all 
decrease in magnitude as the temperature of 
the core is increased.16 In evaluating the effec­
tiveness of transfluxo!s as analog memories, 
the effect of temperature variations upon mem­
ory operation must be carefully considered. 

Of primary interest is the drift in the sens­
ing circuit frequency and hence in the DC out­
put, when a memory module is set to a specific 
output voltage and subjected to temperature 
variations typical of a laboratory environment. 
Accordingly, a series of such long-term drift 
experiments were conducted, with the trans­
fluxor at different levels of saturation. The 
transfluxor and sensing circuit were placed in 
an_ air-conditioned laboratory without special 
efforts at temperature stabilization and the 
drift in sensing circuit frequency as a function 
of temperature and time was recorded. In the 
course of a typical three-hour run the labora­
tory ambient air temperature varied from 73 
to 75°F. The results of these tests for three 
major-aperture flux states are summarized in 
Figure 6. As shown, the percent drift over a 
three hour or greater interval is in the order 
of 0.1 % for all flux states. It should be recog-

495.2 

495.0 

494.8 

25 411.4 
!;t 
85 411.2 
:> 
5411.0 
:;) 

~ 
410.8 

234 
TIME HOURS 

Figure 6. Long-Time Drift Characteristics of Trans­
fluxor Multivibrator for Various Setting Conditions. 



678 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

nized that in any specific application, the trans­
fluxor memory is required only to maintain a 
constant output between successive analog in­
puts. In most hybrid computer systems, hold­
ing-time requirements rarely exceed one minute 
and are usually of the order of several seconds. 

Additional series of experiments were con­
ducted to determine the general sensitivity of 
the transfluxor circuit to temperature. Accord­
ingly, the transfluxor core was placed in an 
oven and the variation in sensing circuit fre­
quency was observed over a telllperature range 
from -80°F to + 150°F. These measurements 
were repeated with the transfluxor set to five 
different levels of saturation and are illustrated 
in Figure 7. In the course of these experiments 
it was observed that for each specific trans­
fluxor geometry there exists a critical tempera­
ture beyond which irreversible effects take 
place. That is, if the critical temperature is 
exceeded information stored in the transfluxor 
memory becomes essentially lost. The reason 
for this effect lies in the fact that the coercive 
force17 He decreases with frequency. If this de­
crease becomes large enough, it then becomes 
possible for signals about the minor aperture 
to switch flux about the major aperture. Such 
major aperture flux switching results in turn 
in a change in the sensing circuit frequency. 
This effect must be carefully avoided by suit­
able design of the transfluxor and by suitable 

64 L-----------

0560 
~ 

~ 
z 
~480 
o 
w a:: 
LL 

~400 

~ a:: 
m 
~320 
~ 
:> 
:!: 

-40 o 40 80 
TEMPERATURE OF 

120 160 

Figure 7. Frequency-Temperature Characteristics of 
TransfIuxor for Several Major-Aperture Setting 

Conditions. 

choice of the resistor R placed in parallel with 
the setting winding. 

IV. DRIVING CHARACTERISTICS 

The frequency of the sensing circuit, which 
determines the DC output, is varied and con­
trolled by means of trains of positive or nega­
tive voltage pulses applied to the setting wind­
ing. In order to achieve a high resolution and 
hence a high accuracy, it is important that the 
increment in frequency produced by a single 
pulse be very small. For example, if the fre­
quency is to range from 250 KC to 900 KC, it 
is necessary that a single pulse produce a fre­
quency change of less than 650 cycles, in order 
that a 0.1 % resolution be obtained. The prob­
lem of selecting an optimum pulse-width and 
repetition rate is complicated by the fact that 
the effect upon the frequency of a setting pulse 
of a given width is different when the fre­
quency is being increased than when it is de­
sired to decrease the frequency. This is illus­
trated in Figure 8 for a number of different 
pulse-widths. In each case the core was first 
saturated (high frequency), and a series of 
rectangular voltage pulses were applied one at 
a time so as to decrease the frequency to its 
minimum value. The polarity of the pulses was 
then reversed and the core brought gradually 
back to the saturated state. From these data 
it is apparent that for increasing frequencies 
the pulse-width should be at least twice as 
great as for decreasing frequencies. These 
curves also point out the desirability of oper-

1.26 "SEC. 

.1 

/' 
'" 

-............. I 
,~ 

'" 7' ~ --~ 1.00 "SEC. 

2", "''''I ~/""" 

" "- / .......... 
i'--

I~ 
II\, \I 0.25 "SEC. 

I \/""-
/ / \."- Q50 "SEC. 

8", 
/ ./v x---~ F-- 620 "SEC. 

~ .....--- ........... 0.50 "SEC. -.... 
~v 

0.65 "SEC. 

? 1 1 I 1111 1 II 1111 1 1 I IIII I I I IIII 
10 100 1000 10000 

NUMBER OF PULSES 

Figure 8. Typical Frequency-Resolution Characteris­
tics of Transfluxor Multivibrator. 



A TRANSFLUXOR ANALOG MEMORY USING FREQuENCY MODULATION 679 

ating in the relatively linear low-frequency 
range rather than over the entire frequency 
domain. 

The speed of response of the memory circuit 
is determined by a number of design param­
eters and compromises. Of particular impor­
tance is the frequency of the clock multivibra­
tor in Figure 3, since this determines the rate 
at which control pulses are applied to the set­
ting winding. The width of the control pulses 
is likewise important in determining the speed 
of operation, since wider pulses produce larger 
increments in frequency. A compromise be­
tween speed and accuracy must hence be made. 
The RC time constant at the output of the 
pump circuit is also important in determining 
the speed. Here the compromise is between 
speed and output ripple, since the low-pass fil­
tering action of the pump output circuit varies 
directly with the time constant. The switching 
characteristics of the transfluxor core itself 
appear to have a relatively minor effect upon 
the response time of the memory unit. 

V. CONCLUSION 

On the basis of experience with. a number of 
prototype memory systems, it is concluded that 
the FlYI transfluxor analog memory offers 
unusual promise. The memory module is excep­
tionally simple, compact and economic, per­
mitting the design of systems with large num­
bers of sample-hold channels. The usefulness 
of this type of memory in the hybrid applica­
tion is further enhanced by the fact that the 
memory time under normal laboratory condi­
tions is very long, permitting a great flexibility 
in digital-analog scanning cycles. Since the 
driving circuitry is time-shared among all the 
memory modules, great care and sophistication 
can be employed in its final designs, so as to 
attain an optimum compromise between re­
sponse, speed and accuracy. A second poten­
tially useful application of the transfluxor 
memory is in pure analog track-hold circuits. 
Here the low cost of the individual modules 
permits the utilization of a relatively large 
number of them to store a continuous function 
of time as a large set of discrete points. 

Acknowledgments: The authors gratefully 
acknowledge the helpful suggestions offered by 
Mr. M. Palevsky of Scientific Data Systems, 

Inc. and by Mr. G. Bachand of Sandia Corpo­
ration. Mr. P. Kibby, G. Keludjian and S. Rat~ 
ner, students at U.C.L.A., contributed inter­
esting experimental data. 

APPENDIX A 

Transfluxor Geometry and Driving 
Considerations 

Major and Minor Aperture Signal Constraints 

If the core material of a transfluxor has a 
magnetizing force He, the coercive force for 
any closed flux path j-k is 

where 

N j = Number of turns around leg j 

lj-k = Mean circumference of path j-k 

(1) 

I j - k = Current required to establish coercive 
force for path j-k 

Equation (1) can be used to establish the 
constraints imposed on the major and minor 
aperture signals by the geometry and material 
properties of the transfluxor. The range of 
allowable adjustment for the major aperture 
control signal in the oscillator mode of opera­
tion (Figure 9a) is limited by the flux path 
lengths 11- 2 and 1'1-2 of Figure 9c. Applying 

OR 

1J'---"4---iMI.LTlVIBRATOR 

Figure 9. Transfluxor Multivibrator Mode of Operation. 
Figure 9a. Oscillator Mode of Operation. 
Figure 9b. Minor Aperture Path Lengths. 
Figure 9c. Major Aperture Path Lengths. 



68.0 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Equation (1), with the assumption that the 
threshold mmf of the transfluxor material is 
Reo, yields 

Heo 11-2 ~N1 ISET ~ Heo 1'1-2 (2) 
ampere turns 

where 

Reo = Threshold mmf of transfluxor ma­
terial in oersteds 

11-2, 1'1-2 = Path lengths shown in Figure 9c 
in centimeters 

ISET = Major aperture setting current -
amperes 

N1 = Number of turns on major aper-
ture 

The path lengths 11-2 and 1'1-2 can be regarded 
as the basic geometric parameters for the 
transfluxor since their ratio establishes the set­
ting range of the major aperture. 

1'1-2 > ISET MAX 

11- 2 - ISET MIX 

(3) 

Similar constraints can be established for the 
minor aperture using the path lengths Ia-z and 
Ll-l of Figure 9b. 

Hco13-2 ~ N 3 Ie ~ Heo13-1 (4) 
where 

13-h 13-2 = Path lengths in Figure 9b in centi­
meters 

N 3 = Number of turns on minor aper-
ture 

Ic = Collector current of saturated or 
on transistor in multivibrator 
amperes 

The ratio of the path lengths 13- 1 and 13-2 

establishes the range of satisfactory adjust­
ment for Ie according to 

Ic MAX < 13- 1 

Ic MIN - L-2 
(5) 

As indicated by Equations (4) and (5), the 
multivibrator parameters should be adjusted so 
that the maximum value of Ie is greater than 
that value of current necessary to just magne­
tize the unsaturated path 13-2, but smaller than 
that value which would magnetize an unsatu­
rated path 13-10 These limit values should be 
separated by as large a margin as possible in 
a transfluxor to provide adequate isolation be­
tween the major and minor apertures. 

For complete minor aperture saturation, a 
considerably higher value of magnetizing force 
than the threshold value Rco is required. Desig­
nating this magnetizing force by Hes Equations 
(4) and (5) become: 

HCR 13-2 ~ N 3Ic ~ Heo 13-1 

Ie MAX < 13-1 Heo 
Ie MIN - 13-2 Hes 

(6) 

(7) 

Equations (6) and (7) place a severer restric­
tion on the adjustment range of Ie, particularly 
if Hcs » R Cil ' Consider, for example, the proto­
type transfluxor used in the present research. 
The parameters of Equations (6) and (7) for 
this transfluxor are 13- 1 = 6.50 cm, 13-2 = 1.10 
cm, Heo = 0.2 oersteds and Hes = 1.0 oersted. 
Using these values Equation (6) becomes 

1.10 ~ N 3Ie ~ 1.30 ampere turns (8) 

Since Equation (8) satisfies the conditions 
of Equation (6), flux switching of the major 
aperture by the minor aperture should not 
occur. In the event that flux switching of the 
major aperture by the minor aperture does be­
come a problem, the path length 13- 1 must be 
increased. This can be accomplished by redi­
mensioning the transfluxor; but this would lead 
to a reduction in the frequency range. A more 
practical approach is to place a resistance 
across the major aperture winding, which acts 
effectively to increase the path length 13- 1 by 
decreasing the major aperture field available 
for flux switching. 

Major Aperture Driving Characteristics 

The primary requirement of the major aper­
ture driving signal is that it be capable of 
changing the flux state of the aperture by very 
small increments so that the frequency of the 
minor aperture oscillator is also changed in 
correspondingly small increments. The accu­
racy of the memory is a direct function of the 
number of quantized flux steps Mi into which 
the major aperture flux range 0 1 can be di­
vided. For an ideal square-loop core material 
the number of flux increments is given by 

Mi = N 10 1 (9) 
VsT 

where 

N 1 = Number of turns on leg 1 of maj or 
aperture 



A TRANSFLUXOR ANALOG MEMORY USING FREQUENCY MODULATION 681 

v" = Amplitude of a rectangular setting 
pulse of width T applied to the major 
aperture 

Unfortunately, the actual major aperture 
o - NI characteristics are not square but form 
a distorted hysteresis18 loop due to the finite 
inner-diameter outer-diameter ratio of the ma­
jor aperture. 

Hawkins and Munsey19 have analyzed the ef­
fects of core geometry on the driving signal 
and core-flux state of a toroidal core. Although 
their analysis is restricted to a toroidal shape, 
it can be extended to a~y closed-magnetic-path 
geometry possessing flux paths of different 
lengths such as the major aperture of a trans­
fluxor. The primary result of this study is 
given by 

(10) 

where 

o = Flux stored in major aperture core 

0 x = Lumped constant which is a function 
of applied volt-time integral and core 
geometry 

Mi = Number of input voltage pulses ap­
plied to the core (in this case the main 
aperture) 

T == Time constant \Xlhich is a function of 
the core geometry and material prop­
erties 

Equation (10) applies until 0 reaches satura­
tion for the given core 0 5 and can be plotted 
as shown in Figure 10 with 0 = 0 5 • As shown, 
improved linearity can be obtained by making 
0 x large with respect to 0 5 • However this im­
provement in linearity must be traded for reso­
lution since fewer pulses Mj are required to 
saturate the core as 0 x is increased. 

A second significant result of the analysis is 
an expression for the maximum number of 
pulses Mi as a fl,Jnction of core magnetic prop­
erties and geometry of the form 

where 

Sr 

Mi MAX = IjSr 
Ln (ril) 

rj 

Ln [_l_J (11) 
1- P 

= Squareness ratio of the core mate­
rial 

r o, rj = Outer and inner radius of core (ma­
jor aperture) respectively 

P = Linearity and is defined as the frac-
tion by which an incremental flux 
change at the maximum value of Mi 
differs from that at Mi = O. 

The quantity P may also be interpreted as the 
relative flux change at the worst point (near 
saturation) on the hysteresis loop. 

As shown in Equation (11) for any desired 
value of P the maximum value of Mj is deter­
mined by core magnetic properties and geom­
etry only. In particular Equation (11) indi­
cates that the closer (r{)/ri) approaches unity 
the greater the resolution. Thus, ideally the 
transfluxor major aperture should be struc­
tured so that rO/ri is as close to unity as pos­
sible. 

Also as nonlinearity increases (Le. p ~ 1) 
the resolution increases. This is advantageous 
for the frequency mode of operation since the 
DC voltage output of the memory is inversely 
proportional to the minor aperture flux avail­
able for switching-(memory output voltage 
,-' 1/0). The 1/0 dependence makes the mem­
ory output voltage a hyperbolic function of the 
major aperture control signal. By suitable con­
trol and choice of P it is possible simultane­
ously to improve resolution and to make the 
memory output linearly dependent on the ma­
jor aperture control signal. 

~ --------------------------------

1 

-------------------
4> 

Nj -

Figure 10. Variation of Major Aperture Stored Flux 
as a Function of Setting Resolution. 



682 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

APPENDIX B 

Transfluxor Multivibrators 

Two-Winding Oscillator 

The circuit diagram for the two-winding 
transfiuxor multivibrator is shown in the sys­
tem diagram of Figure 3. The basic operation 
of the unit is discussed in detail in references 
13, 14 and 20, and consequently will not be 
described here. Two windings each with N 
turns are '\vound around the minor aperture, 
and the winding with N 1 turns is placed around 
the major aperture. A control signal applied 
to Nl changes the switching flux of the multi­
vibrator causing the frequency of oscillation 
to be a function of the magnetomotive force in 
the minor aperture windings N. If the major 
aperture is demagnetized the multivibrator 
operates at minimum frequency. When the flux 
state of the major aperture is equal to the satu­
ration flux of the minor aperture by applying 
a control signal of sufficient magnitude, the 
multivibrator operates on remnant flux alone 
at maximum frequency. 

U sing the prototype transfluxor described 
above with 25 turns and a supply voltage of 
12 volts, a frequency range of -250 KC to 1.0 
MC was obtained for the circuit of Figure 3. 

Single Winding Multivib1'°ator 

The single winding oscillator of Figure 5 
permits a reduction in number of minor aper­
ture windings and provides closer control over 

the collector current. As indicated in Figure 5, 
the single winding multivibrator is actually a 
clamped flip-flop with the single minor aperture 
winding N connected between the collectors of 
the transistors Ql and Q2. This circuit has 
yielded satisfactory results under widely vary­
ing conditions. For example with a clamp volt­
age V c = - 6 volts and N = 20 turns on the 
transfluxor minor aperture, a six volt square 
wave output was obtained over a 100 KC to 1 
MC frequency range. Typical output wave­
forms are shown in Figure 11. 

Frequency of Oscillation 

An expression for the frequency of oscilla­
tion of the single or two-winding multivibrator 
can be obtained by applying the definite inte­
gral form of Faraday's law to the transfluxor 
minor aperture winding. This operation yields 
the following expression for the frequency F-

where: 

F= V 
4NBsA 

(12) 

V = Voltage across the minor aperture 
winding volts 

N = Number of turns on single minor aper­
ture winding 

Bs = Saturation flux density of transfluxor 
core material-webers/meter2 

A = Cross-sectional area of minor aperture 
leg assuming the areas of legs 2 and 3 
are equal-square meters 

Figure 11. Typical Output Waveforms of Single Winding Transfluxor Multivibrator. 

Figure lla. Output Waveform From Q2 Collector; Frequency = 100KC; Scale; 
Amplitude = 5 Volts/CM; Time = 2 f-L sec/eM. 

Figure llb. Output Waveform From Q2 Collector; Frequency = 500KC; Amplitude = 

5 Volts/CM; Time = 1 f-L sec/CM. 



A TRANSFLUXOR ANALOG MEMORY USING FREQUENCY MODULATION 683 

Equation (12) is an approximate expres­
sion for the minimum frequency of the multi­
vibrator in the demagnetized state. Although 
the expression is idealized in the sense that it 
does not include the effects of such factors as 
switchover time, it is useful in estimating the 
minimum frequency of oscillation. For exam-' 
pIe, for the two-winding oscillator with V = 12 
volts, N = 25 turns, A = 1.61 X 10-6 square 
meters and Bs = 0.345 webers per square meter 
Equation (12) gives 220 KC for the minimum 
frequency as compared to the measured value 
of 250 KC. A similar calculation for the single 
winding oscillator with N = 20 turns and V = 
6v yields 90 KC for the minimum frequency as 
compared to 100 KC for the measured value. 

REFERENCES 

1. RAJCHMAN, J. A., and Lo, A. W., "The 
Transfluxor-A Magnetic Gate with Stored 
Variable Setting," RCA Review, Vol. 16, 
pp. 303-311 (1955). 

2. RAJCHMAN, J. A., and Lo, A. W., "The 
Transfluxor," Proceedings IRE, Vol. 44, 
No.3, pp. 321-332 (March 1956). 

3. LI, K., "Application of the Continuous 
Range Properties of the Transfluxor for 
Control Purposes," RAC Report No. 1162 
(December 30, 1957). 

4. BOYAJIAN, C. F., "Transfluxor Analog 
Memory," Proceedings of Conference on 
Non-linear Magnetics and Magamps, Sep­
tember 23-25, 1959, Washington, D. C., 
pp. 313-323. 

5. PALEVSKY, 1\1:., SLOCOMB, G., and BLOCK, 

D., "Digital to Analog Conversion ~or 
PCM Telemetry and Digital Data Trans­
mission Systems," IRE Convention Rec­
ord, Part 5, p. 158 (March 1959). 

6. KRAUS, MURRAY, "Transfluxor Analog 
Memory," Control Engineering, Vol. 6, No. 
12, p. 127 (December 1959). 

7. HAASS, GUNTHER F., "Der Transfluxor als 
Analogspeicher," N achrichtenterhnische 
Zeit, Vol. 14, pp. 410-415 (August 1961). 

8. WILKEN, A. C., "Interim Report on a 
Multivibrator Flux Interrogator with 
Memory," Sandia Lab Technical Memo­
randa, Report 46--63 (24), (April 1963) . 

9. COREY, F. B., "A Tunnel Diode Trans­
fluxor Oscillator with Analog Memory 
Properties," Sandia Lab Technical Memo­
randa, Report SCTM 140-163 (24) , 
(August 1963). 

10. ROYER, G. H., "Switching Transistor D-C 
to A-C Converter," Transactions AlEE, 
Vol. 74-1, pp. 322-324 (1955). 

11. UCHRIN, G. C., and TAYLOR, D.O., 
"New Self-Excited Square-Wave Transis­
tor Power Oscillator," Proc. IRE, Vol. 43, 
p. 99 (January 1955). 

12. VAN ALLEN, R. L., "Variable Frequency 
Magnetic Coupled Multivibrator," AlEE 
Transactions, Part I, Comm. and Elec­
tronics, Vol. 74, pp. 356-361 (July 1955). 

13. MEYERHOFF, A. J., and TILLMAN, R. M., 
"High-Speed Two Winding Transistor 
Magnetic-Core Oscillator," IRE Wescon 
Convention Record, pp. 106--114 (1957). 

14. MEYERHOFF, A. J., Digital Applications of 
Magnetic Devices, John Wiley and Sons, 
Inc., New York, New York, pp. 475-480 
(1960) . 

15. BURTON, P. L., and WILLIS, J., "Unusual 
Transistor Circuits,H Wireless World, pp. 
107-110 (March 1958). 

16. PASNAK, M., and LUNDSTEN, R. H., "Ef­
fects of Temperature on Magnetic Core 
Materials," Electrical Manufacturing, (Oc­
tober 1959). 

17. ABBOT, H. W., and SURAN, J. J., "Tempera­
ture Characteristics of the Transfluxor," 
Proc. IRE, pp. 113-119 (1957). 

18. ROBERTS, R. W., and VAN NICE, R., "In­
fluence of ID-OD Ratio on Magnetic Prop­
erties of Toroidal Cores," Elect. Eng., Vol. 
74, pp. 910-914 (October 1955). 

19. HAWKINS, J. C., and MUNSEY, C. J., "A 
Magnetic Integrator for the Perception 
Programs," Aeronutronics Computer Op­
erations Research Lab Publication No. 592, 
Quarterly Report No.2, July 1- Septem­
ber 20, 1959. 

20. STRAUSS, LEONARD, Wave Generation and 
Shaping, McGraw-Hill Book Co., Inc., New 
York, pp. 410-413 (1960). 





THE USE OF A PORTABLE ANALOG COMPUTER FOR 

PROCESS IDENTIFIC,ATION,· 

CALCULATION AND CONTROL 
L. H. Fricke and R. A. Walsh 

Monsanto Company 
St. Louis, Missouri 

In the design and development of controlled 
processes there are two areas of intense activ­
ity-the theoretical simulation of the total 
plant and empirical simulations involving the 
collection of reliable experimental data to as­
sist in the construction of a special purpose 
model. The simulation of a newly proposed 
process, even from the best available theoreti­
cal basis, is usually only approximate. It re­
quires use of large and expensive computer in­
stallations, either analog and/or digital, so that 
by direct programming of the design criteria, 
the optimum plant operating conditions may be 
determined. However, even if such a model 
were extremely reliable (pilot plant) , the scale­
up problems are quite complex. In some cases, 
it might be well-nigh impossible to maintain 
the exact relationships between certain intrin­
sic parameters, surface tension, heat transfer, 
etc.-and, of course, few theoretical models 
can anticipate all the significant process char­
acteristics. As a result, many full scale plants 
are in need of partial redesign. The authors 
feel that techniques relying on plant data are 
indispensable for accomplishing this end. 

It is the purpose of this pa per to review 
some of the present in-plant techniques em­
ployed to determine both the static and dy­
namic characteristics and show how the results 
are used to select the correct process revisions 

685 

and achievable controller schemes for optimum 
operation. In particular, a newer method 
employing a portable analog computer to first 
determine system characteristics is described. 
Following an analysis of these results the 
method of reprogramming the computer to the 
proper controller characteristics is given. 

To make the example realistic and to avoid 
the criticism that the methods are impractical, 
a real system was studied and made part of 
the discussion. 

It is important to take a wide view to all 
aspects of the work here described. Thus the 
methods of procuring the basic data are simple 
and generally applicable to any physical sys­
tem. The procedure of reducing data and the 
representation of dynamic behavior as a La­
placian transfer function is both routine and 
commonplace to electronics or servomechanism 
engineers. These methods are easy to use and 
are equally applicable to any linear system and 
any nonlinear system within the bounds of the 
perturbations of interest. 

DATA COLLECTION SYSTEMS 

The heart of any experimental effort is the 
data collection apparatus. The sensing elements 
must be essentially free of any nonlinearities 
and dynamic delays so that a clear, accurate 



686 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

diagnosis may be had. It is our experience that 
the best type of data collecting system (where 
possible) is multi-channel recording oscillo­
graphs coupled with very fast strain-gage 
transducers. Some of the distinct advantages 
of direct-writing analog recording are: 

1. The data collection system provides easily 
adjusted signal conditioning such as fil­
tering, suppression, and amplification. 

2. The collection system provides signals 
that can be easily utilized in continuous 
analog computer calculation such as ma­
terial balance, heat balance, etc. 

3. The quality of both static and dynamic 
process data can be evaluated immedi­
ately. 

4. The intuition of the testing engineer is 
strongly reinforced through the simul­
taneous observation of cause and effect. 

5. Information which was not anticipated at 
the time of the tests is frequently dis­
covered through subsequent studies of the 
records. 

6. Malperforming process components or 
systems can frequently be located quickly 
by visual inspection of the recordings. 

The ideal data system is one that combines 
the virtues of both analog recording and digital 
storage--the first to obtain information from 
a limited number of signals, the second to pro­
vide complete coverage and ease the burden of 
excessive data handling and computation. 

SYSTEM IDENTIFICATION METHODS 

Excluding those cases where the desired re­
lationships can be derived completely by mathe­
matical analysis, it is necessary to arrive at 
process descriptions by the analysis of input­
output pairs. To determine these relationships 
one must make a cortelation between the vari­
ables of interest under nor:fl1.al operating con­
ditions. One way of obtaining such a correla­
tion is to force a pertinent independent variable 
and observe the changes of its output. Another 
is to examine statistically auto and cross corre­
lations of the noise spectra of perhaps many 
inputs and their respective outputs. This latter 
technique is extremely time consuming and al­
though is theoretically superior for the analy-

sis of multi input-output systems, is definitely 
not recommended in practice. To date, few 
practical techniques have been developed for 
the process industries. 

One of the earliest methods of system char­
acterization was done by introducing sinusoidal 
fluctuations on the independent variables and 
measuring amplitude and phase ratio between 
the output and input for the series of fre­
quencies of interest. From this a linear de­
scription can be obtained in the form of a Bode 
plot or Laplacian transfer function. However, 
this method is found to be objectionable to the 
process industries for two main reasons-first, 
the order of delays and time constants may be 
as long as 2 or 3 days and the measurement of 
sufficient data points could very well take weeks 
to several months and second, the perturba­
tions necessary to obtain a good signal to noise 
ratio might very well tend to undulate the 
process deleteriously for too long a time. 

Another of these methods, and one recom­
mended in practice by J. O. Hougen, is the pulse 
technique. In this procedure, independent vari­
ables are disturbed with a closed input pulse 
of rectangUlar, displaced cosine, ramp or any 
other shape that will have sufficient harmonic 
content to excite the pertinent frequencies of 
interest. The unknown particular output is re­
corded simultaneously with one driven input. 
These input-output pairs are then reduced to 
a frequency response form by numerical evalu­
ation of the ratio of Fourier transforms. Thus 
the performance function relating one pair is-

J+OO e-jOltf(t) outdt 

- 00 
PF = --------

J+OO e -jOltf (t) i ndt 

-00 

which will yield an amplitude ratio and phase 
angle for different preselected values of w. 

Care must be exercised both in conducting 
the plant tests and in reducing the data. If 
pure time delay is present as indicated from 
time history records, it should be removed by 
shifting the time axis prior to data processing. 
Hysteresis is a more difficult nonlinearity to 
handle and its effect on the results of pulse 
testing have not been thoroughly explored. 



PORTABLE ANALOG COMPUTER PROCESS IDENTIFICATION, CALCULATING AND CONTROL 687 

In any event, where permissible, the results 
of the reduction of pulse data are most con­
veniently presented as a Bode diagram, with 
amplitude ratio and phase angle plotted versus 
frequency. Figure 1 shows the comparative 
results of pulse testing and sinusoidal testing 
of a shell and tube heat exchanger. 

Generally it is useful and instructive to de­
rive a linear model which will describe the fre­
quency response data. This is done by finding 
a combination of linear Laplacian forms which 
will reproduce the data as a Bode plot. 

This procedure of fitting a linear model to 
the data of a system known to be nonlinear 
has been found, in our experience, to be ex­
tremely useful and is usually sufficient to per­
mit subsequent synthesis of the correct control 
system. A single model is not expected to be 
valid for all levels or modes of operation of a 
process whose behavior changes drastically as 
the operating levels are altered. However, 
within a small range of normal operating con­
ditions, these simple models have proved to be 
very useful and adequate for the purposes in­
tended. 

There are several advantages to this 
method-for one; the time required for the test 
is reduced to a minimum becam~e only one dis-

o 
-~ 
., 
"0 
~ , 

• ~ , 
o ~ ____ -4 ______ -+~~r-~~------~100° g 0.1 ., 

~ Dynamic Response, Angle 1'\, ! 
e \ ~ 
I \ ~ 
~ O.OIf.----------+-------+-------->t--+--------I 

~ 
.!.l 

~ 
~ 
0.0011-------4-------+-------+--------13000 

QOOO4~OOO=-----~OO~I------*'QI~----~1.~0------~IO 
Frequency. radians /second 

Figure 1. Comparison of Frequency Response Data 
Obtained by Direct and Pulse Testing Methods. Tube 
and Shell Heat Exchanger. Input: Water Valve Stem 
Displacement. Output: Effluent Water Temperature 
- • and 0 from Pulse Test; A and T::::J from Frequency 
Test. Source: Lees, S., and Hougen, J. 0., Industrial 
Engineering Chemistry, 48, 1058 (1956). Frequency 
Test Data Supplied by S. H. Goodhue, Foxboro 

Company. 

turbance is required instead of a series of sinu­
soids. Another is that the plant can remain in 
the normal operating mode with little or no 
production time loss. 

Conversely, there are some disadvantages­
it is usually necessary to have available a large 
digital computer to generate the Fourier trans­
form pairs, so the test engineer will not spend 
the major part of his time deriving the trans­
forms by hand. Another is the degree of uncer­
tainty involved in transforming chart readings 
by hand to digital data sheets, or if one wishes 
to be more sophisticated, the use of an analog 
to digital converter device to feed the computer. 
A third disadvantage is the necessity of fitting 
the resulting Bode plots to curves describing 
known linear models. 

Still another approach to this problem of 
deriving simple linear models characterizing a 
controllable process is to augment the pulse 
approach by utilizing an analog computer pro­
grammed with a preselected set of general mod­
els with adjustable coefficients. The scheme of 
operation here would be to pulse both the inde­
pendent variable input and the proposed model 
and then to compare the process and model 
outputs. A similar device has been marketed 
by the vVayne Kerr Company and is called uThe 
Transfer Function Computer." The disadvan­
tage of such a system in present state develop­
ment has been the interdependence of the 
coefficients. Once one coefficient has been ad­
justed so that the best agreement of process 
and model has been attained; upon proceeding 
to adj ust the second coefficient one discovers 
that the first must be readjusted again to fur­
ther minimize the difference between process 
and model, and so on. To overcome this inter­
dependency of the coefficients, 3, 4, 5, consider­
able work has been done to derive process 
identification models in a specific way. These 
models are described technically as orthonor­
mal polynomials. A short discussion of the 
principles developed in the above references 
follows. 

Consider a linear, stable process whose dy­
namic characteristics are unknown. This open 
loop system may be described diagrammati­
cally: 

X(t)-----I~----·y(t) 



688 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

where x (t) is the input to the process, y (t) 
the process output, and g (t) the process im­
pulse response function. 

Similarly, associate with the process a model 
by the same input as follows: 

x (t) ------II h (t) II-----w (t) 
where x (t) is an identical input to the model, 
w (t) is the model output, and h (t) the model 
impulse response function, which will be ad-
;l1e!tarl ;n e!lH''''' ':I 'UT':I"tT ':Ie! to Tl'HJlz-a UT{t\ ':Ie! TVlllt>h J ..... u"''''''''''' ......... u ..... "" ........... .,..,. IL4I'J ~It.,] 1J'\J ...... ..L""' ..... "" ." \ "I ~tr..J' ......... '-'L""' ...... 

like y (t) as possible. 

N ext, combine y (t) and w (t) through a sum­
ming device 

e(t) = y(t) - w(t) 

where e (t) is called the error signal. The error 
signal is squared and integrated, allowing a 
continuous evaluation of the following equa­
tion: 

= f~ [y(t) - W(t)], dt Eq. 1 

o 

I t is desired to adj ust the model in a systematic 
manner such that lEI will be minimized. If the 
input is a pulse, one may write 

X(j .. ) = f~ e-;w, x(t)dt 

and if g(t) and h(t) are stable, 

GO.,) = f~ e-;w, g(t)dt 

H(j .. ) = f~ e-;w, h(t)dt 

where G (jw) is the transfer function of the 
process and H (jw) is the transfer function of 
the process and H (jw) is the transfer function 
of the model. After considerable manipulation, 
Equation 1 is transformed as follows: 

I E I = -.!..f +00 I X (j w) 12 1 G (j w) - H (j w) \2 d(1l 
271" 

-00 

Eq.2 

where 
IX(jw) 12 = X( -jw) • X( -jw) 

and 

IG(jw) - H(jw) 12 = IG(jw) - H(jw) I • 

IG( -jw) - H( -jw)/ 

Equation 2 will be used to generate H (jw), the 
frequency analog of h (t). Now let 

n 

H (jw) = ~ aj Ki (jw) Eq.3 
j = 1 

If Equation 3 is substituted in Equation 2, it 
can be shown that a sufficient condition for lEI 
to be a minimum and that the aj in Equation 3 
to be noninteracting is for the Ki (jw) to be 
orthonormal. The restrictions produce 

aj = ~f+oo Re IG( -jw) • Ki (jw) 1 

271" 
-00 

I X(jw) 12 dw Eq. 4 

Equation 4 illustrates the dependence of the at 
on input, model, and process. If the input is 
measured with care, the adjusted ai will insure 
a good representation of the process if the 
Ki (jw) 's are chosen properly. In the following 
the jw will be replaced by the Laplacian opera­
tor s in order to obtain more conventional 
forms. Three orthonormal functions have been 
constructed from functions of the type: 

P j (s) = Va (1 - as~ i Eq. 5 
(1 + as)l +1 

Research in this area may be considered as 
an offshoot of ideas originating largely with 
the late Norbert Wiener and A. N. Kolmo­
goroff4 who were responsible for three crucial 
phases of the present work: the discovery of 
a convenient form for representing the dis­
crepancy between process and model in the 
time domain, the conversion in the time domain 
to equivalent integrals in the frequency do­
main, and the introduction of orthonormal 
functions as an aid to minimizing the discrep­
ancy of process and model. 

To date, we have derived two sets of ortho­
normal polynomials to construct models of the 
general form H (s) = a1K1 (s) + a 2K2 (s) + 
aaK3 (s). These are: if T equals unity-

1 - s 
K1 (s) 1 + 2s + S2 



PORTABLE ANALOG COMPUTER PROCESS IDENTIFICATION, CALCULATING AND CONTROL 689 

K3 (s) 

1 - 3.8266s + 2.8277s2 
1 + 3s + 3s2 + S3 

1 - 2.5841s + 4.407s2 - 2.823s2 

1 + 4s + 6s2 + 4s3 + S4 

and if in Eq. 5, V-;; = 1 and let i be 0, 1, 2: 

1 

(TIs + 1) (T2s + 1) 

(1 - TIs) (1 - T2s) 
K3 (s) = ----------­

(TIs + 1) (T2s + 1) (Tas + 1) 

The first set of the above was made ortho­
normal to the input weighting function of a 
rectangular input pulse of duration of T /2. If 
the duration of the unknown output is long 
compared to the extent time of the input pulse, 
the second set of polynomials may be substi­
tuted for the first. The second set has been 
used to find simple models of flow systems and 
other processes. The diagram of the functional 
scheme is given in Figure 2. 

In actual practice, the values of a l and T 1 

are first adjusted for a minimum time integral 

the model output, then a2 and T2 are adjusted, 
and still later, a3 and T 3' When the best fit is 
obtained by observing the time histories of both 
the unknown and model to the pulse input along 
with the value of the integral, the coefficients, 
a h T h a2, T 2, as, and T 3 are read out and a sim­
ple expression is obtained for the input-output 
pair of interest. The results of the application 
of these to unknown transfer functions are 
shown in Figures 3 and 4. Figure 4 shows how 
transport delay times can be handled-that is, 

X(t.) 

Figure 2. Functional Scheme. 

I-ro 

~2.5 

~ 
~2.0 

UNKNOWN TRANS~ER FUNCT'ON' 

.Q. = 3 -+ 25 
I ('+6.) ('Us) 

MODEL TRANS~ER ~UNCT'ON' 
.2",b.Q£.+ .978(1-6$) 
I 1+6$ (I +65)0 +4.s) 

o~~~~~--~~~~ __ ~ __ ~~~--~ 
o 10 12 l4 16 1& 20 22 24 26 28 

T'ME (SECONDS) 

Figure 3. Time Responses of Unknown and Best Model 
Values. Input Pulse 100 Units .2 Seconds Duration. 

the input pulse to the model is delayed so that 
the output of the unknown and the model will 
begin at coincident times. 

UTILIZATION OF PROCESS DATA 

Once it has been established that the simple 
linear model is sufficient to describe the process 
in the region of interest, it is routine to deter­
mine the correct values of integral action, pro­
portional action, and derivative action on a 
standard process controller. The methods of 
Bode and Black, Nyquist, root locus, etc. apply 
directly. 

lVIoreover, the open loop adaptive control 
function can be determined by establishing a 
simple linear model for different levels of oper­
ation. Thus, the necessary controller character­
istics for the entire set of model functions can 
be found as a function of these levels and with 
the application of these characteristics the 

Figure 4. Model Results for Unknown Containing 
Transport Delay. 



690 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

process will always be operating at an opti­
mum. 

Chemical systems are almost always non­
oscillatory-that is, the transfer functions de­
scribing the dynamics are a series of time con­
stants in the denominator with real roots. This 
makes it very easy to formulate a procedure 
to obtain a slightly more damped close loop 
response than the one cycle quarter amplitude 
ratio, one and one-half overshoots, or minimum 
error squared criteria. Stability apart, this is 
done by setting the transfer function of the 
closed loop system with unknown controller 
constants equal to unity. and rewriting the ex­
pression in descending powers of s in numera­
tor and denominator. One then equates the 
coefficients of like powers and solves for the 
controller characteristics. 

The general controller characteristic equa­
tion used will be 

~=Ki + ~ + KIs 
ei s 

This type of control is easily simulated on 
the analog computer and is the one used in the 
following example. 

EXAMPLE 

In order to demonstrate the use of the or­
thogonal polynomials approach and still have 
something that is realistic, portable, and would 
utilize the repetitive operation mode of the 
analog computer, a system of two incandescent 
lights and photosensitive resistors was selected. 
The bulbs and photosensitive cells were ar­
ranged in two compartments of a box with 
each cell looking at a bulb. 

This system of lights was selected as an 
example in preference to other applications 
(flow or pressure control) of this technique to 
chemical processes, and was from the begin­
ning designed to be a part of a portable en­
semble demonstrated to engineering groups. 
Many of the dynamic characteristics of actual 
chemical systems are exhibited by the incan­
descent lamp-photoresistor combination. 

In this "process" the first bulb is operated 
at a constant light level as adjusted by the 
steady-state output of a computer amplifier. 

The first photocell "looks" at this bulb's light 
output and is arranged to diminish the second 
bulb's input for an increase in the light it 
senses. The second photocell is arranged in a 
circuit to give an output proportional to the 
intensity of the second bUlb. The light from the 
second bulb is isolated from the first photocell 
so that no system instabilities can exist. Thus, 
when the first bulb is pulsed, the second photo­
cell produces an output change depending on 
the direction, gain, and dynamics of the whole 
_____ L ! ___ L! _ __ m1_ _ _ ___ 1 _ _ .J! _ ___ _ __ .e _ __ L 1_ _ _ •• 

l:UIIlUlIlaHUIl. .lIle allalug ulagrall1 .lur Llle £1.1-

rangement is shown in Figure 5. 

If one were to try to consider the simulation 
of the dynamics of the system, the simulation 
might be as follows: 

Each light bulb: 
Power in (Pi) = Power radiated (Pr ) + 

Power absorbed (P a) + Power conducted 
away (Pc) 

Thus: 

Ein2 
_ K 4 dT T ) R - 1 et T + K2 mcp dt + K3 (T - room 

INTEGRAL ERROR SQUARED 

Figure 5. Computer Diagram During Process 
Identification. 



PORTABLE ANALOG COMPUTER PROCESS IDENTIFICATION, CALCULATING AND CONTROL 691 

et Emissivity of tungsten 
R = p(l + aT) 
KJ Stefan-Boltzmann Constant 5.67 X 10-8 

vvatt/meter2/oK4 

m Mass of Filament 
cp Heat Capacity 
K3 Coefficient of Conductivity 

or 

dT E ·2 In ---------
dt p(l + aT) K2mcp 

K1 et T4 K3 (T - Troom ) 

K2 mcp 

Each photocell: 
Upon consultation of the manual on CdS 

photoconductive cells, 7, one vvill see that there 
is a response time associated vvith the output 
current vs. the change in light level. These 
curves shovv that this apparent time constant 
is not constant vvith level or past history but 
a definite function of the history. 

Thus it might be expected that the "system" 
vvill be at least fourth order. 

To determine the "transfer function" experi­
mentally, vve vvill use the analog computer to 
pulse the first light, observe the "process sys­
tem" output. N ext, pulse the input to the 
orthogonal model, observe its output, and com­
pare the differences betvveen process and model 
output on an integral error squared basis. The 
orthogonal set programmed on the computer is : 

o a1 a2 (1 - TIs) 
-- + + 
I T1s+1-(T1s+1)(T2 s+1) 

a3 (1 - TIs) (1 - T 2 s) 

(T1 S + 1) (T2 s + 1) (T3 s + 1) 

When the steady-state level of the lights is 
80 volts and the input pulse height to the !In­
knovvn is 10 volts, the values of the coefficients 
aI, a2, a3 and T 1, T 2, T 3 vvere found to be: 

For an increasing pulse For a decreasing pulse 

a1 = 3.13 
T1 = .0543 
a2 = .657 
T2 = .0063 
a3 = .579 
Ts = .0067 

a1 = 3.29 
T1 = .0538 
a2 = .892 
T2 = .0081 
as = .632 
Ts = .0075 

A static measurement at 80 volts with an in­
put change from 79 to 81 volts gives a gain 
of 4.7. Other values for the orthogonal model 
constants at different operating levels are given 
in Table I. 

The values in Table I can be used in the gen­
eral expression of the model, and a "transfer 
function" vvritten for each case. These are 
shown in Table II. Inspection of the numerator 
of each expression in the orthonormal column 
might lead one to think that the s terms are 
part of the e-Ts series. Thus, ignoring the valid­
ity of the sign of the 82 term in some cases, the 
function might be written as shown in the 
exponential columns of Table II. Typical time 
histories of the application of this technique to 
the "process" are shown in Figure 6. 

In process systems, the controller most always 
follows the error device being placed before the 
process in the forward loop. Thus, the form of 
the closed loop function is always 

~ (s) = Gc Gp 

I 1 + Gc Gp 

The above can be rearranged into the form: 

aSn + Bsn-l + . . . . . 1 
Asn + Bsn-l + . . . . . 1 

If we then set this expression equal to unity, 
and require that the models of the same be 
unity for all s, then, vve must equate coefficients 
of like powers. 

TABLE I. ORTHOGONAL MODEL 
CONSTANTS AT DIFFERENT 

OPERATING LEVELS 

. Level * Model Constants 
(Lamp 
Volts) a1 T1 sec. a2 T2 sec. as Ts sec. 

40 52.2 .102 29.0 .040 2.78 .0073 

50 31.2 .077 21.8 .033 1.77 .0086 
60 10.78 .055 7.46 .024 .596 .0024 

70 3.86 .041 3.00 .019 .368 .0069 
80 3.13 .054 .657 .0063 .579 .0067 
90 1.29 .043 .397 .0059 .208 .0075 

* Steady-state value of supply voltage with a rec-
tangular pulse of + 10 volts for 20 milliseconds dura-
tion input disturbance in each case. 



692 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

~90 using the data of Table II. These are shown in 
~ Table III. 
~ 
~ao 

..J 

~ 
~1.25 

~ .. "" 

The analog computer was used as a check of 
these values. The diagram is shown in Figure 7. 

~o~O-.O~I--.~ro~~~~5--.~07--~.OV~-.~"--~.I~~-.~i~--;'.,,~ 
TIMECSECOND!5) 

Equating like coefficients will often give a 
transient response slightly more damped than 
the integral error squared or the integral ab­
solute value criteria. This is not a deterrent 
to the application of the technique to chemical 
processes, because in most instances the process 
is quite noisy and very tight control is probably 
impossible. 

Figure 6. Typical Time Histories of Example 
Application. 

Close examination of Table III suggests that 
the controller parameters K j , Kp and Kt be 
made some function of the level of operation. 
Logarithmic plots of these functions demon­
strate that there is approximately the same 
relative changes in each parameter for changes 
in the level (Le., the controller constants cal­
culated in each case are essentially only a func­
tionof the open loop gain). In the example 
cited, the approximate function of operating 
level compensation is to interpose in the error 

Thus, if the process is of the same order as 
the controller, it is possible to completely com­
pensate the system. If, however, as is the 
general case, the process order is higher, astute 
judgment must be used in selecting the pre­
dominate quantities. The values of Kh Kp and 
Kt at different levels can be calculated this way 

TABLE II. THE APPROXIMATE LAPLACE FORMS OF THE MODEL FUNCTIONS 

Level * 
(Lamp 
Volts) 

40 

50 

60 

70 

80 

90 

* As in Table I. 

Functional 

Orthonormal Exponential 

84 (1 - .012s + 5.9 X 10-5S2 ) 84 e-·01S 

(.102s + 1) (.04s + 1) (7.3 X 10-3s + 1) (.102s + 1) (.04s + 1) (7.3 X 10-3s + 1) 

55 (1 - 7 X 10-3s - 2 X 10-5S2 ) 55 e-· 007S 

(.077s + 1) (.033s + 1) (8.6 X 10-3s + 1) (.077s + 1) (.033s + 1) (8.6 X 10-3s + 1) 

19 (1 - 8 X 10-3s + 2.2 X 10-5S2 ) 19 e-·008S 

(.055s + 1) (.024s + 1) (2.4 X 10-3s + 1) (.055s + 1) (.024s + 1) (2.4 X 10-3s + 1) 

7.2 (1 - 3.4 X 10-3s - 7.8 X 10-6S2) 7.2 e-·003S 

(.041s + 1) (.019s + 1) (6.9 X 10-3s + 1) (.041s + 1) (.019s + 1) (6.9s + 1) 

4.4 (1 - 5.8 X 10-3s + 2.1 X 10-5S2) 4.4 e-·006S 

(.054s + 1) (.0067s + 1) (6.3 X 10-3s + 1) (.054s + 1) (.0067s + 1) (6.3 X 10-3s + 1) 

1.9 (1 - 3.7 X 10-3s - 9.6 X 10-6S2 ) 1.9 e-·004S 

(.043s + 1) (.0075s + 1) (5.9 X 10-3s + 1) (.043s + 1) (.0075s + 1) (5.9 X 10-3s + 1) 



PORTABLE ANALOG COMPUTER PROCESS IDENTIFICATION, CALCULATING AND CONTROL 693 

TABLE III. VALUES OF CONTROLLER 
CONSTANTS FOR VARIOUS 

OPERATING LEVELS 

Controller Constants 
Level * 

(Lamp Volts) Ki Kp ~ 

40 .11 .017 .0005 
50 .24 .026 .0006 
60 .96 .076 .0010 
70 3.40 .203 .0030 
80 4.20 .260 .0020 
90 12.00 .620 .0040 

* For an increasing 10 volt step. It is possible to 
experience instability when the same values are used 
with a decreasing step. 

signal a gain change equal to .0014 eL
/

10
, where 

L is the lamp level in volts. Coupled with this, 
the fixed controller values are to be adjusted to 
Ki = 12, Kp = .62 and ~ = .004. This will give 
good control at all levels of operation without 
readjustment. 

REFERENCES 

1. HOUGEN, J. 0., and R. A. WALSH, "Pulse 
Testing Method," Chemical Engineering 
Progress, Vol. 57, No.3, March 1961. 

2. HOUGEN, J. 0., C. G. HAGBERG, L. H. FRICKE, 
and O. R. MARTIN, "Process Identification 
and the Design of Process Systems with 
Predictable Performance." Proceedings of 
the Twelfth Annual Instrumentation Con­
ference, Louisiana Polytechnic Institute, 
Ruston, Louisiana. (To be published in 
Chemical Engineering Progress, August 
1964) . 

3. WIENER, N., The Extrapolation, Interpola­
tion and Smoothing of Stationary Time 
Series with Engineering Applications, 
Wiley, 1949. 

4. EYKHOFF, P., "Process-Parameter Esti­
mation," Technological University, Elec-

~
ooo 
RELAY 

At t REF.~ 0 

tON 

STEP 

CONTROLLER 

PROCESS 

Figure 7. Computer Diagram During Process Control. 

tronics Laboratory, Delft, Netherlands, 
May 1962. 

5. KOLMOGOROFF, A. N., "Interpolation und 
Extrapolation von Stationaren Zufalligen 
Folgen," Bulletin de l' Academie des Sciences 
de USSR, Ser. Math. 5, 1941. 

6. KITAMORI, T., "Applications of Orthogonal 
Functions to the Determination of Process 
Dynamic Characteristics and to the Con­
struction of Self-Optimizing Control Sys­
tems," Automatic and Remote Control, 
Proceedings of the First International Con­
gress of IFAC, Moscow, 1960, Volume II, 
pp. 613-618, Butterworths, 1961. 

7. RCA Photocells Circuits Data Solid-State 
Photosensitive Devices Booklet ICE-261, 
Radio Corporation of America, Electron 
Tube Division, Harrison, N. J. 





PROGRESS OF HYBRID COMPUTATION 

AT UNITED AIRCRAFT RESEARCH LABORATORIES 
Gerard A. Paquette 

United Aircraft Research Laboratories 
East Hartford, Connecticut 

INTRODUCTION 

Many of the present day simulation problems 
utilizing analog equipment exclusively require 
large, expensive computing facilities. The non­
linear calculations involved in modern simula­
tions require a large portion of the all analog 
system. Increase in operation speed and reli­
ability coupled with reduction in purchase cost 
have made the digital computer desirable for 
these nonlinear computations. 

Prior to the end of 1962, the analog facility 
at United Aircraft Research Laboratories con­
sisted of two large analog consoles, one small 
analog console, and associated analog equip­
ment with emphasis on nonlinear devices. At 
this time, several problems required all of this 
equipment combined. 

In hopes of improving the operation and 
capacity for highly nonlinear simulations, a hy­
brid facilityl was added toward the end of 
1962. This consisted of a general purpose digi­
tal computer, a D.C. analog computer, and in­
terconnecting linkage. The hybrid system is 
presently being used to simulate V/STOL air­
craft, aircraft,2 engine, and space systems in 
real time. An example, Single Rotor Helicopter 
Simulation, is discussed in this paper. 

Initial plans for the .hybrid facility were to 
use the digital computer for most nonlinear 
functions and the analog computer for dy­
namics. As time progressed, advanced tech-

695 

niques were developed to permit further digital 
application. These techniques include compen­
sating calculations for sampling delay and 
practical integration schemes.3

- 5 Thus in some 
systems presently simulated at United Aircraft, 
most or all computation is becoming digital. 

In addition, the digital computer is used to 
support problem preparation and modification. 
Utility programs permit procedure and data 
changes from paper tape, typewriter, or digital 
scope and light pen input. 

THE UNITED AIRCRAFT HYBRID 
FACILITY 

Analog 
A Beckman Ease 2133 Analog Computer is 

assigned to the hybrid installation. Its comple­
ment of equipment emphasizes linear analog 
operations in the expectation that the digital 
computer will process most nonlinear calcula­
tions. The computer contains 100 operational 
amplifiers, 150 potentiometers, 20 time division 
multipliers, 10 quarter square multipliers, and 
20 II-segment, diode function generators. 

Auxiliary equipment includes a DO /IT 
(Digital Output/Input Translator) which per­
mits typewriter control of pot setting and com­
ponent reading. A digital voltmeter is used for 
component reading through the DO/IT or by 
itself. A digital clock, part of the analog sys­
tem hardware, is available for mode timing. 



696 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Mode switching is provided by reed relays to 
permit rapid, repetitive operation. 

Digital 
A Digital Equipment Corporation PDP-l 

Computer was selected as the best compromise 
of capacity, speed, and cost among 1962 com­
puters useful for hybrid application. This com­
puter resembles the TX-O computer at M.LT. 
which has been used for real time simulation.2 

The PDP-l is a single address, single in­
struction, stored program machine with a word 
length of 18 binary bits. Basic memory con­
tains 4096 words with a memory cycle time of 
5 microseconds. Instructions available permit a 
wide range of logical operations and fixed-point 
arithmetic. Instruction execution requires 5 to 
10 microseconds for most operations. MUltiply 
and divide average 20 and 30 microseconds, 
respectively. These speeds would permit execu­
tion of approximately 2000 instructions in a 
program providing 50 solutions per second. 

Input/output devices include analog linkage, 
typewriter, paper tape reader, paper tape 
punch, and digital scope. The photoelectric 
tape reader accepts eight level punched tape 
at a rate of 400 characters per second. The 
tape punch provides output at 63 characters 
per second. 

An incremental digital scope can be used to 
display graphical and/or alphanumeric infor­
mation. Various scope modes permit display 
of points, incremental data, vectors, or charac­
ters. Writing speeds vary from 35 microsec­
onds per point in point mode to 1.5 microsec­
onds per point in vector mode. 

A 2048 word memory is used with the scope 
to maintain a fixed display while the computer 
is operating independently. The scope memory 
includes hardware to permit programmed char­
acter generation. Data transfer from the com­
puter to this memory can be made as desired 
to modify the display. 

Light pen input to the computer is available 
from the scope. On sensing light, the pen inter­
rupts the computer and display sequence. The 
current scope coordinates can be read to locate 
the pen after the interrupt. 

A real time, digital clock is included for tim­
ing of digital computation cycles. Two modes 

of clock operation are used over a time range 
of 10 microseconds to 13 seconds. In one case, 
the clock can be preset to interrupt the pro­
gram at a desired time interval within the 
above range. In the second case, the clock can 
be used as a data source with clock clearing 
and reading under program control. 

Computer Linkage 

The linkage system can be divided into two 
distinct parts: the computing linkage and the 
control linkage. The computing linkage in­
cludes both data and logic converters from each 
computer to the other. All converters are under 
digital program control. 

Computing data linkage includes 20 digital­
to-analog and 20 analog-to-digital conversion 
channels. These utilize a word length of 14 
binary bits corresponding to an analog range 
within plus and minus 128 volts. The 14 bit 
word provides a resolution of 1 part in 16,384 
which is consistent with analog accuracy. 

Digital-to-analog converters were designed 
and built at United Aircraft. The data word 
from the digital computer is transferred to a 
14 binary bit, flip-flop buffer storage; analog 
gates; resistor network; and an operational 
amplifier. Programmed data transfer to the 
converter buffer requires 5 to 15 microseconds 
depending on the initial location of the data 
word. Overall conversion speed is primarily de­
pendent on the response of the output amplifier. 

Analog-to-digital conversion equipment con­
sists of a Packard Bell, 20 channel multiplexer, 
a sample and hold amplifier, and a Multiverter. 
Programming sequence includes three instruc­
tions: select-multiplexer-channel, convert, and 
read-converter-buffer. The select-multiplexer­
channel instruction addresses the analog input 
to be connected to the sample and hold. A delay 
of at least 15 microseconds must be pro­
grammed before the convert instruction to per­
mit mUltiplexer switching. On execution of the 
convert instruction, the sample and hold enters 
hold mode in which it will remain until conver­
sion is complete. The Multiverter converts the 
analog voltage one bit at a time and stores the 
resulting binary word in its buffer. Conversion 
requires approximately 75 microseconds. The 
conversion can be programmed for automatic 



HYBRID COMPUTATION AT UNITED AIRCRAFT RESEARCH LABORATORIES 697 

computer delay or the time can be made avail­
able for computation. The read-converter­
buffer instruction transfers the data word into 
the computer. Overall analog-to-digital conver­
sion time is 90 microseconds. 

Logic linkage includes 4 digital-to-analog and 
8 analog-to-digital conversions. The digital-to­
analog logic converters permit program control 
of single-pole, double-throw relays at the ana­
log console. A ground or open circuit at the 
input of each analog-to-digital logic converter 
sets a digital status bit to one or zero, respec­
tively. 

The control linkage allows the PDP-l to set 
analog computer modes and operate or monitor 
all DO lIT functions. A single instruction cor­
responds to each analog computer mode. Ex­
isting modes at the analog computer set desig­
nated bits of a status word in the PDP-l to 
close the information loop. 

For DO lIT operation from the PDP-l, char­
acter codes similar to those of the DO lIT's own 
typewriter can be transmitted to and from the 
DO lIT hardware. The digital program can 
then become a replacement for this typewriter. 

HYBRID APPLICATION AND 
PREPARATION 

Real time simulation has long been associ­
ated with the analog computer. Preparation 
and modification of the circuit diagram, patch 
board, and potentiometer values is rapid. Im­
provements in analog components and automa­
tion of set up procedures have advanced analog 
computing capability. However, as the operat­
ing ranges of modern physical systems have in­
creased, the simulation nonlinearities and accu­
racy requirements have grown. Dynamically, 
we still handle problems in 6-degrees of free­
dom but the needs for variable products, trigo­
nometric functions, arbitrary functions, and 
other nonlinearities have increased to the point 
where the parallel analog system requires too 
many expensive, and sometimes insufficiently 
accurate, devices. 

Application 
The hybrid facility consists of digital and 

analog devices and uniting linkage. The prob­
lem equations are divided between the two com-

puters to take advantage of the capabilities of 
each device4

, 5 as indicated in Table 1. 

The analog equipment is generally used for 
dynamics, implicit algebra, and simple diode 
controlled nonlinearities though the digital can 
often be extended into these areas as well. The 
evaluation of nonlinear operations, especially 
arbitrary function generation, is the primary 
application of the digital computer. 

Analog signals are repetitively sampled by 
the analog-to-digital converters, operated on by 
the sequential digital program, and transferred 
to the analog through the digital-to-analog con­
verters. The controlling factors in determining 
the operations to be performed digitally in­
clude: 

1. Digital memory available for program 
and data 

2. Conversion channels available to link the 
computers 

3. Time permitted for each sample-calculate-
output cycle 

The quantity of digital memory and conversion 
channels to be provided is determined from a 
rough attempt at designing existing problems 
intI') tho huh'l"i£l <;!u<;!tOl'Yl 
..I...&..&.""V \,I.I...&.'-' .I..LJ r-J..L..I..'-4 UJ Uvv..l...L.I.. 

Digital program cycle time is usually the pri­
mary limiting factor. The sample-calculate­
output cycle presents a fictitious time delay to 
the simulation and must be sufficiently short 
relative to the periods of the real system. Some 
advance knowledge of the frequency spectrum 

TABLE 1. TYPICAL USES FOR EACH 
COMPUTER OF THE HYBRID FACILITY 

Analog Computer 

Time Integration 

Constant by Variable 
Products 

Implicit Calculations 

Limits, Dead Zones, 
etc. 

Flight Simulator 
Coupling 

Digital Computer 

Arbitrary Function 
Generation 

Variable by Variable 
Products 

Trigonometric Calcu­
lations 

Logical Control 

High-speed Display 



698 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

of the real system is generally available but 
the delay influence is best determined experi­
mentally. Application of the digital to the 
lower frequency portions of the problem allows 
lower point rate and more digital operations 
per cycle. Use of the digital in the higher fre­
quency areas can be permitted if the fewer 
calculations available are more significant in 
their corresponding analog representation. 
Some problems require application of the digi­
tal computer to portions with different fre­
quency band"widths. For optimum digital 
utility, time sharing of the separate sample­
calculate-output cycles can be provided by the 
program. 

As an example of selecting initial cycle time, 
a reasonable choice is to use one-hundredth of 
the shortest period of interest. This would pro­
vide a phase error of less than four degrees at 
the selected frequency. The time delay error 
can be further reduced by corrective measures 
discussed below. 

Effects of the sampling rate obtained with 
the digital program are tested experimentally, 
The nonlinear nature of most simulations does 
not permit easy evaluation and comparison of 
damping factors, frequencies, etc. A number 
of scattered dynamic test cases are run at real 
time. These are repeated with the analog time 
constants increased or with dummy time delays 
added to the digital program to represent rela­
tive slowing or speed-up. This form of com­
parison is also useful to indicate future 
capabilities of the digital. Final problem veri­
fication also includes, whenever possible, the 
simulation of a known vehicle and comparison 
with flight test before extrapolation to an 
advanced vehicle. 

Preparation 
The preparation of the digital program6 is 

quite similar to preparing the analog circuits, 
as seen in Figure 1, except that a different lan­
guage is used. Similar data scaling operations 
exist in preparing the problem for either com­
puter. Digital program sequence is linear, sac­
rificing space in order to avoid time consuming 
subroutine linkage. Symbolic, machine lan­
guage is used in describing the operations to 
be performed and the locations of the infor­
ma tion in memory. Basic routines such as sine, 

MODIFY PLUGBOARD I>NJ 
CHANGE POT SETTINGS 

Figure 1. Problem Preparation for the Computers of a 
Hybrid Facility. 

arctangent, function interpolation, square root, 
etc. are available as building blocks for the pro­
grammer. The symbolic information is con­
verted to computer language by an assembly 
program.i Our experience at United Aircraft 
has shown the digital programming to be easily 
mastered by the same simulation engineers who 
design the analog circuits. The program can 
generally be prepared in the same amount of 
time as designing and wiring a corresponding 
analog circuit. 

Though somewhat slower than analog patch 
board changing, digital calculations can usually 
be deleted, inserted, or changed during on-line 
problem operation by program patching tech­
niques. To retain good system organization, a 
reassembly of the modified program is obtained 
after the simulation session. 

Digital data changes, including function 
curves, are more rapid than can be obtained at 
the analog. This capability is provided by aux­
iliary digital programs discussed later. 

Checkout of the digital and analog calcula­
tions is initially independent. Digital algebra 
and trigonometry are verified relative to the 
system equations with all logical branches inde­
pendently checked. Analog check is performed 
by applying static voltage to various portions 
of the problem and testing component output 
values or time constants. The digital checking 



, HYBRID COMPUTATION AT UNITED AIRCRAFT RESEARCH LABORATORIES 699 

requires more time than analog because of the 
larger number of calculations usually per­
formed at the digital. Typical checkout of the 
program has taken' from two to three 8-hour 
shifts. When each computer portion is inde­
pendently checked, the system is closed and 
conversion channels are checked for proper wir­
ing at the analog and proper timing at the 
digital. 

SOME DIGITAL TECHNIQUES FOR 
SIMULATION 

Relative to the analog computer, the digital 
computer is a new element in real time simula­
tion and its application bears some examina­
tion. A few demonstrative techniques are dis­
cussed below. 

Delay Correction 

The digital computer is generally applied in 
the area of calculation from the motions of a 
system to its derivatives. The digital output 
will remain fixed over each sampling interval 
and, though the analog integrations vary con­
tinuously with time, the analog will be read at 
discrete levels each program cycle. Each out­
put from the digital is dependent on data ob­
tained at the start of the progranl cycle and 
represents a delay of at least one cycle, T. 

Consider the time relations of a closed loop 
calculation involving one integration with digi­
tal feedback as shown in Figure 2. Initially, the 
digital computer should have cycled at least 
once before problem start to provide derivative 
output for zero time. The functional time 
sequence after the problem begins operation' is 
shown in Figure 3. Assuming the computation 
begins with the digital sequence at the start of 
a cycle, the variable read at zero time will be 
used to compute the derivative output at time 
T. Likewise, the variable at time T will lead to 
derivative output at 2T. Thus the analog re-

x 

Figure 2. Typical Computer Application. 

F(4T1 

FUCTIONAL 
TIME 
SEQUENCE 

F(3T 

F(2T) 

F(T) 

T= DIGITAL CYCLE 

I 
I 
I 
I 
I 
I 

ANALOG x__ I_DIGITAL X 

I 
I 
I ___ ..J_ 

I 
I 
I _=-~-~o-
I 
I ___ -l __ _ 

____ ..J __ _ 

I 
F (0) ~--+----:-I __ --.-__ -.--

o T 2T 3T 4T 

TIM E 

Figure 3. Function Timing Without Delay Correction. 

ceives data one cycle time behind true time and 
must integrate this constant data until the com­
pletion of the next digital cycle. 

x(nT) = x(nT - T) + Tx(nT - 2T) (1) 

n = 1,2, ... 

Higher order analog integration is affected in 
much the same manner. Two integrators in 
sequence would operate as in equation (2). 

T=~ 
x(nT) = x(nT - T) + -x(nT - 2T) (2) 

2 

The effect of digital delay can be reduced, 
where necessary, by extrapolating problem 
variables forward one sample interval. The re­
sulting influence, illustrated in Figure 4, 
changes Equation (1) to the form in Equation 
(3) . 

x(nT) = x(nT - T) + Tx(nT - T) (3) 

The order of extrapolation used provides a 
trade-off between accuracy of function fit and 
time for calculation and data handling. The 
simplest is linear extrapolation as in Equa­
tion (4). 

x(nT + T) = 2x(nT) - x(nT - T) (4) 

The parabolic form is shown in Equation (5). 

x(nT + T) = 3x (nT) -

3x(nT - T) + x(nT - 2T) (5) 

At zero time, the system is generally at rest 
allowing the variables at negative times to be 



700 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

r ----F (4T) 

FUCTIONAL 
TIME 
SEQUENCE 

T= DIGITAL CYCLE I 
I 

DIGITAL X --+ I +-DIGITAL - TO-
(EXTRAPOLATED) I ANALOG ~ 

I 
F(3T 

F(2T) 

F (T) 

F(O) 

o T 2T 3T 4T 

TIM E 

Figure 4. Function Timing with One Interval Delay Correction. 

equal to the variable at zero time, i.e., x (0) = 

x( -T) = etc. If initial derivatives are not zero, 
an iteration must be made to calculate the 
initial values at negative time and adjust the 
derivatives. 

Digital Integration 
An examination of Equation (3) above shows 

this to be identical to the Euler Forward Step 
Integration method used for time integration in 
digital computation. It is therefore possible to 
digitally simulate the operation of integration 
by this fast and easily programmed technique. 
Use of this method for more than a single 
integration in sequence must proceed from the 
last integration first. That is, 

x(nT) = x(nT - T) + Tx(nT - T) (6) 

then 

x(nT) = x(nT - T) + Tx(nT - T) (7) 

For two integrations, it is also possible to use 
Equation (8) which duplicates the equivalent 
analog integrations with digital feedback and 
delay correction. 

T2 
x(nT) = x(nT - T) + 2 x(nT - T) (8) 

For linearly fedback analog transfer func­
tions such as lags, damped second order net­
works, etc., a difference equation approach, 
discussed by Hurt, 3 can be used. By this tech­
nique, the Laplace transfer function is obtained 
and converted to an equivalent pulse transform 
from which a difference equation can be 
formulated. 

A rbitrary Function Generation 

Various digital techniques are available for 
evaluating function data. Among these are 
polynomial representations and table interpola­
tions. The table approach is useful for the 
arbitrary shapes of aerodynamic curves. How­
ever, searching for the table arguments is un­
desirable because of the execution time required. 

A direct fuinction look-up technique,S, 9 de­
scribed for bivariate functions in Appendix I, 
is used at United Aircraft. This method uses 
a table of function values taken at equispaced 
input arguments. The input intervals are 
scaled to permit use of a portion of the binary 
argument word as a table reference address 
and the remainder of this word as the linear 
interpolation ratio. 



HYBRID COMPUTATION AT UNITED AIRCRAFT RESEARCH LABORATORIES 701 

The use of a single argument interval often 
requires an excessively large data table to ade­
quately describe the function. Some reduction 
in table size can be accomplished by subdivid­
ing the function into regions with different 
argument modifying function to the problem 
argument, i.e., 

f(x) = g(h(x» (9) 

Function Algorithms 
Some calculations such as trigonometric or 

logarithmic functions can be reduced to poly­
nomial evaluations. A fast converging and rea­
sonably accurate polynomial algorithm is de­
sired. In general, Chebyshev polynomial fits/o 
for these functions satisfy this need; e.g., sine 
function for angle () over two quadrants 

sin () = 1.5706268x -

0.6432292x3 + 0.0727102x5 (10) 

2() 
where x =-

7r 

The results are accurate to within 0.012 % over 
the range of (), consistent with current day 
analog resolvers. Execution time in PDP-l 
computer averages 140 microseconds. 

I terated Functions 
Some computations require iteration in their 

evaluation. The square root is a typical exam­
ple. The square root can be obtained by using 
the Newton-Rhapson method for iteratively 
solving roots of equations.11 

(X2) 
-, -, + x(n) 
x(n) , 

2 
x(n + 1) (11) 

n = 1,2, ... 

A fixed number of iterations can be used with­
out convergence testing if the range of input 
variable change and accuracy of rooting are 
known. 

In simulation activities, the problem varia­
bles should not change by a large ratio from one 
program cycle to the next unless the variables 
are insignificantly small within the range 
scaled. If the successive input variables are 
within 0.5 to 2 times the previous values and 
the preceding root is used as the initial output 

estimate, four iterations of Equation (11) are 
known to provide less than 0.01 % convergence 
error. 

OFF-LINE DIGITAL SUPPORT 

Off-line, digital utility programs support 
the simulation from problem preparation 
through output presentation. This is especially 
important when problem turn around time is 
as frequent as eight hours, a common proce­
dure at United Aircraft. Typical utility pro­
grams are as follows: 

1. Assembly' and debugging12 systems for 
program preparation and modification. 

2. Coefficient generation programs6 for 
evaluating problem constants and potenti­
ometer settings from engineering data. 

3. DO/IT control programs1
;! (UAC-15, S. 

Sharpe and J. Miller) for potentiometer 
setting and component reading. 

4. Digital scope, arbitrary function display 
with light pen, curve modifier.14 

5. Digital scope display9 for graphically pre­
sented and alphanumerically identified 
time sequence, cross plot, or steady state 
data. 

Some .of these systems are discussed in more 
detail below. 

Coefficient Generator 
Equation coefficients used in the simulation 

mathematics are functions of parameters of 
the physical device and its environment. These 
parameters are part of the problem data lan-
guage used by the engineer and are often 
changed during a study. 

A digital program is used to compute the 
problem coefficients from the engineering pa­
rameters. All scale factors to be applied in 
converting coefficients to pot values for the 
analog computer or constants for the digital 
on-line program are included. Gain changes 
needed to adj ust the range of computed pot 
values are applied by the program. Range 
changes for digital constants are generally not 
required since the digital on-line program can 
be scaled for wider range than analog due to 
the one in over 200,000 parts resolution avail­
able. 



702 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

Pot Setting 
With the control linkage between the digital 

and analog computers, it is possible for a pro­
gram to set analog potentiometers directly 
from the results of a coefficient generation pro­
gram. The settings can be made and checked 
faste:r ;)nd more reliably than by a human oper­
ator. If a failure occurs, the user receives a 
typed output indicating the difficulty. If gain 
changes are required, the digital program types 
the information. For pots requiring frequent 
gain changes, the digital-to-analog logic linkage 
can be used to switch gains under program con­
trol. 

Analog Check 
The digital control of the analog computer 

permits reading of all analog components. With 
this feature, a program (UAC-8, G. Paquette 
and J. Miller) has been developed for checking 
the analog circuits. This program accepts equa­
tions representing a static condition on the 
analog hardware. These are solved interpre­
tively and results are compared with analog 
components within specifiable tolerances. Er­
rors are typed out. Changes in analog cir­
cuitry or pot values can easily be updated in 
the check equations and data by typewriter 
control or direct input from the coefficient 
generator program. This system is discussed 
further in Appendix II. 

Function Display and Modification 
Curves used with the hybrid simulation are 

generally included in the digital calculation. 
The few, if any, remaining on the analog are 
still subject to the slow set up and change pro­
cedures typical of diode function generators 
even with servo set capability. 

Curves contained in the digital memory can 
be loaded from paper tape and changed by tape 
or typewriter input. In addition, the curves 
can be displayed on a digital scope individually 
or as maps for easy modification using the light 
pen. This technique permits the user to rapidly 
change function data without requiring a calcu­
lation of each point. 

OPERATIONAL HYBRID SIMULATION 

The Single Rotor Helicopter, Real Time Sim­
ulation sponsored by the Sikorsky Division, 

demonstrates an application of hybrid compu­
tation at United Aircraft. The simulation con­
sists of three basic portions. 

1. Fuselage aerodynamics, kinematics, and 
dynamics. 

2. Main rotor aerodynamics and dynamics. 
3. Fixed base, flight simulator. 

The total force, 6-degree of freedom, aircraft 
mathematics include computation of fuselage 
and tail rotor forces and moments as functions 
of air speed and direction. Along with main 
rotor components, these forces and moments 
are applied in computing linear and angular 
motions. Most nonlinear aerodynamic and kine­
matic calculations are obtained at the digital 
computer. Flight path and attitude integra­
tions are performed at the analog computer. 

The rigid, hinged blade main rotor dynamic 
degrees include blade flapping and azimuth 
speed. Force calculations, including effects of 
mach number and stall, are obtained over the 
blade span and rotor azimuth. The entire rotor 
computation, including dynamics, is performed 
at the digital computer. 

The flight simulator, used to study flying 
qualities and human factors, contains pilot con­
trols; instruments; and a Norden Conalog, arti­
ficial world, television display. The amount of 
data required is fairly large but the calcula­
tions are reasonably simple and contain few 
nonlinearities. In order to minimize the num­
ber of digital-to-analog converters required, 
these computations are performed at the analog 
computer. 

Auxiliary computation tools provide for 
rapid implementation of desired studies: 

1. A digital coefficient evaluation program 
to convert engineering data into the digi­
tal program constants and analog pot set­
tings. 

2. Automatic controls at the analog com­
puter to obtain aircraft trim at desired 
flight conditions. 

3. Digital scope, display programs for aero­
dynamic functions and dynamic output 
data. 

The digital computer provides the mathemati­
cal operations shown in Table II. 



HYBRID COMPUTATION AT UNITED AIRCRAFT RESEARCH LABORATORIES 703 

TABLE II. DIGITAL OPERATIONS FOR 
HELICOPTER SIMULATION 

9 Bivariate Functions 
2 Univariate Functions 

15 Trigonometric Functions 
2 Two-dimensional Coordinate Transforma­

tions 
2 Square Roots 
4 Time Integrations 

Numerous Term Products and Sums 

The digital program cycle time is 0.03 sec. pro­
viding five cycles of rotor calculation within 
each fuselage sample-calculate-output cycle. 
The rotor calculation is executed more fre­
quently because of the higher frequency range 
of the rotor system relative to the aircraft. 
Memory requirements for this program ap­
proach 4000 words for the simulation problem 
and its data. The simulation program, coeffi­
cientgenerator, and arbitrary function display 
occupy the same memory space and must be 
used independently. 

This problem, in a less sophisticated version, 
was once simulated exclusively with analog 
equipment. From this computer representation 
and estimates of the requirements for the ex-
pansion, the digital program alone replaces 
the following analog equipment: 

172 Amplifiers 
295 Coefficient Potentiometers 
118 Variable Products 
64 Arbitrary Function Curves 

The function curves each contain 32 points, 
representing 31 linear segments. Exact re­
placement with diode function generators 
would require192 11-segment units. 

The analog equipment presently utilized in 
the hybrid version is as follows: 

59 Amplifiers 
67 Coefficient Potentiometers 
16 Multipliers 
4 11-Segment Diode Function Generators 

An important distinction between the two 
systems, analog of the past and hybrid of the 
present, is the speed of set up and modification. 

The original analog system required an a ver­
age of four hours to set up and check out as­
suming approximately 40 function generators 
were set during the previous shift. Set up and 
check out of the hybrid system is less than 30 
minutes. Part of the time saving is due to the 
reliability of the digital computer and the re­
duction in analog components with a corre­
sponding reduction in the number of equipment 
failures encountered at check out. 

Static trim ~ata for the helicopter was ob­
tained from the original analog simulation; 
the hybrid simulation; and a highly sophisti­
cated, non-real time, performance program for 
IBM 7090. Relative to the 7090 results, the 
hybrid system produced values with one-fifth 
to one-tenth the differences exhibited by the 
original analog system. 

Time histories of pilot control and re~ultant 
helicopter motion were obtained from Sikorsky 
flight tests. The same pilot control motions 
were applied to the hybrid simulation. Good 
correlation with the flight test was obtained. 

FUTURE INDICATIONS 

Trends at United Aircraft indiCate the fu-
ture will find real time calculations processed 
more extensively by the digital computer. Con­
tributing to this trend are the following points: 

1. Considering the helicopter problem above, 
essentially two consoles of analog equip­
ment were replaced by a digital computer 
which costs significantly less tha,u one of 
these consoles. 

2. The digital equipment is highly reliable 
and it can be preventatively maintained 
during idle time. 

3. Once checked out, a paper tape of pro­
gram and data can be reloaded with high 
confidence in its subsequent operation. 

4. Set up by prepared program tapes is 
much faster than analog set up. 

5. Man-machine communication is improv­
ing with utility program support as dis­
cussed above. 

Some real time problems at United Aircraft 
have already become essentially digital. The 
growth of the helicopter problem has been typi­
cal of this trend. The original hybridization 



704 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

utilized the digital computer only in calculating 
the highly nonlinear, main rotor aerodynamics. 

Competitively priced digital computers are 
now available with larger word size at effective 
speeds up to four times that of the PDP-I. In­
deed, computers with floating point arithmetic, 
a step toward solving the simulation scaling 
problem, are becoming available at reasonable 
cost and provide floating point operation faster 
than the fixed point calculation·of the PDP-I. 

ACKNOWLEDGMENT 

The author wishes to acknowledge the efforts 
contributed by members of the Analog Section, 
United Aircraft Research Laboratories, in de­
veloping the equipment and software tech­
niques summarized in this paper. 

APPENDIX 1. BIVARIATE FUNCTION 
GENERATION 

The desired function 

z = f(x,y) (12) 

is obtained by cross-linear interpolation within 
a table of function values. The function table 
is stored in memory without argument values 
in the following sequence: 

Zi,,= :(C~>(X"Y'») (13) 

where i, j = 0,1,2, ... 

The Yj arguments must be selected at equal 
intervals, tl.y, and the Xi arguments must be 
selected at equal intervals, Llx. Note that i and 
j can be obtained as: 

i= 
(Xi - xo) 

(14) 
Llx 

j = 
(yj - Yo) 

tl.y 
(15) 

The function interpolation for input argu­
ments X and y proceeds as follows: 

(
X - Xi ) zx, j + 1 = (Zi + 1, j + 1 - Zi, j + 1) _ + Zi, j + 1 

Xi +1 Xi 
(16) 

- ( y - Yj ) Z - (ZX,j+1 - Zx,j) _ + Zx,j (18) 
yj+1 Yj 

where Xi ~. * < Xi + 1 and Yj ~ Y < Yj + 1 

The data for interpolation can be obtained frorri 
the sequence (13) if i and j are computed. 
From (14), (15), and the bounds on X and y, 
above, 

j = I( x :xxo
) = ( Xi ~ "0 ) (19) 

I \ I \ 

j = I ( y :yY ° ) = ( y,:/ ° ) (20) 

where I denotes "integral part of." The loca .. 
tion of Zi, j is then 

loc (Zi, j) = loc (zo,o) + i + Lj (21) 

and further 
loc (Zi+l,j) = loc (Zi,j) + 1 

loc (Zi, j + 1) = loc (Zi, j) + L 
loc (Zi+l,j+l) = loc (Zi,j+l) + 1 

(22) 

(23) 

(24) 

The interpolation ratios in Equations (16) to 
(18) are obtained as the fractional parts left 
after i and j are removed in Equations (19) 
and (20). 

F(X:XXO) (X:XXO)_j 
= C~~_X~.) (25) 

F(Y:/O) (Y:/O) 
= C~+~ ~~,) (26) 

The table addressing operations described 
above can be computed more rapidly if the 
number of function values taken for each curve 
at constant y, the X interval, and the y interval 
are chosen as integral powers of 2; i.e., 

L = 2C (27) 
(28) 
(29) 

where C is a positive integer and Nand Mare 
positive or negative integers. The divisions in 
Equations (19), (20), (25), and (26) and the 
multiplication in Equation (21) are then re­
placed by word shifts about the binary point. 



HYBRID COMPUTATION AT UNITED AIRCRAFT RESEARCH LABORATORIES 705 

APPENDIX II. ANALOG COMPUTER 
SYMBOLIC SET AND DEBUG 

A group of three PDP-1 programs (UAC-8) 
provide problem checks for analog computer 
users. The program group includes an equation 
loader, an interpretive mathematical and logi­
cal equation solver, and an output printer or 
puncher. 

The user communicates with the analog 
check program by paper tape or typewriter 
using an equation language which defines the 
components of his computer and their relations. 
These equations may be defined directly from 
the circuit diagram by technical aide personnel. 

Analog computer components are denoted by 
a letter and a four digit address identifying 
the component type, console number, and com­
ponent address. Component types include am­
plifiers, function generators, servo mUltiplier­
resolvers, electronic multipliers, trunks, and 
potentiometers. In addition, dummy codes for 
switches, relays, test voltage, etc. are available 
for devices not read by DO lIT. All the above· 
components except potentiometers may ·be 
defined by equations relating to other compo­
nents. Potentiometers can be defined by nu­
meric value only. In addition to assigning com­
ponent or test values, numeric values are used 
to state gains, references, and function coordi-
nates. 

Mathematical or logical operations permitted 
are listed in Table III. 

TABLE III. OPERATIONS EXECUTED 
BY UAC-8 

Addition 
Subtraction 
Multiplication 

Division 
Square root 
Function interpolation or extrapolation 
Trigonometric operations sine, cosine, and 

arctangent 
Dead zone, symmetrical or not 
Limit, symmetrical or not 
Logical term control by greater or less than 

test as with operational relays 

A loading program is used to enter the equa­
tions and data from typewriter or paper tape. 
In addition, the user can change existing equa­
tions or add to the current check system with 
this loader. 

An interpretive equation solving program 
processes all mathematically defined compo­
nents. Equations to be solved must represent 
an open loop system as is common with static, 
initial condition, or hold testing procedures; i.e., 
equations are solved sequentially, not simul­
taneously. The order of equations presented is 
irrelevant as the program automatically deter­
mines the order in which solutions may be ob­
tained. Digitally computed values can be com­
pared with analog components within user 
specified tolerances. 

An output program provides typed solution 
values with their component codes. In addition, 
the output program provides the user with an 
optional punched or printed copy of his updated 
equation language. 

REFERENCES 

1. BELLUARDO, R., GOCHT, R. E., and 
PAQUETTE; G. A.; "The Hybrid Computa­
tion Facility at United Aircraft Corpora­
tion Research Laboratories," DEeDS 
(Digital Equipment Computer Users So­
ciety) Proceedings 1963, Maynard, Mass., 
261-269 (1964). 

2. KRASNY, L. M., "The Functional Design of 
a Special-Purpose Digital Computer for 
Real-Time Flight Simulation," Electronic 
Systems Laboratory, Final Report ESL­
R-118, M.LT., August 1961. 

3. HURT, J. M., "New Difference Equation 
Technique for Solving Nonlinear Differen­
tial Equations," AFIPS Conference Pro­
ceedings, Vol. 25, 1964 Spring Joint 
Computer Conference, Spartan Books, 
Baltimore, Md., 169-179 (1964). 
Washington, D. C., 169-179 (1964). 

4. Introduction to Hybrid Computation, 
Training and Education Group, Electronic 
Associates, Inc., Princeton, N. J., 1963. 

5. Real Time Data Processing Notebook, 
Beckman Instruments, Inc., Fullerton, 
California. 



706 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

6. PAQUETTE, G. A., "Some Operational 
Aspects of a Hybrid Facility," presented 
at Eastern Simulation Council Meeting, 
East Hartford, Conn., December 1963. 

7. "MIT -3 Macro Assembly Program for 
Programmed Data Processor-1," Digital 
Equipment Computer Users Society, 
DECDS No.5, Maynard, Mass., 1962. 

8. PAQUETTE, G. A., "UAC-10 Fast Bivariate 
Generator," Digital Equipment Computer 
Users Society, DEeDS No. 34, lVIaynard, 
Mass., January 1963. 

9. KEMBLE, T. H., "Digital Bivariate Func­
tion Generator and Display," presented at 
Eastern Simulation Council Meeting, East 
Hartford, Conn., December 1963. 

10. HASTINGS, C., HAYWARD, J. T., and WONG, 
J. P., Approximations for Digital Com-

puters, Princeton University Press, Prince­
ton, N. J., 1955. 

11. SCARBOROUGH, J. B., Numerical Mathe­
matical Analysis (J ohns Hopkins Press, 
Baltimore, Md., 1950), 2nd ed., chapter 9, 
pp. 192-198. 

12. KOTOK, A., "MIT-1 DEC Debugging Tape," 
Digital Equipment Computer Users Soci­
ety, DECUS No.6, Maynard, Mass., No­
vember, 1962. 

13. 
Preparation," presented at Eastern Simu­
lation Council Meeting, East Hartford, 
Conn., December 1963. 

14. JACKSON, S. F., and PAQUETTE, G. A., 
"UAC-14 Digital Function Generate and 
Display," Digital Equipment Computer 
Users Society, DECUS No. 65, Maynard, 
Mass., September 1963. 



A STROBED ANALOG D,AT A DIGITIZER WITH 

PAPER TAPE OUTPUT 
R. L. Carbrey 

Bell Telephone Laboratories, Murray Hill, New Jersey 

INTRODUCTION 

In a group doing research on communica­
tion techniques, a wide variety of analog sig­
nals are encountered which must be analyzed. 
The most effective general purpose tool avail­
able for carrying out the analysis is a high­
speed digital computer. Thus the problem of 
converting large quantities of analog data to a 
digital form suitable for use on the computer 
arises frequently. A number of high resolu­
tion anaiog-to-digitai converters which can 
handle data in the kilocycle range are com­
merciallyavailable, but the majority of signals 
to be analyzed are those with frequency com­
ponents in the range from a few megacycles 
up to a gigacycle or more. For these,ordinary 
real time A-to-D conversion cannot presently be 
used. 

Fortunately experiments in this range are 
usually set up in such a manner that the signals 
can be viewed on a sampling type oscilloscope 
which means that the high-speed signals must 
be repetitive in order to permit them to be 
sampled many times at some relatively slow 
rate. By designing a system which also per­
forms the analog-to-digital conversion on these 
oscilloscope samples and systematically stores 
the resultant binary codes in a memory cir­
cuit, the range of operations has been extended 
to include most of the signals which are en­
countered. A one-to-one correspondence be­
tween memory address and sample time is 
obtained by converting the memory address 

707 

codes to an analog voltage and using this volt­
age as the horizontal position signal for the 
sampling oscilloscope. 

The function of the digitizer is to convert 
either the direct analog signal or the strobed 
samples to a sequence of a selected number of 
twelve bit binary words. Twelve bit words 
permit resolving a full load signal to one part 
in 4096 or about 0.025 7c. These words are 
then stored in a coincident core memory with 
a capacity of 4096 words; so its address posi­
tions are also controlled by twelve digits. 
These are generated by a settable counter with 
six digits allotted to the X location of the 
memory and the remaining six to the Y loca­
tion. Ultimately the stored digital data is 
used to control a combination punch and type­
writer which punches the paper tape. This 
tape presently serves as the transfer medium 
between the digitizer and the digital computer. 
Ultimately, direct read-out to a magnetic tape 
is planned. 

Before punching is started, however, one 
should observe the results of the digitizing 
operation to determine whether the data meets 
the requirements for processing. Therefore, 
digital-to-analog convarsion is also included. 
The stored data can be displayed on the oscil­
loscope or an X-Y plotter. The results of 
se"veral related experiments can be stored for 
observation at one time, or one run can be 
divided into a number of small segments each 
of which can be examined in minute detail. A 



708 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

lamp display section provides a visual indica­
tion of both address locations and data in 
digital form. 

The objective was to provide a digitizer which 
was both flexible in operation and compact 
enough to permit ready movement into the 
laboratory where the experiment was being 
run. To achieve this, the control problem was 
simplified by using three types of manual oper­
ation. The number of words in any sequence 
and their location in the memory is established 
by manually registering memory address start 
and end points. Octal thumbwheel switches 
are used. This same type of switch is used to 
manually set up any arbitrary binary word 
which is to be written into the memory in­
stead of a sample value. Finally, illuminated 
push button switches are used to select the op­
eration to be performed and to initiate a load­
ing, transferring, plotting, or punching opera­
tion. Although thirty-three of the push button 
positions provided on the console are actually 
used to perform a variety of operations, many 
of which will not be discussed, the basic 
manual switching functions are those indicated 
schematically in the block diagram discussed 
below. A photograph of the complete unit is 
shown in Fig. l. 

In order to minimize the construction and 
debugging time, most of the blocks were im­
plemented with commercially available equip­
ment all of which has proven to be very satis­
factory. 

BLOCK DIAGRAM 

A simplified block diagram of the digitizer 
is shown in Fig. 2. The heart of the system is 
the coincident current core memory which 
serves as a buffer unit between the varied in­
put information rates and the fixed output 
punching rate or any desired display rate. The 
particular unit selected for the digitizer has a 
capacity of 4096 words of sixteen bits each. 
(The extra four bits are used for arithmetic 
or flagging operations. ) The self-contained 
access circuity was designed to operate in the 
Random/Sequential Interlace mode with fu11 
cycle operation. In the random mode, the in­
ternal address register for the writing opera­
tion can be set to any selecte,d one of the 4096 

Figure 1. Digitizer and output typewriter with paper 
punch. 

address positions by applying the desired 
twelve bit address word and then issuing a 
load command. 

If the unit is then switched to the Sequential 
Interlace mode, it will proceed systematically 
from this address advancing once per load 
command. The unload address counter can be 
similarly indexed. Full cycle control requires 
that each load operation includes both clear 
and write while each unload operation includes 
both read and restore; therefore, the readout 
is essentially nondestructive. The load and un­
load operations can be carried on in any ar­
bitary sequence, but they cannot be performed 
simultaneously, and care should be exercised 
not to load in an area where wanted data is 
already stored. A full cycle requires 10 micro­
seconds; so the maximum operation rate is 
100,000 commands per second. 

For purposes of block explanation, the mem­
ory has been divided into four parts-the load 
position address, unload position address, the 



A STROBED ANALOG DATA DIGITIZER WITH PAPER TAPE OUTPUT 709 

load into and the unload data from the com­
mon storage medium. The twelve bit position­
addresses are handled in parallel as are the 
data bits. When switch 84 is in the position 
shown, the selected orderly sequence of address 
codes appears as the input to the X Position 
Digital-to-Analog converter. The resulting out­
put is a staircase voltage with the number of 
steps equal to the difference between the start 
and stop addresses, the risers equal to 1/4095 of 
the full range, and the treads as long as the 
time between load commands. This staircase 
serves as the X axis input signal to the sam­
pling oscilloscope replacing the internally 
generated "slow ramp." 

As is usual in this type of oscilloscope, an 
internal "fast ramp" is triggered by the syn­
chronizing signal. At the instant this latter 
ramp voltage becomes equal in magnitude to 
the address voltage, a strobe sample is taken 
of the Y axis input signal. The sample poten­
tial is then held until the fast ramp cycle is 
completed and a new trigger operation takes 
place. 

Once a sample voltage has been established 
on the scope's storage circuit, a beam "un-

blanking" signal is provided which permits the 
sample magnitude to be displayed at the hori­
zontal position corresponding to the memory 
address. This unblanking signal is also used 
to initiate each A-D conversion. Thus the 
conversion and subsequent loading operation 
is asynchronous with the maximum rate being 
limited to 40,000 conversions per second by 
the twelve bit A-D Converter. A conversion 
command causes the A-D Converter to sample 
and hold the signal stored in the oscilloscope. 
This double sampling process, once in the 
~scope and once in the converter, is required 
because the storage circuits in the converter 
take longer to charge than the duration of 
many of the phenomena to be observed. The 
storage circuit in the converter must, on the 
other hand, be very precise if the full 4096 
level resolution is to be obtained. Low-speed 
waveforms are connected directly into the A-D 
Converter; so they are only sampled once as 
in more conventional practice.! 

Three microseconds prior to the completion 
of conversion, a program pulse is generated 
which initiates the load command for the mem­
ory. As a result, the "clear" part of the clear/ 
write cycle is almost over by the time the 

FLEXOWRiTER 

...---t READ t PUNCH 
HEAD : HEAD 

CH.B 

~DIRECT SIGNAL IN 

SAMPLING 
CH. A OSCILLOSCOPE 

STROBED 
SIGNAL IN x Axrs 

INPUT 

COINCIDENT 
CURRENT MEMORY 

4098 WORDS 
(12+4) BITS EACH 

~ __ s_2~1 LOAD I UNLOAD' 

START 

cJNOTt~'&.IDDDoi 
STOP 

LOGIC [0000] 

I 
I 
I 
I 
I 

DATA STORAGE 
I 
I ------;------
I 

LOAD !UNLOAD 
I 
I 
I 

POSITION 
ADDRESS 

I 

PUNCH OR 
RELOAO 

MULTIVIBRATOR 
OR 

FLEXOWRITER 
TIMING 

Figure 2. Simplified block diagram of Tape Output Strobed Analog Data Digitizer. 



710 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

digitization is complete and the twelve bit 
word is available for writing into the memory. 
The strobe, convert, and load sequence con­
tinues until all of the assigned positions have 
been filled during one horizontal sweep. Dur­
ing setup, it is frequently desirable to observe 
repeatedly all or part of a display. This is 
accomplished in the auto-start mode by per­
mitting a selected address to initiate a new 
start command thus resetting the sweep and 
starting over. 

Once the data has been stored in the memory 
in digital form, the usual procedure is to check 
it by "playing it back." This is accomplished 
by transferring the switches to the plot mode, 
setting the Unload Start and Unload Stop 
thumbwheel switches to the desired range and 
pushing the auto-unload switch. Switch S4 
connects the unload position address to the X 
Position D-A Converter. Output from the 
latter supplies the horizontal signal for both 
the sampling oscilloscope and the X-Y Plotter. 
The plotter is built into the control console 
under a sliding plexiglass writing surface. 

Unload command rates are controlled by an 
internal multi vibrator with a fast unload rate 
of about 40 kc permitting ten repeated oscil­
loscope displays per second of the full memory 
load or correspondingly more frequent displays 
of shorter memory sections. A variety of 
slower speeds can be selected for use with the 
plotter and visual readout. Conversion of the 
stored data is accomplished by switching the 
A-D Converter to its D-A mode. 

PAPER TAPE PUNCHING AND CONVER­
SION TO MAGNE'TIC TAPE 

A mixed alphabetic and binary data format 
is used on the eight column punched paper 
tape. Experiment titles and interspersed com­
ments are typed in from the keyboard in a 
conventional manner except that an appro­
priate one of four characters is. typed on each 
line just before the carriage return key is op­
erated. The control characters used are: H 
(Holerith) for alpha-numeric characters, B 
for binary data, P for end of experiment,and 
X for end of tape. Anything which is not 
wanted in the digital computer's magnetic tape 
copy of the paper tape can be deleted by punch­
ing something other than one of these four. 

Holes in column eight of the tape are punched 
only by the carriage return key. 

The start of a binary data run is indicated 
by the letter "B" followed by the carriage re­
turn punch, and the end of the data is always 
terminated by another column eight punch. 
Each twelve bit data word is punched as two 
six-bit characters with the first half of the 
word identified by a space in column five and 
the second half by a hole. The odd parity 
function normally assigned to this column was 
ignored since the paper tape reader at the 
Murray Hill Computation Center generates its 
own parity bit. Instead a check on the punch­
ing operation is obtained by simultaneously 
reading the split words from the punched tape 
back into the digital-to-analog converter and 
plotting the result alongside the X-Y plot 
which was made prior to punching. Sixteen 
minutes are required to punch out a full mem­
ory load of 4096 words in sixty-eight feet of 
tape. 

The paper . tape reader which serves as the 
peripheral input device to the computer, can 
read a full memory load in sixteen seconds. 
Although the reader cannot transfer the col­
umn eight punch to the magnetic tape, it can 
recognize this "End of Line" indication, and 
use it to generate the proper flagging instruc­
tion for the paper to magnetic tape conversion 
program. Once the first generation magnetic 
tape is produced, a computer program is used 
to delete the parts so m~rked, unpack the data 
and text, block them into the standard com­
puter format, and translate double-case type­
writer symbols to. appropriate digital computer 
symbols where different. When desired, a 
microfilm plot is provided for comparison with 
the original X-Y plot. The process can, of 
course, be reversed; so that computer data can 
be put into the digitizer memory by way of a 
punched paper tape. 

SWEEP CALIBRATION AND LINEARITY 

In the digitizer, one coded sample value is 
stored at each memory address position, so the 
standard sweep calibration; is made in nano­
seconds per address. The nominal 10-volt ref­
erence voltage for the X Position Address 
Decoder is set so that just eight complete 



A STROBED ANALOG DATA DIGITIZER WITH PAPER TAPE OUTPUT 711 

cycles of the oscilloscope's internal ten mc 
calibration wave will appear when 4000 (deci­
mal) address positions are used with a Sweep 
Time/cm of 0.1 f-tsec. This calibration corre­
sponds to 0.2 nsec/address. Selection of other 
settings of the Ext. Horiz. Input and the 
Sweep Time/ cm controls permits changing 
this over a range from 4 f-tsec/address to 0.4 
pi cosec / address. 

In normal sampling oscilloscope usage, a 
nonlinearity in the horizontal sweep cannot be 
observed because the sample is taken at a time 
proportional to the horizontal sweep voltage 
and the sweep positions the beam at the actual 
sweep value. The sweep can even be stopped 
or reversed enroute, and the waveform will be 
displayed with fidelity except for a brightness 
change. The high speed ramp and associated 
comparison decision must be linear, however. 
When the horizontal position is converted to 
an address as it is in the digitizer, each quan­
tized horizontal increment is treated by the 
computer as a specified time increment. This 
will lead to distortion if the horizontal display 
is not linear. A calibration run can be made 
which will permit correcting the values in the 
computer, but adequate linearity is much to be 
preferred. 

The linearity was measured by first calibrat­
ing the sweep for 0.2 nsec/address with the 
ten mc test wave and then switching to the 
Ion me test wave. Figure 3 shows a plot of 
interpolated addresses or sampling intervals 
between adjacent positive going center axis 

crossings as well as those for negative cross­
ings. At 0.2 nsec/address, 50 addresses cor­
respond to one cycle, and the center axis slope 
of a full load 100 mc sine wave is about 500 
code levels per sample. 

Although the actual axis crossing can be de~ 
termined only to the nearest 0.2 nsec sample 
increment, the spacings interpolated from the 
coded amplitude values immediately before and 
after crossing should, ideally, plot on a hori­
zontal straight line. The slight curvature of 
the fitted line shows an effective compression 
of about 1 % for the combined sweep, scope 
amplifier, and threshold decision. The offset 
from the 50 sample periods shows that the 
initial manual calibration was also off by about 
1 roo This can now be adjusted more precisely 
with a ten turn potentiometer. 

The dispersion of interpolated points indi~ 

cates that both of the foregoing are masked by 
a combination of other factors which are 
loosely lumped into the 'scope sync. category. 
In normal sampling 'scope usage, repeated 
patterns are observed, and the eye or the 
camera averages the plotted points at anyone 
place on the wave. The better the synchroniza­
tion, the narrower will be the line of points. 
In the digitizer application, however, the 
amplitude samples are normally recorded only 
once at each address-quantized horizontal posi­
tion. No averaging takes place. If the "syn­
chronization" is not perfect, some of the points 
will be displaced slightly. A plot of the wave­
form will be somewhat irregular as illustrated 

53~--------------------~------------------------------------------------------------~-==, 

47~~ ____ ~ ____ ~ ____ ~ ____ ~~ __ ~ __ ~ __ ~ __ ~~~~ __ ~ __ ~ __ ~~ 
o 20 40 60 100 teo 

AXIS CROSSING NUMBER 

Figure 3. Sweep linearity calibration and synchronizing noise check by interpolated 
address differences between same direction axis crossings of a 100 mc sine wave. 

Strajght line at address difference of 50 would be ideal. 



712 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

for the 100 mc repetition rate snap diode pulse 
of Fig. 4a. 

Small timing variations of this nature ac­
count for the dispersion shown in Fig. 3. Since 
the strobed sample is taken at the instant the 
triggered fast ramp becomes equal in magni­
tude to the decoded horizontal address voltage 
and each address is 1/4096 part of the total, 
the combined synchronization and amplitude 
decision must be better than this fraction to 
keep the point spread within ± 1 address. 

Both experiment and synchronization noise 
can be averaged out by making repeated meas­
urements of the data and averaging the results 
either in the computer or in the digitizer. 2 See 
Fig. 4b. The digitizer memory can store words 
as long as sixteen bits, thus allowing the extra 
four digits to be used for accumulation of six­
teen repeated waveforms when full magnitude 
signals are coded or correspondingly more 
repetitions when fewer than twelve bit words 
are coded. 

SUMMARY 

Perhaps the best summary of the digitizer's 
capabilities is an illustration showing a few of 
the varied types of data which have been con-

o o 
C\i rr) 

('\J 

Figure 4a. One nanosec section of snap diode pulse at 
4 picosec per sample with no sampling oscilloscope 
smoothing. This shows waveform irregularity due to 

noise and synchronization problems. 

A
-·_· 

---~~ 

-~1- - ~. 
. -\ 
-N - - \ -

-1. \ -
~ 

-r 
/ 

o (ij o 
(\j 

Figure 4b. Reduction of irregularity by computed 
average of sixteen repeated runs including that of 

Figure 4a. 

verted from analog to digital form. The fig­
ures are microfilm plots made from precompu­
tation tapes processed on the high speed digital 
computer. Experiment and run titles which 
were typed into the paper tape at the time the 
experiment was run are generated at the left 
of each microfilm plot along with supplemen­
tary information determined in the computer 
program such as the maximum and minimum 
value, but these are not large enough to be 
clearly legible in reduced reproductions. 
Neither are the horizontal scales which are 
decimal integer equivalents of the memory 
addresses. The plot program option to use 
the maximum and minimum as vertical plot 
limits was selected for all figures except num­
ber six. 

Figure 5 shows a twenty-four sample section 
of a snap diode pulse similar to that shown in 
Fig. 4a, but here the samples are spaced only 
40 picoseconds per address. The total inter­
val is one sample short of one nanosecond. At 
this sensitivity, the horizontal signal is chang­
ing in large enough steps to minimize the syn­
chronization differences. Because the micro­
film plot program draws straight lines between 
sample points, the individual points can be 
observed. It is apparent from the slope at the 
top of the plotted pulse that the peak of the 



A STROBED ANALOG DATA DIGITIZER WITH PAPER TAPE OUTPUT 713 

J1\ 
I \ 
I 
I \ 

/ \ 
/ 1 

II \ 
/ \ 
/ \ 

II I---

"'- / -- ~ 
o C\I o C\I 

C\I C\I 

Figure 5. Twenty-four samples at 40 picosec per sam­
ple of one nanosec section of snap diode pulse. Slope 

indicates that peak was not sampled. 

snap diode pulse was not sampled. This pulse 
is used as a 100 mc clock pulse for work on 
high speed digital circuits. It was generated 
by driving a silicon snap-off diode from a 100 
mc source. The diode and input shunt capaci­
tor were mounted in a 52-ohm ENe connector 
tee section with a short circuited plug in the 

-' 

o 

l£.-.-

( 

oIl 
C\I 

o 
oIl 

\ 

\ 

o 
2 

.0 
C\I 

o 
~ 

o 
o 
C\I 

oIl 
C\I 
C\I 

o 
~ 

.0 .... 
C\I 

I 

tee serving as an echo line. Fig. 4b is the most 
accurate representation of these 3-volt pulses 
which repeat at 10 nsec intervals and have a 
half amplitude width of 0.24 nsec. 

Figure 6 shows the 10 nsec pulse to a 200-
foot length of RG58A/U coaxial cable and the 
pulse reflected back to the input from a short 
circuit at the far end. The intervening 560 
nsec, corresponding to decimal addresses 300 
to 3100 at 0.2 nsec/address, were deleted from 
the strip of microfilm. Transmission char­
acteritics of cables can be determined from 
this type of pulse response measurement. When 
the meauring probe is bridged across the near 
end, the same takeoff can be used for both the 
input and output, and the pulse must travel the 
full length of the cable twice before it reap­
pears at the output. 

Figure 7 is a plot of the smoothed samples 
of the peak output of the 40th, 424th, and 808th 
-read pulses from a wire plated with a magnetic 
film. 3 In the test setup, a single write pulse 
was first applied at one location on the wire. 
Then about 940 consecutive read pulses of 100 
nsec duration were applied. The horizontal 
position of the sampling oscilloscope was set 
manually to the peak of the resulting output 
pul~es and the address decoder was disengaged 
because only the variation in peak magnitude 

1---

"" \ 1\ 

o 
oIl 
if; 

\ V 
~ 

o o 
C\I 
('t) 

"",-
f--

./ 

oIl 
C\I 
C\I 
('t) 

o 
oIl 
C\I 
('t) 

~ 

o o 
('t) 
('t) 

oIl 

-

o 
o 
"t 
('t) 

Figure 6. First 300 samples showing 10 nanosec input pulse to 200 ft. of RG58A/U coaxial cable, and last 300 
samples, 0.6 usec later, showing return pulse reflected from short circuit at far end. 



J 
Ii 

714 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

h A ~ ~r 1\ ~t ~ 
IV \ V V V ~ "1 

Figure 7. Oscilloscope smoothed samples of 40th, 424th, 
and 808th output pulses from eight adjacent sections 
of a wire plated with a magnetic film. With fixed 
sweep, samples are at pulse peak for three positive 

and three negative output conditions. 

was wanted rather than the pulse shape. The 
internal smoothing control of the sampling 
oscilloscope was set for maximum smoothing; 
so the three selected samples actually loaded 
in the memory represented an average peak 
amplitude early, midway, and late in the con­
secutive read sequence. Following this, an­
other block of 940 read pulses at a reduced 
current was applied, and the selected samples 
were loaded. The wire was then disturbed by 
simulating writing operations at other loca­
tions along the wire, and still another 940 
consecutive read pulses at the original current 
were applied. The selected three samples were 
loaded. This sequence of nine loading opera­
tions was then repeated except that the initial 
single write pulse was negative. After the 
nine positive and nine negative signals were 
loaded, the test location was mechanically in­
cremented and the test was repeated. The 4096 
word memory permits eighteen samples to be 
loaded at as many as 227 wire locations. In 
the figure, only the first eight locations (cycles) 
tested on the wire are shown. 

The retiming wave for regenerative pulse 
repeaters is usually recovered from the incom­
ing pulse train by filtering techniques. As a 

result, the amplitude and phase of the recov­
ered wave is a function of the actual pulse 
pattern being transmitted and the number of 
repeaters in tandem through which the pulse 
train has passed. A single repeater can be 
used to simulate many aspects of a chain of 
repeaters by delaying a long pulse train out­
put from the repeater and feeding the train 
back to the input in a self-timed closed loop. 

The wavef<?rm for Fig. 8 is an envelope plot 
of the change in phase position of one selected 
pulse out of a 7500-bit pattern circulating 
around such a loop immediately following a 
change of 778 of those bits from alternate 
pulses and spaces to all pulses. In this case, 
a measurement was made only once per 750 
usec round trip, and the envelope of the phase 
detector signal was fed directly to the A-D 
converter instead of to the sampling oscil­
loscope. Each vertical division represents 3.8 0

, 

and there are 14 round trips per horizontal 
division. 

The response spikes shown in Fig. 9 were 
obtained by direct conversion at a 40 kc rate 
of the output signal from a laser analyzing 
cavity (interferometer) as the cavity spacing 
was changed by applying a 20-cycle sawtooth 
control signal to a one-inch barium titanate 

~ 

I 
I 

I 

\ 1(\ 1\ 

\ / \. rv / ~ r-~ V~ i\ / 

\j 
\I" 

o o 
! 

Figure 8. Example of direct A-D conversion at 750 
usec per sample without sampling oScilloscope. Starting 
transient phase variation of one pulse circulating 

around a closed pulse repeater loop. 



A STROBED ANALOG DATA DIGITIZER WITH PAPER TAPE OUTPUT 715 

y y y"V r ,rr "V" rv \r 

Figure 9. Digitized output signal from laser analyzing 
cavity as the cavity spacing is slowly changed. 40,000 

direct A-D conversions per second. 

cylinder with a mirror cemented to one end. 
Only the initial set of spikes is shown.4 

ACKNOWLEDGlVIENT 

The author wishes to acknowledge the help­
ful discussions with B. P. Bogert particularly 
at the Digitizer's inception and in connection 
with the averaging problem. The paper tape 

format was developed in cooperation with J. F. 
Ossanna who also took care of all of the prob­
lems involving the digital computer; L. J. 
Cirincione programmed the paper tape reader; 
and R. W. Proudfoot did much of the actual 
assembly and debugging work. W. H. Pyle 
showed us how to make some minor modifica­
tions to the sampling oscilloscope which re­
sulted in even better performance. The micro­
film plots are the result of experiments by the 
following individuals: Figs. 4 and 5-R. L. 
Taylor, Fig. 6-L. O. Schott, Fig. 7-E. W. 
White and R. T. McGoldrick, Fig. 8-P. A. 
Reiling, and Fig. 9-A. J. Rack. 

REFERENCES 

1. JASPER, Les and HAILL, H. K., "Improving 
A-D Converter Accuracy," Electronics 36, 
38 (1963). 

2. KLEIN, M. P. and BARTON, G. W., Jr., "En­
hancement of Signal-to-N oise Ratio by Con­
tinuous Averaging: Application to Mag­
netic Resonance," Rev. Sci. Instr. 34, 754 
(1963) . 

3. LONG, T. R., HElectrodeposited Memory 
Elements for a nondestructive Memory," 
J. Appl. Phys., 31, 123s (1960). 

4. RACK, A. J. and BIAZZO, lVI. R., "A Tech­
nique for Measuring Small Optical Loss 
Using an Oscillating Spherical Mirror In­
terferometer," BSTJ, 43, No.4 Part 2, 1563 
(1964) . 





HYBRID SIMULATION OF A LIFTING RE-ENTRY VEHICLE 
A. A. Frederickson, Jr., R. B. Bailey, A. Saint-Paul 

Electronic Associates, Incorporated" El Segundo, Cali/oraia 

1. INTRODUCTION 

During the past ten years a great deal of re­
search and development work has been con­
ducted on various types of re-entry vehicles. 
Numerous techniques for guiding and control­
ling re-entry vehicles have been proposed. The 
purpose of this simulation is to evaluate the 
capability of a new flight control system for re­
entry vehicles which by its nature is simple, 
reliable and inherently insures a safe re-entry. 
The ensuing discussion explains the unique 
control system being studied, and includes a 
detailed· discussion of the simulation equip­
ment required and its programming. 

To obtain a better insight into the need for 
a simple yet reliable guidance and control sys­
tem for lifting re-entry vehicles, a brief dis­
cussion of the general re-entry problem follows. 

The re-entry vehicle utilized in the study is 
an unpowered lifting vehicle with wings, which, 
unlike its ballistic counterpart, is highly maneu­
verable and can be landed on conventional run­
ways. 

The lift and drag coefficients (CL and CD) of 
a typical high LID lifting re-entry vehicle are 
shown in Fig. 1 as a function of angle of attack, 
0:: • In addition, a plot of lift to drag ratio 
(LID or ~/CD) is shown since it is of im­
portance in determining the range of the re-en­
try vehicle. During the high velocity portion of 
re-entry flight the vehicle operates on the 
high ~ (large 0::) side of (LID) max. (15 0 < 
ex: < 65 0

). These larger lift coefficients yield a 
re-entry trajectory with lower dynamic pres­
sure, acceleration, and temperatures. Fig. 2 

717 

defines a simplified coordinate system and sym­
bols. During most of the vehicle flight 
ro + h:::::: ro and h:::::: O. Thus, the following ap­
proximate equations can be used: 

V2 L 
h::::::-g+-+- (1) 

ro m 

D SCD ) V:::::: --= -q- (2 
m m 

For a lifting re-entry vehicle the lift is large 
enough to allow the vehicle to fly along ail equi­
librium glide path where h :::::: o. Along the 
equilibrium glide path, 

L V2 seL -==g--=q--
m ro m 

2 0.5 

0.4 

0.3 

0.2 

0.1 

o 

(3) 

o 10 20 30 40 50 60 
O(-ANGLE OF ATTACK 

Figure 1 



718 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

GLIDER 

~ 
V 0(1 

LOCAL tf . 
HORIZOND.L 

h I % 

h-ALTITUDE 

ro -RADIUS OF EARTH 
r-ro+h::::ro 
V - VEHICLE VELOCITY 

'0 - FLIGHT PATH ANGLE 

0/.. - ANGLE OF ATTACK 
~_ LIFT ACCELERATION 

D/M - DRAG ACCELERATION 

Figure 2 

where q is the dynamic pressure (1f2p V2) and 
S is the wing area. Thus for a given CL there 
is a unique altitude-velocity profile. Fig 3 
shows the altitude-velocity profile for two dif­
ferent equilibrium glide lines and the bounda­
ries of the re-entry corridor. The lower bound­
ary of the corridor is determined by the tem­
perature and load limits of the vehicle and the 
upper boundary by the recovery ceiling. The 
recovery ceiling is defined as the maximum alti­
tude (with altitude rate, h = 0) from which 
the vehicle can recover without exceeding the 
temperature and load limits of the vehicle. 

One of the primary re-entry problems is to 
control the vehicle so that temperature and 
load limits are not exceeded and a smooth equi­
librium glide is established. The heavy tra­
jectory shown in Fig. 3 is a typical uncon­
trolled re-entry with its familiar skipping oscil­
lations which cause the vehicle to approach 
dangerously close to the heat limits. The tem­
perature rate control system being simulated 
was developed to eliminate these skipping oscil­
lations and reduce the peak temperatures dur­
ing re-entry. 

Another re-entry problem is to manage the 
energy of the vehicle as it re-enters so that the 
desired terminal point is reached. The range 
capability of the re-entry vehicle can be de­
termined quite readily in the re-entry portion 

eoo 

400 TYPICAL 
I- RE-ENTRY 
1&1 
1&1 
II. 
II. 
0 

Q 300 
z 
'cr en 
::l 
0 
% 200 l-
I ... 
Q 
::l 
l-
f:: 100 ...J 
C[ 

IU i5 20 25 30 35 
RELATIVE VELOCITY -THOUSANDS OF FEET PER SECOND 

Figure 3 

of flight since the vehicle is near equilibrium 
glide where h ::::; O. If both sides of Eq. 2 are 

divided by Lim or g- V2 the following is ob-
ro 

tained: 
v D 

ro 

If V dV is substituted for V: 
dR 

(4) 

dR = (LID) roVdV (5) 
V2_r og 

If this is integrated from an initial velocity to 
zero, the range is obtained: 

(6) 

Thus, during the re-entry portion of flight the 
range is a function of velocity and LID. Range 
control is accomplished by varying LID, i.e., 
by varying angle of attack. From Eq. 6 it also 
should be noted that the range is very sensi­
tive to initial velocity when the velocity is 
nearly equal to orbital velocity yrog. For the 
re-entry studies made to date on the simulation, 
the sensitivity of range to initial velocity error 
is approximately 300 NM/fps. 

Lateral maneuverability is obtained by bank­
ing the re-entry vehicle so that the aerodynamic 
lift vector is rotated, thus providing a lateral 
acceleration. Fig. 4 shows an energy manage­
ment footprint for a typical re-entry flight. 
The lines of constant 0: and p., bank angle, show 



HYBRID SIMULATION OF A LIFTING RE-ENTRY VEHICLE 719 

USSR ...... I,. :~4.. 

CHINA 

15· ., . 
. ', 

FIG.4 FLAT MAP SHOWING TYPICAL ENERGY 
lIO· . 

MANAGEM~NT FOOTPRINT 
lIO· 

)J 
4S· 

105· 120· 155· ISO· 115· 110· lIS· ISO· IllS· 120· lOS· 110· ns· 410· 

Figure 4 

what attitude must be maintained to reach a 
particular landing site. The dashed lines show 
temperature limits. This large maneuverability 
of a lifting re-entry vehicle requires a reliable 
guidance system which will perform accurately 
over· the long re-entry and minimize errors at 
the desired terminal point. The temperature 
rate control system is being simulated to dem­
onstrate its compatability with different types 
of guidance systems. As will be pointed out 
in the next sections the TRFCS acts as a filter 
to the guidance signals to insure the safety of 
the vehicle at all times. 

2. THE STATEMENT OF THE PROBLEM 

2.1. Problem Background 

The temperature rate flight control system 
(TRFCS), developed by the AC Spark Plug 
Division of the General Motors Corporation, 
is based upon the use of temperature sensors 
instead of conventional inertial instruments to 
provide both short-period stabilization and long­
term guidance during the re-entry flight.l The 

mathematical formulation of the re-entry prob­
lem was furnished by AC Spark Plug. 

The new control system introduces several 
significant advantages: 

(1) Overall vehicle safety during re-entry. 
In the TRFCS design, successful effort 
has been made to separate safety of the 
vehicle from the task of accurate navi­
gation. Because of the inherent nature 
of temperature rate feedback and cer­
tain selected limits on the control au­
thority, the control system minimizes 
skin temperature peaks. The maximum 
"g's" and dynamic pressure are inde­
pendent of initial conditions and 
maneuvers performed. This safety 
aspect of the TRFCS performance is en­
tirely independent of the guidance com­
mands and in fact, the TRFCS serves es­
sentially as a filter for them. 

(2) Simple, reliable hardware. This sepa­
ration of control and guidance also re-



720 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

suIts in more reliable hardware. Simple 
thermocouple temperature sensors re­
place the conventional gyros and ac­
celerometers. These sensors are used to 
control the flight path as well as the 
short-period oscillations in pitch and 
yaw. The only additional sensor re­
quired, besides the temperature sensors, 
is a vertical reference gyro, which, for 
the safety aspects of the re-entry, can 
be quite inaccurate. 

(3) Both manual and automatic modes. In 
case of automatic guidance system fail­
ure, the TRFCS can be controlled manu­
ally. The manual flight program to he 
followed- by the pilot, is very simple and 
the resulting temperature peaks, dy­
namic pressure, and "g" loads compare 
favorably with those obtained in the 
fully automatic mode. 

During past years, extensive simulation 
studies were conducted by AC Spark Plug to 
design the control system. A rather conven­
tional simulation program was pursued: First 
analog simulations were performed to gain 
qualitative knowledge of the system, and to 
determine the practibility of this approach. 
N ext, digital techniques were used to check 
the validity of the analog and to demonstrate 
the accuracy of the guidance through TRFCS. 

In the analog simulation, a three degree of 
freedom simulation of the mass center of the 
vehicle was combined with equations describ­
ing the short-period pitch dynamics of the ve­
hicle. Pitch axis controls and trajectory con­
trols in three dimensions included an approxi­
mate, simple lag representation of the lateral 
response of the vehicle. A cockpit was used 
in the simulation to aid in the design of the 
manual system as well as the fully automatic 
system. 

Another small analog simulation was used to 
study the uncoupled lateral dynamics for chang­
ing flight conditions and the lateral stabilization 
signals required from the TRFCS. This simu­
lation also provided the simple lag representa­
tion used in the larger cockpit simulation study 
previously mentioned. 

The reason for separating the simulation of 
the pitch dynamics and trajectpry control from 

the simulation of the lateral dynamics was to 
enable a better understanding of the pitch sys­
tem alone and lateral system alone and to de­
velop the TRFCS without the use of an exten­
sive amount of equipment. 

With the design and evaluation of the TRFCS 
completed for the simplified pitch plane and 
lateral plane the next logical step was to evalu­
ate the system with a complete six-degree-of­
freedom simulation. This would allow the in­
vestigation of cross-coupling between the pitch, 
lateral and roll dynamics of the vehicle. 

In considering a six-degree-of-freedom simu­
lation the question arises as to what computer 
or computers should be used. Past experience 
has shown that the conventional all analog or 
all digital approach has severe shortcomings. 
The previous all analog simulation suffered 
from a lack of repeatability (50 miles in range) 
and excessive day-to-day setup and checkout 
time. The digital simulation proved to be ex­
tremely slow even on a large high speed com­
puter. Even for narrow ranges, determined by 
previous analog simulation, digital simulation 
was too time consuming, and therefore too ex­
pensive to optimize parameters. Reduction of 
the digital data to more graphic forms also 
proved to be a problem. 

2.2 Problem Objective 
The main objective of the problem is to evalu­

ate a TRFCS controlled re-entry both in auto­
matic and manual modes of operation. To 
fully explore the ability of the TRFCS to con­
trol the short period attitude of the vehicle 
throughout the re-entry, a complete six-degree­
of-freedom simulation is required. To evaluate 
the ability of the TRFCS to guide the vehicle 
during re-entry to the desired terminal point, 
an accurate and repeatable simulation is re­
quired. Economy of analysis should be con­
sidered, especially in the automatic guidance 
studies where faster than real time simulation 
can be employed. 

2.3 Computational Requirements 
In order to attain the above problem objec­

tive, the following set of rigid computational 
requirements must be met: 

(1) High accuracy in trajectory calculations 
for the evaluation of the guidance capa­
bility of the TRFCS. 



HYBRID SIMULATION OF A LIFTING RE-ENTRY VEHICLE ·721 

(2) Very fast computing capability to faith­
fully simulate the high frequency pa­
rameters for the short-period dynamics 
of the vehicle. 

(3) Real time and faster than real time 
simulation for evaluation of the control 
system in both manual and automatic 
mode. (For economical evaluation of 
the control system in automatic mode, 
the time scale should be as high as pos­
sible) . 

(4) Rapid day-to-day setup and checkout. 

On the basis of experience gained during past 
simulations, it was concluded that these re­
quirements can only be satisfied by a hybrid 
digital-analog computer. Such a computer 
would allow the programmer to choose either 
analog or digital solution for different portions 
of the problem, trading fast processing for 
high resolution etc. 

A hybrid system makes high demands on both 
the digital and the analog elements as well as 
on the control section. The tasks to be per­
formed by the control section, however, cannot 
be over ~mphasized. Some of these tasks are 
the basic timing, control operations, logic de­
cisions and conversions which preferably are 
parallel with other computations. Only in this 

231 R-V DOS 350 

I 1 

way can the programmer truly utilize all ele­
ments of the hybrid to the fullest. To achieve 
these complex tasks, the "control center" should 
consist of programmable logic elements, such 
as flip-flops, counters, shift registers, parallel 
memory and converters. The EAI HYDAC 
2400 system enabled the programmers to realize 
these desirable features as shown in the fol­
lowing sections. 

3. HYDAC 2400 SYSTEM DESCRIPTION 
In order to facilitate the understanding of 

the programming aspects of the re-entry prob­
lem on the HYDAC 2400 discussed in the 
next section, a brief description of the system 
is given here. 

The HYDAC 2400 computer system is a 
successful integration of general-purpose ana­
log and digital computers. It consists of three 
computers: the 231R-V analog computer, the 
DOS 350, and the 375 (3C DDP-24) digital 
computer. (For system block diagram, see 
Fig. 5) In the following material, a short out­
line is given of each section of the HYDAC 
2400, and the communication between sections. 

3.1 231R-V Analog Computer System 

The 231R--V analog computer consists of 
standard computing components under control 

375 

SUMMERS COMMUNICATI ON 
MULTI PLYERS ADC) DAC) MPX CONTROL UNIT 
INTEGRATORS / 
MEMORY UNITS \. DATA j FF LOGICTIMER 1\ DATA J 
FUNCTION GEN.'S AND COUNTER ARITHMETIC UNIT 
COMPARATORS SHIFT n~ul~ I -=.n 

DA SWITCHES COWARA~ SERIAl MEMORIES 9EN8E LINES 
RESOLVERS 

ARITHMETIC j oCP ~ 
MEMORY 

.DAswrTCMI 

MODE CONTROL 
ELEMENTS 

"LOGIC 
, 

ANALOG MODE 
, , 

IN PUT - OUTPUT 
CONTROL 

I I 
I 1/0 I I :~K I DESK 

Figure 5 



722 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

of a versatile, highly sophisticated control sys­
tem. The heart of this control system is the 
analog memory and logic system (MLG). The 
MLG system adds a capability for programmed 
multiple time base and multispeed repetitive 
and iterative computer operation. The system 
utilizes electronic mode control and high-speed 
analog memory in order to maintain the ac­
curacy necessary for "real-time" operation. 
Various forms of analog memory (microstore, 
track and store amplifiers) are essential for 
simple and efficient data transfer into the ana­
log computer. The separate patchboard allows 
the controls to be pre-patched, or control com­
mands from external dIgital computing equip­
ment may be introduced to vary the program 
during problem solution. These control signals 
may affect the operation of the analog com­
puter or some of its components many different 
ways: 

(1) change mode of operation 
(2) change time constant of integrators 
(3) control analog memory 

(4) set or monitor a potentiometer or other 
components 

( 5) make logical decisions 

The high accuracy solid state multipliers, re­
solvers, and function generators are also im­
portant contributors to the overall system per­
formance. 

3.2 375 Digital Computing System 

The 375 is a high-speed, all solid state general 
purpose digital computer with 24-bit word 
length and sign-magnitude binary number rep­
resentation. The size of the random access 
memory can range from 4,096 words to 32,768 
words, with a memory cycle time of 5 micro­
seconds. The 10 p. sec. addition and 31 p. sec .. 
mUltiplication times are typical of the speedbf· 
the arithmetic unit. 

Standard input/output capabilities include 
four data input/output channels: a buffered 
character input channel, a buffered character 
output channel, a parallel 24-bit input channel 
and a parallel 24-bit output channel. Auto­
matic interrupt may be used in connection'with 
any channel desired. In addition, 16 sense 
lines and 16 output control lines are provided 

for efficient control signal communication as 
will be described later. 

3.3 The DOS 350 Digital Operations System 

The DOS 350 is the control and communica­
tion center for the HYDAC 2400. Its modu­
lar, functional structure of digital computing 
and conversion components satisfies the strin­
gent requirements established by the basic dif­
ferences of the parallel analog and the sequen­
tial digital computers. 

The logic building blocks, counters, and arith­
metic elements provide an extremely high speed 
parallel counting, decision making, control, and 
arithmetic capability that cannot be satisfac­
torily provided elsewhere in the system. The 
same is true for the optional storage units that 
may be included in the DOS 350. 

The communication system provides for the 
flow of information throughout the system. 
The information handled can be classified as 
either whole word data or as bits or signals that 
must be communicated between the sections. 
The conversion of whole word data is per­
formed by the analog-to-digital and digital-to­
analog converters. The appropriate channels 
for ~onversion are selected and sampled by the 
multiplexer. 

In addition to the transfer of whole word 
data, provision must be made for the communi­
cation of logic and control signals. The sense 
lines enable the DOS 350 to exercise control 
over the digital program. The 375, through 
the use of a specific test instruction (SKS) is 
able to determine their status and make conse­
quent decisions. When the DOS must have im­
mediate access to the 375, an interrupt line 
has to be activated. When this happens, the 
375 is forced to store its present computation 
and proceed to a program designed to handle 
the interrupt situation.. The system has up to 
eight interrupt lines each of which has a speci­
fied priority in relation to the others. Similarly, 
the 375 also has the ability to transmit signals 
to the digital section. Output control pulses 
are generated by the 375 and terminated on 
DOS 350 patch panel. 

The control signal exchange between the 
231R-V and DOS 350 computers is accom­
plished by the use of analog comparators and 



HYBRID SIMULATION OF A LIFTING RE-ENTRY VEHICLE 723 

the digital-analog (DA) switches. The analog 
comparator permits the DOS 350 to be made 
aware of the occurrence of certain events with­
in the analog section. This circuit generates a 
logical ONE on the DOS 350 patchboard when 
the algebraic sum of two selected input voltages 
exceeds zero. The DA switch is basically an 
analog gate under DOS control, by which the 
path of an analog signal may be open or 
closed. Thus the logical program is able to 
accomplish numerous functions, such as chang­
ing parameters, providing automatic rescal­
ings, etc. 

While the above description of the HYDAC 
2400 is extremely brief, it is hoped that it would 
aid the reader in understanding subsequent 
discussions. More detailed writings on the 
systems are available from numerous EAI pub­
lications. 

4. PROBLEM MECHANIZATION 

All advantages of the hybrid computer are in 
vain, unless very careful consideration is given 
to the programming of the phyiscal system 

231R-V DOS 350 

under study. This phase of the simulation 
transforms the general purpose computer into a 
simulator of the specific physical system. 

4.1 Allocation of Tasks 

The first step towards a successful hybrid 
program is the allocation of tasks on the com­
puter. The underlying philosophy is to sub­
divide the physical system into sections, and 
assign these to various parts of the computer, 
where their speed and accuracy needs are best 
satisfied. 

The assignment of these sections to various 
elements of the HYDAC 2400 is shown in Fig. 
6. The attitude control loop, consisting of the 
vehicle rotational dynamics, the TRFCS and 
the short period sensor equations, are pro­
grammed on the analog section. In addition, 
the displays and cockpit simulator are tied into 
the analog since continuous analog signals are 
required. The translational equations of mo­
tion, long period heat sensor equations and 
guidance equations are programmed on the 375 
because of the stringent accuracy requirement. 

375 I 
I 
I 

1-- - --- rt====I~L~~1 
I I 

I 
I 
I 

SHORT TERM TRANSLATI ONAL 
I--~------I---~ EQUATIONS 

I --,-

t---"7---------1- : Q.AQ...:,---t---t---t 

OF MOTION 

LONG TERM 

TEMP. SENSOR 
SIMULATION 

t--t--,---------; - -------+-+-+------r-----' 
~~~~ ~-r-;-----~~~AN~~~S+__+_+--_,----~ 

~..:.=.;...;...;..;:~

LEGEND
CONTR:lL UNES ___ _

DATA LINES __ _

Figure 6

724 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

The DOS 350 provided the master timing, data
conversion, function generation, and reaction
jet control logic.

The DOS 350 timing and control is essential
because of the operational differences between
the analog and digital sections. The analog is
a parallel continuous computer with computing
time independent of problem size. The digital
is a serial, discrete interval computer with com­
puting time directly dependent on the size of
the problem. The DOS, through its timing
and controls, synchronizes the calculations on
each computer and controls the flow of informa­
tion between sections. Function generation and
the reaction control jet logic are ideally suited
to the DOS since these operations can be per­
formed rapidly in parallel with the 375-general
purpose digital computer, so that the digital
computation time is minimized.

4.2 DOS 350 Program

Fig. 7 shows a detailed block diagram of the
DOS program. The DOS performs the five fol­
lowing functions: 1) Timing, 2) Mode Control,
3) Data Transfer, 4) Function Generation, and
5) Reaction Jet Control Logic. These functions
are described in the following sections.

23IR-V

I
TO ROTATIONAL DYNA .. ICS
.-.-,_._-- REACTION JET

'RON_~~_._ CONTROL LOGIC

I

I
TRAJECTORY VARIABLES

(SLOW SAMPLING RATE)

ANALOG TO DIGITAL

CONVERSION

DIGITAL TO ANALOG

CONVERSION
~;::;..::~~~=+---------.-

FUNCTION GENERATION

375

I
I
I
I
I
I

I
I
1c(.B..a

---1---_

I
I TRAJECTORY

I VARIABlES
I
I

AERODYNAMI~ ~ COEI'I'ICENTSt----""WC=H'---__

AERO. FO R C E I COEI'.
MOME NT COEFFICENTS

Figure 7

4.2.1 Timing

Timing is required on a hybrid computer for
the following reasons:

(1) To synchronize the calculation time in
the digital program to the physical time
scale used on the analog computer. This
synchronism is accompHshed by sending
a periodic master time pulse T1 which
initiates the calculations for each step in
the digital computer.

(2) To time information transfers between
the analog section and the digital section.
Not all transfers are at the same rate,
since the serial memories of the DOS are
used for function generation of aerody­
namic moment and force coefficients.
These variables must be transferred at
a high rate, since the functions are used
in the short period rotational dynamics
of the system. On the other hand. those
variables relating to long term trajec­
tory variations are transferred to the
analog section at a lower sampling rate.

The general timing- of the simulation is
shown in Figure 8. Timing is controlled fron1
the DOS by a BCD counter called the master
timer. This counter counts 25 accurately timed
pulses occuring every 2 ms. resets, and repeats
jndefinitely. The reset signal which occurs
every 50 ms is the master timing signal T1
which is used to synchronize the analog and
digital. The timing- for the A to D and D to A
conversion is obtained by decoding the ap­
propriate states of the master timer .

..... TI. .. TI .. "'.T
1

) ---.l.--___________L_

~~~:..,_JlL..-------------~ 
.7a-a:a.A..y 

0& CONYI: ... OtI 
,_a_oc££1 

DO .......... ..y 

ADCOIlVU .... , ........ , 
211 ...... 71 

AD~~~~ 
2 ••• .....00. 

__________ ~n~ _____ _ 

_TIO" ."ua~ -,...-..... ~~ r---. 1""---"---' 
ON DOl 

,.. .. P._.UI_ 
CALCUUTIOlia 

'-----_--..JI 

~~-------__ ~ L-
...1. --_A .0"' ...... ___ 1--__ " 10 ...... ---1 

Figure 8 



HYBRID SIMULATION OF A LIFTING RE-ENTRY VEHICLE 725 

4.2.2 Mode Control 

A very important function of the DOS 350 is 
to control the modes of operation of the system. 
Communication between the DOS and the 375 
occurs through 16 sense lines which are set 
from the DOS and sensed on the digital section. 
In the other direction, eight flip-flops on the 
DOS can be set from the 375 with special OCP 
instructions (output control pulses). Of these, 
four can also be reset from the digital console. 

All modes are controlled by pushbuttons from 
the DOS 350 and the following list summarizes 
the state and function of the analog and digital 
sections when the indicated pushbutton is de­
pressed. 

(1) IC (initial condition) 

a. 231R in IC 
b. 375 in IC 
In IC 375 goes through all computations 
with the exception of the integration 
routine. 

(2) TYIC (type in initial conditions) 

a. 231R in IC 
b. 375 is ready to accept new initializa­

tion data from the typewriter. From 
this mode the program returns auto­
matically to the IC loop. 

(3) TYTI (type titles), 

a. 231R in Ie 
b.The 375 types out title block and line 

headings for the 26 variables chosen 
for print out. 

(4) TRA (transfer only) 

a. 231R in IC 
b. 375 in Ie 
This mode is for single stepping through 
the D to A and A to D transfers and was 
found very useful for problem checkout. 

(5) TDAC (transfer D to A check) 

a. 231R in Ie 
b. In the 375 a fixed block of data con­

sisting of positive and negative maxi­
mum values (corresponding to ± 100v 
on the analog) is transferred· con­
tinuously. This was found very con­
venient for a quick check on the D to 
A conversions. 

(6) OP (operate) 

a. 231R in operate 
b. 375 in operate 
This is the normal mode of operation of 
the system. 

(7) TS (time scale) 

a. 231R in operate 
b. 375 in operate 
This pushbutton changes time scales, 
there being two arbitrary time scales 
available, i.e., real time and twenty times 
real time. 

(8) HOLD 

a. 231R in hold 
b. The 375 performs all the calculations 

contained in the operate loop except 
those in the integration routine .. 

(9) DUMP 

a. 231R in hold during actual dump op­
eration otherwise in IC or operate as 
previously selected. 

b. 375 gOes to output routine at periodic 
intervals determined by TP, the print­
out time interval. The digital jumps 
to the output routine and types out 
the present values of the 26 variables. 
The DUMP command can be given in 
either Ie, HOLD or OP and the sys­
tem resumes in which ever mode it 
was in at the time of exectuion. 

4.2.3 Data Transfer 

The data transfer for this problem is very de­
manding since two basic sampling rates. are re­
quired, one for the short period aerodynamic 
functions and the other for the long period 
trajectory variables. The data transfers will 
be discussed in two parts: 1) the analog-to­
digital conversion and 2) the digital-to-analog 
conversion. 

1) Analog-to-Digital Conversion 
Two variables, a: and8E are converted eviery 

5 milliseconds since they are used on the DOS 
for function generation. Once every 50 milli­
seconds a, {3, and p. are converted and trans­
ferred to the 375 for use in the long period tra­
jectory calculations. Fig. 8 in the previous sec­
tion -shows the timing for these two different 
types of conversions. 



726 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964 

Upon command from the master timing pro­
gram on the DOS, the ADC control logic incre­
ments the multiplexer to the proper channel and 
sends a convert signal to the AD converter. 
When the conversion is complete, the converted 
data is either loaded into a serial memory on 
the DOS for use in the function generation pro­
gram or sent on to the 375 for use inthe digital 
calculations. 

2) Digital-to-Analog Conversion 
Updated values of the aerodynamic force and 

moment coefficients which are generated on the 
DOS are transferred to the analog every 5 
milliseconds. The trajectory variables (alti­
tude, temperature, guidance errors, etc.) are 
transferred from the 375 to the analog once 
every 50 milliseconds. Fig. 8 in the previous 
section shows the timing of these transfers. 

The digital-to-analog transfers are initiated 
by the DOS control logic upon command from 
the master timer. If data is to be transferred 
from the 375 the DOS sets the output channel 
ready flip-flop on the 375. The 375 will then 
output information to the buffer register and 
the DAC logic on the DOS loads it into the 
proper DA converter. To minimize digital com­
puter time on the 375, four data words are 
loaded into the four DAC's (under the control 
of the DOS) and while this data is being con­
verted and demultiplexed on the analog under 
control of the DOS, the 375 is formating the 
next four words to be transferred. By use of 
this technique, the total processing time con­
sumed for the transfer operation (except for 
formating) is only 200 p. secs. The force and 
moment coefficients are transferred by loading 
the four DAC's from the serial memories which 
store the latest computed values of these co­
efficients. The data is then converted and de­
multiplexed on the analog computer. The proc­
ess is then repeated for the last four coefficients. 

4.2.4 Function Generation 

The present simulation requires the genera­
tion of eight aerodynamic force and moment 
coefficients. Among these are four functions of 
one variable (Cn{3(a), V 1/3 (a) , CnSa(a), CISa 
(a) ), and four functions of two variables, 
(Crn(a,SE), CL(a,M), CD(a,M), and CY /3(a,M». 
a, M, and BE are angle of attack, mach number, 
and elevator deflection respectively. These 

functions are generated on the DOS for the fol­
lowing reasons: 

(1) The functions of two variables are ex­
tremely difficult to generate in the ana­
log section and would at best require a 
number of sums and products of func­
tions of one variable. The functions of 
one variable could be generated on the 
analog but were programmed on the 
DOS because of· the ease of setup and 
the speed at which the functions could 
be changed to study other vehicle con­
figurations. 

(2) The functions are also very difficult to 
generate on the 375 because of the fast 
sampling rate required. The sampling 
rate of the functions should be at least 
10 samples per second since they are 
used in the short period attitude loop of 
the vehicle. Thus in the twenty times 
real time mode, the functions should be 
sampled at least every 5 milliseconds. 
To meet this requirement the 375 would 
have to be interrupted to compute these 
functions a great number of times dur­
ing the major computation cycle. (In 
this problem the major computation 
cycle is 50 milliseconds). It is estimated 
that the computation time required to 
compute these functions on the 375 is 
about 4 milliseconds; therefore, if the 
program is stopped every 5 milliseconds 
for function generation, only one milli­
second of the five millisecond interval 
can be spent on the solution of the long 
period problem. Hence the major com­
putation cycle would be 5 times longer 
and twenty times real time runs would 
be impossible. 

The function generation is accomplished on 
the DOS by the use of 2 serial memory units 
which allow 32 curves with 16 points each to 
be stored: Linear interpolation between points 
is utilized, and for the functions of two vari­
ables, several curves are used with linear inter­
polation between them. For the present problem 
the four functions of one variable utilize 1 
curve each, and the remaining four funtcions 
of two variables are generated with 7 curves 
each. 



HYBRID SIMULATION OF A LIFTING RE-ENTRY VEHICLE 727 

Each function is computed once every 5 msec 
so that in a 20 times real time run this would 
correspond to 10 samples per second. 

4.2.5 Reaction Jet Control System 

Since portions of the flight are outside the 
atmosphere in regions where the dynamic pres­
sure is too small to make use of aerodynamic 
surfaces for control, a reaction jet system is 
required. To make the reaction jet control 
easier, a pulse width modulation scheme is used 
which makes the moment proportional to the 
error signal. To prevent continuous pulsing of 
the jets even for small errors a deadzone is also 
built into the controller. 

The logic operations required to decode the 
commands to activate the proper jets, and to 
simulate the pulse width modulator are per­
formed on the DOS in parallel with all other 
operations in the digital section. The simula­
tion of such a system by conventional analog 
techniques is a formidable task ( dozens of 
switches and relays would be required). The 
use of the 375 for such an operation would re­
sult in a significant increase in digitalcompu-
tation time because of the large number of 
logic operations and the fast sampling rate 
required. 

TRANSUTIOMAL EQUATIONS of 1II0TION 

VI = fA. + (~$If\A) VM-(SCO$ .A)r 
"M= .. +91l-CSS1fl.n.}VI -.n. y 
y = fjW.- 9" + . cos..a.) VI. +Jl. Vol 

-,+.3 Digital Calculation on the 375 

The digital program was written to make the 
digital calculation time as small as possible and 
to stay within a memory capacity of 4,096 
words. The material which follows gives a 
description of the equations which are solved 
on the 375 and the details of the digital com­
puter programming. 

4.3.1 Summary of the Digital Calculations 

Fig. 9 shows the block diagram of the system 
of equations to be solved on the 375. 

The translational equations of motion are 
solved in a local horizontal coordinate system 
with axes along the north, east, and radial di­
rections. The gravity and altitude calculations 
are based upon an oblate model of the earth, 
and the U.S. Standard Atmosphere, 1962, was 
stored in table form on the· 375. Most of the 
equations are conventional and quite straight­
forward, with the exception of the heat trans­
fer, temperature, and guidance equations which 
will be discussed in more detail. 

The heat transfer and temperature equations 
are calculated on the 375 because of the large 
number of complex functions required (i.e., 
cosine, log, exponential, square root, etc.) as 

CALCULATION 

Figure 9 



728 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964 

illustrated by a few of the equations which 
follow. Fortunately these equations describe 
slow-varying trajectory dependent quantities so 
that the slower serial computation on the digital 
is acceptable. 

qcs = 2.70898 V q (~)'2 
VR 104 

(7) 

( V)17 qRS = 144.9 R p1.57 -

104 
(8) 

(9) 

qcs and qRS are the conductive and radiative 
heat transfer rate at the stagnation point. T s 

is the temperature at the stagnation point. 

Because of their critical accuracy require­
ments, the guidance calculations are also per­
formed on the digital section. These can be 
separated into two parts: (1) the determination 
of the range-to-go, (RTG) , heading angle to 
target, (UT) , cross range-to-go, (CRTG), and 
heading error, and (2) the generation of down 
range and cross range errors (DRE and CRE ), 

which are sent to the TRFCS and subsequently 
controlled to zero. The r~nge-to-go, cross­
range-to-go, and heading angle to the target are 

TRA.lECTORY,----1 

determined from spherical trigonometric rela­
tions. The down range error is the difference 
between the range-to-go and the desired range­
to-go. The cross range error is calculated in 
a like manner. The desired range-to-go and 
cross-range-to-go are stored as functions of 
relative velocity. 

4.3.2 General Description of Digital Program 

In addition to solving the translational tem­
perature, and guidance equations, the digital 
program must accept :mode control and thl1il1g 
commands from the DOS, seale variables as 
they are transferred in and out of the digital 
section, and finally, provide various input-out­
put functions as described in the DOS section. 

Fig. 10 shows the flow diagram of the digital 
program. The executive program is discussed 
in detail in the section that follows. The 
dashed lines in the diagram link together the 
calculations which are performed when the IC 
mode of operation is selected. All operations 
are performed except the Runge-Kutta integra­
tion shown in block 9. When the operate mode 
is selected, the integration loop is entered, and 
four passes around the loop are made (see de­
scription of numerical integration which fol­
lows). At the end of four passes, the positions 

2 

--, 

~~;~~~TION, '-----n~~ OPERATE 
LOOP 

OUTPUTS TO DISPLA'18 

4 

9 
RUNGE- KUTTA 

~~~~~~~~----~:::~~~~ 
fiNAL
CALCULATIONS

CALCULATI ON NO WLOCITY,
M HUT T1t~ YES DYNAMIC Jlltf
RATES,TEMP., ANO~ ____ ..:..::.::c~lHI!"Il'L .!"'~_~_,-::_=-=_=-=_=-:_=-_--=_=---____ =--______ -_--I ANlULAit RATE,

fLUX AT IRAYlTYa .. ltHT
STAINATION POIIT CALCULATION.

Figure 10

HYBRID SIMULATION OF A LIFTING RE-ENTRY VEHICLE 729

Figure 11

and velocities, temperatures and guidance func­
tions are updated, and the analog-to-digital and
digital-to-analog transfers are made. The ex­
ecutive loop is then re-entered, and the cycle
continues until a different mode is selected.
The following section discusses this executive
loop in detail.

4.3.3 Digital Executive Program

The main media of communication, through
which the 375 receives the mode commands and
timing from the DOS 350, is the digitaFexecu­
tive program. (See Fig. 11). This program
is essentially a chain of test instructions,
through which the digital section interprets
the DOS 350 commands and executes them by
jumping to the respective portion of the stored
program.

Since some of the symbols are not identified
in Fig. 11, a short explanation of the executive
program follows. The first test determines
whether fast or slow time scaling is requested.
If fast time scale is requested the increment
size for integration (DLT) is set equal to

1 sec; otherwise it is set to 0.05 sec. The sub­
sequent two test instructions simply switch the
digital program into the TYIC or TYTI modes
as so commanded by the mode control logic.
(See Section 4.2.2 for a definition of these
modes) . The T > TT decision determines if it
is time for the periodic dump of pre-selected
digital parameters. The variable TT holds the
time for the next dump, say 20, 30, 40 etc. sec­
onds. TP is the printout time interval and in­
crements TT when the dump time is reached.
If the dump switch is on and T > TT, the out­
put dump is performed; if not, the program
proceeds to the next decision. The next test
keeps the entire digital program under the tim­
ing control of the master timer. The 375 can­
not proceed further until the next Tl pulse in­
dicates the beginning of the next computational
cycle. Further testing takes place only after
the Tl pulse arrives. The TDA test enables
the programmer to place the digital program
into a loop where only DA transfer is per­
formed. The IC test is self explanatory. The
next two tests are used to sense the end of run,
produce a printout of the final conditions, and
then put the digital computer in the hold mode
waiting for a mode command from the DOS.
The last few tests are self-evident and require
no explanation with the exception of the seeni­
ingly superfluous second test for dump. The
test for dump in hold mode makes it possible
to dump any time by putting the computer in
hold mode prior to the dump request, in addi­
tion to or in lieu of periodic dumps. In this
manner the programmer can determine param­
eter values with digital accuracy at any time
during the simulation.

4.3.4 Numerical Integration

Unquestionably one of the most complex and
time-consuming parts of the digital program is
the solution of the six simultaneous differential
equations which provide the position (altitude,
latitude, and longitude) and the velocity (radius
rate, velocity east, velocity north) of the ve­
hicle.

The numerical technique selected for this cal­
culation was the fourth order Runge-Kutta
method. The basic method as applied to a single
differential equation is described briefly.

730 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1964

Let dy == f (x, y) represent any first order
dx

equation and

Kl == hf (xn, Yn) (10)

h Kl
K2 == hf(xn+-, Yn+-) (11)

2 2

h K'2
K3 == hf(xn+-, Yn+-) (12)

2 2
(13)

1
Ay == - (K1 +2K2+2K3+K4) (14)

6
then Xn+1 == xn+h and Yn+1 ==Yn+Ay

The increment for the second interval is com­
puted in a similar manner by means of the
same formulae. The preceding technique was
extended to a system of six equations in an ob­
vious manner. The fourth order Runge-Kutta
method was chosen since it is self starting, ac­
curate, and will allow the use of large time
steps in the integration. The self starting fea­
ture simplifies the· programming and reduces
the memory requirement imposed to start other
numerical integration techniques. The error
of the fourth order Runge-Kutta method is of
the order h 5, where h is the step size, and will
allow the use of large time steps. While the
processing time is considerably more than sec­
ond order techniques the increase in allowable
step size more than compensates for it.

While preparing the digital program an effort
was made to combine the calculations due to
the integration with other necessary calcula­
tions to minimize the processing time as well
as the memory space requirements. This ap­
proach makes it difficult to trace the integra­
tion on the flow diagram of the digital program
(Fig. 10). For example, the Runge-Kutta con­
stants are determined in block 6 and the varia­
bles are incremented for the calculation
of the next constant in block 9 (such as

"{T Kl V .
V'''E + - ~ E) etc., and the equatIons are

2
evaluated with the incremented variables in
blocks 3, 4, 5, 6, and 7. The new value of the
integral at the end of each period is calculated
in block 9.

4.3.5 Utility Programs

In order to satisfy the various data handling
needs (type in, type out, punch tape, convert
binary to decimal, etc.) an excessive amount of
digital programming must be done. Fortunate­
ly, all these programs are already available,
tested, and clearly described in the 375's "soft­
ware package". This is no small feat as one
considers that the above programs, together
with the numerous subroutines, normally add
up to about 75% of all digital programming
required.

4.4 Analog Section

The analog computer is the one link of the
HYDAC 2400 system ideally suited for control
system simulation by virtue of its capability for
high speed, parallel computation and its input­
output flexibility. Output data can be dis­
played in a multitude of forms such as X-Y
plots, strip chart plots, oscilloscope displays,
auxiliary meters, etc. Special purpose input
equipment can easily be adapted for compatible
operation with the analog computer.

The block diagram of Fig. 12 delineates the
mechanization of the analog program.

l'1I0II_''°1 Moan

I
REACTION .lET

I TOOO.NO
AIIO ,.,.

I

't¥.IJ,,a

~NTROLI~U.=U~----~-+------~

OR ~ r-~--~--------~4-~~
CR I

T
T I

I

T, V, a, I I C:OOIIJIIT I
~~.~RT;:.tGI...:.. -----I- AIID DI.PL"Y~
CRTG,h.
DR.,CR.

Figure 12

HYBRID SIMULATION OF A LIFTING RE-ENTRY VEHICLE 731

As previously mentioned the TRFCS and ro­
tational dynamics were programmed on the
analog due to their rapidly varying characteris­
tics. When the vehicle is in the atmosphere,
the vehicle attitude is controlled by aerody­
namic control surfaces. The aerodynamic con­
trol moments are calculated from the surface
deflections and the moment coefficients gener­
ated on the DOS 350 and transferred to the
analog where the moments are produced and
fed into the angular acceleration equations.
The angular rates, generated from the angular
acceleration equations, are used to calculate the
Euler angles () and cpo These angles are used
to resolve gravity into the body axis for use in
the ex: and f3 equations.

The redundant force equations for ex and f3
are computed on the analog since they are re­
quired in the short period sensor equations
which follow. The aerodynamic force coeffi­
cients in the ex: and f3 equations are generated
on the DOS 350.

The short period sensor equations are:

T == Ts (1 - .1875 ex'2) - .375 ex: ex: Ts (15)

~T == .021 (Ts f3 + Ts f3) (16)

T is the temperature rate at the no~p. ~p.n~or ~
and LlT is the temperature- rat~.diff~;~ntial-b~~
tween the two wing sensors. The stagnation
point temperature information Ts and Ts which
is used in these sensor equations is calculated
in the digital section. The T and ~ T are used
in the TRFCS control equations shown below:

BE == fl (T) (17)

B'a == Kl (p, - fJ.c) + K2P + K3 BR (18)

BR == f~ (LlT) + K4 Ba (19)

fJ.c == f3 (T) (20)

The T and ~ T terms supply damping to the
control equations alleviating the heating prob­
lems associated with and undamped trajectory.
Closed loop guidance is achieved by adjusting
the pitch axis controls with a compensated down
range error, DRE , and adjusting the p,c to com­
pensate for the cross range error, CRE • The
pilot can manually control the range by adjust­
ing his temperature rate profile to eliminate the
displayed down range and cross range errors.

A cockpit simulator was utilized to evaluate
the TRFCS in the manual mode, and is trunked

directly to the analog computer. Computer
outputs drive display meters on the TRFCS
CONTROL PANEL which monitor the vehicle
temperature rate, attitude, accelerations, con­
trol surface position and range errors.

As seen in the analog program block dia­
gram, many of these parameters are trans­
ferred from the digital section. Some of the
parameters, though not necessary for control,
indicate trajectory status and therefore main­
tain the pilots confidence in his control infor­
mation. The above parameters and other per­
tinent data are recorded on strip charts and
X -Y plots for permanent record of each flight.

5. CONCLUSION

A large number of test trajectories were used
to evaluate the performance of the hybrid simu­
lation. An extensive check of the digital tra­
jectory calculatons with integration time step
sizes from 0.05 sec to 2.0 sec was made. Com­
parison with trajectories calculated on an IBM
7094 revealed errors less than 100' in altitude,
0.1 fps in velocity, 1NM in range in the worst
case (a 45 minute orbit transfer case). Re­
peatability tests on the complete system includ­
ing the flight control system were also made on
unguided re-entry trajectories using the
TRFCS to hold a fixed angle of attack (except
for small excursion for damping). The range
dispersion at the terminal point ·was found to
be less than 1.5 nautical miles. When this is
compared to the open loop sensitivity of range
to angle-of-attack (365 NM/degree) it indi­
cates that the angle-of-attack error (including
analog and conversion) is less than 0.004. This
corresponds to less than 20 mv error in equiva­
·lent analog voltage.

The true test of the simulation program is
the overall performance and cost compared to
other simulation techniques. For this purpose
a careful study of the equipment complement
required for an all analog and all digital was
made. Table I shows the equipment comple­
ment for the hybrid simulation and an estimate
for the all analog and all digital methods.
Table II shows the cost comparison of the three
simulation methods. The cost per hour is based
on the relative purchase price of the equip­
ment. The analog equipm2nt is 1.5 times the
hybrid and the digital .75 times the hybrid.

732 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1964

TABLE I. EQUIPMENT COMPLEMENT FOR HYBRID, ANALOG AND
DIGITAL SIMULATION

HYBRID ANALOG DIGITAL

1-231R-V with 3-231R-V's with I-DCS 375 with
205-amplifiers 600-amplifiers 8K-memory
150-servo set pots 350-servo set pots 16--sense lines
38-1,4 square multo 90-1,4 square multo 8-0CP lines
3-electronic resolvers 30~servo set diode 2-interrupt lines

(each contains function generators
4_1,4 sq. multo 10-electronic resolvers I-DOS 350 with

I-counter field
2-logic fields
I-Input-Output field
I-AD converter
I-multiplexer

2-sine-cosine gen.) (each contains

1-DOS-350 with
l-serial memory field
1--counter field
I-arithmetic field
3-logic fields
I-Input-Output field
I-AD converter
I-multiplexer

4-1,4 sq. multo
2-sine-cosine gen.)

4-DA converters

1-DCS 375 with
4K-memory
16--sense lines
8--0CP lines
2-interrupt lines

The cost comparison is made on the basis of
100 hrs of running time on the hybrid system.
It is estimated that half this time was run at
real time and one half at 20x faster. While
both the hybrid and analog are capable of 20x
real time operation the digital is capable of

20-DA converters

only 2x real time. This is based on a digital
calculation time for the short period of 40
milliseconds, which allows 10 samples per sec­
ond for the short period when running 2x fast.

From Table II is seen that the hybrid simu­
lation of the re-entry problem reduced costs

TABLE II. COST COMPARISON BETWEEN HYBRID, ANALOG, AND DIGITAL

ITEM HYBRID ANALOG DIGITAL

ReI. Cost/hr of operation. 1 unit 1.5 units .75 units
(assured to be directly proportional to
purchase price)
Cost of Real Time Runs 50 75 37

Cost of Fast Time Runs 50 (20x fast) 75 (20x fast) 375 (2x fast)

Cost of Day to Day Setup, checkout & 10 (10%) 50 (30%) 20 (5%)
Downtime

Total Cost 110 200 432

Total ReI. Cost 1 1.82 3.93

HYBRID SIMULATION OF A LIFTING RE-ENTRY VEHICLE 733

over an all analog method by 50 % and over an
all digital by 75 %. This saving can be attri­
buted to the high accuracy digital calculation,
high speed analog computation, rapid auto­
matic setup and checkout features, concurrent
2-variable function generation, and high speed
logic operations available in the HYDAC 2400
system. The operational and cost saving fea­
tures of the hybrid system add to its status as
a powerful simulation tool.

REFERENCES

1. STALONY-DOBRZANSKI, J., "Temperature
Rate Flight Control System," Lecture given
at University of California, Los Angeles,
August 1963

2. STALONY-DoBRAZANSKI, J., "Application of
Temperature Rate to Manual Flight Con­
trol of Re-entry Vehicles and Energy Man-

agement," Proceedings National Aerospace
Electronics Conference, Dayton, Ohio, 1962

3. CHAPMAN, DEAN R., "An Analysis of the
Corridor and Guidance Requirements for
Supercircular Entry Into Planetary Atmos­
phere," NASA TR R-55, 1959.

4. FREDERICKSON, A. A., "Analog Computer
Mechanization for Guidance Law Studies,"
The Boeing Company, Report #D2-8117,
November 1960

5. LEES, LESTER, HARTWIG, F. W., and COHEN,
C. B., HUse of Aerodynamic Lift During
Entry Into the Earth's Atmosphere," Jet
Propulsion, Vol. 29, No.9, September 1959,
p.633

6. WISNESKI, M. L. "An Analog Computer
Simulation X-20 Glide Phase Guidance
Studies," The Boeing Company, Report
#D2-90234, August 1962

REVIEWERS, PANELISTS, AND SESSION CHAIRMEN

AFIPS and the 1964 Fall Joint Computer Conference Committee
would like to express their sincere appreciation to those listed below
for their contribution toward the formulation and execution of the
technical program.

D. A. BAUMANN
R. BELLUARDO
L. C. CLAPP
H. E. EDEN
D. C. EVANS

C. M. ABLOW
G. N. ARNOVICK
P. B. BAXENDALE
R. W. BORNEMAN
J. R. BROWN, JR.
C. H. BURNS
S. G. CAMPBELL
W. C. CARTER
T. E. CHEATHAM, JR.
J. G. CLARK
A. B. CLYMER
D. J. CRAWFORD

G. J. CULLER
W. J. DIXON
A. R. EAGLE
T. S. EASON
M. EDEN
B. ELSPAS
F. ENGEL, JR.
O. FIRSCHEIN
L. E. FOGARTY
A.R.FuRMAN
E. O. GILBERT
E. G. GILBERT
R. C. GOLD
J. GOLDBERG
M. GORFINKEL

G. A. BE KEY
G. J. CULLER
E. G. FUBINI
J. T. GILMORE, JR.
R. C. GOLD
ReM.HOWE

SESSION CHAIRMEN

H. G. KOLSKY
G. S. MITCHELL
D. B. PARKER
W."J. QUIRK

H~ M. TEAGER

REFEREES

J. GRIFFITH
R. S. GRISETTI
N. HARDY
C. HENSLEY
J. R. HERNDON
G. HILL
W. J. HOLLIS
R.M.HoWE
C. C. HURD
E. M. KING, JR.
G.A. KORN
J.P. LAZARUS
R. M. LEE
W. W. LICHTENBERGER
L. B. LUSTED
T. MARILL
C. H. MAYS
M. E. MCCOY
J. MERSEL
R. C. MINNICK
M. MONTALBANO
J. J. MURPHY
E. NAGLE
1. D. NEHAMA
J. NELSON
B. G. OLDFIELD
W. M. OVERN

PANELISTS

E. M. KING, JR.
G.A.KoRN
R. LoRD
J. MCCARTHY
M. E. McCOY
T. J. MOFFETT

735

J. H. TURNOCK, JR.
R. VICHNEVETSKY
P. R. WINTERS

A. M. PIETRASANTA
E. M. PIPER
N. E. POBANZ
J. H. POMERENE
L. C. RAY
L. G. ROBERTS
A.!, RUBIN
J. A. G. RUSSELL
L. A. RUSSELL
T. R. SAVAGE
O. H. SCHMITT
R. SILVER
C. H. SINGLE
R. C. SINGLETON
W. R. SMITH
R. SPINRAD
R. STACY
T. G. STOCKHAM, JR.
J. F. UNDERWOOD
R. VICHNEVETSKY
I. A. W ARHEIT
H. R. WARNER
R. R. WHEELER
W. E. WIEBENSON, JR.
J. W. YOUNG, JR.

A. G. OETTINGER
G. A. PAQUETTE
D. T. Ross
D. SINNOTT
B. WIDROW

AMERICAN FEDERATION OF INFORMATION

PROCESSING SOCIETIES (AFIPS)

211 E. 43rd Street, New York 17, New York

Officers and Board of Directors of AFIPS

Chairman

DR. EDWIN L. HARDER*
Westinghouse Electric Corp.

700 Braddock Avenue
East Pittsburgh, Pa.

Secretary

SAUL T. GASS
IBM Corporation

1800 Yosemite Road
Berkeley 7, Calif.

H. S. BRIGHT
Philco Corporation
Computer Division
5900 Walsh Road
Willow Grove, Pa.

EUGENE H. JACOBS
System Development Corporation

2500 Colorado A venue
Santa Monica, Calif.

WALTER L. ANDERSON*
General Kinetics, Inc.
2611 Shirlington Road

Arlington 6, Va.

DR. ARNOLD A. COHEN
Univac

St. Paul 16, Minn.

Simulation Council Director

JOHN E. SHARMEN
Simulation Councils, Inc.

P. O. Box 504
Sunnyvale, Calif.

ACM Directors

IEEE Directors

Treasurer

FRANK E. HEART*
Lincoln Laboratory

P. O. Box 73
Lexington 73, Mass.

Chairman-Elect

DR. EDWIN L. HARDER
Westinghouse Electric Corporation

700 Braddock Avenue
East Pittsburgh, Pa.

HOWARD BROMBERG*
2024 Addison Street
Philadelphia 46, Pa.

DR. WALTER BAUER
Informatics, Inc.

15300 Ventura Boulevard
Sherman Oaks, Calif.

G. L. Hollander
Hollander Associates

P. O. Box 2276
Fullerton, Calif.

CLAUDE A. R. KAGAN
Western Electric Co.

P. O. Box 900
Princeton, N. J.

Executive Secretary

REDMOND GARDNER
AFIPS

211 E. 43rd St.
New York 17, N. Y.

A merican Documentation Institute Director

PETER LUHN
1000 Westchester Ave.

White Plaines, N. Y.

* Executive Committee

737

Admissions

BRUCE GILCHRIST
Service Bureau Corporation

424 Park Avenue
New York 22, N. Y.

Conference

KEITH UNCAPHER
The RAND Corporation

1700 Main Street
Santa Monica, Calif.

Finance

WILLIAM D. ROWE
Sylvania Electronics Systems

189 B. Street
Needham Heights, Mass.

Planning

JACK MOSHMAN
C.E. I.R.

One Farragut Square
Washington, D. C.

Public Relations

ISAAC SELIGSOHN
IBM Corporation

Dept. 1-812
590 Madison A venue
New York 22, N. Y.

Education

RICHARD M. BROWN
University of Illinois

Coordinated Science Lab
Urbana, Illinois

Standing Committee Chairmen

738

Award

SAMUEL LEVINE
Teleregister Corporation

445 Fairfield Avenue
Stanford, Conn.

Constitution and By-Laws

Eugene Jacobs
System Development Corporation

2500 Colorado Avenue
Santa Monica, Calif.

International Relations

PROF. JOHN PASTA
Digital Computer Lab
University of Illinois

Urbana, Illinois

Publication

STANLEY ROGERS
General Dynamics

Astronautic Division
P. O. Box 166

San Diego 12, Calif.

Social Implications of Information
Processing Technology

DR. MORRIS RUBINOFF
Moore School of Electrical Engineering

University of Pennsylvania
Philadelphia 4, Pa.

1964 F JCC Chairman

DR. RICHARD TANAKA
Lockheed Missiles and Space Co.

3851 Hanover Street
52-40 Bldg. 201

Palo Alto, Calif.

1964 FALL JOINT COMPUTER CONFERENCE
COMMITTEE

Chairman:
RICHARD I. TANAKA, Lockheed Missiles & Space Com­

pany

Vice Chairman:
ARTHUR J. CRITCHLOW, IBM Corporation

Secretary-Administrator:
R. GEORGE GLASSER, McKinsey & Company, Inc.

Treasurer:
ED C. DODGE, Computer Sciences Corporation

Technical Program:
DAVID R. BROWN, Stanford Research Institute,

Chairman
SAUL I. GABS, IBM Corporation
HAROLD E. PETERSEN, IBM Corporation
PROF. DANIEL TEICHROEW, Case Institute of Tech­

nology

Exhibits:
ARTHUR SCHOLAR, Pacific Telephone & Telegraph Co.,

Chairman
RON R. BANDUCCI, Pacific Telephone & Telegraph Co.,

Vice Chairman

Local Arrangements:
RAYMOND D. SMITH, SCM Corporation, Chairman
THOMAS C. BIEG, IBM Corporation, Vice Chairman
OSCAR M. PALOS, Bank of America
ALBERT C. PORTER, California Public Utilities Com­

mission

739

Registration:
ED C. DODGE, Computer Sciences Corporation, Chair­

man
THOMAS R. DINES, Control Data Corporation, Vice

Chairman
JOSEPH R. PARKER, The Service Bureau Corporation

Printing and Mailing:
CHESTER A. CREIDER, JR., Philco Corporation, Chair­

man

Publications:
WILLIAM H. DAVIDOW, General Electric Computer

Laboratory, Chairman

Public Relations:
WALT KEESHEN, JR., IBM Corporation, Chairman
JOHN B. HATCH, Ampex COL]:,oration, Vice Chairman

Ladies' Activities:
MRS. MARY Lou HowEY, IBM Corporation
MRS. DONNA PROCTOR, IBM Corporation
MISS DANNY SIROSKEY, IBM Corporation

Education Program:
ROBERT J. ANDREWS, IBM Corporation, Chairman
NORTON O. SALBERG, IBM Corporation, Vice Chair­

man
HARRY ARNOLD, Control Data Corporation
MRS. KATHERINE WHITE, Physics International Co.

Consultants:
JOHN L. WHITLOCK, J. L. Whitlock Associates, Ex­

hibits
WILLIAM C. ESTLER, Public Relations

EXHIBITORS

1964 FAll JOINT COMPUTER CONFERENCE

ADAGE, INC., Cambridge, Mass.
AERONUTRONIC, Division of Philco Corp.,

Newport Beach, Calif.
AMERICAN TELEPHONE & TELEGRAPH

COMPANY, New York, N.Y. •
AMPEX CORP., Redwood City, Calif.
ANELEX CORPORATION, Boston, Mass.
APPLIED DYNAMICS, INC., Ann Arbor, Mich.
AULT, INC., Minneapolis, Minn.
BECKMAN INSTRUMENTS, INC., Computer

Operations, Fullerton, Calif.
. BENSON-LEHNER CORPORATION, Van

Nuys, Calif.
BRUSH INSTRUMENTS, Cleveland, Ohio
BRYANT COMPUTER PRODUCTS, Walled

Lake, Mich.
CALIFORNIA COMPUTER PRODUCTS, INC.,

Anaheim, Calif.
THE CALMA COMPANY, Los Gatos, Calif.

KENNEDY COMPANY
TEL-A-DEX CORPORATION

CAMBRIDGE COMMUNICATIONS CORPO-
RATION, Cambridge, Mass.

C-E-I-R, INC., Washington, D. C.
COLLINS RADIO COMPANY,Dalias, Texas
COMCOR, INC., Subsidiary of Astrodata, Inc.,

Anaheim, Calif.
COMPUTER CONTROL COMPANY, INC.,

Framingham, Mass.
COMPUTER DESIGN, West Concord, Mass.
COMPUTER SCIENCES CORPORATION, EI

Segundo, Calif.
COMPUTERS AND DATA PROCESSING &

DATA SYSTEMS DESIGN, New York. N.Y.
CONDUCTRON CORPORATION, Ann Arbor,

Mich.
CONTROL DATA CORPORATION, Minneapo-

lis, Minn.
CYBETRONICS, INC., Waltham, Mass.
DATA DISC, INC., Palo Alto, Calif.
DATAMATION, New York, N.Y.
DATAMEC CORPORATION, Mountain View,

Calif.
DATA PROCESSING DIGEST, INC., Los

Angeles, Calif.
DATA SYSTEMS, INC., Subsidiary of Union

Carbide Corp., New York, N.Y.
DI/AN CONTROLS, INC., Boston, Mass.
DIGITAL EQUIPMENT CORPORATION, May­

nard,Mass.

741

DIGITRONICS CORPORATION, Albertson,
L.I., N.Y.

DYMEC, Division of Hewlett-Packard Com;..·
pany, Palo Alto, Calif.

ELCO CORPORATION, Willow Grove, Pa.
ELECTRONIC ASSOCIATES, INC., West Long

Branch, N. J.
ELECTRONIC MEMORIES, INC., Hawthorne,

Calif.
ENGINEERED ELECTRONICS COMPANY,

Santa Ana, Calif .
FABRI-TEX, INC., Amery, Wisc.
FERROXCUBE CORPORATION OF AMER­

ICA, Saugerties, N.Y.
FRIDEN, INC., San Leandro, Calif.
FUJITSU, L YD., cloThe Nissho Pacific Corpora­

tion, San Francisco, Calif.
GENERAL ELECTRIC, Computer Depart-

ment, Phoenix, Ariz.
GENERAL KINETICS, INC., Arlington, Va.
IBM CORPORATION, White Plains, N.Y.
INDIANA GENERAL CORPORATION, Chi-

cago, Ill.
INFORMATION INTERNATIONAL, INC.,

Cambridge, Mass.
INVAC CORPORATION, Waltham, Mass.
KLEINSCHMIDT, Division of SCM Corpora­

tion, Deerfield, Ill.
LIBRASCOPE GROUP, GENERAL PRECI­

SION, INC., Glendale, Calif.
LITTON INDUSTRIES, Beverly Hills, Calif.
McGRAW-HILL BOOK COMPANY, New York,

N.Y.
MEMOREX CORPORATION, Santa Clara,

Calif.
MICRO SWITCH, Division of Honeywell, Inc.,

Freeport, Ill.
MIDWESTERN INSTRUMENTS, Tulsa, Okla.
MILGO ELECTRONIC CORP., Miami, Fla.
THE NATIONAL CASH REGISTER COM-

PANY, Dayton, Ohio
NORTH AMERICAN AVIATION, INC., EI

Segundo, Calif.
OMNITRONICS, INC., Philadelphia, Pa.
POTTER INSTRUMENT COMPANY, INC.,

Plainview, L.I., N.Y.
PRENTICE-HALL, INC., Englewood Cliffs,

N.J.
RADIATION, INC., Products Division, Mel­

bourne, Fla.

RAYTHEON COMPUTER, Formerly Packard
Bell Computer, Santa Ana, Calif.

RCA ELECTRONIC COMPONENTS & DE­
VICES, Harrison, N. J.

RCA ELECTRONIC DATA PROCESSING,
Cherry Hill, N. J.

RECORDAK CORPORATION, New York,N.Y.
RHEEM ELECTRONICS, Hawthorne, Calif.
ROTRON MANUFACTURING COMPANY,

INC., Woodstock, N.Y.
ROYAL McBEE CORPORATION, New York,

N.Y.
SCIENTIFIC DATA SYSTEMS, INC., Santa

Monica, Calif.
SC~Yf CORPORATIO?--~,. I'~ew York, N.Y.
SOROBAN ENGINEERING, INC., Melbourne,

Fla.
SPARTAN BOOKS, INC., Washington, D. C.
STRAZA INDUSTRIES, Las Vegas, Nev.

742

STROMBERG CARLSON, Division of General
Dynamics, San Diego, Calif.

SYSTRON-DONNER CORPORATION, Concord
Calif.

TALLY CORPORATION, Seattle, Wash.
TELEMETRICS, INC., Gardena, Calif.
TELETYPE. CORPORATION, Skokie, Ill.
TEXAS INSTRUMENTS, INC., Houston, Texas
TEXAS INSTRUMENTS, INC., Dallas, Texas
TRANSISTOR ELECTRONICS CORP., Min-

neapolis, Minn.
UGC INSTRUMENTS, Division of United Gas

Corporation, Shreveport, La.
VICTOREEN INSTRUMENT COMPANY,

JOHN WILEY & SONS, INC., New York, N.Y.
WYLE LABORATORIES, Products Division,

EI Segundo, Calif.
ZELTEX, INC., Concord, Calif.

LIST OF JOINT COMPUTER CONFERENCES
1. 1951 Joint AlEE-IRE Computer Conference,

Philadelphia, December 1951
2. 1952 Joint AIEE-IRE-ACM Computer Con­

ference, New York, December 1952
3. 1953 Western Computer Conference, Los

Angeles, February 1953
4. 1953 Eastern J oint Computer Conference,

Washington, December 1953
5. 1954 Western Computer Conference, Los

Angeles, February 1954
6. 1954 Eastern J oint Computer Conference,

Philadelphia, December 1954
7. 1955 Western Joint Computer Conference,

Los Angeles, March 1955
8. 1955 Eastern J oint Computer Conference,

Boston, November 1955
9. 1956 Western Joint Computer Conference,

San Francisco, February 1956
10. 1956 Eastern Joint Computer Conference,

New York, December 1956
11. 1957 Western Joint Computer Conference,

Los Angeles, February 1957
12. 1957 Eastern Joint Computer Conference,

Washington, December 1957
13. 1958 Western J oint Computer Conference,

Los Angeles, May 1958

14. 1958 Eastern J oint Computer Conference,
Philadelphia, December 1958

15. 1959 Western Joint Computer Conference,
San Francisco, March 1959

16. 1959 Eastern J oint Computer Conference,
Boston, December 1959

17. 1960 Western Joint Computer Conference,
San Francisco, May 1960

18. 1960 Eastern Joint Computer Conference,
New York, December 1960

19. 1961 Western Joint Computer Conference,
Los Angeles, May 1961

20. 1961 Eastern Joint Computer Conference,
Washington, December 1961

21. 1962 Spring Joint Computer Conference, San
Francisco, May 1962

22. 1962 Fall Joint Computer Conference, Phila­
delphia, December 1962

23. 1963 Spring J oint Computer Conference,
Detroit, May 1963

24. 1963 Fall Joint Computer Conference, Las
Vegas, November 1963

25. 1964 Spring J oint Computer Conference,
Washington, April 1964

26. 1964 Fall Joint Computer Conference, San
Francisco, October 1964.

Conferences 1 to 19 were sponsored by the National Joint Computer Com­
mittee, predecessor of AFIPS. Back copies of the proceedings of these con­
ferences may be obtained, if available, from:

• Association for Computing Machinery, 211 E. 43rd St., New York 17, N. Y.

• Institute of Electrical and Electronic Engineers, Inc., Box A, Lennox Hills
Station, New York, N. Y. 10021

Conferences 20 and up are sponsored by AFIPS. Copies of AFIPS Con­
ference Proceedings may be ordered from the publishers as available at the
prices indicated below. Members of societies affiliated with AFIPS may obtain
copies at the special "Member Price" shown.

List Member
Volume Price Price Publisher

20

21

22

23
24
25
26

$12.00 $7.00 Macmillan Co., 60 Fifth Ave., New York 11,
N. Y.

6.00 6.00 National Press, 850 Hansen Way, Palo Alto,
Calif.

8.00 4.00 Spartan Books, Inc., 1106 Connecticut Avenue,
N.W. Washington, D. C. 20036

10.00 5.00 Spartan Books, Inc.
16.50 8.25 Spartan Books, Inc.
16.00 8.00 Spartan Books, Inc.

Spartan Books, Inc.

NOTICE TO LIBRARIANS
This volume (26) continues the Joint Computer Conference
Proceedings (LC55-44701) as indicated in the above table. It
is suggested that the series be filed under AFIPS and cross
referenced as necessary to the Eastern, Western, Spring, and
Fall Joint Computer Conferences.

743

ALLEN, T. R., 387
AMEMIY A, H., 123
ANIZIENIS, A., 663
BACKMAN, C. W., 411
BAILEY, R. B., 717
BARANY, J. T., 435
BERGIN, G. P., 45
BITTMANN, E. E., 93
BOBRA w, D. G., 591
BARETA, D., 1

BRENNAN, R. D., 299
BROWN, J. L., 205
CAPOBIANCO, J. A., 81
CARBREY, R. L., 707
CARSON, D., 615
CHANANNIS, T. E., 69
COHLER, E. U., 175
COLE, G. L., 363
COLE, M. P., 351
CUNNINGHAM, B. E., 423
DAVIS, M. R., 325
DAVIES, P. M., 147
DICKINSON, M. M., 501
DORN, P. H., 351
DOODY, D. T., 205

. EDEN, M., 333
ELLIS, T. 0., 325
EWING, R. G., 147
F AGG, P., 205
FAIRCLOUGH, J. W., 205
FITZWATER, D. R., 465
FOATE, J. E., 387, 397
Foss, E. D., 363
FREDERICKSON, A. A., 717
FREEMAN, D. N., 15
FRICKE, L. H., 685
GABOR, A., 435

AUTHOR INDEX

GALL, R. G., 159
GARNER, E. G., 517
GIMPELSON, L. A., 233
GLUSKIN, R. S., 631
GRAY, R. G., 363
GREENE, J., 205
HALPERN, M. I., 57
HARGREAVES, B., 363
HARNETT, R. T., 313
HIPP, J. A., 205
HOWARD, J. A., 673
JACKS, E. L., 343
JACKSON, J. B., 501
JACOBY, M., 631
JOHNSON, E. L., 251
JOYCE, J. D., 363
KARPLUS, W. J., 673
KINSLOW, H. A., 443
KOPPEL, R. L., 81
KRULL, R. L., 397
LANZKRON, R. W., 489
LEWIS, C. R., 351
McATEER, J. E., 81
IvIACINTYRE, R. M., 69
MAYHEW, T.R., 123
MAYS, C. H., 623
MERMELSTEIN, P., 333
METZGER, L. G., 435
MURATA, K., 187
NAKAZAWA, K., 187
NEWHALL, N. S., 481
NUTTING, B. W., 527
OCKER, W., 291
OROZCO, E. G., 477
ORR, W. K., 693
OSEAS, J., 517

745

PAQUETTE, G. A., 695
PETERSEN, H. E., 313
PICK, G. G., 107
POUMAKIS, E., 435
PRYOR, R. L., 123
PYLE, W. I., 69
RANDA, G. C., 501
RAPHAEL, B., 577
READER, T. D., 631
ROBINSON, G., 615
ROY, R. J., 527
RUBINSTEIN, H. R., 175
RUDIE, D. D., 251
SAINT-PAUL, A., 717
SANO, H., 299
SANSOM, F. J., 313
SCHWEPPE, E. J., 465
SHARP, E. :M., 363
SHAW, J. C., 455
SIPPEL, R. J., 363
SPELLMAN, T. M., 363
SPITZE, J. M., 643
TALKIN, A. I., 539
TEITILMAN, W., 559
TEGER, S., 291
THARPE, A., 363
TRILLING, D. R., 277
Tou, J. T., 651
UHR, L. E., 35
W ALLI, C. R., 545
WALSH, R. A., 685
WARSHAWSKY, L. M., 313
WEBER, J. A., 233
WILLIAMS, S. B., 411
WOS, L., 615
YANG, C. C., 651
YOUCHAH, M. I., 251

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745

